1
|
Kanli G, Boudissa S, Jirik R, Adamsen T, Espedal H, Rolfsnes HO, Thorsen F, Pacheco-Torres J, Janji B, Keunen O. Quantitative pre-clinical imaging of hypoxia and vascularity using MRI and PET. Methods Cell Biol 2024; 191:289-328. [PMID: 39824561 DOI: 10.1016/bs.mcb.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
During hypoxia, tissues are subjected to an inadequate oxygen supply, disrupting the balance needed to maintain normal function. This deficiency can occur due to reduced oxygen delivery caused by impaired blood flow or a decline in the blood's ability to carry oxygen. In tumors, hypoxia and vascularization play crucial roles, shaping their microenvironments and influencing cancer progression, response to treatment and metastatic potential. This chapter provides guidance on the use of non-invasive imaging methods including Positron Emission Tomography and Magnetic Resonance Imaging to study tumor oxygenation in pre-clinical settings. These imaging techniques offer valuable insights into tumor vascularity and oxygen levels, aiding in understanding tumor behavior and treatment effects. For example, PET imaging uses tracers such as [18F]-fluoromisonidazole (FMISO) to visualize hypoxic areas within tumors, while MRI complements this with anatomical and functional images. Although directly assessing tumor hypoxia with MRI remains challenging, techniques like Blood Oxygen Level Dependent (BOLD) and Dynamic Contrast-Enhanced MRI (DCE-MRI) provide valuable information. BOLD can track changes in oxygen levels during oxygen challenges, while DCE-MRI offers real-time access to perfusion and vessel permeability data. Integrating data from these imaging modalities can help assess oxygen supply, refine treatment strategies, enhance therapeutic effectiveness, and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Georgia Kanli
- Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg; Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Selma Boudissa
- Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Radovan Jirik
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Tom Adamsen
- Centre for Nuclear Medicine, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway
| | - Heidi Espedal
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway; Western Australia National Imaging Facility, The University of Western Australia, Perth, Australia
| | - Hans Olav Rolfsnes
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway
| | - Frits Thorsen
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway; Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway; Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, Jinan, China
| | - Jesus Pacheco-Torres
- Institute for Biomedical Research Sols-Morreale (IIBM), Spanish National Research Council-Universidad Autónoma de Madrid, Madrid, Spain
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.
| | - Olivier Keunen
- Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| |
Collapse
|
2
|
Huang Y, Fan J, Li Y, Fu S, Chen Y, Wu J. Imaging of Tumor Hypoxia With Radionuclide-Labeled Tracers for PET. Front Oncol 2021; 11:731503. [PMID: 34557414 PMCID: PMC8454408 DOI: 10.3389/fonc.2021.731503] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/19/2021] [Indexed: 01/27/2023] Open
Abstract
The hypoxic state in a solid tumor refers to the internal hypoxic environment that appears as the tumor volume increases (the maximum radius exceeds 180-200 microns). This state can promote angiogenesis, destroy the balance of the cell’s internal environment, and lead to resistance to radiotherapy and chemotherapy, as well as poor prognostic factors such as metastasis and recurrence. Therefore, accurate quantification, mapping, and monitoring of hypoxia, targeted therapy, and improvement of tumor hypoxia are of great significance for tumor treatment and improving patient survival. Despite many years of development, PET-based hypoxia imaging is still the most widely used evaluation method. This article provides a comprehensive overview of tumor hypoxia imaging using radionuclide-labeled PET tracers. We introduced the mechanism of tumor hypoxia and the reasons leading to the poor prognosis, and more comprehensively included the past, recent and ongoing studies of PET radiotracers for tumor hypoxia imaging. At the same time, the advantages and disadvantages of mainstream methods for detecting tumor hypoxia are summarized.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junying Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Yue Chen
- Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Nuclear Medicine and Molecular Imaging key Laboratory of Sichuan Province, Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| |
Collapse
|
3
|
Apilan AG, Mothersill C. Targeted and Non-Targeted Mechanisms for Killing Hypoxic Tumour Cells-Are There New Avenues for Treatment? Int J Mol Sci 2021; 22:8651. [PMID: 34445354 PMCID: PMC8395506 DOI: 10.3390/ijms22168651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE A major issue in radiotherapy is the relative resistance of hypoxic cells to radiation. Historic approaches to this problem include the use of oxygen mimetic compounds to sensitize tumour cells, which were unsuccessful. This review looks at modern approaches aimed at increasing the efficacy of targeting and radiosensitizing hypoxic tumour microenvironments relative to normal tissues and asks the question of whether non-targeted effects in radiobiology may provide a new "target". Novel techniques involve the integration of recent technological advancements such as nanotechnology, cell manipulation, and medical imaging. Particularly, the major areas of research discussed in this review include tumour hypoxia imaging through PET imaging to guide carbogen breathing, gold nanoparticles, macrophage-mediated drug delivery systems used for hypoxia-activate prodrugs, and autophagy inhibitors. Furthermore, this review outlines several features of these methods, including the mechanisms of action to induce radiosensitization, the increased accuracy in targeting hypoxic tumour microenvironments relative to normal tissue, preclinical/clinical trials, and future considerations. CONCLUSIONS This review suggests that the four novel tumour hypoxia therapeutics demonstrate compelling evidence that these techniques can serve as powerful tools to increase targeting efficacy and radiosensitizing hypoxic tumour microenvironments relative to normal tissue. Each technique uses a different way to manipulate the therapeutic ratio, which we have labelled "oxygenate, target, use, and digest". In addition, by focusing on emerging non-targeted and out-of-field effects, new umbrella targets are identified, which instead of sensitizing hypoxic cells, seek to reduce the radiosensitivity of normal tissues.
Collapse
|
4
|
Elming PB, Wittenborn TR, Busk M, Sørensen BS, Thomsen MBH, Strandgaard T, Dyrskjøt L, Nielsen S, Horsman MR. Refinement of an Established Procedure and Its Application for Identification of Hypoxia in Prostate Cancer Xenografts. Cancers (Basel) 2021; 13:2602. [PMID: 34073301 PMCID: PMC8198481 DOI: 10.3390/cancers13112602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND This pre-clinical study was designed to refine a dissection method for validating the use of a 15-gene hypoxia classifier, which was previously established for head and neck squamous cell carcinoma (HNSCC) patients, to identify hypoxia in prostate cancer. METHODS PC3 and DU-145 adenocarcinoma cells, in vitro, were gassed with various oxygen concentrations (0-21%) for 24 h, followed by real-time PCR. Xenografts were established in vivo, and the mice were injected with the hypoxic markers [18F]-FAZA and pimonidazole. Subsequently, tumors were excised, frozen, cryo-sectioned, and analyzed using autoradiography ([18F]-FAZA) and immunohistochemistry (pimonidazole); the autoradiograms used as templates for laser capture microdissection of hypoxic and non-hypoxic areas, which were lysed, and real-time PCR was performed. RESULTS In vitro, all 15 genes were increasingly up-regulated as oxygen concentrations decreased. With the xenografts, all 15 genes were up-regulated in the hypoxic compared to non-hypoxic areas for both cell lines, although this effect was greater in the DU-145. CONCLUSIONS We have developed a combined autoradiographic/laser-guided microdissection method with broad applicability. Using this approach on fresh frozen tumor material, thereby minimizing the degree of RNA degradation, we showed that the 15-gene hypoxia gene classifier developed in HNSCC may be applicable for adenocarcinomas such as prostate cancer.
Collapse
Affiliation(s)
- Pernille B. Elming
- Experimental Clinical Oncology-Department of Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.R.W.); (B.S.S.); (S.N.); (M.R.H.)
| | - Thomas R. Wittenborn
- Experimental Clinical Oncology-Department of Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.R.W.); (B.S.S.); (S.N.); (M.R.H.)
| | - Morten Busk
- Danish Center for Particle Therapy, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | - Brita S. Sørensen
- Experimental Clinical Oncology-Department of Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.R.W.); (B.S.S.); (S.N.); (M.R.H.)
- Danish Center for Particle Therapy, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | - Mathilde Borg Houlberg Thomsen
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.H.T.); (T.S.); (L.D.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Trine Strandgaard
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.H.T.); (T.S.); (L.D.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.H.T.); (T.S.); (L.D.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Steffen Nielsen
- Experimental Clinical Oncology-Department of Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.R.W.); (B.S.S.); (S.N.); (M.R.H.)
| | - Michael R. Horsman
- Experimental Clinical Oncology-Department of Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.R.W.); (B.S.S.); (S.N.); (M.R.H.)
| |
Collapse
|
5
|
Sadaghiani MS, Sheikhbahaei S, Rowe SP, Pomper MG, Solnes LB. Cellular and Molecular Imaging with SPECT and PET in Brain Tumors. Radiol Clin North Am 2021; 59:363-375. [PMID: 33926683 DOI: 10.1016/j.rcl.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This review highlights the 2 major molecular imaging modalities that are used in clinics, namely single-photon emission computed tomography (SPECT) and positron emission tomography (PET), and their added value in management of patients with brain tumors. There are a variety of SPECT and PET radiotracers that can allow imaging of different molecular processes. Those radiotracers target specific molecular features of tumors, resulting in improved specificity of these agents. Potential applications include staging of brain tumors and evaluating post-therapeutic changes.
Collapse
Affiliation(s)
- Mohammad S Sadaghiani
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3150, Baltimore, MD 21287, USA
| | - Sara Sheikhbahaei
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3150, Baltimore, MD 21287, USA
| | - Steven P Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3150, Baltimore, MD 21287, USA
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3150, Baltimore, MD 21287, USA
| | - Lilja B Solnes
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3150, Baltimore, MD 21287, USA.
| |
Collapse
|
6
|
Wang L, Wang H, Shen K, Park H, Zhang T, Wu X, Hu M, Yuan H, Chen Y, Wu Z, Wang Q, Li Z. Development of Novel 18F-PET Agents for Tumor Hypoxia Imaging. J Med Chem 2021; 64:5593-5602. [PMID: 33901402 DOI: 10.1021/acs.jmedchem.0c01962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tumor hypoxia is a major factor responsible for tumor progression, metastasis, invasion, and treatment resistance, leading to low local tumor control and recurrence after radiotherapy in cancers. Here,18F-positron emission tomography (PET) probes are developed for visualizing viable hypoxic cells in biopsies. Pimonidazole derivatives and nitroimidazole-based agents bearing sulfonyl linkers were evaluated. A small-animal PET study showed that the tumor uptake of [18F]-23 [poly(ethylene glycols) (PEG)-sulfonyl linker] of 3.36 ± 0.29%ID/g was significantly higher (P < 0.01) than that of [18F]-20 (piperazine-linker tracer, 2.55 ± 0.49%ID/g) at 2 h postinjection in UPPL tumors. The tumor-to-muscle uptake ratio of [18F]-23 (2.46 ± 0.48 at 2 h pi) was well improved compared with that of [18F]-FMISO (1.25 ± 0.14 at 2 h pi). A comparable distribution pattern was observed between ex vivo autoradiography of [18F]-23 and pimonidazole staining of the neighboring slice, indicating that [18F]-23 is a promising PET agent for hypoxia imaging.
Collapse
Affiliation(s)
- Li Wang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States.,Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China
| | - Hui Wang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Kun Shen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Hyejin Park
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tao Zhang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Xuedan Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Mei Hu
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China
| | - Hong Yuan
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Yue Chen
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China
| | - Zhanhong Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
7
|
Lopes S, Ferreira S, Caetano M. PET/CT in the Evaluation of Hypoxia for Radiotherapy Planning in Head and Neck Tumors: Systematic Literature Review. J Nucl Med Technol 2020; 49:107-113. [PMID: 33361182 DOI: 10.2967/jnmt.120.249540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
PET/CT combines imaging at the molecular level along with imaging at the anatomic level, which, with the administration of a hypoxia-sensitive radiopharmaceutical, allows evaluation of tissue oxygenation. Methods: This work consisted of a systematic literature review that included websites, books, and articles dated from July 1997 to December 2019. The aim was to identify the PET radiopharmaceuticals best suited to the detection of cell hypoxia and to recognize the benefits for planning intensity-modulated radiation therapy (IMRT) and volumetric arc therapy (VMAT). Results: Hypoxia affects the likelihood of cure for head and neck tumors, reducing the success rate. Radiopharmaceuticals such as 18F-fluoromisonidazole, 18F-fluoroerythronitromidazole, and 18F-HX4 (18F-3-fluoro-2-(4-((2-nitro-1H-imidazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)propan-1-ol) allow the delineation of hypoxic subvolumes within the target volume to optimize IMRT/VMAT. Conclusion: Identification of hypoxic areas with PET/CT imaging and use of subsequent IMRT/VMAT allows for possible escalation of radiation dose in radioresistant subvolumes, with a consequent decrease in relapses and an increased likelihood of disease-free survival.
Collapse
Affiliation(s)
- Susana Lopes
- Nottingham University Hospitals, Nottingham, United Kingdom
| | - Sara Ferreira
- Dr. Lopes Dias School of Health-Polytechnic Institute of Castelo Branco, Castelo Branco, Portugal; and
| | - Marco Caetano
- Lisbon School of Health Technology-Polytechnic Institute of Lisbon, Lisbon, Portugal
| |
Collapse
|
8
|
Busk M, Overgaard J, Horsman MR. Imaging of Tumor Hypoxia for Radiotherapy: Current Status and Future Directions. Semin Nucl Med 2020; 50:562-583. [PMID: 33059825 DOI: 10.1053/j.semnuclmed.2020.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tumor regions that are transiently or chronically undersupplied with oxygen (hypoxia) and nutrients, and enriched with acidic waste products, are common due to an abnormal and inefficient tumor vasculature, and a deviant highly glycolytic energy metabolism. There is compelling evidence that tumor hypoxia is strongly linked to poor prognosis since oxygen-deprived cells are highly resistant to therapy including radio- and chemotherapy, and survival of such cells is a primary cause of disease relapse. Despite a general improvement in cancer survival rates, hypoxia remains a formidable challenge. Recent progress in radiation delivery systems with improved spatial accuracy that allows dose escalation to hypoxic tumors or even tumor subvolumes, and the development of hypoxia-selective drugs, including bioreductive prodrugs, holds great promise for overcoming this obstacle. However, apart from one notable exception, translation of promising preclinical therapies to the clinic have largely been disappointing. A major obstacle in clinical trials on hypoxia-targeting strategies has been the lack of reliable information on tumor hypoxia, which is crucial for patient stratification into groups of those that are likely to benefit from intervention and those who are not. Further, in many newer trials on hypoxia-selective drugs the choice of cancer disease and combination therapy has not always been ideal, especially not for clinical proof of principle trials. Clearly, there is a pending need for clinical applicable methodologies that may allow us to quantify, map and monitor hypoxia. Molecular imaging may provide the information required for narrowing the gap between potential and actual patient benefit of hypoxia-targeting strategies. The grand majority of preclinical and clinical work has focused on the usefulness of PET-based assessment of hypoxia-selective tracers. Since hypoxia PET has profound inherent weaknesses, the use of other methodologies, including more indirect methods that quantifies blood flow or oxygenation-dependent flux changes through ATP-generating pathways (eg, anaerobic glycolysis) is being extensively studied. In this review, we briefly discuss established and emerging hypoxia-targeting strategies, followed by a more thorough evaluation of strengths and weaknesses of clinical applicable imaging methodologies that may guide timely treatment intensification to overcome hypoxia-driven resistance. Historically, most evidence for the linkage between hypoxia and poor outcome is based on work in the field of radiotherapy. Therefore, main emphasis in this review is on targeting and imaging of hypoxia for improved radiotherapy.
Collapse
Affiliation(s)
- Morten Busk
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark; Danish Centre for Particle Therapy, (AUH), Aarhus, Denmark.
| | - Jens Overgaard
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Michael R Horsman
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark
| |
Collapse
|
9
|
Sanduleanu S, van der Wiel AM, Lieverse RI, Marcus D, Ibrahim A, Primakov S, Wu G, Theys J, Yaromina A, Dubois LJ, Lambin P. Hypoxia PET Imaging with [18F]-HX4-A Promising Next-Generation Tracer. Cancers (Basel) 2020; 12:cancers12051322. [PMID: 32455922 PMCID: PMC7280995 DOI: 10.3390/cancers12051322] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/04/2023] Open
Abstract
Hypoxia—a common feature of the majority of solid tumors—is a negative prognostic factor, as it is associated with invasion, metastasis and therapy resistance. To date, a variety of methods are available for the assessment of tumor hypoxia, including the use of positron emission tomography (PET). A plethora of hypoxia PET tracers, each with its own strengths and limitations, has been developed and successfully validated, thereby providing useful prognostic or predictive information. The current review focusses on [18F]-HX4, a promising next-generation hypoxia PET tracer. After a brief history of its development, we discuss and compare its characteristics with other hypoxia PET tracers and provide an update on its progression into the clinic. Lastly, we address the potential applications of assessing tumor hypoxia using [18F]-HX4, with a focus on improving patient-tailored therapies.
Collapse
Affiliation(s)
- Sebastian Sanduleanu
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
- Correspondence:
| | - Alexander M.A. van der Wiel
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Relinde I.Y. Lieverse
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Damiënne Marcus
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Abdalla Ibrahim
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology and Developmental Biology, Maastricht University Medical Centre+, 6229 Maastricht, The Netherlands
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Hospital Center Universitaire De Liege, 4030 Liege, Belgium
- Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, 52074 Aachen, Germany
| | - Sergey Primakov
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Guangyao Wu
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Jan Theys
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Ala Yaromina
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Ludwig J. Dubois
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Philippe Lambin
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology and Developmental Biology, Maastricht University Medical Centre+, 6229 Maastricht, The Netherlands
| |
Collapse
|
10
|
[ 18F]-HX4 PET/CT hypoxia in patients with squamous cell carcinoma of the head and neck treated with chemoradiotherapy: Prognostic results from two prospective trials. Clin Transl Radiat Oncol 2020; 23:9-15. [PMID: 32368624 PMCID: PMC7184102 DOI: 10.1016/j.ctro.2020.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction The presence of hypoxia in head-and-neck squamous cell carcinoma is a negative prognostic factor. PET imaging with [18F] HX4 can be used to visualize hypoxia, but it is currently unknown how this correlates with prognosis. We investigated the prognostic value of [18F] HX4 PET imaging in patients treated with definitive radio(chemo)therapy (RTx). Materials and methods We analyzed 34 patients included in two prospective clinical trials (NCT01347281, NCT01504815). Static [18F] HX4 PET-CT images were collected, both pre-treatment (median 4 days before start RTx, range 1-16), as well as during RTx (median 13 days after start RTx, range 3-17 days). Static uptake at both time points (n = 33 pretreatment, n = 28 during RTx) and measured changes in hypoxic fraction (HF) and hypoxic volume (HV) (n = 27 with 2 time points) were analyzed. Univariate cox analyses were done for local progression free survival (PFS) and overall survival (OS) at both timepoints. Change in uptake was analyzed by comparing outcome with Kaplan-Meier curves and log-rank test between patients with increased and decreased/stable hypoxia, similarly between patients with and without residual hypoxia (rHV = ratio week 2/baseline HV with cutoff 0.2). Voxelwise Spearman correlation coefficients were calculated between normalized [18F] HX4 PET uptake at baseline and week 2. Results Analyses of static images showed no prognostic value for [18F] HX4 uptake. Analysis of dynamic changes showed that both OS and local PFS were significantly shorter (log-rank P < 0.05) in patients with an increase in HV during RTx and OS was significantly shorter in patients with rHV, with no correlation to HPV-status. The voxel-based correlation to evaluate spatial distribution yielded a median Spearman correlation coefficient of 0.45 (range 0.11-0.65). Conclusion The change of [18F] HX4 uptake measured on [18F] HX4 PET early during treatment can be considered for implementation in predictive models. With these models patients with a worse prognosis can be selected for treatment intensification.
Collapse
|
11
|
Quartuccio N, Laudicella R, Mapelli P, Guglielmo P, Pizzuto DA, Boero M, Arnone G, Picchio M. Hypoxia PET imaging beyond 18F-FMISO in patients with high-grade glioma: 18F-FAZA and other hypoxia radiotracers. Clin Transl Imaging 2020; 8:11-20. [DOI: 10.1007/s40336-020-00358-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/18/2020] [Indexed: 02/07/2023]
|
12
|
Espedal H, Fonnes T, Fasmer KE, Krakstad C, Haldorsen IS. Imaging of Preclinical Endometrial Cancer Models for Monitoring Tumor Progression and Response to Targeted Therapy. Cancers (Basel) 2019; 11:cancers11121885. [PMID: 31783595 PMCID: PMC6966645 DOI: 10.3390/cancers11121885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy in industrialized countries. Most patients are cured by surgery; however, about 15% of the patients develop recurrence with limited treatment options. Patient-derived tumor xenograft (PDX) mouse models represent useful tools for preclinical evaluation of new therapies and biomarker identification. Preclinical imaging by magnetic resonance imaging (MRI), positron emission tomography-computed tomography (PET-CT), single-photon emission computed tomography (SPECT) and optical imaging during disease progression enables visualization and quantification of functional tumor characteristics, which may serve as imaging biomarkers guiding targeted therapies. A critical question, however, is whether the in vivo model systems mimic the disease setting in patients to such an extent that the imaging biomarkers may be translatable to the clinic. The primary objective of this review is to give an overview of current and novel preclinical imaging methods relevant for endometrial cancer animal models. Furthermore, we highlight how these advanced imaging methods depict pathogenic mechanisms important for tumor progression that represent potential targets for treatment in endometrial cancer.
Collapse
Affiliation(s)
- Heidi Espedal
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway;
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence: (H.E.); (I.S.H.)
| | - Tina Fonnes
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (T.F.); (C.K.)
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Kristine E. Fasmer
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway;
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Camilla Krakstad
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (T.F.); (C.K.)
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Ingfrid S. Haldorsen
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway;
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence: (H.E.); (I.S.H.)
| |
Collapse
|
13
|
Han K, Shek T, Vines D, Driscoll B, Fyles A, Jaffray D, Keller H, Metser U, Pintilie M, Xie J, Yeung I, Milosevic M. Measurement of Tumor Hypoxia in Patients With Locally Advanced Cervical Cancer Using Positron Emission Tomography with 18F-Fluoroazomyin Arabinoside. Int J Radiat Oncol Biol Phys 2018; 102:1202-1209. [PMID: 29680257 DOI: 10.1016/j.ijrobp.2018.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/11/2018] [Accepted: 02/20/2018] [Indexed: 01/25/2023]
Abstract
PURPOSE To assess cervical tumor hypoxia using the hypoxia tracer 18F-fluoroazomycin arabinoside (18F-FAZA) and compare different reference tissues and thresholds for quantifying tumor hypoxia. METHODS AND MATERIALS Twenty-seven patients with cervical cancer were studied prospectively by positron emission tomography (PET) imaging with 18F-FAZA before starting standard chemoradiation. The hypoxic volume was defined as all voxels within a tumor (T) with standardized uptake values (SUVs) greater than 3 standard deviations from the mean gluteus maximus muscle SUV value (M) or SUVs greater than 1 to 1.4 times the mean SUV value of the left ventricle, a blood (B) surrogate. The hypoxic fraction was defined as the ratio of the number of hypoxic voxels to the total number of tumor voxels. RESULTS A 18F-FAZA-PET hypoxic volume could be identified in the majority of cervical tumors (89% when using T/M or T/B > 1.2 as threshold) on the 2-hour static scan. The hypoxic fraction ranged from 0% to 99% (median 31%) when defined using the T/M threshold and from 0% to 78% (median 32%) with the T/B > 1.2 threshold. Hypoxic volumes derived from the different thresholds were highly correlated (Spearman's correlation coefficient ρ between T/M and T/B > 1-1.4 were 0.82-0.91), as were hypoxic fractions (0.75-0.85). Compartmental analysis of the dynamic scans showed k3, the FAZA accumulation constant, to be strongly correlated with hypoxic fraction defined using the T/M (Spearman's ρ=0.72) and T/B > 1.2 thresholds (0.76). CONCLUSIONS Hypoxia was detected in the majority of cervical tumors on 18F-FAZA-PET imaging. The extent of hypoxia varied markedly between tumors but not significantly with different reference tissues/thresholds.
Collapse
Affiliation(s)
- Kathy Han
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
| | - Tina Shek
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Quantitative Imaging for Personalized Cancer Medicine, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Douglass Vines
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Quantitative Imaging for Personalized Cancer Medicine, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Brandon Driscoll
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Quantitative Imaging for Personalized Cancer Medicine, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Anthony Fyles
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - David Jaffray
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Quantitative Imaging for Personalized Cancer Medicine, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Harald Keller
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Quantitative Imaging for Personalized Cancer Medicine, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Ur Metser
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Melania Pintilie
- Department of Biostatistics, University Health Network, Toronto, Ontario, Canada
| | - Jason Xie
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ivan Yeung
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Quantitative Imaging for Personalized Cancer Medicine, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael Milosevic
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Hamming-Vrieze O, Navran A, Al-Mamgani A, Vogel WV. Biological PET-guided adaptive radiotherapy for dose escalation in head and neck cancer: a systematic review. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2018; 62:349-368. [DOI: 10.23736/s1824-4785.18.03087-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Stieb S, Eleftheriou A, Warnock G, Guckenberger M, Riesterer O. Longitudinal PET imaging of tumor hypoxia during the course of radiotherapy. Eur J Nucl Med Mol Imaging 2018; 45:2201-2217. [PMID: 30128659 DOI: 10.1007/s00259-018-4116-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022]
Abstract
Hypoxia results from an imbalance between oxygen supply and consumption. It is a common phenomenon in solid malignant tumors such as head and neck cancer. As hypoxic cells are more resistant to therapy, tumor hypoxia is an indicator for poor prognosis. Several techniques have been developed to measure tissue oxygenation. These are the Eppendorf O2 polarographic needle electrode, immunohistochemical analysis of endogenous (e.g., hypoxia-inducible factor-1α (HIF-1a)) and exogenous markers (e.g., pimonidazole) as well as imaging methods such as functional magnetic resonance imaging (e.g., blood oxygen level dependent (BOLD) imaging, T1-weighted imaging) and hypoxia positron emission tomography (PET). Among the imaging modalities, only PET is sufficiently validated to detect hypoxia for clinical use. Hypoxia PET tracers include 18F-fluoromisonidazole (FMISO), the most commonly used hypoxic marker, 18F-flouroazomycin arabinoside (FAZA), 18Ffluoroerythronitroimidazole (FETNIM), 18F-2-nitroimidazolpentafluoropropylacetamide (EF5) and 18F-flortanidazole (HX4). As technical development provides the opportunity to increase the radiation dose to subregions of the tumor, such as hypoxic areas, it has to be ensured that these regions are stable not only from imaging to treatment but also through the course of radiotherapy. The aim of this review is therefore to characterize the behavior of tumor hypoxia during radiotherapy for the whole tumor and for subregions by using hypoxia PET tracers, with focus on head and neck cancer patients.
Collapse
Affiliation(s)
- Sonja Stieb
- Department of Radiation Oncology, University Hospital and University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland. .,Institute of Diagnostic and Interventional Radiology, University Hospital and University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
| | - Afroditi Eleftheriou
- Department of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Geoffrey Warnock
- Department of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Nuclear Medicine, University Hospital and University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital and University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Oliver Riesterer
- Department of Radiation Oncology, University Hospital and University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| |
Collapse
|
16
|
Melsens E, De Vlieghere E, Descamps B, Vanhove C, Kersemans K, De Vos F, Goethals I, Brans B, De Wever O, Ceelen W, Pattyn P. Hypoxia imaging with 18F-FAZA PET/CT predicts radiotherapy response in esophageal adenocarcinoma xenografts. Radiat Oncol 2018. [PMID: 29514673 PMCID: PMC5842657 DOI: 10.1186/s13014-018-0984-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Esophageal cancer is an aggressive disease with poor survival rates. A more patient-tailored approach based on predictive biomarkers could improve outcome. We aimed to predict radiotherapy (RT) response by imaging tumor hypoxia with 18F-FAZA PET/CT in an esophageal adenocarcinoma (EAC) mouse model. Additionally, we investigated the radiosensitizing effect of the hypoxia modifier nimorazole in vitro and in vivo. Methods In vitro MTS cell proliferation assays (OACM5 1.C SC1, human EAC cell line) were performed under normoxic and hypoxic (< 1%) conditions: control (100 μL PBS), nimorazole, irradiation (5, 10 or 20 Gy) with or without nimorazole. In vivo, subcutaneous xenografts were induced in nude mice (OACM5 1.C SC1). Treatment was given daily for 5 consecutive days: (A) control (600 μl NaCl 0.9% intraperitoneally (IP)) (N = 5, n = 7), (B) RT (5 Gy/d) (N = 11, n = 20), (C) combination (nimorazole (200 mg/kg/d IP) 30 min before RT) (N = 13, n = 21). N = number of mice, n = number of tumors. 18F-FAZA PET/CT was performed before treatment and tumor to background (T/B) ratios were calculated. Relative tumor growth was calculated and tumor sections were examined histologically (hypoxia, proliferation). Results A T/B ≥ 3.59 on pre-treatment 18F-FAZA PET/CT was predictive for worse RT response (sensitivity 92.3%, specificity 71.4%). Radiation was less effective in hypoxic tumors (T/B ≥ 3.59) compared to normoxic tumors (T/B < 3.59) (P = 0.0025). In vitro, pre-treatment with nimorazole significantly decreased hypoxic radioresistance (P < 0.01) while in vivo, nimorazole enhanced the efficacy of RT to suppress cancer cell proliferation in hypoxic tumor areas (Ki67, P = 0.064), but did not affect macroscopic tumor growth. Conclusions Tumor tissue hypoxia as measured with 18F-FAZA PET/CT is predictive for RT response in an EAC xenograft model. The radiosensitizing effect of nimorazole was questionable and requires further investigation. Electronic supplementary material The online version of this article (10.1186/s13014-018-0984-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elodie Melsens
- Laboratory of Experimental Surgery, Department of Gastro- Intestinal Surgery, Ghent University Hospital, De Pintelaan 185, B-9000, Ghent, Belgium.
| | - Elly De Vlieghere
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Benedicte Descamps
- Infinity (IBiTech-MEDISIP), Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- Infinity (IBiTech-MEDISIP), Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Ken Kersemans
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Filip De Vos
- Department of Pharmaceutical Analysis, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Boudewijn Brans
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Laboratory of Experimental Surgery, Department of Gastro- Intestinal Surgery, Ghent University Hospital, De Pintelaan 185, B-9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Piet Pattyn
- Laboratory of Experimental Surgery, Department of Gastro- Intestinal Surgery, Ghent University Hospital, De Pintelaan 185, B-9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Toriihara A, Ohtake M, Tateishi K, Hino-Shishikura A, Yoneyama T, Kitazume Y, Inoue T, Kawahara N, Tateishi U. Prognostic implications of 62Cu-diacetyl-bis (N 4-methylthiosemicarbazone) PET/CT in patients with glioma. Ann Nucl Med 2018; 32:264-271. [PMID: 29453680 DOI: 10.1007/s12149-018-1241-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/13/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The potential of positron emission tomography/computed tomography using 62Cu-diacetyl-bis (N4-methylthiosemicarbazone) (62Cu-ATSM PET/CT), which was originally developed as a hypoxic tracer, to predict therapeutic resistance and prognosis has been reported in various cancers. Our purpose was to investigate prognostic value of 62Cu-ATSM PET/CT in patients with glioma, compared to PET/CT using 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG). METHOD 56 patients with glioma of World Health Organization grade 2-4 were enrolled. All participants had undergone both 62Cu-ATSM PET/CT and 18F-FDG PET/CT within mean 33.5 days prior to treatment. Maximum standardized uptake value and tumor/background ratio were calculated within areas of increased radiotracer uptake. The prognostic significance for progression-free survival and overall survival were assessed by log-rank test and Cox's proportional hazards model. RESULTS Disease progression and death were confirmed in 37 and 27 patients in follow-up periods, respectively. In univariate analysis, there was significant difference of both progression-free survival and overall survival in age, tumor grade, history of chemoradiotherapy, maximum standardized uptake value and tumor/background ratio calculated using 62Cu-ATSM PET/CT. Multivariate analysis revealed that maximum standardized uptake value calculated using 62Cu-ATSM PET/CT was an independent predictor of both progression-free survival and overall survival (p < 0.05). In a subgroup analysis including patients of grade 4 glioma, only the maximum standardized uptake values calculated using 62Cu-ATSM PET/CT showed significant difference of progression-free survival (p < 0.05). CONCLUSIONS 62Cu-ATSM PET/CT is a more promising imaging method to predict prognosis of patients with glioma compared to 18F-FDG PET/CT.
Collapse
Affiliation(s)
- Akira Toriihara
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Makoto Ohtake
- Departments of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kensuke Tateishi
- Departments of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Ayako Hino-Shishikura
- Departments of Radiology, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Tomohiro Yoneyama
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yoshio Kitazume
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Tomio Inoue
- Departments of Radiology, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Nobutaka Kawahara
- Departments of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Ukihide Tateishi
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
18
|
Glowa C, Peschke P, Brons S, Neels OC, Kopka K, Debus J, Karger CP. Carbon ion radiotherapy: impact of tumor differentiation on local control in experimental prostate carcinomas. Radiat Oncol 2017; 12:174. [PMID: 29121984 PMCID: PMC5679331 DOI: 10.1186/s13014-017-0914-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/27/2017] [Indexed: 11/30/2022] Open
Abstract
Background To summarize the research activities of the “clinical research group heavy ion therapy”, funded by the German Research Foundation (DFG, KFO 214), on the impact of intrinsic tumor characteristics (grading, hypoxia) on local tumor control after carbon (12C-) ion- and photon irradiations. Methods Three sublines of syngeneic rat prostate tumors (R3327) with various differentiation levels (highly (-H), moderately (-HI) or anaplastic (-AT1), (diameter 10 mm) were irradiated with 1, 2 and 6 fractions of either 12C-ions or 6 MV photons using increasing dose levels. Primary endpoint was local tumor control at 300 days. The relative biological effectiveness (RBE) of 12C-ions was calculated from TCD50-values (dose at 50% tumor control probability) of photons and 12C-ions and correlated with intrinsic tumor parameters. For the HI-subline, larger tumors (diameter 18 mm) were irradiated with either carbon ions, oxygen ions or photons under ambient as well as hypoxic conditions to determine the variability of the RBE under different oxygenation levels. In addition, imaging, histology and molecular analyses were performed to decipher the underlying mechanisms. Results Experimental results revealed (i) a smaller variation of the TCD50-values between the three tumor sublines for 12C-ions (23.6 - 32.9 Gy) than for photons (38.2 - 75.7 Gy), (ii) steeper dose-response curves for 12C-ions, and (iii) an RBE that increased with tumor grading (1.62 ± 0.11 (H) vs 2.08 ± 0.13 (HI) vs 2.30 ± 0.08 (AT1)). Large HI-tumors resulted in a marked increase of TCD50, which was increased further by 15% under hypoxic relative to oxic conditions. Noninvasive imaging, histology and molecular analyses identified hypoxia as an important radioresistance factor in photon therapy. Conclusions The dose-response studies revealed a higher efficacy of 12C-ions relative to photon therapy in the investigated syngeneic tumor model. Hypoxia turned out to be at least one important radioresistance factor, which can be partly overridden by high-LET ion beams. This might be used to increase treatment effectiveness also in patients. The results of this project served as a starting point for several ongoing research projects.
Collapse
Affiliation(s)
- Christin Glowa
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany. .,Department of Medical Physics in Radiation Oncology (E040), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Peter Peschke
- Department of Medical Physics in Radiation Oncology (E040), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Stephan Brons
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Ion Beam Therapy Center (HIT), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Oliver C Neels
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Klaus Kopka
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology (E040), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| |
Collapse
|
19
|
Silvoniemi A, Suilamo S, Laitinen T, Forsback S, Löyttyniemi E, Vaittinen S, Saunavaara V, Solin O, Grönroos TJ, Minn H. Repeatability of tumour hypoxia imaging using [ 18F]EF5 PET/CT in head and neck cancer. Eur J Nucl Med Mol Imaging 2017; 45:161-169. [PMID: 29075831 PMCID: PMC5745570 DOI: 10.1007/s00259-017-3857-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022]
Abstract
Purpose Hypoxia contributes to radiotherapy resistance and more aggressive behaviour of several types of cancer. This study was designed to evaluate the repeatability of intratumour uptake of the hypoxia tracer [18F]EF5 in paired PET/CT scans. Methods Ten patients with newly diagnosed head and neck cancer (HNC) received three static PET/CT scans before chemoradiotherapy: two with [18F]EF5 a median of 7 days apart and one with [18F]FDG. Metabolically active primary tumour volumes were defined in [18F]FDG images and transferred to co-registered [18F]EF5 images for repeatability analysis. A tumour-to-muscle uptake ratio (TMR) of 1.5 at 3 h from injection of [18F]EF5 was used as a threshold representing hypoxic tissue. Results In 10 paired [18F]EF5 PET/CT image sets, SUVmean, SUVmax, and TMR showed a good correlation with the intraclass correlation coefficients of 0.81, 0.85, and 0.87, respectively. The relative coefficients of repeatability for these parameters were 15%, 17%, and 10%, respectively. Fractional hypoxic volumes of the tumours in the repeated scans had a high correlation using the Spearman rank correlation test (r = 0.94). In a voxel-by-voxel TMR analysis between the repeated scans, the mean of Pearson correlation coefficients of individual patients was 0.65. The mean (± SD) difference of TMR in the pooled data set was 0.03 ± 0.20. Conclusion Pretreatment [18F]EF5 PET/CT within one week shows high repeatability and is feasible for the guiding of hypoxia-targeted treatment interventions in HNC.
Collapse
Affiliation(s)
- Antti Silvoniemi
- Turku PET Centre, University of Turku, P.O. BOX 52, FI-20521, Turku, Finland. .,Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, P.O. BOX 52, FI-20521, Turku, Finland.
| | - Sami Suilamo
- Department of Oncology and Radiotherapy, Turku University Hospital, P.O. BOX 52, FI-20521, Turku, Finland.,Department of Medical Physics, Turku University Hospital, P.O. BOX 52, FI-20521, Turku, Finland
| | - Timo Laitinen
- Turku PET Centre, University of Turku, P.O. BOX 52, FI-20521, Turku, Finland
| | - Sarita Forsback
- Turku PET Centre, University of Turku, P.O. BOX 52, FI-20521, Turku, Finland
| | | | - Samuli Vaittinen
- Department of Pathology, Turku University Hospital, P.O. BOX 52, FI-20521, Turku, Finland
| | - Virva Saunavaara
- Turku PET Centre, University of Turku, P.O. BOX 52, FI-20521, Turku, Finland.,Department of Medical Physics, Turku University Hospital, P.O. BOX 52, FI-20521, Turku, Finland
| | - Olof Solin
- Turku PET Centre, University of Turku, P.O. BOX 52, FI-20521, Turku, Finland
| | - Tove J Grönroos
- Turku PET Centre, University of Turku, P.O. BOX 52, FI-20521, Turku, Finland.,Department of Oncology and Radiotherapy, Turku University Hospital, P.O. BOX 52, FI-20521, Turku, Finland
| | - Heikki Minn
- Turku PET Centre, University of Turku, P.O. BOX 52, FI-20521, Turku, Finland.,Department of Oncology and Radiotherapy, Turku University Hospital, P.O. BOX 52, FI-20521, Turku, Finland
| |
Collapse
|
20
|
Raccagni I, Valtorta S, Moresco RM, Belloli S. Tumour hypoxia: lessons learnt from preclinical imaging. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0248-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Castaneda Vega S, Weinl C, Calaminus C, Wang L, Harant M, Ehrlichmann W, Thiele D, Kohlhofer U, Reischl G, Hempel JM, Ernemann U, Quintanilla Martinez L, Nordheim A, Pichler BJ. Characterization of a novel murine model for spontaneous hemorrhagic stroke using in vivo PET and MR multiparametric imaging. Neuroimage 2017; 155:245-256. [DOI: 10.1016/j.neuroimage.2017.04.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/29/2017] [Accepted: 04/29/2017] [Indexed: 01/07/2023] Open
|
22
|
Vera P, Thureau S, Chaumet-Riffaud P, Modzelewski R, Bohn P, Vermandel M, Hapdey S, Pallardy A, Mahé MA, Lacombe M, Boisselier P, Guillemard S, Olivier P, Beckendorf V, Salem N, Charrier N, Chajon E, Devillers A, Aide N, Danhier S, Denis F, Muratet JP, Martin E, Riedinger AB, Kolesnikov-Gauthier H, Dansin E, Massabeau C, Courbon F, Farcy Jacquet MP, Kotzki PO, Houzard C, Mornex F, Vervueren L, Paumier A, Fernandez P, Salaun M, Dubray B. Phase II Study of a Radiotherapy Total Dose Increase in Hypoxic Lesions Identified by 18F-Misonidazole PET/CT in Patients with Non-Small Cell Lung Carcinoma (RTEP5 Study). J Nucl Med 2017; 58:1045-1053. [PMID: 28254869 DOI: 10.2967/jnumed.116.188367] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/07/2017] [Indexed: 01/09/2023] Open
Abstract
See an invited perspective on this article on page 1043.This multicenter phase II study investigated a selective radiotherapy dose increase to tumor areas with significant 18F-misonidazole (18F-FMISO) uptake in patients with non-small cell lung carcinoma (NSCLC). Methods: Eligible patients had locally advanced NSCLC and no contraindication to concomitant chemoradiotherapy. The 18F-FMISO uptake on PET/CT was assessed by trained experts. If there was no uptake, 66 Gy were delivered. In 18F-FMISO-positive patients, the contours of the hypoxic area were transferred to the radiation oncologist. It was necessary for the radiotherapy dose to be as high as possible while fulfilling dose-limiting constraints for the spinal cord and lungs. The primary endpoint was tumor response (complete response plus partial response) at 3 mo. The secondary endpoints were toxicity, disease-free survival (DFS), and overall survival at 1 y. The target sample size was set to demonstrate a response rate of 40% or more (bilateral α = 0.05, power 1-β = 0.95). Results: Seventy-nine patients were preincluded, 54 were included, and 34 were 18F-FMISO-positive, 24 of whom received escalated doses of up to 86 Gy. The response rate at 3 mo was 31 of 54 (57%; 95% confidence interval [CI], 43%-71%) using RECIST 1.1 (17/34 responders in the 18F-FMISO-positive group). DFS and overall survival at 1 y were 0.86 (95% CI, 0.77-0.96) and 0.63 (95% CI, 0.49-0.74), respectively. DFS was longer in the 18F-FMISO-negative patients (P = 0.004). The radiotherapy dose was not associated with DFS when adjusting for the 18F-FMISO status. One toxic death (66 Gy) and 1 case of grade 4 pneumonitis (>66 Gy) were reported. Conclusion: Our approach results in a response rate of 40% or more, with acceptable toxicity. 18F-FMISO uptake in NSCLC patients is strongly associated with poor prognosis features that could not be reversed by radiotherapy doses up to 86 Gy.
Collapse
Affiliation(s)
- Pierre Vera
- Department of Nuclear Medicine, Henri Becquerel Cancer Center and Rouen University Hospital & QuantIF-LITIS, University of Rouen, Rouen, France
| | - Sébastien Thureau
- Department of Radiation Oncology and Medical Physics, Henri Becquerel Cancer Center and Rouen University Hospital & QuantIF-LITIS, Rouen, France
| | - Philippe Chaumet-Riffaud
- Department of Nuclear Medicine, Hôpitaux universitaires Paris Sud Bicêtre AP-HP and University Paris Sud, Paris, France
| | - Romain Modzelewski
- Department of Nuclear Medicine, Henri Becquerel Cancer Center and Rouen University Hospital & QuantIF-LITIS, University of Rouen, Rouen, France
| | - Pierre Bohn
- Department of Nuclear Medicine, Henri Becquerel Cancer Center and Rouen University Hospital & QuantIF-LITIS, University of Rouen, Rouen, France
| | - Maximilien Vermandel
- University Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Image Assisted Laser Therapy for Oncology, Lille, France
| | - Sébastien Hapdey
- Department of Nuclear Medicine, Henri Becquerel Cancer Center and Rouen University Hospital & QuantIF-LITIS, University of Rouen, Rouen, France
| | - Amandine Pallardy
- Department of Nuclear Medicine, Nantes University Hospital, Nantes, France
| | - Marc-André Mahé
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest (ICO)-René Gauducheau, Nantes, France
| | - Marie Lacombe
- Department of Nuclear Medicine, Institut de Cancérologie de l'Ouest (ICO), Nantes, France
| | - Pierre Boisselier
- Department of Radiation Oncology, Institut régional du Cancer Montpellier (ICM), Montpellier, France
| | - Sophie Guillemard
- Department of Nuclear Medicine, Institut régional du Cancer Montpellier (ICM), Montpellier, France
| | - Pierre Olivier
- Department of Nuclear Medicine, Brabois University Hospital, Nancy, France
| | - Veronique Beckendorf
- Department of Radiation Oncology, Institut de Cancérologie de Lorraine, Nancy, France
| | - Naji Salem
- Department of Radiation Oncology, Institut Paoli Calmette, Marseille, France
| | - Nathalie Charrier
- Department of Nuclear Medicine, Institut Paoli Calmette, Marseille, France
| | - Enrique Chajon
- Department of Radiation Oncology, Centre regional de lutte contre le cancer de Bretagne Eugène Marquis, Rennes, France
| | - Anne Devillers
- Department of Nuclear Medicine, Centre regional de lutte contre le cancer de Bretagne Eugène Marquis, Rennes, France
| | - Nicolas Aide
- Nicolas Aide, Nuclear Medicine and TEP Centre, Caen University Hospital and Inserm U1086 ANTICIPE, Caen, France
| | - Serge Danhier
- Department of Radiation Oncology, François Baclesse Cancer Center, Caen, France
| | - Fabrice Denis
- Department of Radiation Oncology, Institut Inter-Régional de Cancérologie (ILC), Centre Jean Bernard/Clinique Victor Hugo, Le Mans, France
| | - Jean-Pierre Muratet
- Department of Nuclear Medicine, Institut Inter-Régional de Cancérologie (ILC), Centre Jean Bernard/Clinique Victor Hugo, Le Mans, France
| | - Etienne Martin
- Radiation Oncology, Centre Georges-Francois Leclerc, Dijon, France
| | | | | | - Eric Dansin
- Department of Radiation Oncology, Oscar Lambret Center, Lille cedex, France
| | - Carole Massabeau
- Département de Radiothérapie. Institut Universitaire du Cancer, Toulouse cedex 9, France
| | - Fredéric Courbon
- Department of Nuclear Medicine, Institut Claudius Regaud, IUCT, Toulouse cedex 9, France
| | - Marie-Pierre Farcy Jacquet
- Department of Radiation Oncology, CHU de Nîmes, Institut de cancérologie du Gard, Rue Henri Pujol, Nîmes, France
| | - Pierre-Olivier Kotzki
- Department of Nuclear Medicine, Institut régional du Cancer Montpellier (ICM), Montpellier, France.,Department of Nuclear Medicine, CHU de Nîmes, Institut de cancérologie du Gard, Nîmes, France
| | - Claire Houzard
- Department of Nuclear Medicine, Hospices Civils de Lyon, Lyon, France
| | - Francoise Mornex
- Department of Radiation Oncology, Hospices Civils de Lyon, Lyon, France
| | | | - Amaury Paumier
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest, site Paul Papin, France
| | - Philippe Fernandez
- Department of Nuclear Medicine, Hôpital Pellegrin, CHU de Bordeaux, France; and
| | - Mathieu Salaun
- Normandy University, UNIROUEN, QuantIF-LITIS EA 4108, Rouen University Hospital, Department of Pulmonology-Thoracic Oncology-Respiratory Intensive Care, Rouen, France
| | - Bernard Dubray
- Department of Radiation Oncology and Medical Physics, Henri Becquerel Cancer Center and Rouen University Hospital & QuantIF-LITIS, Rouen, France
| |
Collapse
|
23
|
Abadjian MCZ, Edwards WB, Anderson CJ. Imaging the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:229-257. [PMID: 29275475 DOI: 10.1007/978-3-319-67577-0_15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tumor microenvironment consists of tumor, stromal, and immune cells, as well as extracellular milieu. Changes in numbers of these cell types and their environments have an impact on cancer growth and metastasis. Non-invasive imaging of aspects of the tumor microenvironment can provide important information on the aggressiveness of the cancer, whether or not it is metastatic, and can also help to determine early response to treatment. This chapter provides an overview on non-invasive in vivo imaging in humans and mouse models of various cell types and physiological parameters that are unique to the tumor microenvironment. Current clinical imaging and research investigation are in the areas of nuclear imaging (positron emission tomography (PET) and single photon emission computed tomography (SPECT)), magnetic resonance imaging (MRI) and optical (near infrared (NIR) fluorescence) imaging. Aspects of the tumor microenvironment that have been imaged by PET, MRI and/or optical imaging are tumor associated inflammation (primarily macrophages and T cells), hypoxia, pH changes, as well as enzymes and integrins that are highly prevalent in tumors, stroma and immune cells. Many imaging agents and strategies are currently available for cancer patients; however, the investigation of novel avenues for targeting aspects of the tumor microenvironment in pre-clinical models of cancer provides the cancer researcher with a means to monitor changes and evaluate novel treatments that can be translated into the clinic.
Collapse
Affiliation(s)
| | - W Barry Edwards
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carolyn J Anderson
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Yang Y, Han G, Xu W. The diagnostic value of 99Tc M-2-(2-methyl-5-nitro-1 H-imidazol-1-yl) ethyl dihydrogen phosphate hypoxia imaging and its evaluation performance for radiotherapy efficacy in non-small-cell lung cancer. Onco Targets Ther 2016; 9:6499-6509. [PMID: 27799797 PMCID: PMC5085314 DOI: 10.2147/ott.s109163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background and aim This study was designated to assess the diagnostic value of 99TcM-2-(2-methyl-5-nitro-1H-imidazol-1-yl) ethyl dihydrogen phosphate (99TcM-MNLS) hypoxia imaging and its evaluation performance for radiotherapy efficacy in patients with non-small-cell lung cancer (NSCLC). Patients and methods A total of 61 patients with NSCLC were selected for this study. All patients were injected with 99TcM-MNLS within 1 week prior to radiotherapy and they were injected with 99TcM-MNLS again 3 months after radiotherapy. Qualitative analysis along with semiquantitative analysis results were obtained from hypoxia imaging. Meanwhile, the effect of radiotherapy on patients with NSCLC was evaluated based on the solid tumor curative effect evaluation standard. Finally, SPSS 19.0 statistical software was implemented for statistical analysis. Results There was no significant difference in age or sex between the NSCLC patient group and benign patient group (P>0.05). 99TcM-MNLS was selectively concentrated in tumor tissues with a clear imaging in 24 hours. Results from both qualitative analysis and semiquantitative analysis indicated that the sensitivity and specificity of 99TcM-MNLS hypoxia imaging in diagnosing NSCLC were 93.8% and 84.6% and 72.9% and 100%, respectively. Moreover, the receiver operating characteristic curve provided evidence that 99TcM-MNLS hypoxia imaging was a powerful diagnostic tool in distinguishing malignant lung cancer from benign lesions. As suggested by 24-hour imaging, the tumor-to-normal ratio of patients in the 99TcM-MNLS high-intake group and low-intake group had a decline of 24.7% and 14.4% after radiotherapy, respectively. The decline in the tumor-to-normal ratio between the two dosage groups was significantly different (P<0.05). Conclusion 99TcM-MNLS hypoxia imaging had reliable values in both diagnosing NSCLC and evaluating therapeutic effects of radiotherapy on patients with NSCLC.
Collapse
Affiliation(s)
- Yongkun Yang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Gaohua Han
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Wansong Xu
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| |
Collapse
|
25
|
Croteau E, Renaud JM, Richard MA, Ruddy TD, Bénard F, deKemp RA. PET Metabolic Biomarkers for Cancer. BIOMARKERS IN CANCER 2016; 8:61-9. [PMID: 27679534 PMCID: PMC5030827 DOI: 10.4137/bic.s27483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/08/2016] [Accepted: 05/19/2016] [Indexed: 02/06/2023]
Abstract
The body's main fuel sources are fats, carbohydrates (glucose), proteins, and ketone bodies. It is well known that an important hallmark of cancer cells is the overconsumption of glucose. Positron emission tomography (PET) imaging using the glucose analog (18)F-fluorodeoxyglucose ((18)F-FDG) has been a powerful cancer diagnostic tool for many decades. Apart from surgery, chemotherapy and radiotherapy represent the two main domains for cancer therapy, targeting tumor proliferation, cell division, and DNA replication-all processes that require a large amount of energy. Currently, in vivo clinical imaging of metabolism is performed almost exclusively using PET radiotracers that assess oxygen consumption and mechanisms of energy substrate consumption. This paper reviews the utility of PET imaging biomarkers for the detection of cancer proliferation, vascularization, metabolism, treatment response, and follow-up after radiation therapy, chemotherapy, and chemotherapy-related side effects.
Collapse
Affiliation(s)
- Etienne Croteau
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada; Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jennifer M Renaud
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Marie Anne Richard
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Terrence D Ruddy
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - François Bénard
- Division of Nuclear Medicine, Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Robert A deKemp
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| |
Collapse
|
26
|
Horsman MR, Overgaard J. The impact of hypoxia and its modification of the outcome of radiotherapy. JOURNAL OF RADIATION RESEARCH 2016; 57 Suppl 1:i90-i98. [PMID: 26983987 PMCID: PMC4990104 DOI: 10.1093/jrr/rrw007] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/14/2015] [Accepted: 01/01/2016] [Indexed: 05/21/2023]
Abstract
Since the initial observations made at the beginning of the last century, it has been established that solid tumors contain regions of low oxygenation (hypoxia). Tumor cells can survive in these hypoxic conditions and are a major factor in tumor radioresistance. This significance has resulted in hypoxia becoming the most cited biological topic in translational radiation oncology. Identifying hypoxic cells in human tumors has become paramount, and the ability to do this has been improved by the help of new imaging techniques and the use of predictive gene profiles. Substantial data confirm the presence of hypoxia in many types of human tumors, although with considerable heterogeneity among individual tumors. Various approaches have been investigated for eliminating the hypoxic population. These include increasing oxygen availability, directly radiosensitizing or killing the hypoxic cells, indirectly affecting them by targeting the tumor vascular supply, increasing the radiation dose to this resistant population, or by using radiation with a high linear energy transfer, for which hypoxia is believed to be less of an issue. Many of these approaches have undergone controlled clinical trials during the last 50 years, and the results have shown that hypoxic radiation resistance can indeed be overcome. Thus, ample data exists to support a high level of evidence for the benefit of hypoxic modification. However, such hypoxic modification still has no impact on general clinical practice. In this review we summarize the biological rationale, and the current activities and trials, related to identifying and overcoming hypoxia in modern radiotherapy.
Collapse
Affiliation(s)
- Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Nørrebrogade 44, Building 5, DK-8000 Aarhus C, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Nørrebrogade 44, Building 5, DK-8000 Aarhus C, Denmark
| |
Collapse
|
27
|
Zschaeck S, Steinbach J, Troost EGC. FMISO as a Biomarker for Clinical Radiation Oncology. Recent Results Cancer Res 2016; 198:189-201. [PMID: 27318688 DOI: 10.1007/978-3-662-49651-0_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumour hypoxia is a well-known negative prognostic marker in almost all solid tumours. [18F]Fluoromisonidazole (FMISO)-positron emission tomography (PET) is a non-invasive method to detect tumour hypoxia. Compared to other methods of hypoxia assessment it possesses some considerable advantages: It is non-invasive, it delivers spatial information on the hypoxia distribution within the entire tumour volume, and it can be repeated during the course of radio(chemo)therapy. This chapter briefly describes different methods of hypoxia evaluation and focuses on hypoxia PET imaging, with the most commonly used tracer being FMISO. The preclinical rationale and clinical studies to use FMISO-PET for patient stratification in radiation therapy are discussed as well as possible agents or radiation-dose modifications to overcome hypoxia.
Collapse
Affiliation(s)
- Sebastian Zschaeck
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany. .,German Cancer Consortium (DKTK), Dresden, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| |
Collapse
|
28
|
Zheng J, Klinz SG, De Souza R, Fitzgerald J, Jaffray DA. Longitudinal tumor hypoxia imaging with [(18)F]FAZA-PET provides early prediction of nanoliposomal irinotecan (nal-IRI) treatment activity. EJNMMI Res 2015; 5:57. [PMID: 26481012 PMCID: PMC4610963 DOI: 10.1186/s13550-015-0135-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/09/2015] [Indexed: 02/05/2023] Open
Abstract
Background Non-invasive measurement of tumor hypoxia has demonstrated potential for the evaluation of disease progression, as well as prediction and assessment of treatment outcome. [18F]fluoroazomycin arabinoside (FAZA) positron emission tomography (PET) has been identified as a robust method for quantification of hypoxia both preclinically and clinically. The goal of this investigation was to evaluate the feasibility and value of repeated FAZA-PET imaging to quantify hypoxia in tumors that received multi-dose chemotherapy. Methods FAZA-PET imaging was conducted over a 21-day period in a mouse xenograft model of HT-29 human colorectal carcinoma, following multi-dose chemotherapy treatment with irinotecan (CPT-11) or nanoliposomal irinotecan (nal-IRI, MM-398). Results Tumors treated with 10 mg/kg nal-IRI maintained significantly lower levels of hypoxia and smaller hypoxic fractions compared to tumors that received 50 mg/kg CPT-11. Specifically, differences in FAZA uptake were detectable 9 days before any significant differences in tumor volume were observed between the treatment groups. Conclusions These findings highlight the potential use of FAZA-PET as an early marker of treatment response following multi-dose chemotherapy. Electronic supplementary material The online version of this article (doi:10.1186/s13550-015-0135-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinzi Zheng
- TECHNA Institute for the Advancement of Technology for Health, University Health Network, 101 College Street, Rm 7-302, Toronto, Ontario, M5G 1L7, Canada. .,Department of Radiation Physics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| | | | - Raquel De Souza
- Department of Radiation Physics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - David A Jaffray
- TECHNA Institute for the Advancement of Technology for Health, University Health Network, 101 College Street, Rm 7-302, Toronto, Ontario, M5G 1L7, Canada.,Department of Radiation Physics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Ali R, Apte S, Vilalta M, Subbarayan M, Miao Z, Chin FT, Graves EE. 18F-EF5 PET Is Predictive of Response to Fractionated Radiotherapy in Preclinical Tumor Models. PLoS One 2015; 10:e0139425. [PMID: 26431331 PMCID: PMC4592127 DOI: 10.1371/journal.pone.0139425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/14/2015] [Indexed: 12/27/2022] Open
Abstract
We evaluated the relationship between pre-treatment positron emission tomography (PET) using the hypoxic tracer 18F-[2-(2-nitro-1-H-imidazol-1-yl)-N-(2,2,3,3,3- pentafluoropropyl) acetamide] (18F-EF5) and the response of preclinical tumor models to a range of fractionated radiotherapies. Subcutaneous HT29, A549 and RKO tumors grown in nude mice were imaged using 18F-EF5 positron emission tomography (PET) in order to characterize the extent and heterogeneity of hypoxia in these systems. Based on these results, 80 A549 tumors were subsequently grown and imaged using 18F-EF5 PET, and then treated with one, two, or four fraction radiation treatments to a total dose of 10–40 Gy. Response was monitored by serial caliper measurements of tumor volume. Longitudinal post-treatment 18F-EF5 PET imaging was performed on a subset of tumors. Terminal histologic analysis was performed to validate 18F-EF5 PET measures of hypoxia. EF5-positive tumors responded more poorly to low dose single fraction irradiation relative to EF5-negative tumors, however both groups responded similarly to larger single fraction doses. Irradiated tumors exhibited reduced 18F-EF5 uptake one month after treatment compared to control tumors. These findings indicate that pre- treatment 18F-EF5 PET can predict the response of tumors to single fraction radiation treatment. However, increasing the number of fractions delivered abrogates the difference in response between tumors with high and low EF5 uptake pre-treatment, in agreement with traditional radiobiology.
Collapse
Affiliation(s)
- Rehan Ali
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States of America
| | - Sandeep Apte
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States of America
| | - Marta Vilalta
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States of America
| | - Murugesan Subbarayan
- Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Zheng Miao
- Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Frederick T. Chin
- Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Edward E. Graves
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States of America
- * E-mail:
| |
Collapse
|
30
|
Zegers CML, van Elmpt W, Szardenings K, Kolb H, Waxman A, Subramaniam RM, Moon DH, Brunetti JC, Srinivas SM, Lambin P, Chien D. Repeatability of hypoxia PET imaging using [¹⁸F]HX4 in lung and head and neck cancer patients: a prospective multicenter trial. Eur J Nucl Med Mol Imaging 2015; 42:1840-9. [PMID: 26136164 PMCID: PMC4589564 DOI: 10.1007/s00259-015-3100-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/28/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE Hypoxia is an important factor influencing tumor progression and treatment efficacy. The aim of this study was to investigate the repeatability of hypoxia PET imaging with [(18)F]HX4 in patients with head and neck and lung cancer. METHODS Nine patients with lung cancer and ten with head and neck cancer were included in the analysis (NCT01075399). Two sequential pretreatment [(18)F]HX4 PET/CT scans were acquired within 1 week. The maximal and mean standardized uptake values (SUVmax and SUVmean) were defined and the tumor-to-background ratios (TBR) were calculated. In addition, hypoxic volumes were determined as the volume of the tumor with a TBR >1.2 (HV1.2). Bland Altman analysis of the uptake parameters was performed and coefficients of repeatability were calculated. To evaluate the spatial repeatability of the uptake, the PET/CT images were registered and a voxel-wise comparison of the uptake was performed, providing a correlation coefficient. RESULTS All parameters of [(18)F]HX4 uptake were significantly correlated between scans: SUVmax (r = 0.958, p < 0.001), SUVmean (r = 0.946, p < 0.001), TBRmax (r = 0.962, p < 0.001) and HV1.2 (r = 0.995, p < 0.001). The relative coefficients of repeatability were 15 % (SUVmean), 17 % (SUVmax) and 17 % (TBRmax). Voxel-wise analysis of the spatial uptake pattern within the tumors provided an average correlation of 0.65 ± 0.14. CONCLUSION Repeated hypoxia PET scans with [(18)F]HX4 provide reproducible and spatially stable results in patients with head and neck cancer and patients with lung cancer. [(18)F]HX4 PET imaging can be used to assess the hypoxic status of tumors and has the potential to aid hypoxia-targeted treatments.
Collapse
Affiliation(s)
- Catharina M L Zegers
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Katrin Szardenings
- Threshold Pharmaceuticals, 170 Harbor Way, South San Francisco, CA, 94080, USA
| | - Hartmuth Kolb
- Siemens Molecular Imaging Biomarker Research, Siemens Medical Solutions USA, Inc., 6100 Bristol Parkway, Culver City, CA, USA
| | - Alan Waxman
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rathan M Subramaniam
- Boston University School of Medicine, Boston, MA, USA.,Division of Nuclear Medicine, Russell H Morgan Department of Radiology and Radiologic Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Dae Hyuk Moon
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Shyam M Srinivas
- Department of Nuclear Medicine, Imaging Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - David Chien
- Siemens Molecular Imaging Biomarker Research, Siemens Medical Solutions USA, Inc., 6100 Bristol Parkway, Culver City, CA, USA
| |
Collapse
|
31
|
Servagi-Vernat S, Differding S, Sterpin E, Hanin FX, Labar D, Bol A, Lee JA, Grégoire V. Hypoxia-guided adaptive radiation dose escalation in head and neck carcinoma: a planning study. Acta Oncol 2015; 54:1008-16. [PMID: 25562382 DOI: 10.3109/0284186x.2014.990109] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate from a planning point of view the dose distribution of adaptive radiation dose escalation in head and neck squamous cell carcinoma (HNSCC) using (18)F-Fluoroazomycin arabinoside (FAZA) positron emission tomography/computed tomography (PET-CT). MATERIAL/METHODS Twelve patients with locally advanced HNSCC underwent three FAZA PET-CT before treatment, after 7 fractions and after 17 fractions of a carboplatin-5FU chemo-radiotherapy regimen (70 Gy in 2 Gy per fraction over 7 weeks). The dose constraints were that every hypoxic voxel delineated before and during treatment (newborn hypoxic voxels) should receive a total dose of 86 Gy. A median dose of 2.47 Gy per fraction was prescribed on the hypoxic PTV defined on the pre-treatment FAZA PET-CT; a median dose of 2.57 Gy per fraction was prescribed on the newborn voxels identified on the first per-treatment FAZA PET-CT; a median dose of 2.89 Gy per fraction was prescribed on the newborn voxels identified on the second per-treatment FAZA PET-CT. RESULTS Ten of 12 patients had hypoxic volumes. Six of 10 patients completed all the FAZA PET-CT during radiotherapy. For the hypoxic PTVs, the average D50% matched the prescribed dose within 2% and the homogeneity indices reached 0.10 and 0.12 for the nodal PTV 86 Gy and the primary PTV 86 Gy, respectively. Compared to a homogeneous 70 Gy mean dose to the PTVs, the dose escalation up to 86 Gy to the hypoxic volumes did not typically modify the dose metrics on the surrounding normal tissues. CONCLUSION From a planning point of view, FAZA-PET-guided dose adaptive escalation is feasible without substantial dose increase to normal tissues above tolerance limits. Clinical prospective studies, however, need to be performed to validate hypoxia-guided adaptive radiation dose escalation in head and neck carcinoma.
Collapse
Affiliation(s)
- Stéphanie Servagi-Vernat
- Department of Radiation Oncology, and Center for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Clinique (IREC), Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
| | - Sarah Differding
- Department of Radiation Oncology, and Center for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Clinique (IREC), Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
| | - Edmond Sterpin
- Department of Radiation Oncology, and Center for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Clinique (IREC), Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
| | - Francois-Xavier Hanin
- Department of Nuclear Medicine, and Center for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Clinique (IREC), Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
| | - Daniel Labar
- Department of Radiation Oncology, and Center for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Clinique (IREC), Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
| | - Anne Bol
- Department of Radiation Oncology, and Center for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Clinique (IREC), Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
| | - John A. Lee
- Department of Radiation Oncology, and Center for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Clinique (IREC), Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
| | - Vincent Grégoire
- Department of Radiation Oncology, and Center for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Clinique (IREC), Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
| |
Collapse
|
32
|
Jentsch C, Beuthien-Baumann B, Troost EGC, Shakirin G. Validation of functional imaging as a biomarker for radiation treatment response. Br J Radiol 2015; 88:20150014. [PMID: 26083533 DOI: 10.1259/bjr.20150014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Major advances in radiotherapy techniques, increasing knowledge of tumour biology and the ability to translate these advances into new therapeutic approaches are important goals towards more individualized cancer treatment. With the development of non-invasive functional and molecular imaging techniques such as positron emission tomography (PET)-CT scanning and MRI, there is now a need to evaluate potential new biomarkers for tumour response prediction, for treatment individualization is not only based on morphological criteria but also on biological tumour characteristics. The goal of individualization of radiotherapy is to improve treatment outcome and potentially reduce chronic treatment toxicity. This review gives an overview of the molecular and functional imaging modalities of tumour hypoxia and tumour cell metabolism, proliferation and perfusion as predictive biomarkers for radiation treatment response in head and neck tumours and in lung tumours. The current status of knowledge on integration of PET/CT/MRI into treatment management and bioimage-guided adaptive radiotherapy are discussed.
Collapse
Affiliation(s)
- C Jentsch
- 1 OncoRay-National Centre for Radiation Research in Oncology, Dresden, Germany.,2 Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden,Helmholtz-Zentrum Dresden-Rossendorf, Germany.,3 German Cancer Consortium (DKTK) Dresden, Germany
| | - B Beuthien-Baumann
- 1 OncoRay-National Centre for Radiation Research in Oncology, Dresden, Germany.,3 German Cancer Consortium (DKTK) Dresden, Germany.,4 Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - E G C Troost
- 1 OncoRay-National Centre for Radiation Research in Oncology, Dresden, Germany.,2 Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden,Helmholtz-Zentrum Dresden-Rossendorf, Germany.,3 German Cancer Consortium (DKTK) Dresden, Germany.,4 Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | |
Collapse
|
33
|
Positron Emission Tomography for the Response Evaluation following Treatment with Chemotherapy in Patients Affected by Colorectal Liver Metastases: A Selected Review. Gastroenterol Res Pract 2015; 2015:706808. [PMID: 26078753 PMCID: PMC4442279 DOI: 10.1155/2015/706808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 02/08/2023] Open
Abstract
The aim of the present paper is to review the scientific literature concerning the usefulness of (18)F-FDG PET/CT in the evaluation of response to chemotherapy in patients affected by liver metastases from colorectal cancer. Material and Methods. Studies were identified by searching PubMed electronic databases. Both prospective and retrospective studies were included. Information regarding the figure of merit of PET for the evaluation of therapy response was extracted and analyzed. Results. Existing data suggests that (18)F-FDG PET/CT may have an outstanding role in evaluating the response. The sensitivity of PET in detecting therapy response seems to be greater than conventional imaging (CT and MRI). PET/CT response is strictly related to better overall survival and progression-free survival. Conclusions. PET/CT is more than a promising technique to assess the response to chemotherapy in colorectal and liver metastases. However, to be fully validated, this examination needs further studies by recruiting more patients.
Collapse
|
34
|
Yip C, Blower PJ, Goh V, Landau DB, Cook GJR. Molecular imaging of hypoxia in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 2015; 42:956-76. [PMID: 25701238 DOI: 10.1007/s00259-015-3009-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/26/2015] [Indexed: 12/18/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is the commonest cancer worldwide but survival remains poor with a high risk of relapse, particularly after nonsurgical treatment. Hypoxia is present in a variety of solid tumours, including NSCLC. It is associated with treatment resistance and a poor prognosis, although when recognised may be amenable to different treatment strategies. Thus, noninvasive assessment of intratumoral hypoxia could be used to stratify patients for modification of subsequent treatment to improve tumour control. Molecular imaging approaches targeting hypoxic cells have shown some early success in the clinical setting. This review evaluates the evidence for hypoxia imaging using PET in NSCLC and explores its potential clinical utility.
Collapse
Affiliation(s)
- Connie Yip
- Department of Cancer Imaging, Division of Imaging Sciences & Biomedical Engineering, King's College London, St Thomas' Hospital, London, UK,
| | | | | | | | | |
Collapse
|
35
|
Peeters SG, Zegers CM, Lieuwes NG, van Elmpt W, Eriksson J, van Dongen GA, Dubois L, Lambin P. A Comparative Study of the Hypoxia PET Tracers [18F]HX4, [18F]FAZA, and [18F]FMISO in a Preclinical Tumor Model. Int J Radiat Oncol Biol Phys 2015; 91:351-9. [DOI: 10.1016/j.ijrobp.2014.09.045] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/15/2014] [Accepted: 09/30/2014] [Indexed: 11/26/2022]
|
36
|
Edin NJ, Christoffersen S, Fenne S, Sandvik JA, Pettersen EO. Cell inactivation by combined low dose-rate irradiation and intermittent hypoxia. Int J Radiat Biol 2014; 91:336-45. [PMID: 25510258 DOI: 10.3109/09553002.2014.996262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate in detail the earlier observed combined effect of low dose-rate β-irradiation delivered at a dose-rate of 15 mGy/h and continued intermittent hypoxia that leads to extensive cell death after approximately 3-6 weeks. MATERIAL AND METHODS Continuous low dose-rate β-irradiation at a dose rate of 15, 1.5 or 0.6 mGy/h was given by incorporation of [(3)H]-labelled valine into cellular protein. The cells were cultivated in an atmosphere with 4% O2 using an INVIVO2 hypoxia glove box. Clonogenic capacity, cell-cycle distribution and cellular respiration were monitored throughout the experiments. RESULTS After 3-6 weeks most cells died in response to the combined treatment, giving a surviving fraction of only 1-2%. However, on continued cultivation a few cells survived and restarted proliferation as the cellular oxygen supply increased with the reduced cell number. Irradiating the T-47D cells grown in an atmosphere with 4% O2 at dose-rates 10 and 25 times lower than 15 mGy/h did not have a pronounced effect on the clonogenic capacity with surviving fractions of 60-80%. CONCLUSIONS Treatment of T-47D cells with low dose-rate β-irradiation leads to a specific effect on intermittent hypoxic cells, inactivating more than 98% of the cells in the population. Given improved oxygen conditions, the few surviving cells can restart their proliferation.
Collapse
|
37
|
Silvoniemi A, Silén J, Forsback S, Löyttyniemi E, Schrey AR, Solin O, Grénman R, Minn H, Grönroos TJ. Evaluation of repeated [(18)F]EF5 PET/CT scans and tumor growth rate in experimental head and neck carcinomas. EJNMMI Res 2014; 4:65. [PMID: 25977879 PMCID: PMC4412195 DOI: 10.1186/s13550-014-0065-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/11/2014] [Indexed: 01/07/2023] Open
Abstract
Background Tumor hypoxia is linked to invasion and metastasis but whether this associates with tumor growth rate is not well understood. We aimed to study the relationship between hypoxia evaluated with the positron emission tomography (PET) tracer [18F]EF5 and tumor growth. Our second goal was to assess the variability in the uptake of [18F]EF5 in tumor between two scans. Methods Four human head and neck squamous cell carcinoma (UT-SCC) cell lines were xenografted in flank or neck of nude mice, and tumor size was closely monitored over the study period. The tumors were clearly visible when the first [18F]EF5 scan was acquired. After an exponential growth phase, the tumors were imaged again with [18F]EF5 and also with 18F-fluorodeoxyglucose ([18F]FDG). Results There was a clear correlation between the percentage of tumor growth rate per day and the [18F]EF5 uptake in the latter scan (r = 0.766, p = 0.01). The uptake of [18F]EF5 in the first scan and the uptake of [18F]FDG did not significantly correlate with the tumor growth rate. We also observed considerable variations in the uptake of [18F]EF5 between the two scans. Conclusions The uptake of [18F]EF5 in the late phase of exponential tumor growth is associated with the tumor growth rate in mice bearing HNC xenografts.
Collapse
Affiliation(s)
- Antti Silvoniemi
- Turku PET Centre, Medicity Research Laboratory, University of Turku, Tykistökatu 6A, Turku, FI-20520, Finland ; Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, FI-20521, Finland
| | - Jonna Silén
- Turku PET Centre, Medicity Research Laboratory, University of Turku, Tykistökatu 6A, Turku, FI-20520, Finland
| | - Sarita Forsback
- Turku PET Centre, Medicity Research Laboratory, University of Turku, Tykistökatu 6A, Turku, FI-20520, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, University of Turku, Lemminkäisenkatu 1, Turku, FI-20520, Finland
| | - Aleksi R Schrey
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, FI-20521, Finland
| | - Olof Solin
- Turku PET Centre, Medicity Research Laboratory, University of Turku, Tykistökatu 6A, Turku, FI-20520, Finland
| | - Reidar Grénman
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, FI-20521, Finland
| | - Heikki Minn
- Turku PET Centre, Medicity Research Laboratory, University of Turku, Tykistökatu 6A, Turku, FI-20520, Finland ; Department of Oncology and Radiotherapy, Turku University Hospital, Turku, FI-20521, Finland
| | - Tove J Grönroos
- Turku PET Centre, Medicity Research Laboratory, University of Turku, Tykistökatu 6A, Turku, FI-20520, Finland ; Department of Oncology and Radiotherapy, Turku University Hospital, Turku, FI-20521, Finland
| |
Collapse
|
38
|
Verwer EE, Boellaard R, Veldt AAMVD. Positron emission tomography to assess hypoxia and perfusion in lung cancer. World J Clin Oncol 2014; 5:824-844. [PMID: 25493221 PMCID: PMC4259945 DOI: 10.5306/wjco.v5.i5.824] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/29/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Abstract
In lung cancer, tumor hypoxia is a characteristic feature, which is associated with a poor prognosis and resistance to both radiation therapy and chemotherapy. As the development of tumor hypoxia is associated with decreased perfusion, perfusion measurements provide more insight into the relation between hypoxia and perfusion in malignant tumors. Positron emission tomography (PET) is a highly sensitive nuclear imaging technique that is suited for non-invasive in vivo monitoring of dynamic processes including hypoxia and its associated parameter perfusion. The PET technique enables quantitative assessment of hypoxia and perfusion in tumors. To this end, consecutive PET scans can be performed in one scan session. Using different hypoxia tracers, PET imaging may provide insight into the prognostic significance of hypoxia and perfusion in lung cancer. In addition, PET studies may play an important role in various stages of personalized medicine, as these may help to select patients for specific treatments including radiation therapy, hypoxia modifying therapies, and antiangiogenic strategies. In addition, specific PET tracers can be applied for monitoring therapy. The present review provides an overview of the clinical applications of PET to measure hypoxia and perfusion in lung cancer. Available PET tracers and their characteristics as well as the applications of combined hypoxia and perfusion PET imaging are discussed.
Collapse
|
39
|
Zegers CML, van Elmpt W, Reymen B, Even AJG, Troost EGC, Ollers MC, Hoebers FJP, Houben RMA, Eriksson J, Windhorst AD, Mottaghy FM, De Ruysscher D, Lambin P. In vivo quantification of hypoxic and metabolic status of NSCLC tumors using [18F]HX4 and [18F]FDG-PET/CT imaging. Clin Cancer Res 2014; 20:6389-97. [PMID: 25316821 DOI: 10.1158/1078-0432.ccr-14-1524] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Increased tumor metabolism and hypoxia are related to poor prognosis in solid tumors, including non-small cell lung cancer (NSCLC). PET imaging is a noninvasive technique that is frequently used to visualize and quantify tumor metabolism and hypoxia. The aim of this study was to perform an extensive comparison of tumor metabolism using 2[(18)F]fluoro-2-deoxy-d-glucose (FDG)-PET and hypoxia using HX4-PET imaging. EXPERIMENTAL DESIGN FDG- and HX4-PET/CT images of 25 patients with NSCLC were coregistered. At a global tumor level, HX4 and FDG parameters were extracted from the gross tumor volume (GTV). The HX4 high-fraction (HX4-HF) and HX4 high-volume (HX4-HV) were defined using a tumor-to-blood ratio > 1.4. For FDG high-fraction (FDG-HF) and FDG high-volume (FDG-HV), a standardized uptake value (SUV) > 50% of SUVmax was used. We evaluated the spatial correlation between HX4 and FDG uptake within the tumor, to quantify the (mis)match between volumes with a high FDG and high HX4 uptake. RESULTS At a tumor level, significant correlations were observed between FDG and HX4 parameters. For the primary GTV, the HX4-HF was three times smaller compared with the FDG-HF. In 53% of the primary lesions, less than 1 cm(3) of the HX4-HV was outside the FDG-HV; for 37%, this volume was 1.9 to 12 cm(3). Remarkably, a distinct uptake pattern was observed in 11%, with large hypoxic volumes localized outside the FDG-HV. CONCLUSION Hypoxic tumor volumes are smaller than metabolic active volumes. Approximately half of the lesions showed a good spatial correlation between the PET tracers. In the other cases, a (partial) mismatch was observed. The addition of HX4-PET imaging has the potential to individualize patient treatment.
Collapse
Affiliation(s)
- Catharina M L Zegers
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Bart Reymen
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Aniek J G Even
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Esther G C Troost
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Michel C Ollers
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Frank J P Hoebers
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ruud M A Houben
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jonas Eriksson
- Department of Radiology & Nuclear Medicine, VU University Medical Centre, Amsterdam, the Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Centre, Amsterdam, the Netherlands
| | - Felix M Mottaghy
- Department of Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands. Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands. University Hospitals Leuven/KU Leuven, Leuven, Belgium
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
40
|
Head and neck tumor hypoxia imaging by 18F-fluoroazomycin-arabinoside (18F-FAZA)-PET: a review. Clin Nucl Med 2014; 39:44-8. [PMID: 24152663 DOI: 10.1097/rlu.0000000000000286] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tumor hypoxia is known to be associated with poor clinical outcome; therefore, patients with hypoxic tumors might benefit from more intensive treatment approaches. This is particularly true for patients with head and neck cancer. Pretreatment assessment of hypoxia in tumors would be desirable, not only to predict prognosis but also to select patients for more aggressive treatment.As an alternative to the invasive polarographic needle electrode method, there is the possibility of using PET with radiopharmaceuticals visualizing hypoxia. Most hypoxia imaging studies on head and cancer have been performed using F-labeled fluoromisonidazole (F-FMISO). A chemically related molecule, F-fluoroazomycin-arabinoside (F-FAZA), seems to have superior kinetic properties and may therefore be the radiopharmaceutical of choice.This minireview summarizes the published literature on animal and human F-FAZA PET studies. Furthermore, future perspectives on how individualized treatment could be applied in patients with hypoxic head and neck tumors are discussed, for instance, the use of hypoxia sensitizers or special intensity-modulated radiation therapy techniques achieving tumor subvolume dose escalation.
Collapse
|
41
|
Schütze C, Bergmann R, Brüchner K, Mosch B, Yaromina A, Zips D, Hessel F, Krause M, Thames H, Kotzerke J, Steinbach J, Baumann M, Beuthien-Baumann B. Effect of [18F]FMISO stratified dose-escalation on local control in FaDu hSCC in nude mice. Radiother Oncol 2014; 111:81-7. [DOI: 10.1016/j.radonc.2014.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/07/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
|
42
|
Servagi-Vernat S, Differding S, Hanin FX, Labar D, Bol A, Lee JA, Grégoire V. A prospective clinical study of ¹⁸F-FAZA PET-CT hypoxia imaging in head and neck squamous cell carcinoma before and during radiation therapy. Eur J Nucl Med Mol Imaging 2014; 41:1544-52. [PMID: 24570097 DOI: 10.1007/s00259-014-2730-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/07/2014] [Indexed: 01/05/2023]
Abstract
PURPOSE Hypoxia in head and neck squamous cell carcinoma (HNSCC) is associated with poor prognosis and outcome. (18) F-Fluoroazomycin arabinoside (FAZA) is a positron emission tomography (PET) tracer developed to enable identification of hypoxic regions within tumor. The aim of this study was to evaluate the use of (18) F-FAZA-PET for assessment of hypoxia before and during radiation therapy. METHODS Twelve patients with locally advanced HNSCC underwent (18) F-FAZA-PET scans before and at fraction 7 and 17 of concomitant chemo-radiotherapy. A hypoxic voxel was defined as a voxel expressing a standardized uptake value (SUV) equal or above the SUVmean of the posterior contralateral neck muscles plus three standard deviations. The fractional hypoxic volume fraction (FHV) and the spatial move of hypoxic volumes during treatment were analyzed. RESULTS A hypoxic volume could be identified in ten patients before treatment. FAZA-PET FHV varied from 0 to 54.3% and from 0 to 41.4% in the primary tumor and in the involved node, respectively. Six out of these ten patients completed all the FAZA-PET-computed tomography (CT) during the radiotherapy. In all patients, FHV and SUVmax values decreased. All patient presented a spatial move of hypoxic volume, but only three patients had newborn hypoxic voxels after 17 fractions. CONCLUSION This study indicated that (18) F-FAZA-PET could be used to identify and quantify tumor hypoxia before and during concomitant radio-chemotherapy in patients with locally advanced HNSCC. In addition to the information on prognostic value, the use of (18) F-FAZA-PET allowed the delineation of hypoxic volumes for dose escalation protocols. However, due to fluctuation of hypoxia during treatment, repeated scan will have to be performed (i.e. adaptive radiotherapy).
Collapse
Affiliation(s)
- Stéphanie Servagi-Vernat
- Department of Radiation Oncology and Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Clinique (IREC), Université catholique de Louvain, St-Luc University Hospital, Brussels, Belgium,
| | | | | | | | | | | | | |
Collapse
|