1
|
Lopresti BJ, Stehouwer J, Reese AC, Mason NS, Royse SK, Narendran R, Laymon CM, Lopez OL, Cohen AD, Mathis CA, Villemagne VL. Kinetic modeling of the monoamine oxidase-B radioligand [ 18F]SMBT-1 in human brain with positron emission tomography. J Cereb Blood Flow Metab 2024; 44:1262-1276. [PMID: 38735059 PMCID: PMC11542143 DOI: 10.1177/0271678x241254679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/29/2024] [Accepted: 04/07/2024] [Indexed: 05/14/2024]
Abstract
This paper describes pharmacokinetic analyses of the monoamine-oxidase-B (MAO-B) radiotracer [18F](S)-(2-methylpyrid-5-yl)-6-[(3-fluoro-2-hydroxy)propoxy]quinoline ([18F]SMBT-1) for positron emission tomography (PET) brain imaging. Brain MAO-B expression is widespread, predominantly within astrocytes. Reactive astrogliosis in response to neurodegenerative disease pathology is associated with MAO-B overexpression. Fourteen elderly subjects (8 control, 5 mild cognitive impairment, 1 Alzheimer's disease) with amyloid ([11C]PiB) and tau ([18F]flortaucipir) imaging assessments underwent dynamic [18F]SMBT-1 PET imaging with arterial input function determination. [18F]SMBT-1 showed high brain uptake and a retention pattern consistent with the known MAO-B distribution. A two-tissue compartment (2TC) model where the K1/k2 ratio was fixed to a whole brain value best described [18F]SMBT-1 kinetics. The 2TC total volume of distribution (VT) was well identified and highly correlated (r2∼0.8) with post-mortem MAO-B indices. Cerebellar grey matter (CGM) showed the lowest mean VT of any region and is considered the optimal pseudo-reference region. Simplified analysis methods including reference tissue models, non-compartmental models, and standard uptake value ratios (SUVR) agreed with 2TC outcomes (r2 > 0.9) but with varying bias. We found the CGM-normalized 70-90 min SUVR to be highly correlated (r2 = 0.93) with the 2TC distribution volume ratio (DVR) with acceptable bias (∼10%), representing a practical alternative for [18F]SMBT-1 analyses.
Collapse
Affiliation(s)
- Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey Stehouwer
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexandria C Reese
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Neale S Mason
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarah K Royse
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Charles M Laymon
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Dept. of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L Lopez
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Clinical and Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Emvalomenos GM, Kang JWM, Jupp B, Mychasiuk R, Keay KA, Henderson LA. Recent developments and challenges in positron emission tomography imaging of gliosis in chronic neuropathic pain. Pain 2024; 165:2184-2199. [PMID: 38713812 DOI: 10.1097/j.pain.0000000000003247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/05/2024] [Indexed: 05/09/2024]
Abstract
ABSTRACT Understanding the mechanisms that underpin the transition from acute to chronic pain is critical for the development of more effective and targeted treatments. There is growing interest in the contribution of glial cells to this process, with cross-sectional preclinical studies demonstrating specific changes in these cell types capturing targeted timepoints from the acute phase and the chronic phase. In vivo longitudinal assessment of the development and evolution of these changes in experimental animals and humans has presented a significant challenge. Recent technological advances in preclinical and clinical positron emission tomography, including the development of specific radiotracers for gliosis, offer great promise for the field. These advances now permit tracking of glial changes over time and provide the ability to relate these changes to pain-relevant symptomology, comorbid psychiatric conditions, and treatment outcomes at both a group and an individual level. In this article, we summarize evidence for gliosis in the transition from acute to chronic pain and provide an overview of the specific radiotracers available to measure this process, highlighting their potential, particularly when combined with ex vivo / in vitro techniques, to understand the pathophysiology of chronic neuropathic pain. These complementary investigations can be used to bridge the existing gap in the field concerning the contribution of gliosis to neuropathic pain and identify potential targets for interventions.
Collapse
Affiliation(s)
- Gaelle M Emvalomenos
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - James W M Kang
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Bianca Jupp
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Kevin A Keay
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Luke A Henderson
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
Li Y, Rusinek H, Butler T, Glodzik L, Pirraglia E, Babich J, Mozley PD, Nehmeh S, Pahlajani S, Wang X, Tanzi EB, Zhou L, Strauss S, Carare RO, Theise N, Okamura N, de Leon MJ. Decreased CSF clearance and increased brain amyloid in Alzheimer's disease. Fluids Barriers CNS 2022; 19:21. [PMID: 35287702 PMCID: PMC8919541 DOI: 10.1186/s12987-022-00318-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/21/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND In sporadic Alzheimer's disease (AD), brain amyloid-beta (Aβ) deposition is believed to be a consequence of impaired Aβ clearance, but this relationship is not well established in living humans. CSF clearance, a major feature of brain glymphatic clearance (BGC), has been shown to be abnormal in AD murine models. MRI phase contrast and intrathecally delivered contrast studies have reported reduced CSF flow in AD. Using PET and tau tracer 18F-THK5117, we previously reported that the ventricular CSF clearance of the PET tracer was reduced in AD and associated with elevated brain Aβ levels. METHODS In the present study, we use two PET tracers, 18F-THK5351 and 11C-PiB to estimate CSF clearance calculated from early dynamic PET frames in 9 normal controls and 15 AD participants. RESULTS we observed that the ventricular CSF clearance measures were correlated (r = 0.66, p < 0.01), with reductions in AD of 18 and 27%, respectively. We also replicated a significant relationship between ventricular CSF clearance (18F-THK5351) and brain Aβ load (r = - 0.64, n = 24, p < 0.01). With a larger sample size, we extended our observations to show that reduced CSF clearance is associated with reductions in cortical thickness and cognitive performance. CONCLUSIONS Overall, the findings support the hypothesis that failed CSF clearance is a feature of AD that is related to Aβ deposition and to the pathology of AD. Longitudinal studies are needed to determine whether failed CSF clearance is a predictor of progressive amyloidosis or its consequence.
Collapse
Affiliation(s)
- Yi Li
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA.
| | - Henry Rusinek
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Tracy Butler
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Lidia Glodzik
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Elizabeth Pirraglia
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - John Babich
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - P David Mozley
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Sadek Nehmeh
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Silky Pahlajani
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Xiuyuan Wang
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Emily B Tanzi
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Liangdong Zhou
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Sara Strauss
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton, UK
| | - Neil Theise
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Mony J de Leon
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA.
| |
Collapse
|
4
|
Harada R, Shimizu Y, Du Y, Ishikawa Y, Iwata R, Kudo Y, Yanai K, Okamura N, Furumoto S. The Role of Chirality of [ 18F]SMBT-1 in Imaging of Monoamine Oxidase-B. ACS Chem Neurosci 2022; 13:322-329. [PMID: 35049267 DOI: 10.1021/acschemneuro.1c00655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
(S)-(2-Methylpyrid-5-yl)-6-[(3-[18F]fluoro-2-hydroxy)propoxy]quinoline ([18F]SMBT-1) was recently developed as a novel class of selective and reversible monoamine oxidase-B (MAO-B) tracers for in vivo imaging of reactive astrogliosis via positron emission tomography. To investigate the effect of the chirality of [18F]SMBT-1 on tracer performance, we synthesized (S)-[18F]6 ([18F]SMBT-1) and (R)-[18F]6 and compared their binding properties, pharmacokinetics, and metabolism. (S)-6 showed higher binding affinity to MAO-B and lower binding affinity to MAO-A than (R)-6, demonstrating a higher selectivity ratio (MAO-B/MAO-A). A pharmacokinetic study in mice demonstrated that both (S)-[18F]6 and (R)-[18F]6 showed sufficient initial brain uptake. However, (S)-[18F]6 was cleared significantly faster from the body. An abundant sulfoconjugate metabolite M2 was observed in plasma for (S)-[18F]6 but not for (R)-[18F]6. In vitro sulfation assays confirmed that (S)-6 was more reactive than (R)-6, consistent with the in vivo findings. Mefenamic acid, a selective sulfotransferase 1A1 (SULT1A1) inhibitor, strongly inhibited the in vitro sulfation of (S)-6 by mouse liver fractions, human liver cytosol fractions, and human recombinant SULT1A1 enzyme. Genetic polymorphisms of SULT1A1 did not affect the sulfation of (S)-6 in vitro. In conclusion, (S)-[18F]6 had a more favorable binding affinity and binding selectivity for MAO-B than (R)-[18F]6. Additionally, (S)-[18F]6 also possessed better pharmacological and metabolic properties than (R)-[18F]6. These results suggest that (S)-[18F]6 ([18F]SMBT-1) is a promising candidate for application in the imaging of MAO-B in vivo.
Collapse
Affiliation(s)
- Ryuichi Harada
- Department of Pharmacology, Graduate School of Medicine, Tohoku University, 2-1 Seiryomachi, Aobaku, Sendai 980-8575, Japan
- Department of New Therapeutics Innovation for Alzheimer’s and Dementia, Institute of Development Aging and Cancer (IDAC), Tohoku University, 2-1 Seiryomachi, Aobaku, Sendai 980-8575, Japan
| | - Yuki Shimizu
- Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aoba, Aramaki, Aobaku, Sendai 980-8578, Japan
| | - Yiqing Du
- Department of Pharmacology, Graduate School of Medicine, Tohoku University, 2-1 Seiryomachi, Aobaku, Sendai 980-8575, Japan
| | - Yoichi Ishikawa
- Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aoba, Aramaki, Aobaku, Sendai 980-8578, Japan
| | - Ren Iwata
- Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aoba, Aramaki, Aobaku, Sendai 980-8578, Japan
| | - Yukitsuka Kudo
- Department of New Therapeutics Innovation for Alzheimer’s and Dementia, Institute of Development Aging and Cancer (IDAC), Tohoku University, 2-1 Seiryomachi, Aobaku, Sendai 980-8575, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Graduate School of Medicine, Tohoku University, 2-1 Seiryomachi, Aobaku, Sendai 980-8575, Japan
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyaginoku, Sendai 983-8536, Japan
| | - Shozo Furumoto
- Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aoba, Aramaki, Aobaku, Sendai 980-8578, Japan
| |
Collapse
|
5
|
Solingapuram Sai KK, Chen X, Li Z, Zhu C, Shukla K, Forshaw TE, Wu H, Vance SA, Pathirannahel BL, Madonna M, Dewhirst MW, Tsang AW, Poole LB, Ramanujam N, King SB, Furdui CM. [ 18F]Fluoro-DCP, a first generation PET radiotracer for monitoring protein sulfenylation in vivo. Redox Biol 2022; 49:102218. [PMID: 34952463 PMCID: PMC8715125 DOI: 10.1016/j.redox.2021.102218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
Redox metabolism plays essential functions in the pathology of cancer and many other diseases. While several radiotracers for imaging redox metabolism have been developed, there are no reports of radiotracers for in vivo imaging of protein oxidation. Here we take the first step towards this goal and describe the synthesis and kinetic properties of a new positron emission tomography (PET) [18F]Fluoro-DCP radiotracer for in vivo imaging of protein sulfenylation. Time course biodistribution and PET/CT studies using xenograft animal models of Head and Neck Squamous Cell Cancer (HNSCC) demonstrate its capability to distinguish between tumors with radiation sensitive and resistant phenotypes consistent with previous reports of decreased protein sulfenylation in clinical specimens of radiation resistant HNSCC. We envision further development of this technology to aid research efforts towards improving diagnosis of patients with radiation resistant tumors.
Collapse
Affiliation(s)
| | - Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Zhe Li
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Caigang Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kirtikar Shukla
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Tom E Forshaw
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Stephen A Vance
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | | | - Megan Madonna
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University, Durham, NC, USA
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Nimmi Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - S Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
6
|
An Update on the State of Tau Radiotracer Development: a Brief Review. Mol Imaging Biol 2021; 23:797-808. [PMID: 33987775 DOI: 10.1007/s11307-021-01612-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Evolving scientific evidence has begun to point towards hyperphosphorylated tau as a major neurotoxic component in the pathophysiological development of many major neurodegenerative conditions. In response to a need for accurate and reliable diagnosis and disease monitoring in clinical and trial settings, there has been great effort put into the development of tau radiotracers. While first-generation and second-generation radiotracers have provided a basis for assessing tau, concerns of inadequate specificity and selectivity have continued to motivate further study of these radiotracers and the development of novel radiopharmaceuticals. Given the prospective scientific and clinical value of a valid tau radiotracer, the molecular neuroimaging community must be aware of the most recent developments in the realm of tau radiotracer development. This brief review article will critically overview the most established tau radiotracers and, most importantly, concentrate on the progress of more recently developed tau radiotracers.
Collapse
|
7
|
Clinical validity of increased cortical binding of tau ligands of the THK family and PBB3 on PET as biomarkers for Alzheimer's disease in the context of a structured 5-phase development framework. Eur J Nucl Med Mol Imaging 2021; 48:2086-2096. [PMID: 33723628 PMCID: PMC8175292 DOI: 10.1007/s00259-021-05277-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/21/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE The research community has focused on defining reliable biomarkers for the early detection of the pathological hallmarks of Alzheimer's disease (AD). In 2017, the Geneva AD Biomarker Roadmap initiative adapted the framework for the systematic validation of oncological biomarkers to AD, with the aim to accelerate their development and implementation in clinical practice. The aim of this work was to assess the validation status of tau PET ligands of the THK family and PBB3 as imaging biomarkers for AD, based on the Biomarker Roadmap methodology. METHODS A panel of experts in AD biomarkers convened in November 2019 at a 2-day workshop in Geneva. The level of clinical validity of tau PET ligands of the THK family and PBB3 was assessed based on the 5-phase development framework before the meeting and discussed during the workshop. RESULTS PET radioligands of the THK family discriminate well between healthy controls and patients with AD dementia (phase 2; partly achieved) and recent evidence suggests an accurate diagnostic accuracy at the mild cognitive impairment (MCI) stage of the disease (phase 3; partly achieved). The phases 2 and 3 were considered not achieved for PBB3 since no evidence exists about the ligand's diagnostic accuracy. Preliminary evidence exists about the secondary aims of each phase for all ligands. CONCLUSION Much work remains for completing the aims of phases 2 and 3 and replicating the available evidence. However, it is unlikely that the validation process for these tracers will be completed, given the presence of off-target binding and the development of second-generation tracers with improved binding and pharmacokinetic properties.
Collapse
|
8
|
Harada R, Hayakawa Y, Ezura M, Lerdsirisuk P, Du Y, Ishikawa Y, Iwata R, Shidahara M, Ishiki A, Kikuchi A, Arai H, Kudo Y, Yanai K, Furumoto S, Okamura N. 18F-SMBT-1: A Selective and Reversible PET Tracer for Monoamine Oxidase-B Imaging. J Nucl Med 2020; 62:253-258. [PMID: 32646880 DOI: 10.2967/jnumed.120.244400] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/15/2020] [Indexed: 11/16/2022] Open
Abstract
Reactive astrocytes play a key role in the pathogenesis of various neurodegenerative diseases. Monoamine oxidase-B (MAO-B) is one of the promising targets for the imaging of astrogliosis in the human brain. A novel selective and reversible MAO-B tracer, (S)-(2-methylpyrid-5-yl)-6-[(3-18F-fluoro-2-hydroxy)propoxy]quinoline (18F-SMBT-1), was successfully developed via lead optimization from the first-generation tau PET tracer 18F-THK-5351. Methods: SMBT-1 was radiolabeled with 18F using the corresponding precursor. The binding affinity of radiolabeled compounds to MAO-B was assessed using saturation and competitive binding assays. The binding selectivity of 18F-SMBT-1 to MAO-B was evaluated by autoradiography of frozen human brain tissues. The pharmacokinetics and metabolism were assessed in normal mice after intravenous administration of 18F-SMBT-1. A 14-d toxicity study after the intravenous administration of 18F-SMBT-1 was performed using rats and mice. Results: In vitro binding assays demonstrated a high binding affinity of 18F-SMBT-1 to MAO-B (dissociation constant, 3.7 nM). In contrast, it showed low binding affinity to MAO-A and protein aggregates such as amyloid-β and tau fibrils. Autoradiographic analysis showed higher amounts of 18F-SMBT-1 binding in the Alzheimer disease brain sections than in the control brain sections. 18F-SMBT-1 binding was completely displaced with the reversible MAO-B inhibitor lazabemide, demonstrating the high selectivity of 18F-SMBT-1 for MAO-B. Furthermore, 18F-SMBT-1 showed a high uptake by brain, rapid washout, and no radiolabeled metabolites in the brain of normal mice. 18F-SMBT-1 showed no significant binding to various receptors, ion channels, or transporters, and no toxic effects related to its administration were observed in mice and rats. Conclusion: 18F-SMBT-1 is a promising and selective MAO-B PET tracer candidate, which would be useful for quantitative monitoring of astrogliosis in the human brain.
Collapse
Affiliation(s)
- Ryuichi Harada
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan .,Department of Geriatrics and Gerontology, Division of Brain Sciences, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Yoshimi Hayakawa
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Michinori Ezura
- Department of Neurology, Tohoku University Graduate School of Medicine. 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | | | - Yiqing Du
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| | - Yoichi Ishikawa
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Ren Iwata
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Miho Shidahara
- Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Japan; and
| | - Aiko Ishiki
- Department of Geriatrics and Gerontology, Division of Brain Sciences, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Akio Kikuchi
- Department of Neurology, Tohoku University Graduate School of Medicine. 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Hiroyuki Arai
- Department of Geriatrics and Gerontology, Division of Brain Sciences, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Yukitsuka Kudo
- Department of Geriatrics and Gerontology, Division of Brain Sciences, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan.,Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Shozo Furumoto
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Nobuyuki Okamura
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan.,Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
9
|
Solingapuram Sai KK, Bashetti N, Chen X, Norman S, Hines JW, Meka O, Kumar JVS, Devanathan S, Deep G, Furdui CM, Mintz A. Initial biological evaluations of 18F-KS1, a novel ascorbate derivative to image oxidative stress in cancer. EJNMMI Res 2019; 9:43. [PMID: 31101996 PMCID: PMC6525227 DOI: 10.1186/s13550-019-0513-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS)-induced oxidative stress damages many cellular components such as fatty acids, DNA, and proteins. This damage is implicated in many disease pathologies including cancer and neurodegenerative and cardiovascular diseases. Antioxidants like ascorbate (vitamin C, ascorbic acid) have been shown to protect against the deleterious effects of oxidative stress in patients with cancer. In contrast, other data indicate potential tumor-promoting activity of antioxidants, demonstrating a potential temporal benefit of ROS. However, quantifying real-time tumor ROS is currently not feasible, since there is no way to directly probe global tumor ROS. In order to study this ROS-induced damage and design novel therapeutics to prevent its sequelae, the quantitative nature of positron emission tomography (PET) can be harnessed to measure in vivo concentrations of ROS. Therefore, our goal is to develop a novel translational ascorbate-based probe to image ROS in cancer in vivo using noninvasive PET imaging of tumor tissue. The real-time evaluations of ROS state can prove critical in developing new therapies and stratifying patients to therapies that are affected by tumor ROS. METHODS We designed, synthesized, and characterized a novel ascorbate derivative (E)-5-(2-chloroethylidene)-3-((4-(2-fluoroethoxy)benzyl)oxy)-4-hydroxyfuran-2(5H)-one (KS1). We used KS1 in an in vitro ROS MitoSOX-based assay in two different head and neck squamous cancer cells (HNSCC) that express different ROS levels, with ascorbate as reference standard. We radiolabeled 18F-KS1 following 18F-based nucleophilic substitution reactions and determined in vitro reactivity and specificity of 18F-KS1 in HNSCC and prostate cancer (PCa) cells. MicroPET imaging and standard biodistribution studies of 18F-KS1 were performed in mice bearing PCa cells. To further demonstrate specificity, we performed microPET blocking experiments using nonradioactive KS1 as a blocker. RESULTS KS1 was synthesized and characterized using 1H NMR spectra. MitoSOX assay demonstrated good correlations between increasing concentrations of KS1 and ascorbate and increased reactivity in SCC-61 cells (with high ROS levels) versus rSCC-61cells (with low ROS levels). 18F-KS1 was radiolabeled with high radiochemical purity (> 94%) and specific activity (~ 100 GBq/μmol) at end of synthesis (EOS). Cell uptake of 18F-KS1 was high in both types of cancer cells, and the uptake was significantly blocked by nonradioactive KS1, and the ROS blocker, superoxide dismutase (SOD) demonstrating specificity. Furthermore, 18F-KS1 uptake was increased in PCa cells under hypoxic conditions, which have been shown to generate high ROS. Initial in vivo tumor uptake studies in PCa tumor-bearing mice demonstrated that 18F-KS1 specifically bound to tumor, which was significantly blocked (threefold) by pre-injecting unlabeled KS1. Furthermore, biodistribution studies in the same tumor-bearing mice showed high tumor to muscle (target to nontarget) ratios. CONCLUSION This work demonstrates the strong preliminary support of 18F-KS1, both in vitro and in vivo for imaging ROS in cancer. If successful, this work will provide a new paradigm to directly probe real-time oxidative stress levels in vivo. Our work could enhance precision medicine approaches to treat cancer, as well as neurodegenerative and cardiovascular diseases affected by ROS.
Collapse
Affiliation(s)
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh 522502 India
| | - Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Skylar Norman
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Justin W. Hines
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Omsai Meka
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - J. V. Shanmukha Kumar
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh 522502 India
| | | | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032 USA
| |
Collapse
|
10
|
Aguero C, Dhaynaut M, Normandin MD, Amaral AC, Guehl NJ, Neelamegam R, Marquie M, Johnson KA, El Fakhri G, Frosch MP, Gomez-Isla T. Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathol Commun 2019; 7:37. [PMID: 30857558 PMCID: PMC6410510 DOI: 10.1186/s40478-019-0686-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022] Open
Abstract
[F-18]-MK-6240, a novel tau positron emission tomography (PET) tracer recently discovered for the in vivo detection of neurofibrillary tangles, has the potential to improve diagnostic accuracy in the detection of Alzheimer disease. We have examined regional and substrate-specific binding patterns as well as possible off-target binding of this tracer on human brain tissue to advance towards its validation. We applied [F-18]-MK-6240 phosphor screen and high resolution autoradiography to postmortem samples from patients with a definite pathological diagnosis of Alzheimer disease, frontotemporal lobar degeneration-tau (Pick's disease, progressive supranuclear palsy and corticobasal degeneration), chronic traumatic encephalopathy, frontotemporal lobar degeneration-Tar DNA-binding protein 43 (TDP-43), dementia with Lewy bodies, cerebral amyloid angiopathy and elderly controls free of pathologic changes of neurodegenerative disease. We also directly compared the binding properties of [F-18]-MK-6240 and [F-18]-AV-1451 in human tissue, and examined potential nonspecific binding of both tau tracers to monoamine oxidases (MAO) by using autoradiography in the presence of selective monoamine oxidase A (MAO-A) and monoamine oxidase B (MAO-B) inhibitors. Our data indicate that MK-6240 strongly binds to neurofibrillary tangles in Alzheimer disease but does not seem to bind to a significant extent to tau aggregates in non-Alzheimer tauopathies, suggesting that it may have a limited utility for the in vivo detection of these pathologies. There is no evidence of binding to lesions containing β-amyloid, α-synuclein or TDP-43. In addition, we identified MK-6240 strong off-target binding to neuromelanin and melanin-containing cells, and some weaker binding to areas of hemorrhage. These binding patterns are nearly identical to those previously reported by our group and others for [F-18]-AV-1451. Of note, [F-18]-MK-6240 and [F-18]-AV-1451 autoradiographic binding signals were only weakly displaced by competing concentrations of selective MAO-B inhibitor deprenyl but not by MAO-A inhibitor clorgyline, suggesting that MAO enzymes do not appear to be a significant binding target of any of these two tracers. Together these novel findings provide relevant insights for the correct interpretation of in vivo [F-18]-MK-6240 PET imaging.
Collapse
Affiliation(s)
- Cinthya Aguero
- Department of Neurology, Massachusetts General Hospital, WACC, Suite 715, 15th Parkman St., Boston, MA, 02114, USA
- MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Maeva Dhaynaut
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- AP-HP, Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, Sorbonne University, UPMC Paris 06, CNRS UMR 7371, INSERM U1146, 75013, Paris, France
| | - Marc D Normandin
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana C Amaral
- Department of Neurology, Massachusetts General Hospital, WACC, Suite 715, 15th Parkman St., Boston, MA, 02114, USA
- MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Nicolas J Guehl
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramesh Neelamegam
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marta Marquie
- Department of Neurology, Massachusetts General Hospital, WACC, Suite 715, 15th Parkman St., Boston, MA, 02114, USA
- MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Keith A Johnson
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Georges El Fakhri
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew P Frosch
- MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA, USA
| | - Teresa Gomez-Isla
- Department of Neurology, Massachusetts General Hospital, WACC, Suite 715, 15th Parkman St., Boston, MA, 02114, USA.
- MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA.
| |
Collapse
|
11
|
Harada R, Okamura N, Furumoto S, Yanai K. Imaging Protein Misfolding in the Brain Using β-Sheet Ligands. Front Neurosci 2018; 12:585. [PMID: 30186106 PMCID: PMC6110819 DOI: 10.3389/fnins.2018.00585] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases characterized by pathological protein accumulation in cells are termed “proteinopathies.” Although various protein aggregates share cross-β-sheet structures, actual conformations vary among each type of protein deposit. Recent progress in the development of radiotracers for positron emission tomography (PET) has enabled the visualization of protein aggregates in living brains. Amyloid PET tracers have been developed, and are widely used for the diagnosis of Alzheimer’s disease and non-invasive assessment of amyloid burden in clinical trials of anti-dementia drugs. Furthermore, several tau PET tracers have been successfully developed and used in the clinical studies. However, recent studies have identified the presence of off-target binding of radiotracers in areas of tau deposition, suggesting that concomitant neuroinflammatory changes might affect tracer binding. In contrast to amyloid and tau PET, there are no established tracers for imaging Lewy bodies in the human brain. In this review, we describe lessons learned from the development of PET tracers and discuss the future direction of tracer development for protein misfolding diseases.
Collapse
Affiliation(s)
- Ryuichi Harada
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuyuki Okamura
- Division of Pharmacology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shozo Furumoto
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| |
Collapse
|
12
|
Fujinaga M, Ohkubo T, Yamasaki T, Zhang Y, Mori W, Hanyu M, Kumata K, Hatori A, Xie L, Nengaki N, Zhang MR. Automated Synthesis of (rac)-, (R)-, and (S)-[ 18 F]Epifluorohydrin and Their Application for Developing PET Radiotracers Containing a 3-[ 18 F]Fluoro-2-hydroxypropyl Moiety. ChemMedChem 2018; 13:1723-1731. [PMID: 30043406 DOI: 10.1002/cmdc.201800359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Indexed: 01/05/2023]
Abstract
To introduce the 3-[18 F]fluoro-2-hydroxypropyl moiety into positron emission tomography (PET) radiotracers, we performed automated synthesis of (rac)-, (R)-, and (S)-[18 F]epifluorohydrin ([18 F]1) by nucleophilic displacement of (rac)-, (R)-, or (S)-glycidyl tosylate with 18 F- and purification by distillation. The ring-opening reaction of (R)- or (S)-[18 F]1 with phenol precursors gave enantioenriched [18 F]fluoroalkylated products without racemisation. We then synthesised (rac)-, (R)-, and (S)- 2-{5-[4-(3-[18 F]fluoro-2-hydroxypropoxy)phenyl]-2-oxobenzo[d]oxazol-3(2H)-yl}-N-methyl-N-phenylacetamide ([18 F]6) as novel radiotracers for the PET imaging of translocator protein (18 kDa) and showed that (R)- and (S)-[18 F]6 had different radioactivity uptake in mouse bone and liver. Thus, (rac)-, (R)-, and (S)-[18 F]1 are effective radiolabelling reagents and can be used to develop PET radiotracers by examining the effects of chirality on their in vitro binding affinities and in vivo behaviour.
Collapse
Affiliation(s)
- Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Takayuki Ohkubo
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.,SHI Accelerator Service Co. Ltd., Tokyo, 141-0032, Japan
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Wakana Mori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Masayuki Hanyu
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Nobuki Nengaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.,SHI Accelerator Service Co. Ltd., Tokyo, 141-0032, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| |
Collapse
|
13
|
Chiotis K, Stenkrona P, Almkvist O, Stepanov V, Ferreira D, Arakawa R, Takano A, Westman E, Varrone A, Okamura N, Shimada H, Higuchi M, Halldin C, Nordberg A. Dual tracer tau PET imaging reveals different molecular targets for 11C-THK5351 and 11C-PBB3 in the Alzheimer brain. Eur J Nucl Med Mol Imaging 2018; 45:1605-1617. [PMID: 29752516 PMCID: PMC6061462 DOI: 10.1007/s00259-018-4012-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022]
Abstract
Purpose Several tau PET tracers have been developed, but it remains unclear whether they bind to the same molecular target on the heterogeneous tau pathology. In this study we evaluated the binding of two chemically different tau-specific PET tracers (11C-THK5351 and 11C-PBB3) in a head-to-head, in vivo, multimodal design. Methods Nine patients with a diagnosis of mild cognitive impairment or probable Alzheimer’s disease and cerebrospinal fluid biomarker evidence supportive of the presence of Alzheimer’s disease brain pathology were recruited after thorough clinical assessment. All patients underwent imaging with the tau-specific PET tracers 11C-THK5351 and 11C-PBB3 on the same day, as well as imaging with the amyloid-beta-specific tracer 11C-AZD2184, a T1-MRI sequence, and neuropsychological assessment. Results The load and regional distribution of binding differed between 11C-THK5351 and 11C-PBB3 with no statistically significant regional correlations observed between the tracers. The binding pattern of 11C-PBB3, but not that of 11C-THK5351, in the temporal lobe resembled that of 11C-AZD2184, with strong correlations detected between 11C-PBB3 and 11C-AZD2184 in the temporal and occipital lobes. Global cognition correlated more closely with 11C-THK5351 than with 11C-PBB3 binding. Similarly, cerebrospinal fluid tau measures and entorhinal cortex thickness were more closely correlated with 11C-THK5351 than with 11C-PBB3 binding. Conclusion This research suggests different molecular targets for these tracers; while 11C-PBB3 appeared to preferentially bind to tau deposits with a close spatial relationship to amyloid-beta, the binding pattern of 11C-THK5351 fitted the expected distribution of tau pathology in Alzheimer’s disease better and was more closely related to downstream disease markers. Electronic supplementary material The online version of this article (10.1007/s00259-018-4012-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Konstantinos Chiotis
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Per Stenkrona
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Ove Almkvist
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital, Stockholm, Sweden
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Vladimir Stepanov
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Daniel Ferreira
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Ryosuke Arakawa
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Nobuyuki Okamura
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hitoshi Shimada
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden.
- Theme Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
14
|
Lemoine L, Gillberg PG, Svedberg M, Stepanov V, Jia Z, Huang J, Nag S, Tian H, Ghetti B, Okamura N, Higuchi M, Halldin C, Nordberg A. Comparative binding properties of the tau PET tracers THK5117, THK5351, PBB3, and T807 in postmortem Alzheimer brains. ALZHEIMERS RESEARCH & THERAPY 2017; 9:96. [PMID: 29229003 PMCID: PMC5725799 DOI: 10.1186/s13195-017-0325-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/22/2017] [Indexed: 11/10/2022]
Abstract
Background The aim of this study was to compare the binding properties of several tau positron emission tomography tracers—THK5117, THK5351, T807 (also known as AV1451; flortaucipir), and PBB3—head to head in the same human brain tissue. Methods Binding assays were performed to compare the regional distribution of 3H-THK5117 and 3H-THK5351 in postmortem tissue from three Alzheimer’s disease (AD) cases and three control subjects in frontal and temporal cortices as well as in the hippocampus. Competition binding assays between THK5351, THK5117, PBB3, and T807, as well as off-target binding of THK5117 and T807 toward monoamine oxidase B (MAO-B), were performed using binding assays in brain homogenates and autoradiography of three AD cases. Results Regional binding of 3H-THK5117 and 3H-THK5351 was similar, except in the temporal cortex, which showed higher 3H-THK5117 binding. Saturation studies demonstrated two binding sites for 3H-THK5351 (Kd1 = 5.6 nM, Bmax = 76 pmol/g; Kd2 = 1 nM, Bmax = 40 pmol/g). Competition studies in the hippocampus between 3H-THK5351 and unlabeled THK5351, THK5117, and T807 revealed super-high-affinity sites for all three tracers (THK5351 Ki = 0.1 pM; THK5117 Ki = 0.3 pM; T807 Ki = 0.2 pM) and an additional high-affinity site (THK5351 Ki = 16 nM; THK5117 Ki = 20 nM; T807 Ki = 78nM). 18F-T807, 11C-THK5351, and 11C-PBB3 autoradiography of large frozen sections from three AD brains showed similar regional binding for the three tracers, with lower binding intensity for 11C-PBB3. Unlabeled THK5351 and T807 displaced 11C-THK5351 to a similar extent and a lower extent, respectively, compared with 11C-PBB3. Competition with the MAO-B inhibitor 3H-l-deprenyl was observed for THK5117 and T807 in the hippocampus (THK5117 Ki = 286 nM; T807 Ki = 227 nM) and the putamen (THK5117 Ki = 148 nM; T807 Ki = 135 nM). 3H-THK5351 binding was displaced using autoradiography competition with unlabeled THK5351 and T807 in cortical areas by 70–80% and 60–77%, respectively, in the basal ganglia, whereas unlabeled deprenyl displaced 3H-THK5351 binding by 40% in the frontal cortex and 50% in the basal ganglia. Conclusions THK5351, THK5117, and T807 seem to target similar binding sites, but with different affinities, whereas PBB3 seems to target its own binding site. Both THK5117 and T807 demonstrated off-target binding in the hippocampus and putamen with a ten times lower binding affinity to the MAO-B inhibitor deprenyl compared with 3H-THK5351. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0325-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laetitia Lemoine
- Division of Translational Alzheimer Neurobiology, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Per-Göran Gillberg
- Division of Translational Alzheimer Neurobiology, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Marie Svedberg
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Vladimir Stepanov
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Zhisheng Jia
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Jinghai Huang
- Institute of Fine Chemicals, East China University of Science and Technology, Shanghai, China
| | - Sangram Nag
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - He Tian
- Institute of Fine Chemicals, East China University of Science and Technology, Shanghai, China
| | - Bernardino Ghetti
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Tohoku, Japan
| | - Makoto Higuchi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Translational Alzheimer Neurobiology, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden. .,Department of Geriatric Medicine, Karolinska University Hospital, Huddinge, Sweden.
| |
Collapse
|
15
|
Characterization of the radiosynthesis and purification of [ 18F]THK-5351, a PET ligand for neurofibrillary tau. Appl Radiat Isot 2017; 130:230-237. [PMID: 29031087 DOI: 10.1016/j.apradiso.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/21/2017] [Accepted: 10/02/2017] [Indexed: 11/23/2022]
Abstract
This work characterizes the radiochemical synthesis, purification, and formulation of [18F]THK-5351, a tau PET radioligand, and develops an automated radiosynthesis routine (ELIXYS, Sofie Biosciences). Nucleophilic radiofluorination reaction was complete by 7min at 110°C with radiochemical yields proportional to precursor mass (0.1-0.5mg). Optimized HPLC purification produced radiotracer product with no chemical impurities observed on analytical HPLC in formulation. Automated radiosynthesis (ELIXYS), HPLC purification and formulation was completed in 86min producing formulated product suitable for human research use.
Collapse
|
16
|
Jouanne M, Rault S, Voisin-Chiret AS. Tau protein aggregation in Alzheimer's disease: An attractive target for the development of novel therapeutic agents. Eur J Med Chem 2017; 139:153-167. [PMID: 28800454 DOI: 10.1016/j.ejmech.2017.07.070] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/28/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative brain disorder in which many biological dysfunctions are involved. Among them, two main types of lesions were discovered and widely studied: the amyloid plaques and the neurofibrillary tangles (NFTs). These two lesions are caused by the dysfunction and the accumulation of two proteins which are, respectively, the beta-amyloid peptide and the tau protein. The process that leads these two proteins to aggregate is complex and is the subject of current studies. After a brief description of the aggregation mechanisms, we will provide an overview of new therapeutic agents targeting the different dysfunctions and toxic species found during aggregation.
Collapse
Affiliation(s)
- Marie Jouanne
- Université Caen Normandie, France; UNICAEN, CERMN - EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE, bd Becquerel, F-14032 Caen, France
| | - Sylvain Rault
- Université Caen Normandie, France; UNICAEN, CERMN - EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE, bd Becquerel, F-14032 Caen, France
| | - Anne-Sophie Voisin-Chiret
- Université Caen Normandie, France; UNICAEN, CERMN - EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE, bd Becquerel, F-14032 Caen, France.
| |
Collapse
|
17
|
Saint-Aubert L, Lemoine L, Chiotis K, Leuzy A, Rodriguez-Vieitez E, Nordberg A. Tau PET imaging: present and future directions. Mol Neurodegener 2017; 12:19. [PMID: 28219440 PMCID: PMC5319037 DOI: 10.1186/s13024-017-0162-3] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/15/2017] [Indexed: 12/15/2022] Open
Abstract
Abnormal aggregation of tau in the brain is a major contributing factor in various neurodegenerative diseases. The role of tau phosphorylation in the pathophysiology of tauopathies remains unclear. Consequently, it is important to be able to accurately and specifically target tau deposits in vivo in the brains of patients. The advances of molecular imaging in the recent years have now led to the recent development of promising tau-specific tracers for positron emission tomography (PET), such as THK5317, THK5351, AV-1451, and PBB3. These tracers are now available for clinical assessment in patients with various tauopathies, including Alzheimer's disease, as well as in healthy subjects. Exploring the patterns of tau deposition in vivo for different pathologies will allow discrimination between neurodegenerative diseases, including different tauopathies, and monitoring of disease progression. The variety and complexity of the different types of tau deposits in the different diseases, however, has resulted in quite a challenge for the development of tau PET tracers. Extensive work remains in order to fully characterize the binding properties of the tau PET tracers, and to assess their usefulness as an early biomarker of the underlying pathology. In this review, we summarize recent findings on the most promising tau PET tracers to date, discuss what has been learnt from these findings, and offer some suggestions for the next steps that need to be achieved in a near future.
Collapse
Affiliation(s)
- Laure Saint-Aubert
- Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Novum 5th floor, 141 57, Huddinge, Sweden
| | - Laetitia Lemoine
- Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Novum 5th floor, 141 57, Huddinge, Sweden
| | - Konstantinos Chiotis
- Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Novum 5th floor, 141 57, Huddinge, Sweden
| | - Antoine Leuzy
- Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Novum 5th floor, 141 57, Huddinge, Sweden
| | - Elena Rodriguez-Vieitez
- Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Novum 5th floor, 141 57, Huddinge, Sweden
| | - Agneta Nordberg
- Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Novum 5th floor, 141 57, Huddinge, Sweden. .,Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|