1
|
Brenna CTA, Goldstein BI, Zarate CA, Orser BA. Repurposing General Anesthetic Drugs to Treat Depression: A New Frontier for Anesthesiologists in Neuropsychiatric Care. Anesthesiology 2024; 141:222-237. [PMID: 38856663 DOI: 10.1097/aln.0000000000005037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
During the last 100 years, the role of anesthesiologists in psychiatry has focused primarily on facilitating electroconvulsive therapy and mitigating postoperative delirium and other perioperative neurocognitive disorders. The discovery of the rapid and sustained antidepressant properties of ketamine, and early results suggesting that other general anesthetic drugs (including nitrous oxide, propofol, and isoflurane) have antidepressant properties, has positioned anesthesiologists at a new frontier in the treatment of neuropsychiatric disorders. Moreover, shared interest in understanding the biologic underpinnings of anesthetic drugs as psychotropic agents is eroding traditional academic boundaries between anesthesiology and psychiatry. This article presents a brief overview of anesthetic drugs as novel antidepressants and identifies promising future candidates for the treatment of depression. The authors issue a call to action and outline strategies to foster collaborations between anesthesiologists and psychiatrists as they work toward the common goals of repurposing anesthetic drugs as antidepressants and addressing mood disorders in surgical patients.
Collapse
Affiliation(s)
- Connor T A Brenna
- Department of Anesthesiology & Pain Medicine and Department of Physiology, University of Toronto, Toronto, Canada; Perioperative Brain Health Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry and Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Beverley A Orser
- Department of Anesthesiology & Pain Medicine and Department of Physiology, University of Toronto, Toronto, Canada; Perioperative Brain Health Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| |
Collapse
|
2
|
Singh SB, Tiwari A, Katta MR, Kafle R, Ayubcha C, Patel KH, Bhattarai Y, Werner TJ, Alavi A, Revheim ME. The utility of PET imaging in depression. Front Psychiatry 2024; 15:1322118. [PMID: 38711875 PMCID: PMC11070570 DOI: 10.3389/fpsyt.2024.1322118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
This educational review article aims to discuss growing evidence from PET studies in the diagnosis and treatment of depression. PET has been used in depression to explore the neurotransmitters involved, the alterations in neuroreceptors, non-neuroreceptor targets (e.g., microglia and astrocytes), the severity and duration of the disease, the pharmacodynamics of various antidepressants, and neurobiological mechanisms of non-pharmacological therapies like psychotherapy, electroconvulsive therapy, and deep brain stimulation therapy, by showing changes in brain metabolism and receptor and non-receptor targets. Studies have revealed alterations in neurotransmitter systems such as serotonin, dopamine, GABA, and glutamate, which are linked to the pathophysiology of depression. Overall, PET imaging has furthered the neurobiological understanding of depression. Despite these advancements, PET findings have not yet led to significant changes in evidence-based practices. Addressing the reasons behind inconsistencies in PET imaging results, conducting large sample size studies with a more standardized methodological approach, and investigating further the genetic and neurobiological aspects of depression may better leverage PET imaging in future studies.
Collapse
Affiliation(s)
- Shashi B. Singh
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Atit Tiwari
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | | | - Riju Kafle
- Rhythm Neuropsychiatry Hospital and Research Center Pvt. Ltd, Lalitpur, Nepal
| | - Cyrus Ayubcha
- Harvard Medical School, Boston, MA, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Krishna H. Patel
- Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Yash Bhattarai
- Case Western Reserve University/The MetroHealth System, Cleveland, OH, United States
| | - Thomas J. Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Mona-Elisabeth Revheim
- The Intervention Center, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Anika, Arora R, Virendra SA, Chawla PA. Mechanistic Study on the Possible Role of Embelin in Treating Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:55-66. [PMID: 36655531 DOI: 10.2174/1871527322666230119100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/20/2022] [Accepted: 11/10/2022] [Indexed: 01/20/2023]
Abstract
Embelin (EMB) (2,5-Dihydroxy-3-undecyl-1,4-benzoquinone) is a natural benzoquinone extracted mainly from Embelia ribes (ER) and appear as vivid orange dots beneath the fruit's pericarp. It is being used to treat various diseases since ancient times in India. It has been ascribed as one of the 32 ayurvedic drugs of national importance in the National Medicinal Plant Board set up by the Government of India under the Ministry of Indian System of Medicine and Homeopathy. Embelin prevents neuronal oxidative damage by decreasing the peroxidation of lipids. Along with having antioxidant properties, it also prevents the production of amyloid-protein-related fibrils and blocks the progression of inflammatory cascades. Due to embelin's ability to cross the blood-brain barrier, its neuroprotective effects have been studied in the past using in vitro models of neuronal disorders such as convulsion and epilepsy, Alzheimer's disease, anxiety and depression, traumatic brain injury, cerebral ischemia, Huntington's disease, and multiple sclerosis. In addition to its neuroprotective effects, its role as an antitubercular, anti-cancer, antioxidant, astringent, anti-inflammatory, anti-bacterial, contraceptive, carminative, diuretic, and anthelmintic agent has also been studied. With docking studies and recent advancements in formulations of embelin including polyethylene and embelin micelles and embelin noisome preparations, embelin can prove to be a promising compound for its therapeutic actions in a wide range of diseases and disorders. The findings of docking studies suggest the binding ability of embelin to be similar to the standard drug in their respective disorders. In this review and docking analysis, we bring an outline of scientific evidence concerning the neuroprotective actions of embelin, still, further research is required for its prospective as a chief compound in clinical approaches.
Collapse
Affiliation(s)
- Anika
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Rimpi Arora
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sharma A Virendra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
4
|
Thompson SM. Modulators of GABA A receptor-mediated inhibition in the treatment of neuropsychiatric disorders: past, present, and future. Neuropsychopharmacology 2024; 49:83-95. [PMID: 37709943 PMCID: PMC10700661 DOI: 10.1038/s41386-023-01728-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
The predominant inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), acts at ionotropic GABAA receptors to counterbalance excitation and regulate neuronal firing. GABAA receptors are heteropentameric channels comprised from subunits derived from 19 different genes. GABAA receptors have one of the richest and well-developed pharmacologies of any therapeutic drug target, including agonists, antagonists, and positive and negative allosteric modulators (PAMs, NAMs). Currently used PAMs include benzodiazepine sedatives and anxiolytics, barbiturates, endogenous and synthetic neurosteroids, and general anesthetics. In this article, I will review evidence that these drugs act at several distinct binding sites and how they can be used to alter the balance between excitation and inhibition. I will also summarize existing literature regarding (1) evidence that changes in GABAergic inhibition play a causative role in major depression, anxiety, postpartum depression, premenstrual dysphoric disorder, and schizophrenia and (2) whether and how GABAergic drugs exert beneficial effects in these conditions, focusing on human studies where possible. Where these classical therapeutics have failed to exert benefits, I will describe recent advances in clinical and preclinical drug development. I will also highlight opportunities to advance a generation of GABAergic therapeutics, such as development of subunit-selective PAMs and NAMs, that are engendering hope for novel tools to treat these devastating conditions.
Collapse
Affiliation(s)
- Scott M Thompson
- Center for Novel Therapeutics, Department of Psychiatry, University of Colorado School of Medicine, 12700 E. 19th Ave., Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
Vecera CM, C. Courtes A, Jones G, Soares JC, Machado-Vieira R. Pharmacotherapies Targeting GABA-Glutamate Neurotransmission for Treatment-Resistant Depression. Pharmaceuticals (Basel) 2023; 16:1572. [PMID: 38004437 PMCID: PMC10675154 DOI: 10.3390/ph16111572] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Treatment-resistant depression (TRD) is a term used to describe a particular type of major depressive disorder (MDD). There is no consensus about what defines TRD, with various studies describing between 1 and 4 failures of antidepressant therapies, with or without electroconvulsive therapy (ECT). That is why TRD is such a growing concern among clinicians and researchers, and it explains the necessity for investigating novel therapeutic targets beyond conventional monoamine pathways. An imbalance between two primary central nervous system (CNS) neurotransmitters, L-glutamate and γ-aminobutyric acid (GABA), has emerged as having a key role in the pathophysiology of TRD. In this review, we provide an evaluation and comprehensive review of investigational antidepressants targeting these two systems, accessing their levels of available evidence, mechanisms of action, and safety profiles. N-methyl-D-aspartate (NMDA) receptor antagonism has shown the most promise amongst the glutamatergic targets, with ketamine and esketamine (Spravato) robustly generating responses across trials. Two specific NMDA-glycine site modulators, D-cycloserine (DCS) and apimostinel, have also generated promising initial safety and efficacy profiles, warranting further investigation. Combination dextromethorphan-bupropion (AXS-05/Auvelity) displays a unique mechanism of action and demonstrated positive results in particular applicability in subpopulations with cognitive dysfunction. Currently, the most promising GABA modulators appear to be synthetic neurosteroid analogs with positive GABAA receptor modulation (such as brexanolone). Overall, advances in the last decade provide exciting perspectives for those who do not improve with conventional therapies. Of the compounds reviewed here, three are approved by the Food and Drug Administration (FDA): esketamine (Spravato) for TRD, Auvelity (dextromethorphan-bupropion) for major depressive disorder (MDD), and brexanolone (Zulresso) for post-partum depression (PPD). Notably, some concerns have arisen with esketamine and brexanolone, which will be detailed in this study.
Collapse
Affiliation(s)
- Courtney M. Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Alan C. Courtes
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Gregory Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Rodrigo Machado-Vieira
- John S. Dunn Behavioral Sciences Center at UTHealth Houston, 5615 H.Mark Crosswell Jr St, Houston, TX 77021, USA
| |
Collapse
|
6
|
Heinzel A, Mauler J, Herzog H, Boers F, Mottaghy FM, Langen KJ, Scheins J, Lerche C, Neumaier B, Northoff G, Shah NJ. GABA A receptor availability relates to emotion-induced BOLD responses in the medial prefrontal cortex: simultaneous fMRI/PET with [ 11C]flumazenil. Front Neurosci 2023; 17:1027697. [PMID: 37766785 PMCID: PMC10520870 DOI: 10.3389/fnins.2023.1027697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction The fMRI BOLD response to emotional stimuli highlighting the role of the medial prefrontal cortex (MPFC) has been thoroughly investigated. Recently, the relationship between emotion processing and GABA levels has been studied using MPFC proton magnetic resonance spectroscopy (1H-MRS). However, the role of GABAA receptors in the MPFC during emotion processing remains unexplored. Methods Using [11C]flumazenil PET, we investigated the relationship between the binding potential of GABAA receptors and emotion processing as measured using simultaneous fMRI BOLD. We hypothesized a correlation between the percent signal change in the BOLD signal and the binding potential of GABAA receptors in the MPFC. In a combined simultaneous fMRI and [11C]flumazenil-PET study, we analyzed the data from 15 healthy subjects using visual emotional stimuli. Our task comprised two types of emotional processing: passive viewing and appraisal. Following the administration of a bolus plus infusion protocol, PET and fMRI data were simultaneously acquired in a hybrid 3 T MR-BrainPET. Results We found a differential correlation of BOLD percent signal change with [11C]flumazenil binding potential in the MPFC. Specifically, [11C]flumazenil binding potential in the ventromedial prefrontal cortex (vMPFC) correlated with passive viewing of emotionally valenced pictures. In contrast, the [11C]flumazenil binding potential and the BOLD signal induced by picture appraisal did show a correlation in the paracingulate gyrus. Conclusion Our data deliver first evidence for a relationship between MPFC GABAA receptors and emotion processing in the same region. Moreover, we observed that GABAA receptors appear to play different roles in emotion processing in the vMPFC (passive viewing) and paracingulate gyrus (appraisal).
Collapse
Affiliation(s)
- Alexander Heinzel
- Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Jülich, Germany
- Department of Nuclear Medicine, Medical Faculty RWTH Aachen, Aachen, Germany
- Department of Nuclear medicine, University Hospital Halle, Halle (Saale), Germany
| | - Jörg Mauler
- Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Jülich, Germany
| | - Hans Herzog
- Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Jülich, Germany
| | - Frank Boers
- Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Jülich, Germany
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, Medical Faculty RWTH Aachen, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Jülich, Germany
- Department of Nuclear Medicine, Medical Faculty RWTH Aachen, Aachen, Germany
| | - Jürgen Scheins
- Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Lerche
- Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Jülich, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine – 5, Forschungszentrum Jülich, Jülich, Germany
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, ON, Canada
| | - N. Jon Shah
- Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine – 11, Forschungszentrum Jülich, Jülich, Germany
- JARA – BRAIN – Translational Medicine, Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Cutler AJ, Mattingly GW, Maletic V. Understanding the mechanism of action and clinical effects of neuroactive steroids and GABAergic compounds in major depressive disorder. Transl Psychiatry 2023; 13:228. [PMID: 37365161 PMCID: PMC10293235 DOI: 10.1038/s41398-023-02514-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/12/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The pathophysiology of major depressive disorder (MDD) is thought to result from impaired connectivity between key brain networks. Gamma-aminobutyric acid (GABA) is the key inhibitory neurotransmitter in the brain, working primarily via GABAA receptors, with an important role in virtually all physiologic functions in the brain. Some neuroactive steroids (NASs) are positive allosteric modulators (PAMs) of GABAA receptors and potentiate phasic and tonic inhibitory responses via activation of synaptic and extrasynaptic GABAA receptors, respectively. This review first discusses preclinical and clinical data that support the association of depression with diverse defects in the GABAergic system of neurotransmission. Decreased levels of GABA and NASs have been observed in adults with depression compared with healthy controls, while treatment with antidepressants normalized the altered levels of GABA and NASs. Second, as there has been intense interest in treatment approaches for depression that target dysregulated GABAergic neurotransmission, we discuss NASs approved or currently in clinical development for the treatment of depression. Brexanolone, an intravenous NAS and a GABAA receptor PAM, is approved by the U.S. Food and Drug Administration for the treatment of postpartum depression (PPD) in patients 15 years and older. Other NASs include zuranolone, an investigational oral GABAA receptor PAM, and PH10, which acts on nasal chemosensory receptors; clinical data to date have shown improvement in depressive symptoms with these investigational NASs in adults with MDD or PPD. Finally, the review discusses how NAS GABAA receptor PAMs may potentially address the unmet need for novel and effective treatments with rapid and sustained antidepressant effects in patients with MDD.
Collapse
|
8
|
Chen Y, Chen Y, Zheng R, Jiang Y, Zhou B, Xue K, Li S, Pang J, Li H, Zhang Y, Han S, Cheng J. Convergent molecular and structural neuroimaging signatures of first-episode depression. J Affect Disord 2023; 320:22-28. [PMID: 36181910 DOI: 10.1016/j.jad.2022.09.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Convergent studies have demonstrated morphological abnormalities in various brain regions in depression patients. However, the molecular underpinnings of the structural impairments remain largely unknown, despite a pressing need for treatment targets and mechanisms. Here, we investigated the gray matter volume (GMV) alteration in patients with depression and its underlying molecular architecture. METHODS We recruited 195 first-episode, treatment-naïve depression patients and 78 gender-, age-, and education level-matched healthy controls (HCs) who underwent high-resolution T1-weighted magnetic resonance scans. Voxel-based morphometry (VBM) was adopted to calculate the GMV differences between two groups. Then we analyzed the spatial correlation between depression-induced alteration in GMV and density maps of 10 receptors/transporters deriving from prior molecular imaging in healthy people. RESULTS Compared to HCs, the depression group had significantly increased GMV in the left ventral portions of the ventral medial prefrontal cortex, parahippocampal gyrus, amygdala, the right superior parietal lobule and precuneus while decreased GMV in the bilateral hippocampus extending to the thalamus and cerebellum. The GMV alteration introduced by depression was spatially correlated with serotonin receptors (5-HT1a, 5-HT1b, and 5-HT2a), dopamine receptors (D1 and D2) and GABAergic receptor (GABAa) densities. LIMITATIONS The conclusions drawn in this study were obtained from a single dataset. CONCLUSIONS This study reveals abnormal GMV alteration and provides a series of neurotransmitters receptors possibly related to GMV alteration in depression, which facilitates an integrative understanding of the molecular mechanism underlying the structural abnormalities in depression and may provide clues to new treatment strategies.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China
| | - Yi Chen
- Clinical Research Service Center, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China
| | - Yu Jiang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China
| | - Shuying Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jianyue Pang
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hengfen Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China.
| |
Collapse
|
9
|
Feklicheva I, Boks MP, de Kloet ER, Chipeeva N, Maslennikova E, Pashkov A, Korobova S, Komelkova M, Kuznetsova Y, Platkovski P, Mamonova M, Sidorenko O, Vasilenko T, Tseilikman O, Tseilikman V. Biomarkers in PTSD-susceptible and resistant veterans with war experience of more than ten years ago: FOCUS ON cortisol, thyroid hormones, testosterone and GABA. J Psychiatr Res 2022; 148:258-263. [PMID: 35151217 DOI: 10.1016/j.jpsychires.2021.11.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/24/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
In the present study we measured the concentrations of cortisol, thyroid hormones, testosterone, and GABA (gamma aminobutyric acid) in am blood plasma samples of combatants with an at least 10 year history of military psychological trauma (N = 74) divided in groups that either suffer from post-traumatic stress disorder (PTSD) (N = 37) or are resistant (N = 37) as well as in a control group without traumatic experience in the anamnesis, (N = 34). PTSD symptoms were assessed using the Clinician-Administered PTSD Scale (CAPS). The results show that the am blood cortisol levels of individuals that were exposed to war zone experiences irrespective susceptibility for or resistance to PTSD were significantly higher than the values observed in the controls. Testosterone levels in PTSD patients differed neither from that observed in PTSD resistant nor control groups. In the resistant group testosterone levels were however significantly higher than in controls. The level of all thyroid hormones did not differ between the study groups. GABA level was significantly lower in the PTSD group compared with healthy controls. In the resistant group blood GABA levels were not significantly different from either PTSD patients or controls. In conclusion, the current data show that cortisol and to some extent testosterone may serve as biomarker of war zone stress per se, even if trauma was experienced at least ten years before, rather than of only PTSD or resistance to PTSD. GABA, in contrast, can be considered a potential marker of the protracted nature of PTSD.
Collapse
Affiliation(s)
- Inna Feklicheva
- Laboratory of Molecular Genetic Research of Human Health and Development, Scientific and Educational Center "Biomedical Technologies", Higher Medical and Biological School, South Ural State University, 76, Lenin Prospect, 454080, Chelyabinsk, Russia.
| | - Marco P Boks
- University Medical Center Brain Center, Department Psychiatry, University Utrecht, Heidelberglaan 100, Utrecht, the Netherlands.
| | - E Ron de Kloet
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, PO Box 9500, 2300, RA, Leiden, the Netherlands.
| | - Nadezda Chipeeva
- Laboratory of Molecular Genetic Research of Human Health and Development, Scientific and Educational Center "Biomedical Technologies", Higher Medical and Biological School, South Ural State University, 76, Lenin Prospect, 454080, Chelyabinsk, Russia.
| | - Ekaterina Maslennikova
- Center of Interdisciplinary Research in Education, Russian Academy of Education, Building 4, 9, Mokhovay Street, 199121, Moscow, Russia.
| | - Anton Pashkov
- Laboratory of Molecular Genetic Research of Human Health and Development, Scientific and Educational Center "Biomedical Technologies", Higher Medical and Biological School, South Ural State University, 76, Lenin Prospect, 454080, Chelyabinsk, Russia.
| | - Svetlana Korobova
- Laboratory of Molecular Genetic Research of Human Health and Development, Scientific and Educational Center "Biomedical Technologies", Higher Medical and Biological School, South Ural State University, 76, Lenin Prospect, 454080, Chelyabinsk, Russia.
| | - Mariia Komelkova
- Laboratory of Molecular Genetic Research of Human Health and Development, Scientific and Educational Center "Biomedical Technologies", Higher Medical and Biological School, South Ural State University, 76, Lenin Prospect, 454080, Chelyabinsk, Russia.
| | - Yulia Kuznetsova
- "Road Clinical Hospital at the Train Station Chelyabinsk of OJSC "Russian Railways", 23, Dovator Street, 454000, Chelyabinsk, Russia.
| | - Pavel Platkovski
- Laboratory of Molecular Genetic Research of Human Health and Development, Scientific and Educational Center "Biomedical Technologies", Higher Medical and Biological School, South Ural State University, 76, Lenin Prospect, 454080, Chelyabinsk, Russia.
| | - Marina Mamonova
- Laboratory of Molecular Genetic Research of Human Health and Development, Scientific and Educational Center "Biomedical Technologies", Higher Medical and Biological School, South Ural State University, 76, Lenin Prospect, 454080, Chelyabinsk, Russia.
| | - Olga Sidorenko
- Chelyabinsk Regional Clinical Therapeutic Hospital for War Veterans, Building 8, Medgorodok Street, 454141, Chelyabinsk, Russia.
| | - Tatyana Vasilenko
- Chelyabinsk Regional Clinical Therapeutic Hospital for War Veterans, Building 8, Medgorodok Street, 454141, Chelyabinsk, Russia.
| | - Olga Tseilikman
- Laboratory of Molecular Genetic Research of Human Health and Development, Scientific and Educational Center "Biomedical Technologies", Higher Medical and Biological School, South Ural State University, 76, Lenin Prospect, 454080, Chelyabinsk, Russia.
| | - Vadim Tseilikman
- Laboratory of Molecular Genetic Research of Human Health and Development, Scientific and Educational Center "Biomedical Technologies", Higher Medical and Biological School, South Ural State University, 76, Lenin Prospect, 454080, Chelyabinsk, Russia.
| |
Collapse
|
10
|
James D, Lam VT, Jo B, Fung LK. Region-specific associations between gamma-aminobutyric acid A receptor binding and cortical thickness in high-functioning autistic adults. Autism Res 2022; 15:1068-1082. [PMID: 35261207 DOI: 10.1002/aur.2703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/26/2022] [Indexed: 11/10/2022]
Abstract
The neurobiology of autism has been shown to involve alterations in cortical morphology and gamma-aminobutyric acid A (GABAA ) receptor density. We hypothesized that GABAA receptor binding potential (GABAA R BPND ) would correlate with cortical thickness, but their correlations would differ between autistic adults and typically developing (TD) controls. We studied 50 adults (23 autism, 27 TD, mean age of 27 years) using magnetic resonance imaging to measure cortical thickness, and [18 F]flumazenil positron emission tomography imaging to measure GABAA R BPND . We determined the correlations between cortical thickness and GABAA R BPND by cortical lobe, region-of-interest, and diagnosis of autism spectrum disorder (ASD). We also explored potential sex differences in the relationship between cortical thickness and autism characteristics, as measured by autism spectrum quotient (AQ) scores. Comparing autism and TD groups, no significant differences were found in cortical thickness or GABAA R BPND . In both autism and TD groups, a negative relationship between cortical thickness and GABAA R BPND was observed in the frontal and occipital cortices, but no relationship was found in the temporal or limbic cortices. A positive correlation was seen in the parietal cortex that was only significant for the autism group. Interestingly, in an exploratory analysis, we found sex differences in the relationships between cortical thickness and GABAA R BPND , and cortical thickness and AQ scores in the left postcentral gyrus. LAY SUMMARY: The thickness of the brain cortex and the density of the receptors associated with inhibitory neurotransmitter GABA have been hypothesized to underlie the neurobiology of autism. In this study, we found that these biomarkers correlate positively in the parietal cortex, but negatively in the frontal and occipital cortical regions of the brain. Furthermore, we collected preliminary evidence that the correlations between cortical thickness and GABA receptor density are sexdependent in a brain region where sensory inputs are registered.
Collapse
Affiliation(s)
- David James
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Vicky T Lam
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Booil Jo
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Lawrence K Fung
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| |
Collapse
|
11
|
Persson J, Wall A, Weis J, Gingnell M, Antoni G, Lubberink M, Bodén R. Inhibitory and excitatory neurotransmitter systems in depressed and healthy: A positron emission tomography and magnetic resonance spectroscopy study. Psychiatry Res Neuroimaging 2021; 315:111327. [PMID: 34246046 DOI: 10.1016/j.pscychresns.2021.111327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/08/2021] [Accepted: 06/29/2021] [Indexed: 10/21/2022]
Abstract
The Gamma-aminobutyric acid (GABA) and glutamate (Glu) neurotransmitter systems are implicated in depression. While previous studies found reduced GABA levels, and a tendency towards reduced Glu, using proton (1H) magnetic resonance spectroscopy (1H-MRS), little is known about GABAA receptor availability in depression. Here, the aim was to characterize GABA and Glu-levels in dorsal anterior cingulate cortex (dACC), whole-brain GABAA availability, and their relationship in patients with depression compared to healthy controls. Forty-two patients and 45 controls underwent 1H-MRS using a MEGA-PRESS sequence to quantify dACC GABA+ and Glu (contrasted against creatine [Cr]). Immediately preceding the 1H-MRS, a subsample of 28 patients and 15 controls underwent positron emission tomography (PET) with [11C]Flumazenil to assess whole-brain GABAA receptor availability. There were no differences in dACC GABA+/Cr or Glu/Cr ratios between patients and controls. The same was true for whole-brain GABAA receptor availability. However, there was a significant negative relationship between GABA+/Cr ratio and receptor availability in ACC, in a whole-brain voxel-wise analysis across patients and controls, controlling for group or depressive symptoms. This relatively large study did not support the GABA-deficit hypothesis in depression, but shed light on GABA-system functioning, suggesting a balance between neurotransmitter concentration and receptor availability in dACC.
Collapse
Affiliation(s)
- Jonas Persson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Anders Wall
- PET-Centre, Uppsala University Hospital, Uppsala, Sweden; Department of Surgical Sciences, Radiology and Molecular Imaging, Uppsala University, Uppsala, Sweden
| | - Jan Weis
- Department of Surgical Sciences, Radiology and Molecular Imaging, Uppsala University, Uppsala, Sweden; Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Malin Gingnell
- Department of Neuroscience, Uppsala University, Uppsala, Sweden; Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Gunnar Antoni
- PET-Centre, Uppsala University Hospital, Uppsala, Sweden; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Mark Lubberink
- Department of Surgical Sciences, Radiology and Molecular Imaging, Uppsala University, Uppsala, Sweden; Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Robert Bodén
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Paudel P, Ross S, Li XC. Molecular Targets of Cannabinoids Associated with Depression. Curr Med Chem 2021; 29:1827-1850. [PMID: 34165403 DOI: 10.2174/0929867328666210623144658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
Novel therapeutic strategies are needed to address depression, a major neurological disorder affecting hundreds of millions of people worldwide. Cannabinoids and their synthetic derivatives have demonstrated numerous neurological activities and may potentially be developed into new treatments for depression. This review highlights cannabinoid (CB) receptors, monoamine oxidase (MAO), N-methyl-D-aspartate (NMDA) receptor, gamma-aminobutyric acid (GABA) receptor, and cholecystokinin (CCK) receptor as key molecular targets of cannabinoids that are associated with depression. The anti-depressant activity of cannabinoids and their binding modes with cannabinoid receptors are discussed, providing insights into rational design and discovery of new cannabinoids or cannabimimetic agents with improved druggable properties.
Collapse
Affiliation(s)
- Pradeep Paudel
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Samir Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Xing-Cong Li
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
13
|
Yin YY, Wang YH, Liu WG, Yao JQ, Yuan J, Li ZH, Ran YH, Zhang LM, Li YF. The role of the excitation:inhibition functional balance in the mPFC in the onset of antidepressants. Neuropharmacology 2021; 191:108573. [PMID: 33945826 DOI: 10.1016/j.neuropharm.2021.108573] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Currently available antidepressants, such as selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine reuptake inhibitors (SNRIs), generally require weeks to months to produce a therapeutic response, but the mechanism of action underlying the delayed onset of antidepressant-like action remains to be elucidated. The balance between excitatory glutamatergic pyramidal neurons and inhibitory γ-aminobutyric acid (GABA) interneurons, i.e., the excitation:inhibition functional (E:I) balance, in the medial prefrontal cortex (mPFC) is critical in regulating several behaviors and might play an important mediating role in the mechanism of rapid antidepressant-like action reported by several studies. In the present study, the multichannel electrophysiological technique was used to record the firing activities of pyramidal neurons and interneurons and investigate the effects of a single dose of fluoxetine and ketamine (both 10 mg/kg, i.p.) on the E:I functional balance in the rat mPFC after 90 min or 24 h, and the forced swimming test (FST) was used to evaluate the antidepressant-like effects of fluoxetine and ketamine. The present study also explored the effects of chronic treatment with fluoxetine (10 mg/kg, i.g.) for 7 d or 21 d on the E:I functional balance in the mPFC. The present results suggested that a single dose of ketamine could both significantly increase the firing activities of pyramidal neurons and significantly decrease the firing activities of interneurons in the mPFC and exerted significant antidepressant-like action on the FST after 90 min and 24 h, but fluoxetine had no such effects under the same conditions. However, chronic treatment with fluoxetine for 21 d (but not 7 d) could significantly affect the firing activities of pyramidal neurons and interneurons in the mPFC. Taken together, the present results indicated that rapid regulation of the E:I functional balance in the mPFC might be an important common mechanism of rapid-acting antidepressants and the delayed onset of SSRIs might be partly attributed to their inability to rapidly regulate the E:I functional balance in the mPFC. The present study provided a new entry point to the development of rapid-acting antidepressants.
Collapse
Affiliation(s)
- Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Yun-Hui Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | | | - Jun-Qi Yao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Jin Yuan
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Ze-Han Li
- Capital Normal University High School, Beijing, China
| | - Yu-Hua Ran
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Li-Ming Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| | - Yun-Feng Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China; Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
14
|
Abstract
An imbalance between excitatory and inhibitory neurotransmission has been linked to fibromyalgia (FM). Magnetic resonance spectroscopy has shown increased levels of glutamate in the insula and posterior cingulate cortex in FM as well as reduced insular levels of gamma-aminobutyric acid (GABA). Both of these changes have been associated with increased pain sensitivity. However, it is not clear whether excitatory and/or inhibitory neurotransmission is altered across the brain. Therefore, the aim of this study was to quantify GABAA receptor concentration on the whole brain level in FM to investigate a potential dysregulation of the GABAergic system. Fifty-one postmenopausal women (26 FM, 25 matched controls) underwent assessments of pain sensitivity, attention and memory, psychological status and function, as well as positron emission tomography imaging using a tracer for GABAA receptors, [F]flumazenil. Patients showed increased pain sensitivity, impaired immediate memory, and increased cortical GABAA receptor concentration in the attention and default-mode networks. No decrease of GABAA receptor concentration was observed. Across the 2 groups, GABAA receptor concentration correlated positively with functional scores and current pain in areas overlapping with regions of increased GABAA receptor concentration. This study shows increased GABAA receptor concentration in FM, associated with pain symptoms and impaired function. The changes were widespread and not restricted to pain-processing regions. These findings suggest that the GABAergic system is altered, possibly indicating an imbalance between excitatory and inhibitory neurotransmission. Future studies should try to understand the nature of the dysregulation of the GABAergic system in FM and in other pain syndromes.
Collapse
|
15
|
Age-related GABAergic differences in the primary sensorimotor cortex: A multimodal approach combining PET, MRS and TMS. Neuroimage 2020; 226:117536. [PMID: 33186716 PMCID: PMC7894275 DOI: 10.1016/j.neuroimage.2020.117536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/10/2020] [Accepted: 10/28/2020] [Indexed: 01/15/2023] Open
Abstract
Healthy aging is associated with mechanistic changes in gamma-aminobutyric acid (GABA), the most abundant inhibitory neurotransmitter in the human brain. While previous work mainly focused on magnetic resonance spectroscopy (MRS)-based GABA+ levels and transcranial magnetic stimulation (TMS)-based GABAA receptor (GABAAR) activity in the primary sensorimotor (SM1) cortex, the aim of the current study was to identify age-related differences in positron emission tomography (PET)-based GABAAR availability and its relationship with GABA+ levels (i.e. GABA with the contribution of macromolecules) and GABAAR activity. For this purpose, fifteen young (aged 20–28 years) and fifteen older (aged 65–80 years) participants were recruited. PET and MRS images were acquired using simultaneous time-of-flight PET/MR to evaluate age-related differences in GABAAR availability (distribution volume ratio with pons as reference region) and GABA+ levels. TMS was applied to identify age-related differences in GABAAR activity by measuring short-interval intracortical inhibition (SICI). Whereas GABAAR availability was significantly higher in the SM cortex of older as compared to young adults (18.5%), there were neither age-related differences in GABA+ levels nor SICI. A correlation analysis revealed no significant associations between GABAAR availability, GABAAR activity and GABA+ levels. Although the exact mechanisms need to be further elucidated, it is possible that a higher GABAAR availability in older adults is a compensatory mechanism to ensure optimal inhibitory functionality during the aging process.
Collapse
|
16
|
Abstract
Patients and clinicians alike want to know if stress causes infertility. Stress could impair with reproductive function by a variety of mechanisms, including compromise of ovarian function, spermatogenesis, fertilization, endometrial development, implantation, and placentation. Herein we focus on the pathogenesis and treatment of stress-induced anovulation, which is often termed functional hypothalamic amenorrhea (FHA), with the objective of summarizing the actual knowledge as a clinical guide. FHA is a reversible form of anovulation due to slowing of gonadotropin-releasing hormone pulse frequency that results in insufficient pituitary secretion of gonadotropins to support full folliculogenesis. Importantly, FHA heralds a constellation of neuroendocrine alterations with health concomitants. The activity of the hypothalamic-pituitary-adrenal axis is increased in women with FHA and this observation supports the notion that stress is the cause. The extent of reproductive suppression relates to individual endocrinological and physiological sensitivity to stressors, both metabolic and psychogenic, and chronicity.
Collapse
|
17
|
Almeida FB, Nin MS, Barros HMT. The role of allopregnanolone in depressive-like behaviors: Focus on neurotrophic proteins. Neurobiol Stress 2020; 12:100218. [PMID: 32435667 PMCID: PMC7231971 DOI: 10.1016/j.ynstr.2020.100218] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
Allopregnanolone (3α,5α-tetrahydroprogesterone; pharmaceutical formulation: brexanolone) is a neurosteroid that has recently been approved for the treatment of postpartum depression, promising to fill part of a long-lasting gap in the effectiveness of pharmacotherapies for depressive disorders. In this review, we explore the experimental research that characterized the antidepressant-like effects of allopregnanolone, with a particular focus on the neurotrophic adaptations induced by this neurosteroid in preclinical studies. We demonstrate that there is a consistent decrease in allopregnanolone levels in limbic brain areas in rodents submitted to stress-induced models of depression, such as social isolation and chronic unpredictable stress. Further, both the drug-induced upregulation of allopregnanolone or its direct administration reduce depressive-like behaviors in models such as the forced swim test. The main drugs of interest that upregulate allopregnanolone levels are selective serotonin reuptake inhibitors (SSRIs), which present the neurosteroidogenic property even in lower, non-SSRI doses. Finally, we explore how these antidepressant-like behaviors are related to neurogenesis, particularly in the hippocampus. The protagonist in this mechanism is likely the brain-derived neurotrophic factor (BFNF), which is decreased in animal models of depression and may be restored by the normalization of allopregnanolone levels. The role of an interaction between GABA and the neurotrophic mechanisms needs to be further investigated.
Collapse
Key Words
- 3α,5α-tetrahydroprogesterone
- BDNF
- BDNF, brain-derived neurotrophic factor
- Brexanolone
- CSF, cerebrospinal fluid
- CUS, chronic unpredictable stress
- Depression
- EKR, extracellular signal-regulated kinase
- FST, forced swim test
- GABA, γ-aminobutyric acid
- GABAAR, GABA type A receptor
- HSD, hydroxysteroid dehydrogenase
- NGF, nerve growth factor
- Neurosteroid
- PTSD, post-traumatic stress disorder
- PXR, pregnane xenobiotic receptor
- SBSS, selective brain steroidogenic stimulant
- SSRI, selective serotonin reuptake inhibitor
- Selective brain steroidogenic stimulant
- THP, tetrahydroprogesterone
- TSPO, 18 kDa translocator protein
- TrkB, tropomyosin receptor kinase B
- USV, ultrasonic vocalization
Collapse
Affiliation(s)
- Felipe Borges Almeida
- Graduate Program in Health Sciences: Pharmacology and Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170, Porto Alegre, RS, Brazil
| | - Maurício Schüler Nin
- Graduate Program in Health Sciences: Pharmacology and Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170, Porto Alegre, RS, Brazil.,Centro Universitário Metodista do IPA, 90420-060, Porto Alegre, RS, Brazil.,Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul (UFRGS), 90040-060, Porto Alegre, RS, Brazil
| | - Helena Maria Tannhauser Barros
- Graduate Program in Health Sciences: Pharmacology and Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170, Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
Shaw JC, Crombie GK, Zakar T, Palliser HK, Hirst JJ. Perinatal compromise contributes to programming of GABAergic and glutamatergic systems leading to long-term effects on offspring behaviour. J Neuroendocrinol 2020; 32:e12814. [PMID: 31758712 DOI: 10.1111/jne.12814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/30/2019] [Accepted: 11/20/2019] [Indexed: 01/01/2023]
Abstract
Extensive evidence now shows that adversity during the perinatal period is a significant risk factor for the development of neurodevelopmental disorders long after the causative event. Despite stemming from a variety of causes, perinatal compromise appears to have similar effects on the developing brain, thereby resulting in behavioural disorders of a similar nature. These behavioural disorders occur in a sex-dependent manner, with males affected more by externalising behaviours such as attention deficit hyperactivity disorder (ADHD) and females by internalising behaviours such as anxiety. Regardless of the causative event or the sex of the offspring, these disorders may begin in childhood or adolescence but extend into adulthood. A mechanism by which adverse events in the perinatal period impact later in life behaviour has been shown to be the changing epigenetic landscape. Methylation of the GAD1/GAD67 gene, which encodes the key glutamate-to-GABA-synthesising enzyme glutamate decarboxylase 1, resulting in increased levels of glutamate, is one epigenetic mechanism that may account for a tendency towards excitation in disorders such as ADHD. Exposure of the fetus or the neonate to high levels of cortisol may be the mediator between perinatal compromise and poor behavioural outcomes because evidence suggests that increased glucocorticoid exposure triggers widespread changes in the epigenetic landscape. This review summarises the current evidence and recent literature about the impact of various perinatal insults on the epigenome and the common mechanisms that may explain the similarity of behavioural outcomes occurring following diverse perinatal compromise.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Gabrielle K Crombie
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tamas Zakar
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
19
|
Lüscher B, Möhler H. Brexanolone, a neurosteroid antidepressant, vindicates the GABAergic deficit hypothesis of depression and may foster resilience. F1000Res 2019; 8. [PMID: 31275559 PMCID: PMC6544078 DOI: 10.12688/f1000research.18758.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 12/18/2022] Open
Abstract
The GABAergic deficit hypothesis of depression states that a deficit of GABAergic transmission in defined neural circuits is causal for depression. Conversely, an enhancement of GABA transmission, including that triggered by selective serotonin reuptake inhibitors or ketamine, has antidepressant effects. Brexanolone, an intravenous formulation of the endogenous neurosteroid allopregnanolone, showed clinically significant antidepressant activity in postpartum depression. By allosterically enhancing GABA
A receptor function, the antidepressant activity of allopregnanolone is attributed to an increase in GABAergic inhibition. In addition, allopregnanolone may stabilize normal mood by decreasing the activity of stress-responsive dentate granule cells and thereby sustain resilience behavior. Therefore, allopregnanolone may augment and extend its antidepressant activity by fostering resilience. The recent structural resolution of the neurosteroid binding domain of GABA
A receptors will expedite the development of more selective ligands as a potential new class of central nervous system drugs.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Department of Biology and Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA.,Center for Molecular Investigation of Neurological Disorders, The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Hanns Möhler
- Institute of Pharmacology and Neuroscience Center, University of Zurich, Zurich, 8057, Switzerland.,Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Zurich, 8057, Switzerland
| |
Collapse
|
20
|
Starowicz G, Jarosz M, Frąckiewicz E, Grzechnik N, Ostachowicz B, Nowak G, Mlyniec K. Long-lasting antidepressant-like activity of the GPR39 zinc receptor agonist TC-G 1008. J Affect Disord 2019; 245:325-334. [PMID: 30419533 DOI: 10.1016/j.jad.2018.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/04/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The discovery of the zinc-sensing receptor, has provided new possibilities for explaining the neurobiology of zinc. Recent studies indicate that the GPR39 zinc receptor may play an important role in the pathogenesis of depression as well as in the antidepressant mechanism of action. METHODS In this study we evaluated the time-course of the antidepressant response of the GPR39 agonist (TC-G 1008), imipramine, ZnCl2 and MK-801 in the forced swim test in mice 30 min, 3 h, 6 h and 24 h after acute drug administration as well as after 14-day treatment. Zinc level was measured in serum of mice. BDNF protein level was evaluated in hippocampus following both acute and chronic TC-G 1008 treatment. RESULTS A single administration of the GPR39 agonist caused an antidepressant-like effect lasting up to 24 h following the injection, which is longer than the effect of imipramine, ZnCl2 and MK-801. Chronic treatment with these compounds caused a decrease in immobility time in the FST. Serum zinc concentrations showed an increased level following chronic ZnCl2 administration, but not following administration of TC-G 1008, imipramine or MK-801. We also observed some tendencies for increased BDNF following acute TC-G 1008 treatment. LIMITATIONS TC-G 1008 is new drug designed to study GPR39 therefore additional pharmacodynamic and pharmacokinetic properties in preclinical studies are required. CONCLUSION This study shows for the first time the long-lasting antidepressant effect of the GPR39 agonist in comparison with imipramine, ZnCl2 and MK-801. Our findings suggest that GPR39 should be considered as a target in efforts to develop new antidepressant drugs.
Collapse
Affiliation(s)
- Gabriela Starowicz
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Magdalena Jarosz
- Department of Radioligands, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Ewelina Frąckiewicz
- Department of Radioligands, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Natalia Grzechnik
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Beata Ostachowicz
- Faculty of Physics and Applied Computer Sciences, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland; Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Trace Elements Neurobiology, Department of Neurobiology, Smetna Street 12, 31-343 Krakow, Poland
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland.
| |
Collapse
|
21
|
James GM, Gryglewski G, Vanicek T, Berroterán-Infante N, Philippe C, Kautzky A, Nics L, Vraka C, Godbersen GM, Unterholzner J, Sigurdardottir HL, Spies M, Seiger R, Kranz GS, Hahn A, Mitterhauser M, Wadsak W, Bauer A, Hacker M, Kasper S, Lanzenberger R. Parcellation of the Human Cerebral Cortex Based on Molecular Targets in the Serotonin System Quantified by Positron Emission Tomography In vivo. Cereb Cortex 2019; 29:372-382. [PMID: 30357321 PMCID: PMC6294402 DOI: 10.1093/cercor/bhy249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 01/21/2023] Open
Abstract
Parcellation of distinct areas in the cerebral cortex has a long history in neuroscience and is of great value for the study of brain function, specialization, and alterations in neuropsychiatric disorders. Analysis of cytoarchitectonical features has revealed their close association with molecular profiles based on protein density. This provides a rationale for the use of in vivo molecular imaging data for parcellation of the cortex with the advantage of whole-brain coverage. In the current work, parcellation was based on expression of key players of the serotonin neurotransmitter system. Positron emission tomography was carried out for the quantification of serotonin 1A (5-HT1A, n = 30) and 5-HT2A receptors (n = 22), the serotonin-degrading enzyme monoamine oxidase A (MAO-A, n = 32) and the serotonin transporter (5-HTT, n = 24) in healthy participants. Cortical protein distribution maps were obtained using surface-based quantification. Based on k-means clustering, silhouette criterion and bootstrapping, five distinct clusters were identified as the optimal solution. The defined clusters proved of high explanatory value for the effects of psychotropic drugs acting on the serotonin system, such as antidepressants and psychedelics. Therefore, the proposed method constitutes a sensible approach towards integration of multimodal imaging data for research and development in neuropharmacology and psychiatry.
Collapse
Affiliation(s)
- Gregory M James
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Neydher Berroterán-Infante
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexander Kautzky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Helen L Sigurdardottir
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - René Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University Hong Kong, China
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Andreas Bauer
- Institute of Neuroscience and Medicine (INM-2), Research Centre Jülich, Jülich, Germany
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Andersson JD, Matuskey D, Finnema SJ. Positron emission tomography imaging of the γ-aminobutyric acid system. Neurosci Lett 2018; 691:35-43. [PMID: 30102960 DOI: 10.1016/j.neulet.2018.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 01/08/2023]
Abstract
In this review, we summarize the recent development of positron emission tomography (PET) radioligands for γ-aminobutyric acid A (GABAA) receptors and their potential to measure changes in endogenous GABA levels and highlight the clinical and translational applications of GABA-sensitive PET radioligands. We review the basic physiology of the GABA system with a focus on the importance of GABAA receptors in the brain and specifically the benzodiazepine binding site. Challenges for the development of central nervous system radioligands and particularly for radioligands with increased GABA sensitivity are outlined, as well as the status of established benzodiazepine site PET radioligands and agonist GABAA radioligands. We underline the challenge of using allosteric interactions to measure GABA concentrations and review the current state of PET imaging of changes in GABA levels. We conclude that PET tracers with increased GABA sensitivity are required to efficiently measure GABA release and that such a tool could be broadly applied to assess GABA transmission in vivo across several disorders.
Collapse
Affiliation(s)
- Jan D Andersson
- University of Alberta, Medical Isotope and Cyclotron Facility, Edmonton, Canada
| | - David Matuskey
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Sjoerd J Finnema
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Abstract
Traditional pharmacological treatments for depression have a delayed therapeutic onset, ranging from several weeks to months, and there is a high percentage of individuals who never respond to treatment. In contrast, ketamine produces rapid-onset antidepressant, anti-suicidal, and anti-anhedonic actions following a single administration to patients with depression. Proposed mechanisms of the antidepressant action of ketamine include N-methyl-D-aspartate receptor (NMDAR) modulation, gamma aminobutyric acid (GABA)-ergic interneuron disinhibition, and direct actions of its hydroxynorketamine (HNK) metabolites. Downstream actions include activation of the mechanistic target of rapamycin (mTOR), deactivation of glycogen synthase kinase-3 and eukaryotic elongation factor 2 (eEF2), enhanced brain-derived neurotrophic factor (BDNF) signaling, and activation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs). These putative mechanisms of ketamine action are not mutually exclusive and may complement each other to induce potentiation of excitatory synapses in affective-regulating brain circuits, which results in amelioration of depression symptoms. We review these proposed mechanisms of ketamine action in the context of how such mechanisms are informing the development of novel putative rapid-acting antidepressant drugs. Such drugs that have undergone pre-clinical, and in some cases clinical, testing include the muscarinic acetylcholine receptor antagonist scopolamine, GluN2B-NMDAR antagonists (i.e., CP-101,606, MK-0657), (2R,6R)-HNK, NMDAR glycine site modulators (i.e., 4-chlorokynurenine, pro-drug of the glycineB NMDAR antagonist 7-chlorokynurenic acid), NMDAR agonists [i.e., GLYX-13 (rapastinel)], metabotropic glutamate receptor 2/3 (mGluR2/3) antagonists, GABAA receptor modulators, and drugs acting on various serotonin receptor subtypes. These ongoing studies suggest that the future acute treatment of depression will typically occur within hours, rather than months, of treatment initiation.
Collapse
Affiliation(s)
- Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 934F MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA.
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, St. BRB 5-007, 655 W. Baltimore St., Baltimore, MD, 21201, USA, Baltimore, MD, 21201, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Todd D Gould
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 936 MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA
| |
Collapse
|
24
|
|
25
|
McMurray KMJ, Ramaker MJ, Barkley-Levenson AM, Sidhu PS, Elkin P, Reddy MK, Guthrie ML, Cook JM, Rawal VH, Arnold LA, Dulawa SC, Palmer AA. Identification of a novel, fast-acting GABAergic antidepressant. Mol Psychiatry 2018; 23:384-391. [PMID: 28322281 PMCID: PMC5608625 DOI: 10.1038/mp.2017.14] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 12/07/2016] [Accepted: 01/09/2017] [Indexed: 01/04/2023]
Abstract
Current pharmacotherapies for depression exhibit slow onset, side effects and limited efficacy. Therefore, identification of novel fast-onset antidepressants is desirable. GLO1 is a ubiquitous cellular enzyme responsible for the detoxification of the glycolytic byproduct methylglyoxal (MG). We have previously shown that MG is a competitive partial agonist at GABA-A receptors. We examined the effects of genetic and pharmacological inhibition of GLO1 in two antidepressant assay models: the tail suspension test (TST) and the forced swim test (FST). We also examined the effects of GLO1 inhibition in three models of antidepressant onset: the chronic FST (cFST), chronic mild stress (CMS) paradigm and olfactory bulbectomy (OBX). Genetic knockdown of Glo1 or pharmacological inhibition using two structurally distinct GLO1 inhibitors (S-bromobenzylglutathione cyclopentyl diester (pBBG) or methyl-gerfelin (MeGFN)) reduced immobility in the TST and acute FST. Both GLO1 inhibitors also reduced immobility in the cFST after 5 days of treatment. In contrast, the serotonin reuptake inhibitor fluoxetine (FLX) reduced immobility after 14, but not 5 days of treatment. Furthermore, 5 days of treatment with either GLO1 inhibitor blocked the depression-like effects induced by CMS on the FST and coat state, and attenuated OBX-induced locomotor hyperactivity. Finally, 5 days of treatment with a GLO1 inhibitor (pBBG), but not FLX, induced molecular markers of the antidepressant response including brain-derived neurotrophic factor (BDNF) induction and increased phosphorylated cyclic-AMP response-binding protein (pCREB) to CREB ratio in the hippocampus and medial prefrontal cortex (mPFC). Our findings indicate that GLO1 inhibitors may provide a novel and fast-acting pharmacotherapy for depression.
Collapse
Affiliation(s)
- Katherine M. J. McMurray
- Committee on Neurobiology, University of Chicago, Chicago IL 60637, USA,Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Marcia J. Ramaker
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago IL 60637, USA
| | - Amanda M. Barkley-Levenson
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Preetpal S. Sidhu
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin – Milwaukee, Milwaukee, WI 53211, USA
| | - Pavel Elkin
- Department of Chemistry, University of Chicago, Chicago IL 60637, USA
| | - M. Kashi Reddy
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin – Milwaukee, Milwaukee, WI 53211, USA
| | - Margaret L. Guthrie
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin – Milwaukee, Milwaukee, WI 53211, USA
| | - James M. Cook
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin – Milwaukee, Milwaukee, WI 53211, USA
| | - Viresh H. Rawal
- Department of Chemistry, University of Chicago, Chicago IL 60637, USA
| | - Leggy A. Arnold
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin – Milwaukee, Milwaukee, WI 53211, USA
| | - Stephanie C. Dulawa
- Committee on Neurobiology, University of Chicago, Chicago IL 60637, USA,Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago IL 60637, USA,Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Abraham A. Palmer
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA,Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago IL 60637, USA,Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA,Institute for Genome Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA,Corresponding Author: Abraham A. Palmer, Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093,
| |
Collapse
|
26
|
Shaw JC, Palliser HK, Dyson RM, Berry MJ, Hirst JJ. Disruptions to the cerebellar GABAergic system in juvenile guinea pigs following preterm birth. Int J Dev Neurosci 2017; 65:1-10. [PMID: 29024720 DOI: 10.1016/j.ijdevneu.2017.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Children that are born preterm are at an increased risk of developing cognitive problems and behavioural disorders, such as attention deficit hyperactivity disorder (ADHD). There is increasing interest in the role of the cerebellum in these processes and the potential involvement of GABAergic pathways in neurodevelopmental disorders. We propose that preterm birth, and the associated loss of the trophic intrauterine environment, alters the development of the cerebellum, contributing to ongoing neurobehavioral disorders. METHODS Guinea pigs were delivered preterm (GA62) or spontaneously at term (GA69), and tissues collected at corrected postnatal day (PND) 28. Neurodevelopmental and GABAergic markers myelin basic protein (MBP), neuronal nuclei (NeuN), calbindin (Purkinje cells), and GAD67 (GABA synthesis enzyme) were analysed in cerebellar lobules IX and X by immunohistochemistry. Protein expression of GAD67 and GAT1 (GABA transporter enzyme) were quantified by western blot, whilst neurosteroid-sensitive GABAA receptor subunits were measured by RT-PCR. RESULTS MBP immunostaining was increased in lobule IX of preterm males, and reduced in lobule X of preterm females when compared to their term counterparts. GAD67 staining was decreased in lobule IX and X of the preterm males, but only in lobule X of the preterm females compared to term cohorts for each sex. Internal granule cell layer width of lobule X was decreased in preterm cohorts of both sexes compared to terms. There were no differences between gestational age groups for NeuN staining, GAD67 and GAT1 protein expression as measured by western blotting, or GABAA receptor subunits as measured by RT-PCR between preterm and term for either sex. CONCLUSIONS The present findings suggest that components of the cerebellar GABAergic system of the ex-preterm cerebellum are disrupted. The higher expression of myelin in the preterm males may be due to a deficit in axonal pruning, whereas females have a deficit in myelination at 28 corrected days of age. Together these ongoing alterations may contribute to the neurodevelopmental and behavioural disorders observed in those born preterm.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia; Mothers and Babies Research Centre, Hunter Medical Research Institute, Australia.
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia; Mothers and Babies Research Centre, Hunter Medical Research Institute, Australia
| | - Rebecca M Dyson
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand; Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Mary J Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand; Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia; Mothers and Babies Research Centre, Hunter Medical Research Institute, Australia
| |
Collapse
|
27
|
Soliman MA, Aboharb F, Zeltner N, Studer L. Pluripotent stem cells in neuropsychiatric disorders. Mol Psychiatry 2017; 22:1241-1249. [PMID: 28322279 PMCID: PMC5582162 DOI: 10.1038/mp.2017.40] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/19/2016] [Accepted: 01/09/2017] [Indexed: 02/06/2023]
Abstract
Neuropsychiatric disorders place an enormous medical burden on patients across all social and economic ranks. The current understanding of the molecular and cellular causes of neuropsychiatric disease remains limited, which leads to a lack of targeted therapies. Human-induced pluripotent stem cell (iPSC) technology offers a novel platform for modeling the genetic contribution to mental disorders and yields access to patient-specific cells for drug discovery and personalized medicine. Here, we review recent progress in using iPSC technology to model and potentially treat neuropsychiatric disorders by focusing on the most prevalent conditions in psychiatry, including depression, anxiety disorders, bipolar disorder and schizophrenia.
Collapse
Affiliation(s)
- M A Soliman
- Weill Cornell Medical College, Cornell University, New York, NY, USA
- Developmental Biology and Center of Stem Cell Biology, Sloan-Kettering Cancer Center, New York, NY, USA
| | - F Aboharb
- Weill Cornell Medical College, Cornell University, New York, NY, USA
- Rockefeller University, New York, NY, USA
| | - N Zeltner
- Developmental Biology and Center of Stem Cell Biology, Sloan-Kettering Cancer Center, New York, NY, USA
| | - L Studer
- Weill Cornell Medical College, Cornell University, New York, NY, USA
- Developmental Biology and Center of Stem Cell Biology, Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
28
|
AnkG hemizygous mice present cognitive impairment and elevated anxiety/depressive-like traits associated with decreased expression of GABA receptors and postsynaptic density protein. Exp Brain Res 2017; 235:3375-3390. [PMID: 28821923 DOI: 10.1007/s00221-017-5056-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
Abstract
Recent genome-wide association studies (GWAS) of patient populations and genetic linkage assessments have demonstrated that the ankyrin-G (AnkG) gene is involved in neuropsychiatric disorders, including bipolar disorder, schizophrenia, and Alzheimer's disease, but it remains unclear how the genetic variants of AnkG contribute to neuropsychiatric disorders. Here, we generated AnkG hemizygous mice using the gene trapping approach. Homozygous AnkG was embryonically lethal. Western blotting and real-time polymerase chain reaction (qPCR) assessments of wild type (WT) and AnkG +/- mutant mice demonstrated a 50% reduction of ANKG levels, at the gene and protein levels, in AnkG hemizygous mice. In behavioral tests, AnkG hemizygous mice exhibited elevated anxiety- and depression-like traits, as well as cognitive impairment. Moreover, the expression levels of cognitive-related proteins (including metabotropic glutamate receptor subtype-1, brain-derived neurotrophic factor, postsynaptic density-95, GABA-B receptor, and GABA-A receptor alpha-1) were significantly decreased (P < 0.05), suggesting a possible role for AnkG in cognition. It is possible that the loss of AnkG in the brain disrupts the excitation/inhibition balance of neurotransmitters, hindering the synaptic plasticity of neurons, and consequently leading to abnormal behavioral symptoms. Therefore, AnkG possibly contributes to neuroprotection and normal brain function, and may constitute a new target for treating neuropsychiatric diseases, especially cognitive dysfunction.
Collapse
|
29
|
Zong S, Hoffmann C, Mané-Damas M, Molenaar P, Losen M, Martinez-Martinez P. Neuronal Surface Autoantibodies in Neuropsychiatric Disorders: Are There Implications for Depression? Front Immunol 2017; 8:752. [PMID: 28725222 PMCID: PMC5497139 DOI: 10.3389/fimmu.2017.00752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/13/2017] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases are affecting around 7.6-9.4% of the general population. A number of central nervous system disorders, including encephalitis and severe psychiatric disorders, have been demonstrated to associate with specific neuronal surface autoantibodies (NSAbs). It has become clear that specific autoantibodies targeting neuronal surface antigens and ion channels could cause severe mental disturbances. A number of studies have focused or are currently investigating the presence of autoantibodies in specific mental conditions such as schizophrenia and bipolar disorders. However, less is known about other conditions such as depression. Depression is a psychiatric disorder with complex etiology and pathogenesis. The diagnosis criteria of depression are largely based on symptoms but not on the origin of the disease. The question which arises is whether in a subgroup of patients with depression, the symptoms might be caused by autoantibodies targeting membrane-associated antigens. Here, we describe how autoantibodies targeting membrane proteins and ion channels cause pathological effects. We discuss the physiology of these antigens and their role in relation to depression. Finally, we summarize a number of studies detecting NSAbs with a special focus on cohorts that include depression diagnosis and/or show depressive symptoms.
Collapse
Affiliation(s)
- Shenghua Zong
- Division Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Carolin Hoffmann
- Division Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Marina Mané-Damas
- Division Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Peter Molenaar
- Division Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Mario Losen
- Division Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Pilar Martinez-Martinez
- Division Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
30
|
Ostadhadi S, Akbarian R, Norouzi-Javidan A, Nikoui V, Zolfaghari S, Chamanara M, Dehpour AR. Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effects of gabapentin in mouse forced swimming test. Can J Physiol Pharmacol 2017; 95:795-802. [DOI: 10.1139/cjpp-2016-0292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Gabapentin as an anticonvulsant drug also has beneficial effects in treatment of depression. Previously, we showed that acute administration of gabapentin produced an antidepressant-like effect in the mouse forced swimming test (FST) by a mechanism that involves the inhibition of nitric oxide (NO). Considering the involvement of NO in adenosine triphosphate (ATP)-sensitive potassium channels (KATP), in the present study we investigated the involvement of KATP channels in antidepressant-like effect of gabapentin. Gabapentin at different doses (5–10 mg/kg) and fluoxetine (20 mg/kg) were administrated by intraperitoneal route, 60 and 30 min, respectively, before the test. To clarify the probable involvement of KATP channels, mice were pretreated with KATP channel inhibitor or opener. Gabapentin at dose 10 mg/kg significantly decreased the immobility behavior of mice similar to fluoxetine (20 mg/kg). Co-administration of subeffective dose (1 mg/kg) of glibenclamide (inhibitor of KATP channels) with gabapentin (3 mg/kg) showed a synergistic antidepressant-like effect. Also, subeffective dose of cromakalim (opener of KATP channels, 0.1 mg/kg) inhibited the antidepressant-like effect of gabapentin (10 mg/kg). None of the treatments had any impact on the locomotor movement. Our study, for the first time, revealed that antidepressant-like effect of gabapentin in mice is mediated by blocking the KATP channels.
Collapse
Affiliation(s)
- Sattar Ostadhadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Akbarian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Norouzi-Javidan
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Nikoui
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Zolfaghari
- Department of Tissue Engineering and Applied Cell Sciences, Iran University of Medical Sciences, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ahmad-Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Wu X, Balesar R, Lu J, Farajnia S, Zhu Q, Huang M, Bao AM, Swaab DF. Increased glutamic acid decarboxylase expression in the hypothalamic suprachiasmatic nucleus in depression. Brain Struct Funct 2017; 222:4079-4088. [PMID: 28608287 PMCID: PMC5686266 DOI: 10.1007/s00429-017-1442-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/11/2017] [Indexed: 12/24/2022]
Abstract
In depression, disrupted circadian rhythms reflect abnormalities in the central circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN). Although many SCN neurons are said to be GABAergic, it was not yet known whether and how SCN GABA changes occur in the SCN in depression. We, therefore, studied GABA in the SCN in relation to the changes in arginine vasopressin (AVP), which is one of the major SCN output systems. Postmortem hypothalamus specimens of 13 subjects suffering from depression and of 13 well-matched controls were collected. Quantitative immunocytochemistry was used to analyze the protein levels of glutamic acid decarboxylase (GAD)65/67 and AVP, and quantitative in situ hybridization was used to measure transcript levels of GAD67 in the SCN. There were a significant 58% increase of SCN GAD65/67-ir and a significant 169% increase of SCN GAD67-mRNA in the depression group. In addition, there were a significant 253% increase of AVP-ir in female depression subjects but not in male depression patients. This sex difference was supported by a re-analysis of SCN AVP-ir data of a previous study of our group. Moreover, SCN-AVP-ir showed a significant negative correlation with age in the control group and in the male, but not in the female depression group. Given the crucial role of GABA in mediating SCN function, our finding of increased SCN GABA expression may significantly contribute to the disordered circadian rhythms in depression. The increased SCN AVP-ir in female-but not in male-depression patients-may reflect the higher vulnerability for depression in women.
Collapse
Affiliation(s)
- Xueyan Wu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang Province Key Laboratory of Mental Disorder's Management, National Clinical Research Center for Mental Health Disorders, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China.,Department of Human Anatomy, School of Basic Medical Sciences, Anhui Medical University, 81 MeiShan Road, Hefei, 320023, People's Republic of China
| | - Rawien Balesar
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Jing Lu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang Province Key Laboratory of Mental Disorder's Management, National Clinical Research Center for Mental Health Disorders, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Sahar Farajnia
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Qiongbin Zhu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang Province Key Laboratory of Mental Disorder's Management, National Clinical Research Center for Mental Health Disorders, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Manli Huang
- Department of Mental Health, Zhejiang Province Key Laboratory of Mental Disorder's Management, National Clinical Research Center for Mental Health Disorders, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, 310003, People's Republic of China
| | - Ai-Min Bao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang Province Key Laboratory of Mental Disorder's Management, National Clinical Research Center for Mental Health Disorders, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Dick F Swaab
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang Province Key Laboratory of Mental Disorder's Management, National Clinical Research Center for Mental Health Disorders, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Single and chronic L-serine treatments exert antidepressant-like effects in rats possibly by different means. Amino Acids 2017; 49:1561-1570. [PMID: 28589394 DOI: 10.1007/s00726-017-2448-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/02/2017] [Indexed: 12/11/2022]
Abstract
In the present study, the effects of both single (6 mmol L-serine/10 ml/kg orally administrated) and chronic (2% L-serine solution freely given for 28 days) treatments on depression-like behavior were evaluated in Wistar rats, representing the control, and Wistar Kyoto rats, representing an animal model of depression. Both single and chronic L-serine treatments decreased the duration of immobility, which is an index of a depressive-like state, in the forced swimming test in both strains. However, the decreases in the duration of immobility appear to be regulated differently by the different mechanisms involved in single and chronic L-serine treatments. In the prefrontal cortex and hippocampus, single L-serine treatment increased the concentrations of L-serine, but not D-serine, while chronic L-serine treatment increased those of D-serine, but not L-serine. These data suggest that the antidepressant-like effects of single and chronic L-serine treatments may have been induced by the increased L-serine and D-serine concentrations, respectively, in the brain. In addition, chronic L-serine treatment increased cystathionine concentrations in the hippocampus and prefrontal cortex in Wistar rats, but not in Wistar Kyoto rats, suggesting that Wistar Kyoto rats have an abnormality in the serine-cystathionine metabolic pathway. In conclusion, single and chronic L-serine treatments may induce antidepressant-like effects via the different mechanisms related to serine metabolism in the brain.
Collapse
|
33
|
Disinhibition of somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-like brain state. Mol Psychiatry 2017; 22:920-930. [PMID: 27821870 PMCID: PMC5422144 DOI: 10.1038/mp.2016.188] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/14/2016] [Accepted: 08/31/2016] [Indexed: 12/31/2022]
Abstract
Major depressive disorder (MDD) is associated with reduced concentrations of γ-aminobutyric acid (GABA) that are normalized by antidepressant therapies. Moreover, depressive-like phenotypes of GABAA receptor mutant mice can be reversed by treatment with conventional antidepressants drugs, as well as by subanesthetic doses of ketamine. Thus GABAergic deficits may causally contribute to depressive disorders, while antidepressant therapies may enhance GABAergic synaptic transmission. Here we tested the hypothesis that sustained enhancement of GABAergic transmission alone is sufficient to elicit antidepressant-like behavior, using disinhibition of GABAergic interneurons. We focused on somatostatin-positive (SST+) GABAergic interneurons because of evidence that their function is compromised in MDD. To disinhibit SST+ interneurons, we inactivated the γ2 subunit gene of GABAA receptors selectively in these neurons (SSTCre:γ2f/f mice). Loss of inhibitory synaptic input resulted in increased excitability of SST+ interneurons. In turn, pyramidal cell targets of SST+ neurons showed an increased frequency of spontaneous inhibitory postsynaptic currents. The behavior of SSTCre:γ2f/f mice mimicked the effects of anxiolytic and antidepressant drugs in a number of behavioral tests, without affecting performance in a spatial learning- and memory-dependent task. Finally, brain extracts of SSTCre:γ2f/f mice showed decreased phosphorylation of the eukaryotic elongation factor eEF2, reminiscent of the effects of ketamine. Importantly, these effects occurred without altered activity of the mammalian target of rapamycin pathway nor did they involve altered expression of SST. However, they were associated with reduced Ca2+/calmodulin-dependent auto-phosphorylation of eEF2 kinase, which controls the activity of eEF2 as its single target. Thus enhancing GABAergic inhibitory synaptic inputs from SST+ interneurons to pyramidal cells and corresponding chronic reductions in the synaptic excitation:inhibition ratio represents a novel strategy for antidepressant therapies that reproduces behavioral and biochemical end points of rapidly acting antidepressants.
Collapse
|
34
|
Ran Q, Chen J, Li C, Wen L, Yue F, Shu T, Mi J, Wang G, Zhang L, Gao D, Zhang D. Abnormal amplitude of low-frequency fluctuations associated with rapid-eye movement in chronic primary insomnia patients. Oncotarget 2017; 8:84877-84888. [PMID: 29156690 PMCID: PMC5689580 DOI: 10.18632/oncotarget.17921] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/03/2017] [Indexed: 11/25/2022] Open
Abstract
Purpose Chronic primary insomnia (CPI) is the most prevalent sleep disorder worldwide. CPI manifests as difficulties in sleep onset, maintaining sleep, prolonged sleep latency, and daytime impairment and is often accompanied by cognitive problems such as poor academic performance, poor attention, and decreased memory. The most popular explanation of insomnia is hyperarousal or increased activities of neurons. Rapid eye movement (REM) sleep detected by polysomnography (PSG) exhibits a positive relationship with brain homeostasis and can be helpful for optimally preparing an organism for emotional and social function. Limited work has been performed to explore brain function of insomnia patients in combination with PSG analysis. Results We observed increased ALFF within areas related to hyperarousal such as the midbrain and bilateral extra-nucleus, whereas decreased ALFF was observed within areas associated with memory and attention involving the parietal and occipital lobule and others. Furthermore, the altered ALFF was associated with the duration of insomnia, sleep efficiency, duration of REM, latency of RME and ratio of REM. Materials and Methods In this study, we recruited twenty-five CPI patients and twenty-five normal sleep (NS) volunteers as a control group to investigate the amplitude of low-frequency fluctuations (ALFF) and the correlation between those altered ALFF regions through resting-state fMRI and PSG data. Conclusions These findings suggest that hyperarousal reflected by ALFF abnormality within brain areas related to cognition and emotion in insomnia associated with REM sleep.
Collapse
Affiliation(s)
- Qian Ran
- Department of Radiology, The Second Affiliated Hospital of The Third Military Medical University, Sha Pingba, Chongqing 400037, China
| | - Jia Chen
- Department of Radiology, The Second Affiliated Hospital of The Third Military Medical University, Sha Pingba, Chongqing 400037, China
| | - Chuan Li
- Department of Radiology, The Second Affiliated Hospital of The Third Military Medical University, Sha Pingba, Chongqing 400037, China
| | - Li Wen
- Department of Radiology, The Second Affiliated Hospital of The Third Military Medical University, Sha Pingba, Chongqing 400037, China
| | - Faguo Yue
- Department of Sleep and Psychology, Institute of Surgery Research, The Third Affiliated Hospital of The Third Military Medical University, Da Ping, Chongqing 400042, China
| | - Tongsheng Shu
- Department of Radiology, The Second Affiliated Hospital of The Third Military Medical University, Sha Pingba, Chongqing 400037, China
| | - Jianxun Mi
- College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Guangxian Wang
- Department of Radiology, The Second Affiliated Hospital of The Third Military Medical University, Sha Pingba, Chongqing 400037, China
| | - Lei Zhang
- Department of Radiology, The Second Affiliated Hospital of The Third Military Medical University, Sha Pingba, Chongqing 400037, China
| | - Dong Gao
- Department of Sleep and Psychology, Institute of Surgery Research, The Third Affiliated Hospital of The Third Military Medical University, Da Ping, Chongqing 400042, China
| | - Dong Zhang
- Department of Radiology, The Second Affiliated Hospital of The Third Military Medical University, Sha Pingba, Chongqing 400037, China
| |
Collapse
|
35
|
Ghosal S, Hare B, Duman RS. Prefrontal Cortex GABAergic Deficits and Circuit Dysfunction in the Pathophysiology and Treatment of Chronic Stress and Depression. Curr Opin Behav Sci 2017; 14:1-8. [PMID: 27812532 DOI: 10.1016/j.cobeha.2016.09.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Psychiatric diseases, notably major depression, are associated with imbalance of excitatory and inhibitory neurotransmission within the prefrontal cortex (PFC) and related limbic brain circuitry. In many cases these illnesses are precipitated or exacerbated by chronic stress, which also alters excitatory and inhibitory neurotransmitter systems. Notably, exposure to repeated uncontrollable stress causes persistent changes in the synaptic integrity and function of the principal glutamatergic excitatory neurons in the PFC, characterized by neuronal atrophy and loss of synaptic connections. This can lead to dysfunction of the PFC circuitry that is necessary for execution of adaptive behavioral responses. In addition, an emerging literature shows that chronic stress also causes extensive alteration of GABAergic inhibitory circuits in the PFC, leading to the hypothesis that inhibitory neurotransmitter deficits contribute to changes in PFC neuronal excitability and cognitive impairments. Here we review evidence in rodents and human, which point to the mechanisms underlying stress-induced alterations of GABA transmission in the PFC, and its relevance to circuit dysfunction in mood and stress related disorders. These findings suggest that alterations of GABA interneurons and inhibitory neurotransmission play a causal role in the development of stress-related neurobiological illness, and could identify a new line of GABA related therapeutic targets.
Collapse
Affiliation(s)
- Sriparna Ghosal
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520
| | - Brendan Hare
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520
| | - Ronald S Duman
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520
| |
Collapse
|
36
|
Nikoui V, Ostadhadi S, Azhand P, Zolfaghari S, Amiri S, Foroohandeh M, Motevalian M, Sharifi AM, Bakhtiarian A. The effect of nitrazepam on depression and curiosity in behavioral tests in mice: The role of potassium channels. Eur J Pharmacol 2016; 791:369-376. [DOI: 10.1016/j.ejphar.2016.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023]
|
37
|
Schür RR, Boks MP, Geuze E, Prinsen HC, Verhoeven-Duif NM, Joëls M, Kahn RS, Vermetten E, Vinkers CH. Development of psychopathology in deployed armed forces in relation to plasma GABA levels. Psychoneuroendocrinology 2016; 73:263-270. [PMID: 27566489 DOI: 10.1016/j.psyneuen.2016.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/13/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022]
Abstract
The GABA system is pivotal for an adequate response to a stressful environment but has remained largely unexplored in this context. The present study investigated the relationship of prospectively measured plasma GABA levels with psychopathology symptoms in military deployed to Afghanistan at risk for developing psychopathology following trauma exposure during deployment, including posttraumatic stress disorder (PTSD) and major depressive disorder (MDD). Plasma GABA levels were measured in military personnel (N=731) one month prior to deployment (T0), and one (T1) and six months (T2) after deployment using ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Mental health problems and depressive symptoms were measured with the Dutch revised Symptom Checklist (SCL-90) and PTSD symptoms with the Dutch Self-Rating Inventory for PTSD (SRIP). Six months after deployment increases in GABA concentrations were present in individuals who had developed mental health problems (T2: β=0.06, p=1.6×10-2, T1: β=4.7×10-2, p=0.13), depressive symptoms (T2: β=0.29, p=7.9×10-3, T1: β=0.23, p=0.072) and PTSD symptoms at T2 (T2: β=0.12, p=4.3×10-2, T1: β=0.11, p=0.13). Plasma GABA levels prior to and one month after deployment poorly predicted a high level of psychopathology symptoms either one or six months after deployment. The number of previous deployments, trauma experienced during deployment, childhood trauma, age and sex were not significantly associated with plasma GABA levels over time. Exclusion of subjects who either started or stopped smoking, alcohol or medication use between the three time points rendered the association of increasing GABA levels with the emergence of psychopathology symptoms more pronounced (mental health problems at T2: β=0.09, p=4.2×10-3; depressive symptoms at T2: β=0.35, p=3.5×10-3, PTSD symptoms at T2: β=0.17, p=1.7×10-2). To our knowledge, this is the first study to provide prospective evidence that the development of psychopathology after military deployment is associated with increasing plasma GABA levels. Our finding that plasma GABA rises after the emergence of psychopathology symptoms suggests that GABA increase may constitute a compensatory mechanism and warrants further exploration of the GABA system as a potential target for treatment.
Collapse
Affiliation(s)
- Remmelt R Schür
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Marco P Boks
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Elbert Geuze
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Research Center-Military Mental Healthcare, Ministry of Defence, Lundlaan 1, 3584 EZ Utrecht, The Netherlands
| | - Hubertus C Prinsen
- Department of Genetics, Section Metabolic Diagnostics, Wilhelmina Children's Hospital, University Medical Center Utrecht (UMCU), Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Nanda M Verhoeven-Duif
- Department of Genetics, Section Metabolic Diagnostics, Wilhelmina Children's Hospital, University Medical Center Utrecht (UMCU), Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Eric Vermetten
- Research Center-Military Mental Healthcare, Ministry of Defence, Lundlaan 1, 3584 EZ Utrecht, The Netherlands; Department of Psychiatry, Leiden University Medical Center, Albinusweg 2, 2333 ZA Leiden, The Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
38
|
Ren Z, Pribiag H, Jefferson SJ, Shorey M, Fuchs T, Stellwagen D, Luscher B. Bidirectional Homeostatic Regulation of a Depression-Related Brain State by Gamma-Aminobutyric Acidergic Deficits and Ketamine Treatment. Biol Psychiatry 2016; 80:457-468. [PMID: 27062563 PMCID: PMC4983262 DOI: 10.1016/j.biopsych.2016.02.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Major depressive disorder is increasingly recognized to involve functional deficits in both gamma-aminobutyric acid (GABA)ergic and glutamatergic synaptic transmission. To elucidate the relationship between these phenotypes, we used GABAA receptor γ2 subunit heterozygous (γ2(+/-)) mice, which we previously characterized as a model animal with construct, face, and predictive validity for major depressive disorder. METHODS To assess possible consequences of GABAergic deficits on glutamatergic transmission, we quantitated the cell surface expression of N-methyl-D-aspartate (NMDA)-type and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors and the function of synapses in the hippocampus and medial prefrontal cortex of γ2(+/-) mice. We also analyzed the effects of an acute dose of the experimental antidepressant ketamine on all these parameters in γ2(+/-) versus wild-type mice. RESULTS Modest defects in GABAergic synaptic transmission of γ2(+/-) mice resulted in a strikingly prominent homeostatic-like reduction in the cell surface expression of NMDA-type and AMPA-type glutamate receptors, along with prominent functional impairment of glutamatergic synapses in the hippocampus and medial prefrontal cortex. A single subanesthetic dose of ketamine normalized glutamate receptor expression and synaptic function of γ2(+/-) mice to wild-type levels for a prolonged period, along with antidepressant-like behavioral consequences selectively in γ2(+/-) mice. The GABAergic synapses of γ2(+/-) mice were potentiated by ketamine in parallel but only in the medial prefrontal cortex. CONCLUSIONS Depressive-like brain states that are caused by GABAergic deficits involve a homeostatic-like reduction of glutamatergic transmission that is reversible by an acute, subanesthetic dose of ketamine, along with regionally selective potentiation of GABAergic synapses. The data merge the GABAergic and glutamatergic deficit hypotheses of major depressive disorder.
Collapse
Affiliation(s)
- Zhen Ren
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - Horia Pribiag
- Center for Research in Neuroscience, McGill University, Montreal General Hospital, L7-132, 1650 Cedar Av, Montreal, QC H3G 1A4, Canada
| | - Sarah J. Jefferson
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - Matthew Shorey
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - Thomas Fuchs
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - David Stellwagen
- Center for Research in Neuroscience, McGill University, Montreal General Hospital, L7-132, 1650 Cedar Av, Montreal, QC H3G 1A4, Canada
| | - Bernhard Luscher
- Departments of Biology, Pennsylvania State University, University Park, Pennsylvania; Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania; Center for Molecular Investigation of Neurological Disorders, Pennsylvania State University, University Park, Pennsylvania.
| |
Collapse
|
39
|
Freeman L, Garcia-Lorenzo D, Bottin L, Leroy C, Louapre C, Bodini B, Papeix C, Assouad R, Granger B, Tourbah A, Dollé F, Lubetzki C, Bottlaender M, Stankoff B. The neuronal component of gray matter damage in multiple sclerosis: A [(11) C]flumazenil positron emission tomography study. Ann Neurol 2015; 78:554-67. [PMID: 26292991 DOI: 10.1002/ana.24468] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 06/27/2015] [Accepted: 06/29/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Using positron emission tomography (PET) with [(11) C]flumazenil ([(11) C]FMZ), an antagonist of the central benzodiazepine site located within the GABAA receptor, we quantified and mapped neuronal damage in the gray matter (GM) of patients with multiple sclerosis (MS) at distinct disease stages. We investigated the relationship between neuronal damage and white matter (WM) lesions and evaluated the clinical relevance of this neuronal PET metric. METHODS A cohort of 18 MS patients (9 progressive and 9 relapsing-remitting) was compared to healthy controls and underwent neurological and cognitive evaluations, high-resolution dynamic [(11) C]FMZ PET imaging and brain magnetic resonance imaging. [(11) C]FMZ binding was estimated using the partial saturation protocol providing voxel-wise absolute quantification of GABAA receptor concentration. PET data were evaluated using a region of interest (ROI) approach as well as on a vertex-by-vertex basis. RESULTS [(11) C]FMZ binding was significantly decreased in the cortical GM of MS patients, compared to controls (-10%). Cortical mapping of benzodiazepine receptor concentration ([(11) C]FMZ Bmax) revealed significant intergroup differences in the bilateral parietal cortices and right frontal areas. ROI analyses taking into account GM volume changes showed extensive decrease in [(11) C]FMZ binding in bilateral parietal, cingulate, and insular cortices as well as in the thalami, amygdalae, and hippocampi. These changes were significant in both progressive and relapsing-remitting forms of the disease and correlated with WM T2-weighted lesion load. [(11) C]FMZ cortical binding correlated with cognitive performance. INTERPRETATION This pilot study showed that PET with [(11) C]FMZ could be a promising and sensitive quantitative marker to assess and map the neuronal substrate of GM pathology in MS.
Collapse
Affiliation(s)
- Léorah Freeman
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France.,Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France.,Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX
| | - Daniel Garcia-Lorenzo
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,Institut des Neurosciences translationnelles de Paris (IHU-A-ICM), Paris, France
| | - Laure Bottin
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France.,Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France
| | - Claire Leroy
- Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France
| | - Céline Louapre
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France
| | - Benedetta Bodini
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France.,Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France
| | - Caroline Papeix
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France
| | - Rana Assouad
- AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France
| | - Benjamin Granger
- AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France
| | - Ayman Tourbah
- Centre Hospitalo-Universitaire de Reims, Université Champagne Ardennes, Reims, France
| | - Frédéric Dollé
- Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France
| | - Catherine Lubetzki
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France.,Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France.,Institut des Neurosciences translationnelles de Paris (IHU-A-ICM), Paris, France
| | | | - Bruno Stankoff
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France.,Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France
| |
Collapse
|
40
|
Pehrson AL, Sanchez C. Altered γ-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:603-24. [PMID: 25653499 PMCID: PMC4307650 DOI: 10.2147/dddt.s62912] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Evidence suggesting that central nervous system γ-aminobutyric acid (GABA) concentrations are reduced in patients with major depressive disorder (MDD) has been present since at least 1980, and this idea has recently gained support from more recent magnetic resonance spectroscopy data. These observations have led to the assumption that MDD’s underlying etiology is tied to an overall reduction in GABA-mediated inhibitory neurotransmission. In this paper, we review the mechanisms that govern GABA and glutamate concentrations in the brain, and provide a comprehensive and critical evaluation of the clinical data supporting reduced GABA neurotransmission in MDD. This review includes an evaluation of magnetic resonance spectroscopy data, as well as data on the expression and function of the GABA-synthesizing enzyme glutamic acid decarboxylase, GABA neuron-specific cell markers, such as parvalbumin, calretinin and calbindin, and the GABAA and GABAB receptors in clinical MDD populations. We explore a potential role for glial pathology in MDD-related reductions in GABA concentrations, and evidence of a connection between neurosteroids, GABA neurotransmission, and hormone-related mood disorders. Additionally, we investigate the effects of GABAergic pharmacological agents on mood, and demonstrate that these compounds have complex effects that do not universally support the idea that reduced GABA neurotransmission is at the root of MDD. Finally, we discuss the connections between serotonergic and GABAergic neurotransmission, and show that two serotonin-focused antidepressants – the selective serotonin-reuptake inhibitor fluoxetine and the multimodal antidepressant vortioxetine – modulate GABA neurotransmission in opposing ways, despite both being effective MDD treatments. Altogether, this review demonstrates that there are large gaps in our understanding of the relationship between GABA physiology and MDD, which must be remedied with more data from well-controlled empirical studies. In conclusion, this review suggests that the simplistic notion that MDD is caused by reduced GABA neurotransmission must be discarded in favor of a more nuanced and complex model of the role of inhibitory neurotransmission in MDD.
Collapse
Affiliation(s)
- Alan L Pehrson
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Paramus, NJ, USA
| | - Connie Sanchez
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Paramus, NJ, USA
| |
Collapse
|
41
|
Luscher B, Fuchs T. GABAergic control of depression-related brain states. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 73:97-144. [PMID: 25637439 DOI: 10.1016/bs.apha.2014.11.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The GABAergic deficit hypothesis of major depressive disorders (MDDs) posits that reduced γ-aminobutyric acid (GABA) concentration in brain, impaired function of GABAergic interneurons, altered expression and function of GABA(A) receptors, and changes in GABAergic transmission dictated by altered chloride homeostasis can contribute to the etiology of MDD. Conversely, the hypothesis posits that the efficacy of currently used antidepressants is determined by their ability to enhance GABAergic neurotransmission. We here provide an update for corresponding evidence from studies of patients and preclinical animal models of depression. In addition, we propose an explanation for the continued lack of genetic evidence that explains the considerable heritability of MDD. Lastly, we discuss how alterations in GABAergic transmission are integral to other hypotheses of MDD that emphasize (i) the role of monoaminergic deficits, (ii) stress-based etiologies, (iii) neurotrophic deficits, and (iv) the neurotoxic and neural circuit-impairing consequences of chronic excesses of glutamate. We propose that altered GABAergic transmission serves as a common denominator of MDD that can account for all these other hypotheses and that plays a causal and common role in diverse mechanistic etiologies of depressive brain states and in the mechanism of action of current antidepressant drug therapies.
Collapse
Affiliation(s)
- Bernhard Luscher
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Center for Molecular Investigation of Neurological Disorders, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Thomas Fuchs
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Center for Molecular Investigation of Neurological Disorders, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
42
|
Szilágyi T, Száva I, Metz EJ, Mihály I, Orbán-Kis K. Untangling the pathomechanisms of temporal lobe epilepsy—The promise of epileptic biomarkers and novel therapeutic approaches. Brain Res Bull 2014; 109:1-12. [DOI: 10.1016/j.brainresbull.2014.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 12/30/2022]
|
43
|
Rocha L, Alonso-Vanegas M, Orozco-Suárez S, Alcántara-González D, Cruzblanca H, Castro E. Do certain signal transduction mechanisms explain the comorbidity of epilepsy and mood disorders? Epilepsy Behav 2014; 38:25-31. [PMID: 24472685 DOI: 10.1016/j.yebeh.2014.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 11/29/2022]
Abstract
It is well known that mood disorders are highly prevalent in patients with epilepsy. Although several studies have aimed to characterize alterations in different types of receptors associated with both disturbances, there is a lack of studies focused on identifying the causes of this comorbidity. Here, we described some changes at the biochemical level involving serotonin, dopamine, and γ-aminobutyric acid (GABA) receptors as well as signal transduction mechanisms that may explain the coexistence of both epilepsy and mood disorders. Finally, the identification of common pathophysiological mechanisms associated with receptor-receptor interaction (heterodimers) could allow designing new strategies for treatment of patients with epilepsy and comorbid mood disorders.
Collapse
Affiliation(s)
- Luisa Rocha
- Department of Pharmacobiology, Center of Research and Advanced Studies, Mexico City, Mexico.
| | - Mario Alonso-Vanegas
- National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez", Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Unit for Medical Research in Neurological Diseases, National Medical Center, Mexico City, Mexico
| | | | - Humberto Cruzblanca
- University Center of Biomedical Research, University of Colima, Colima, Mexico
| | - Elena Castro
- University Center of Biomedical Research, University of Colima, Colima, Mexico
| |
Collapse
|
44
|
Ren Z, Sahir N, Murakami S, Luellen BA, Earnheart JC, Lal R, Kim JY, Song H, Luscher B. Defects in dendrite and spine maturation and synaptogenesis associated with an anxious-depressive-like phenotype of GABAA receptor-deficient mice. Neuropharmacology 2014; 88:171-9. [PMID: 25107590 DOI: 10.1016/j.neuropharm.2014.07.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/08/2014] [Accepted: 07/21/2014] [Indexed: 11/27/2022]
Abstract
Mice that were rendered heterozygous for the γ2 subunit of GABAA receptors (γ2(+/-) mice) have been characterized extensively as a model for major depressive disorder. The phenotype of these mice includes behavior indicative of heightened anxiety, despair, and anhedonia, as well as defects in hippocampus-dependent pattern separation, HPA axis hyperactivity and increased responsiveness to antidepressant drugs. The γ2(+/-) model thereby provides strong support for the GABAergic deficit hypothesis of major depressive disorder. Here we show that γ2(+/-) mice additionally exhibit specific defects in late stage survival of adult-born hippocampal granule cells, including reduced complexity of dendritic arbors and impaired maturation of synaptic spines. Moreover, cortical γ2(+/-) neurons cultured in vitro show marked deficits in GABAergic innervation selectively when grown under competitive conditions that may mimic the environment of adult-born hippocampal granule cells. Finally, brain extracts of γ2(+/-) mice show a numerical but insignificant trend (p = 0.06) for transiently reduced expression of brain derived neurotrophic factor (BDNF) at three weeks of age, which might contribute to the previously reported developmental origin of the behavioral phenotype of γ2(+/-) mice. The data indicate increasing congruence of the GABAergic, glutamatergic, stress-based and neurotrophic deficit hypotheses of major depressive disorder.
Collapse
Affiliation(s)
- Zhen Ren
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Molecular Investigation of Neurological Disorders, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nadia Sahir
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shoko Murakami
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Beth A Luellen
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - John C Earnheart
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rachnanjali Lal
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ju Young Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bernhard Luscher
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Molecular Investigation of Neurological Disorders, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
45
|
Abstract
Molecular imaging is the visualization, characterization, and measurement of biologic processes at the molecular and cellular levels in humans and other living systems. Molecular imaging techniques such as MR spectroscopy and PET have been used to explore the molecular pathophysiology of depression and assess treatment responses. MR spectroscopy is a noninvasive technique that assesses the levels of biochemical metabolites in the brain, while PET uses radioligands injected in the bloodstream that have high binding affinity for target molecules. MR spectroscopy findings suggest a role for glutamate/glutamine and gamma-aminobutyric acid in depression. PET has generally failed to find a correlation between radioligand binding potential and depression severity or treatment response, though it may offer promise in distinguishing responders and nonresponders to treatment. A major challenge for both modalities is that depression is a heterogeneous, multifactorial disorder, while MR spectroscopy and PET are limited to examining a few metabolites or a single radioligand at a time. This difference makes a comprehensive evaluation of neurochemical changes in the brain difficult.
Collapse
Affiliation(s)
- T-S Lee
- From the Duke-National University of Singapore Graduate Medical School, Singapore.
| | - S Y Quek
- From the Duke-National University of Singapore Graduate Medical School, Singapore
| | - K R R Krishnan
- From the Duke-National University of Singapore Graduate Medical School, Singapore
| |
Collapse
|
46
|
Helmstaedter C, Aldenkamp AP, Baker GA, Mazarati A, Ryvlin P, Sankar R. Disentangling the relationship between epilepsy and its behavioral comorbidities - the need for prospective studies in new-onset epilepsies. Epilepsy Behav 2014; 31:43-7. [PMID: 24333577 DOI: 10.1016/j.yebeh.2013.11.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/04/2013] [Accepted: 11/09/2013] [Indexed: 12/20/2022]
Abstract
It has been long recognized that there is more to epilepsy than seizures. The prevalence of such neurobehavioral abnormalities as cognitive and mood disorders, autism spectrum disorder, and attention deficit and hyperactivity disorder (ADHD) is significantly higher among patients with epilepsy than in the general population. A long-held view that comorbidities of epilepsy represent mere epiphenomena of seizures has undergone substantial transformation during the past decade, as emerging clinical evidence and experimental evidence suggest the involvement of specific neurobiological mechanisms in the evolution of neurobehavioral deficits in patients with epilepsy. Developmental aspects of both epilepsy and its comorbidities, as well as the frequently reported reciprocal connection between these disorders, both add other dimensions to the already complex problem. In light of progress in effective seizure management in many patients with epilepsy, the importance of neurobehavioral comorbidities has become acute, as the latter are frequently more detrimental to patients' quality of life compared with seizures. This calls for a serious increase in efforts to effectively predict, manage, and ideally cure these comorbidities. Coordinated multicenter clinical, translational, and basic research studies focusing on epidemiology, neuropsychology, neurophysiology, imaging, genetics, epigenetics, and pharmacology of neurobehavioral comorbidities of epilepsy are absolutely instrumental for ensuring tangible progress in the field. Clinical research should focus more on new-onset epilepsy and put particular emphasis on longitudinal studies in large cohorts of patients and groups at risk, while translational research should primarily focus on the development of valid preclinical systems which would allow investigating the fundamental mechanism of epilepsy comorbidities. The final goal of the described research efforts would lie in producing an armamentarium of evidence-based diagnostic tools and therapeutic interventions which would at minimum mitigate and at maximum prevent or abolish neurobehavioral comorbidities of epilepsy and, thus, improve the quality of life of those patients with epilepsy who suffer from the said comorbidities.
Collapse
Affiliation(s)
| | - A P Aldenkamp
- Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands; Dept of Neurology Maastricht University Medical Centre, Faculty of Electrical Engineering, University of Technology, Eindhoven, The Netherlands
| | - G A Baker
- Division of Neurosciences, University of Liverpool, Liverpool, UK
| | - A Mazarati
- Department of Pediatrics, Neurology Division, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| | - Ph Ryvlin
- Department of Functional Neurology and Epileptology, Neurological Hospital, CTRS-INSERM IDEE, Institut Des Epilepsies de l'Enfant et de l'adolescent, Hospices Civils de Lyon, INSERM U821, Universite Claude Bernard Lyon 1, Lyon, France
| | - R Sankar
- Department of Pediatrics, Neurology Division, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| |
Collapse
|
47
|
Kim YK, Yang EJ, Cho K, Lim JY, Paik NJ. Functional Recovery After Ischemic Stroke Is Associated With Reduced GABAergic Inhibition in the Cerebral Cortex: A GABA PET Study. Neurorehabil Neural Repair 2014; 28:576-83. [PMID: 24463186 DOI: 10.1177/1545968313520411] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND γ-Aminobutyric acid (GABA) plasticity plays an important role in stroke motor recovery in a mouse model. However, little is known about changes over time in neuronal excitability mediated by GABA receptors in human stroke patients. OBJECTIVES To establish the mechanism of neuroplasticity during the recovery phase following ischemic stroke by assessing the changes in cerebral GABA activity using [(18)F]flumazenil ([(18)F]FMZ) positron emission tomography (PET). METHODS A total of 10 patients with unilateral ischemic stroke were studied at 1 month (T0) and 3 months (T1) postonset using [(18)F]FMZ PET. Changes in regional GABAergic activity were assessed longitudinally, and values were also compared with those in 15 age-matched controls. Upper-extremity motor function was evaluated using the Fugl-Meyer score (FMS). RESULTS During the follow-up period, statistical parametric mapping analysis demonstrated a decrease in GABAA receptor availability throughout the cerebral cortex and cerebellum, especially the contralateral hemisphere. GABAA availability in the bilateral primary motor cortex, contralateral supplemental motor cortex, and globus pallidus at T0 was positively correlated with the FMS score at T1 CONCLUSIONS: This is the first prospective, controlled longitudinal study showing that the change in GABA receptor availability over time is significantly related to motor recovery after stroke in humans. This work supports the rationale for a novel strategy to promote motor recovery after stroke.
Collapse
Affiliation(s)
- Yu Kyeong Kim
- Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Eun Joo Yang
- Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyehee Cho
- Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jong Youb Lim
- Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Nam-Jong Paik
- Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
48
|
The ability of BDNF to modify neurogenesis and depressive-like behaviors is dependent upon phosphorylation of tyrosine residues 365/367 in the GABA(A)-receptor γ2 subunit. J Neurosci 2013; 33:15567-77. [PMID: 24068823 DOI: 10.1523/jneurosci.1845-13.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a potent regulator of neuronal activity, neurogenesis, and depressive-like behaviors; however, downstream effectors by which BDNF exerts these varying actions remain to be determined. Here we reveal that BDNF induces long-lasting enhancements in the efficacy of synaptic inhibition by stabilizing γ2 subunit-containing GABA(A) receptors (GABA(A)Rs) at the cell surface, leading to persistent reductions in neuronal excitability. This effect is dependent upon enhanced phosphorylation of tyrosines 365 and 367 (Y365/7) in the GABA(A)R γ2 subunit as revealed using mice in which these residues have been mutated to phenyalanines (Y365/7F). Heterozygotes for this mutation exhibit an antidepressant-like phenotype, as shown using behavioral-despair models of depression. In addition, heterozygous Y365/7F mice show increased levels of hippocampal neurogenesis, which has been strongly connected with antidepressant action. Both the antidepressant phenotype and the increased neurogenesis seen in these mice are insensitive to further modulation by BDNF, which produces robust antidepressant-like activity and neurogenesis in wild-type mice. Collectively, our results suggest a critical role for GABA(A)R γ2 subunit Y365/7 phosphorylation and function in regulating the effects of BDNF.
Collapse
|
49
|
Korczyn AD, Schachter SC, Brodie MJ, Dalal SS, Engel J, Guekht A, Hecimovic H, Jerbi K, Kanner AM, Landmark CJ, Mares P, Marusic P, Meletti S, Mula M, Patsalos PN, Reuber M, Ryvlin P, Štillová K, Tuchman R, Rektor I. Epilepsy, cognition, and neuropsychiatry (Epilepsy, Brain, and Mind, part 2). Epilepsy Behav 2013; 28:283-302. [PMID: 23764496 PMCID: PMC5016028 DOI: 10.1016/j.yebeh.2013.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2013] [Indexed: 12/13/2022]
Abstract
Epilepsy is, of course, not one disease but rather a huge number of disorders that can present with seizures. In common, they all reflect brain dysfunction. Moreover, they can affect the mind and, of course, behavior. While animals too may suffer from epilepsy, as far as we know, the electrical discharges are less likely to affect the mind and behavior, which is not surprising. While the epileptic seizures themselves are episodic, the mental and behavioral changes continue, in many cases, interictally. The episodic mental and behavioral manifestations are more dramatic, while the interictal ones are easier to study with anatomical and functional studies. The following extended summaries complement those presented in Part 1.
Collapse
Affiliation(s)
- Amos D. Korczyn
- Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Steven C. Schachter
- Center for Integration of Medicine and Innovative Technology, Harvard Medical School, Boston, MA, USA
| | | | - Sarang S. Dalal
- Zukunftskolleg & Department of Psychology, University of Konstanz, Germany
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon I, Brain Dynamics and Cognition Team, Lyon, France
| | | | - Alla Guekht
- Russian National Research Medical University, Moscow City Hospital No. 8 for Neuropsychiatry, Moscow, Russia
| | - Hrvoje Hecimovic
- Zagreb Epilepsy Center, Department of Neurology, University Hospital, Zagreb, Croatia
| | - Karim Jerbi
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon I, Brain Dynamics and Cognition Team, Lyon, France
| | - Andres M. Kanner
- Department of Neurology, University of Miami, Miller School of Medicine, Miami FL, USA
| | - Cecilie Johannessen Landmark
- Department of Pharmacy and Biomedical Science, Oslo, Norway
- Akershus University College of Applied Sciences, Oslo, Norway
| | - Pavel Mares
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Marusic
- Department of Neurology, Charles University in Prague, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | - Stefano Meletti
- Department of Biomedical Sciences, Metabolism, and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Mula
- Amedeo Avogadro University, Novara, Italy
| | - Philip N. Patsalos
- Department of Clinical and Experimental Epilepsy, UCL-Institute of Neurology, London and Epilepsy Society, Chalfont St Peter, UK
| | - Markus Reuber
- Academic Neurology Unit, University of Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| | - Philippe Ryvlin
- Service de neurologie fonctionnelle et d’épileptologie, Hôpital Neurologique, HCL TIGER, CRNL, INSERM U1028, UMR-CNRS 5292, Université Lyon-1, Lyon, France
| | - Klára Štillová
- Masaryk University, Brno Epilepsy Center, St. Anne’s Hospital and School of Medicine, and Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Roberto Tuchman
- Autism and Neurodevelopment Program, Miami Children’s Hospital Dan Marino Center, Departments of Neurology and Psychiatry, Herbert Wertheim College of Medicine, Florida International University, FL, USA
| | - Ivan Rektor
- Masaryk University, Brno Epilepsy Center, St. Anne’s Hospital and School of Medicine, and Central European Institute of Technology (CEITEC), Brno, Czech Republic
| |
Collapse
|
50
|
Changes in the brain expression of alpha-2 subunits of the GABA-A receptor after chronic restraint stress in low- and high-anxiety rats. Behav Brain Res 2013; 253:337-45. [PMID: 23916758 DOI: 10.1016/j.bbr.2013.07.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 01/02/2023]
Abstract
This study assessed the mechanisms underlying the behavioral differences between high- (HR) and low-anxiety (LR) rats selected for their behavior in the contextual fear test (i.e., the duration of the freezing response was used as a discriminating variable). Rats were subjected to chronic restraint stress (21 days, 3h daily). We found that in the HR group, chronic restraint stress decreased rat activity in the Porsolt test and reduced the concentration of corticosterone in the prefrontal cortex. The behavioral changes were accompanied by a lower expression of alpha-2 GABA-A receptor subunits in the secondary motor cortex (M2 area) and in the dentate gyrus of the hippocampus (DG) compared to LR restraint animals. Moreover, restraint stress increased the density of alpha-2 GABA-A subunits in the basolateral amygdala (BLA) in HR rats and decreased the expression of these subunits in the DG and M2 areas compared to the HR control group. The present results suggest that, in HR rats exposed to chronic restraint stress, the function of hippocampal and cortical GABAergic neurotransmission is attenuated and that this effect could have important influences on the functioning of the hypothalamic-pituitary-adrenal axis and on depressive symptoms.
Collapse
|