1
|
Dimitrakopoulou-Strauss A, Pan L, Sachpekidis C. Total Body PET-CT Protocols in Oncology. Semin Nucl Med 2025; 55:3-10. [PMID: 38851935 DOI: 10.1053/j.semnuclmed.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Recently developed long axial field of view (LAFOV) PET-CT scanners, including total body scanners, are already in use in a few centers worldwide. These systems have some major advantages over standard axial field of view (SAFOV) PET-CT scanners, mainly due to up to 20 times higher sensitivity and therefore improved lesion detectability. Other advantages are the reduction of the PET acquisition time for a static whole-body measurement, the reduction of the administered radiotracer dose, and the ability to perform delayed scans with good image quality, which is important for imaging radionuclides with long half-lives and pharmaceuticals with long biodistribution times, such as 89Zr-labeled antibodies. The reduction of the applied tracer dose leads to less radiation exposure and may facilitate longitudinal studies, especially in oncological patients, for the evaluation of therapy. The reduction in acquisition time for a static whole body (WB) study allows a markedly higher patient throughput. Furthermore, LAFOV PET-CT scanners enable for the first-time WB dynamic PET scanning and WB parametric imaging with an improved image quality due to increased sensitivity and time resolution. WB tracer kinetics is of particular interest for the characterization of novel radiopharmaceuticals and for a better biological characterization of cancer diseases, as well as for a more accurate assessment of the response to new targeted therapies. Further technological developments based on artificial intelligence (AI) approaches are underway and may in the future allow CT-less attenuation correction or ultralow dose CT for attenuation correction as well as segmentation algorithms for the evaluation of total metabolic tumor volume. The aim of this review is to present dedicated PET acquisition protocols for oncological studies with LAFOV scanners, including static and dynamic acquisition as well as parametric scans, and to present literature data to date on this topic.
Collapse
Affiliation(s)
| | - Leyun Pan
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
2
|
Rathod N, Jutidamrongphan W, Bosbach WA, Chen Y, Penner JL, Sari H, Zeimpekis K, Montes AL, Moskal P, Stepien E, Shi K, Rominger A, Seifert R. Total Body PET/CT: Clinical Value and Future Aspects of Quantification in Static and Dynamic Imaging. Semin Nucl Med 2025; 55:98-106. [PMID: 39616013 DOI: 10.1053/j.semnuclmed.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/15/2024]
Abstract
Total body (TB) Positron Emission Tomography (PET) / Computed Tomography (CT) scanners have revolutionized nuclear medicine by enabling whole-body imaging in a single bed position.1 This review assesses the physical and clinical value of TB-PET/CT, with a focus on the advancements in both static and dynamic imaging, as well as the evolving quantification techniques. The significantly enhanced sensitivity of TB scanners can reduce radiation exposure and scan time, offering improved patient comfort and making it particularly useful for pediatric imaging and various other scenarios. Shorter scan times also decrease motion artifacts, leading to higher-quality images and better diagnostic accuracy. Dynamic PET imaging with TB scanners extends these advantages by capturing temporal changes in tracer uptake over time, providing real-time insights into both structural and functional assessment, and promoting the ability to monitor disease progression and treatment response. We also present CT-free attenuation correction methods that utilize the increased sensitivity of TB-PET as a potential improvement for dynamic TB-PET protocols. In static imaging, emerging quantification techniques such as dual-tracer PET using TB scanners allow imaging of two biological pathways, simultaneously, for a more comprehensive assessment of disease. In addition, positronium imaging, a novel technique utilizing positronium lifetime measurements, is introduced as a promising aspect for providing structural information alongside functional quantification. Finally, the potential of expanding clinical applications with the increased sensitivity of TB-PET/CT scanners is discussed.
Collapse
Affiliation(s)
- Narendra Rathod
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Warissara Jutidamrongphan
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Wolfram Andreas Bosbach
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Yizhou Chen
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Jan Luca Penner
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Konstantinos Zeimpekis
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Alejandro López Montes
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Pawel Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland and Centre for Theranostics, Jagiellonian University, Krakow, Poland
| | - Ewa Stepien
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland and Centre for Theranostics, Jagiellonian University, Krakow, Poland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robert Seifert
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
3
|
Sachpekidis C, Dimitrakopoulou-Strauss A. Long Axial Field-of-View (LAFOV) PET/CT in Prostate Cancer. Semin Nucl Med 2025; 55:67-75. [PMID: 38825439 DOI: 10.1053/j.semnuclmed.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024]
Abstract
PSMA-targeted PET/CT is currently considered the most effective non-invasive diagnostic technique for imaging PSMA-positive lesions in prostate cancer (PC), and its introduction has significantly enhanced the role of nuclear medicine in both the diagnosis and therapy (theranostics) of this oncological entity. In line with developments in radiopharmaceuticals, significant progress has been made in the development of PET/CT systems. In particular, the advent of long axial field-of-view (LAFOV) PET/CT scanners has represented a major leap forward in molecular imaging, with early results from clinical applications of these systems showing significant improvements over previous standard axial field-of-view systems in terms of sensitivity, image quality and lesion quantification, while enabling whole-body dynamic PET imaging. In this context, the introduction of the new LAFOV scanners may further enhance the use and potential of PSMA-ligand PET/CT in the diagnosis and management of PC. The initial but steadily growing literature on the application of the new technology in the field of PSMA-ligand PET/CT has already yielded encouraging results regarding the detection of PC lesions with high sensitivity while providing the possibility of ultra-fast or ultra-low dose examinations. Moreover, whole-body dynamic PET has rendered for the first time feasible to capture the pharmacokinetics PSMA-ligands in all major organs and most tumor lesions with high temporal resolution. The main results of these studies are presented in this review.
Collapse
Affiliation(s)
- Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | | |
Collapse
|
4
|
Hou H, Pan Y, Wang Y, Ma Y, Niu X, Sun S, Hou G, Tao W, Gao F. Development and first-in-human study of PSMA-targeted PET tracers with improved pharmacokinetic properties. Eur J Nucl Med Mol Imaging 2024; 51:2819-2832. [PMID: 38683349 DOI: 10.1007/s00259-024-06726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE A series of new 68Ga-labeled tracers based on [68Ga]Ga-PSMA-617 were developed to augment the tumor-to-kidney ratio and reduce the activity accumulation in bladder, ultimately minimize radiation toxicity to the urinary system. METHODS We introduced quinoline group, phenylalanine and decanoic acid into different tracers to enhance their lipophilicity, strategically limiting their metabolic pathway through the urinary system. Their binding affinity onto LNCaP cells was determined through in vitro saturation assays and competition binding assays. In vivo metabolic study, PET imaging and biodistribution experiment were performed in LNCaP tumor-bearing B-NSG male mice. The most promising tracer was selected for first-in-human study. RESULTS Four radiotracers were synthesized with radiochemical purity (RCP) > 95% and molar activity in a range of 20.0-25.5 GBq/μmol. The binding affinities (Ki) of TWS01, TWS02 to PSMA were in the low nanomolar range (< 10 nM), while TWS03 and TWS04 exhibited binding affinities with Ki > 20 nM (59.42 nM for TWS03 and 37.14 nM for TWS04). All radiotracers exhibited high stability in vivo except [68Ga]Ga-TWS03. Micro PET/CT imaging and biodistribution analysis revealed that [68Ga]Ga-TWS02 enabled clear tumor visualization in PET images at 1.5 h post-injection, with higher tumor-to-kidney ratio (T/K, 0.93) and tumor-to-muscle ratio (T/M, 107.62) compared with [68Ga]Ga-PSMA-617 (T/K: 0.39, T/M: 15.01) and [68Ga]Ga-PSMA-11 (T/K: 0.15, T/M: 24.00). In first-in-human study, [68Ga]Ga-TWS02 effectively detected PCa-associated lesions including primary and metastatic lesions, with lower accumulation in urinary system, suggesting that [68Ga]Ga-TWS02 might be applied in the detection of bladder invasion, with minimized radiation toxicity to the urinary system. CONCLUSION Introduction of quinoline group, phenylalanine and decanoic acid into different tracers can modulate the binding affinity and pharmacokinetics of PSMA in vivo. [68Ga]Ga-TWS02 showed high binding affinity to PSMA, excellent pharmacokinetic properties and clear imaging of PCa-associated lesions, making it a promising radiotracer for the clinical diagnosis of PCa. Moreover, TWS02 with a chelator DOTA could also label 177Lu and 225Ac, which could be used for PCa treatment without significant side effects. TRIAL REGISTRATION The clinical evaluation of this study was registered On October 30, 2021 at https://www.chictr.org.cn/ (No: ChiCTR2100052545).
Collapse
Affiliation(s)
- Haodong Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yuan Pan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yanzhi Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yuze Ma
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xiaobing Niu
- Department of Urology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Suan Sun
- Department of Pathology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Guihua Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Weijing Tao
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China.
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
5
|
Dullea A, O'Sullivan L, O'Brien KK, Carrigan M, Ahern S, McGarry M, Harrington P, Walsh KA, Smith SM, Ryan M. Diagnostic Accuracy of 18F-Prostate Specific Membrane Antigen (PSMA) PET/CT Radiotracers in Staging and Restaging of Patients With High-Risk Prostate Cancer or Biochemical Recurrence: An Overview of Reviews. Semin Nucl Med 2024:S0001-2998(24)00044-8. [PMID: 38906759 DOI: 10.1053/j.semnuclmed.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 06/23/2024]
Abstract
The aim of this overview was to consolidate existing evidence syntheses and provide a comprehensive overview of the evidence for 18F-prostate specific membrane antigen (PSMA) PET/CT in the staging of high-risk prostate cancer and restaging after biochemical recurrence. An overview of reviews was performed and reported in line with the preferred reporting items for overview of reviews (PRIOR) statement and synthesis without meta-analysis (SWiM) reporting guidelines. A comprehensive database and grey literature search were conducted up to July 18, 2023. Systematic reviews were assessed using the risk of bias in systematic reviews (ROBIS) tool. The certainty of the evidence was assessed using grading of recommendations, assessment, development and evaluations (GRADE). 11 systematic reviews were identified; 10 were at high or unclear risk of bias. Evidence reported on a per-patient, per-lymph node, and per-lesion basis for sensitivity, specificity and overall accuracy was identified. There was a lack of data on dose, adverse events and evidence directly comparing 18F-PSMA PET/CT to other imaging modalities. Evidence with moderate to very low certainty indicated high sensitivity, specificity and accuracy of 18F-PSMA PET/CT in patients with high-risk prostate cancer and biochemical recurrence. There was considerably lower certainty evidence and greater variability in effect estimates for outcomes for the combined intermediate/high-risk cohort. While evidence gaps remain for some outcomes, and most systematic reviews were at high or unclear risk of bias, the current evidence base is broadly supportive of 18F-PSMA PET/CT imaging in the staging and restaging of patients with high-risk prostate cancer and biochemical recurrence.
Collapse
Affiliation(s)
- Andrew Dullea
- Discipline of Public Health & Primary Care, School of Medicine, Trinity College, Dublin, Ireland; Health Technology Assessment Directorate, Health Information and Quality Authority, Cork, Ireland.
| | - Lydia O'Sullivan
- Health Technology Assessment Directorate, Health Information and Quality Authority, Cork, Ireland; Health Research Board-Trials Methodology Research Network, College of Medicine, Nursing and Health Sciences, University of Galway, County Galway, Galway, Ireland
| | - Kirsty K O'Brien
- Health Technology Assessment Directorate, Health Information and Quality Authority, Cork, Ireland
| | - Marie Carrigan
- Health Technology Assessment Directorate, Health Information and Quality Authority, Cork, Ireland
| | - Susan Ahern
- Health Technology Assessment Directorate, Health Information and Quality Authority, Cork, Ireland
| | - Maeve McGarry
- Health Technology Assessment Directorate, Health Information and Quality Authority, Cork, Ireland
| | - Patricia Harrington
- Health Technology Assessment Directorate, Health Information and Quality Authority, Cork, Ireland
| | - Kieran A Walsh
- Health Technology Assessment Directorate, Health Information and Quality Authority, Cork, Ireland; School of Pharmacy, University College Cork, County Cork, Cork, Ireland
| | - Susan M Smith
- Discipline of Public Health & Primary Care, School of Medicine, Trinity College, Dublin, Ireland
| | - Máirín Ryan
- Health Technology Assessment Directorate, Health Information and Quality Authority, Cork, Ireland; Department of Pharmacology and Therapeutics, Trinity College, Dublin, Ireland
| |
Collapse
|
6
|
Sachpekidis C, Pan L, Groezinger M, Strauss DS, Dimitrakopoulou-Strauss A. Combined whole-body dynamic and static PET/CT with low-dose [ 18F]PSMA-1007 in prostate cancer patients. Eur J Nucl Med Mol Imaging 2024; 51:2137-2150. [PMID: 38286936 PMCID: PMC11139746 DOI: 10.1007/s00259-024-06620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
AIM In addition to significant improvements in sensitivity and image quality, the recent introduction of long axial field-of-view (LAFOV) PET/CT scanners has enabled dynamic whole-body imaging for the first time. We aim herein to determine an appropriate acquisition time range for static low-dose [18F]PSMA-1007 PET imaging and to investigate the whole-body pharmacokinetics of [18F]PSMA-1007 by dynamic PET with the LAFOV Biograph Vision Quadra PET/CT in a group of prostate cancer patients. METHODOLOGY In total, 38 prostate cancer patients were enrolled in the analysis for staging or re-staging purposes. Thirty-four patients underwent dynamic whole-body PET/CT (60 min) followed by static whole-body PET/CT and four patients underwent static whole-body PET/CT only. The activity applied was 2 MBq/kg [18F]PSMA-1007. The static PET images of 10-min duration (PET-10) were reconstructed and further split into 8-min (PET-8), 6-min (PET-6), 5-min (PET-5), 4-min (PET-4), and 2-min (PET-2) duration groups. Comparisons were made between the different reconstructed scan times in terms of lesion detection rate and image quality based on SUV calculations of tumor lesions and the spleen, which served as background. Analysis of the dynamic PET/CT data was based on a two-tissue compartment model using an image-derived input function obtained from the descending aorta. RESULTS Analysis of lesion detection rate showed no significant differences when reducing PET acquisitions from 10 up to 5 min. In particular, a total of 169 lesions were counted with PET-10, and the corresponding lesion detection rates (95% CI for the 90% quantile of the differences in tumor lesions) for shorter acquisitions were 100% (169/169) for PET-8 (95% CI: 0-0), 98.8% (167/169) for PET-6 (95% CI: 0-1), 95.9% (162/169) for PET-5 (95% CI: 0-3), 91.7% (155/169) for PET-4 (95% CI: 1-2), and 85.2% (144/169) for PET-2 (95% CI: 1-6). With the exception of PET-2, the differences observed between PET-10 and the other shorter acquisition protocols would have no impact on any patient in terms of clinical management. Objective evaluation of PET/CT image quality showed no significant decrease in tumor-to-background ratio (TBR) with shorter acquisition times, despite a gradual decrease in signal-to-noise ratio (SNR) in the spleen. Whole-body quantitative [18F]PSMA-1007 pharmacokinetic analysis acquired with full dynamic PET scanning was feasible in all patients. Two-tissue compartment modeling revealed significantly higher values for the parameter k3 in tumor lesions and parotid gland compared to liver and spleen, reflecting a higher specific tracer binding to the PSMA molecule and internalization rate in these tissues, a finding also supported by the respective time-activity curves. Furthermore, correlation analysis demonstrated a significantly strong positive correlation (r = 0.72) between SUV and k3 in tumor lesions. CONCLUSIONS In prostate cancer, low-dose (2 MBq/kg) [18F]PSMA-1007 LAFOV PET/CT can reduce static scan time by 50% without significantly compromising lesion detection rate and objective image quality. In addition, dynamic PET can elucidate molecular pathways related to the physiology of [18F]PSMA-1007 in both tumor lesions and normal organs at the whole-body level. These findings unfold many of the potentials of the new LAFOV PET/CT technology in the field of PSMA-based diagnosis and theranostics of prostate cancer.
Collapse
Affiliation(s)
- Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69210, Heidelberg, Germany.
| | - Leyun Pan
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69210, Heidelberg, Germany
| | - Martin Groezinger
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69210, Heidelberg, Germany
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dimitrios Stefanos Strauss
- Department of Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany
| | - Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69210, Heidelberg, Germany
| |
Collapse
|
7
|
Zhao R, Xia Z, Ke M, Lv J, Zhong H, He Y, Gu D, Liu Y, Zeng G, Zhu L, Alexoff D, Kung HF, Wang X, Sun T. Determining the optimal pharmacokinetic modelling and simplified quantification method of [ 18F]AlF-P16-093 for patients with primary prostate cancer (PPCa). Eur J Nucl Med Mol Imaging 2024; 51:2124-2133. [PMID: 38285206 DOI: 10.1007/s00259-024-06624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/20/2024] [Indexed: 01/30/2024]
Abstract
PURPOSE This paper discusses the optimization of pharmacokinetic modelling and alternate simplified quantification method for [18F]AlF-P16-093, a novel tracer for in vivo imaging of prostate cancer. METHODS Dynamic PET/CT scans were conducted on eight primary prostate cancer patients, followed by a whole-body scan at 60 min post-injection. Time-activity curves (TACs) were obtained by drawing volumes of interest for primary prostatic and metastatic lesions. Optimal kinetic modelling involved evaluating three compartmental models (1T2K, 2T3K, and 2T4K) accounting for fractional blood volume (Vb). The simplified quantification method was then determined based on the correlation between the static uptake measure and total distribution volume (Vt) obtained from the optimal pharmacokinetic analysis. RESULTS In total, 17 intraprostatic lesions, 10 lymph nodes, and 36 osseous metastases were evaluated. Visually, the contrast of the tumor increased and showed the steepest incline within the first few minutes, whereas background activity decreased over time. Full pharmacokinetic analysis revealed that a reversible two-compartmental (2T4K) model is the preferred kinetic model for the given tracer. The kinetic parameters K1, k3, Vb, and Vt were all significantly higher in lesions when compared with normal tissue (P < 0.01). Several simplified protocols were tested for approximating comprehensive dynamic quantification in tumors, with image-based SURmean (the ratio of tumor SUVmean to blood SUVmean) within the 28-34 min window found to be sufficient for approximating the total distribution Vt values (R2 = 0.949, P < 0.01). Both Vt and SURmean correlated significantly with the total serum prostate-specific antigen (tPSA) levels (P < 0.01). CONCLUSIONS This study introduced an optimized pharmacokinetic modelling approach and a simplified acquisition method for [18F]AlF-P16-093, a novel PSMA-targeted radioligand, highlighting the feasibility of utilizing one static PET imaging (between 30 and 60 min) for the diagnosis of prostate cancer. Note that the image-derived input function in this study may not reflect the true corrected plasma input function, therefore the interpretation of the associated kinetic parameter estimates should be done with caution.
Collapse
Affiliation(s)
- Ruiyue Zhao
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Zeheng Xia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Miao Ke
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jie Lv
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Huizhen Zhong
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yulu He
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Di Gu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Yongda Liu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Guohua Zeng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Lin Zhu
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - David Alexoff
- Five Eleven Pharma Inc., 3700 Market St., Philadelphia, PA, 19104, USA
| | - Hank F Kung
- Five Eleven Pharma Inc., 3700 Market St., Philadelphia, PA, 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xinlu Wang
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Tao Sun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
8
|
Capasso G, Stefanucci A, Tolomeo A. A systematic review on the current status of PSMA-targeted imaging and radioligand therapy. Eur J Med Chem 2024; 263:115966. [PMID: 37992520 DOI: 10.1016/j.ejmech.2023.115966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
Prostate specific membrane antigen (PSMA) has been the subject of several studies in recent decades as a promising molecular target for prostate cancer (PCa), in fact it is considered an excellent molecular target for both PCa imaging (both for staging and follow-up), by means of PET/CT and for radioligand therapy. Its interesting molecular features have enabled the development of a new diagnostic and therapeutic approach for PCa, called "theranostics." Considering the abundance of PSMA-based probes that have appeared so far in the literature, the present work focuses the attention on radiopharmaceuticals with increasing clinical application, highlighting advantages and disadvantages in terms of different metabolization and excretion processes, pharmacokinetic, binding affinity and variable internalization rate, tumor-to-background ratio, residence times and toxicity profile.
Collapse
Affiliation(s)
- Giuseppe Capasso
- ITEL TELECOMUNICAZIONI S.r.l - Radiopharmaceutical Division, Italy.
| | - Azzurra Stefanucci
- Department of Pharmacy, Università degli Studi "G. d'Annunzio" Chieti, Pescara, Italy.
| | - Anna Tolomeo
- ITEL TELECOMUNICAZIONI S.r.l - Radiopharmaceutical Division, Italy.
| |
Collapse
|
9
|
Pijeira MSO, Nunes PSG, Chaviano SL, Diaz AMA, DaSilva JN, Ricci-Junior E, Alencar LMR, Chen X, Santos-Oliveira R. Medicinal (Radio) Chemistry: Building Radiopharmaceuticals for the Future. Curr Med Chem 2024; 31:5481-5534. [PMID: 37594105 DOI: 10.2174/0929867331666230818092634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Radiopharmaceuticals are increasingly playing a leading role in diagnosing, monitoring, and treating disease. In comparison with conventional pharmaceuticals, the development of radiopharmaceuticals does follow the principles of medicinal chemistry in the context of imaging-altered physiological processes. The design of a novel radiopharmaceutical has several steps similar to conventional drug discovery and some particularity. In the present work, we revisited the insights of medicinal chemistry in the current radiopharmaceutical development giving examples in oncology, neurology, and cardiology. In this regard, we overviewed the literature on radiopharmaceutical development to study overexpressed targets such as prostate-specific membrane antigen and fibroblast activation protein in cancer; β-amyloid plaques and tau protein in brain disorders; and angiotensin II type 1 receptor in cardiac disease. The work addresses concepts in the field of radiopharmacy with a special focus on the potential use of radiopharmaceuticals for nuclear imaging and theranostics.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
| | - Paulo Sérgio Gonçalves Nunes
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas SP13083-970, Brazil
| | - Samila Leon Chaviano
- Laboratoire de Biomatériaux pour l'Imagerie Médicale, Axe Médicine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada
| | - Aida M Abreu Diaz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Eduardo Ricci-Junior
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís MA65080-805, Brazil
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| |
Collapse
|
10
|
Bogdanovic B, Solari EL, Villagran Asiares A, van Marwick S, Schachoff S, Eiber M, Weber WA, Nekolla SG. Is there more than meets the eye in PSMA imaging in prostate cancer with PET/MRI? Looking closer at uptake time, correlation with PSA and Gleason score. Eur J Hybrid Imaging 2023; 7:8. [PMID: 37062775 PMCID: PMC10106533 DOI: 10.1186/s41824-023-00166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/08/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND In patients with increasing PSA and suspicion for prostate cancer, but previous negative biopsies, PET/MRI is used to test for tumours and target potential following biopsy. We aimed to determine different PSMA PET timing effects on signal kinetics and test its correlation with the patients' PSA and Gleason scores (GS). METHODS A total of 100 patients were examined for 900 s using PET/MRI approximately 1-2 h p.i. depending on the tracer used (68Ga-PSMA-11, 18F-PSMA-1007 or 18F-rhPSMA7). The scans were reconstructed in static and dynamic mode (6 equal frames capturing "late" PSMA dynamics). TACs were computed for detected lesions as well as linear regression plots against time for static (SUV) and dynamic (SUV, SUL, and percent injected dose per gram) parameters. All computed trends were tested for correlation with PSA and GS. RESULTS Static and dynamic scans allowed unchanged lesion detection despite the difference in statistics. For all tracers, the lesions in the pelvic lymph nodes and bones had a mostly negative activity concentration trend (78% and 68%, resp.), while a mostly positive, stronger trend was found for the lesions in the prostate and prostatic fossa following RPE (84% and 83%, resp.). In case of 68Ga-PSMA-11, a strong negative (Rmin = - 0.62, Rmax = - 0.73) correlation was found between the dynamic parameters and the PSA. 18F-PSMA-1007 dynamic data showed no correlation with PSA, while for 18F-rhPSMA7 dynamic data, it was consistently low positive (Rmin = 0.29, Rmax = 0.33). All tracers showed only moderate correlation against GS (Rmin = 0.41, Rmax = 0.48). The static parameters showed weak correlation with PSA (Rmin = 0.24, Rmax = 0.36) and no correlation with GS. CONCLUSION "Late" dynamic PSMA data provided additional insight into the PSMA kinetics. While a stable moderate correlation was found between the PSMA kinetics in pelvic lesions and GS, a significantly variable correlation with the PSA values was shown depending on the radiotracer used, the highest being consistently for 68Ga-PSMA-11. We reason that with such late dynamics, the PSMA kinetics are relatively stable and imaging could even take place at earlier time points as is now in the clinical routine.
Collapse
Affiliation(s)
- Borjana Bogdanovic
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Esteban L Solari
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Alberto Villagran Asiares
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sandra van Marwick
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sylvia Schachoff
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Wolfgang A Weber
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Stephan G Nekolla
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
11
|
Dias AH, Jochumsen MR, Zacho HD, Munk OL, Gormsen LC. Multiparametric dynamic whole-body PSMA PET/CT using [ 68Ga]Ga-PSMA-11 and [ 18F]PSMA-1007. EJNMMI Res 2023; 13:31. [PMID: 37060394 PMCID: PMC10105814 DOI: 10.1186/s13550-023-00981-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Routine prostate-specific membrane antigen (PSMA) positron emission tomography (PET) performed for primary staging or restaging of prostate cancer patients is usually done as a single static image acquisition 60 min after tracer administration. In this study, we employ dynamic whole-body (D-WB) PET imaging to compare the pharmacokinetics of [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 in various tissues and lesions, and to assess whether Patlak parametric images are quantitative and improve lesion detection and image readability. METHODS Twenty male patients with prostate cancer were examined using a D-WB PSMA PET protocol. Ten patients were scanned with [68Ga]Ga-PSMA-11 and ten with [18F]PSMA-1007. Kinetic analyses were made using time-activity curves (TACs) extracted from organs (liver, spleen, bone, and muscle) and lesions. For each patient, three images were produced: SUV + Patlak parametric images (Ki and DV). All images were reviewed visually to compare lesion detection, image readability was quantified using target-to-background ratios (TBR), and Ki and DV values were compared. RESULTS The two PSMA tracers exhibited markedly different pharmacokinetics in organs: reversible for [68Ga]Ga-PSMA-11 and irreversible for [18F]PSMA-1007. For both tracers, lesions kinetics were best described by an irreversible model. All parametric images were of good visual quality using both radiotracers. In general, Ki images were characterized by reduced vascular signal and increased lesion TBR compared with SUV images. No additional malignant lesions were identified on the parametric images. CONCLUSION D-WB PET/CT is feasible for both PSMA tracers allowing for direct reconstruction of parametric Ki images. The use of multiparametric PSMA images increased TBR but did not lead to the detection of more lesions. For quantitative whole-body Ki imaging, [18F]PSMA-1007 should be preferred over [68Ga]Ga-PSMA-11 due to its irreversible kinetics in organs and lesions.
Collapse
Affiliation(s)
- André H Dias
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark.
| | - Mads R Jochumsen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Helle D Zacho
- Department of Nuclear Medicine and Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ole L Munk
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lars C Gormsen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Kim SB, Song IH, Kim SY, Ko HY, Kil HS, Chi DY, Giesel FL, Kopka K, Hoepping A, Chun JH, Park HS, Yun M, Kim SE. Preclinical Evaluation of a Companion Diagnostic Radiopharmaceutical, [ 18F]PSMA-1007, in a Subcutaneous Prostate Cancer Xenograft Mouse Model. Mol Pharm 2022; 20:1050-1060. [PMID: 36583623 PMCID: PMC9906735 DOI: 10.1021/acs.molpharmaceut.2c00788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several radiolabeled prostate-specific membrane antigen (PSMA)-targeted agents have been developed for detecting prostate cancer, using positron emission tomography imaging and targeted radionuclide therapy. Among them, [18F]PSMA-1007 has several advantages, including a comparatively long half-life, delayed renal excretion, and compatible structure with α-/β-particle emitter-labeled therapeutics. This study aimed to characterize the preclinical pharmacokinetics and internal radiation dosimetry of [18F]PSMA-1007, as well as its repeatability and specificity for target binding using prostate tumor-bearing mice. In PSMA-positive tumor-bearing mice, the kidney showed the greatest accumulation of [18F]PSMA-1007. The distribution in the tumor attained its peak concentration of 2.8%ID/g at 112 min after intravenous injection. The absorbed doses in the tumor and salivary glands were 0.079 ± 0.010 Gy/MBq and 0.036 ± 0.006 Gy/MBq, respectively. The variance of the net influx (Ki) of [18F]PSMA-1007 to the tumor was minimal between scans performed in the same animals (within-subject coefficient of variation = 7.57%). [18F]PSMA-1007 uptake in the tumor was specifically decreased by 32% in Ki after treatment with a PSMA inhibitor 2-(phosphonomethyl)-pentanedioic acid (2-PMPA). In the present study, we investigated the in vivo preclinical characteristics of [18F]PSMA-1007. Our data from [18F]PSMA-1007 PET/computed tomography (CT) studies in a subcutaneous prostate cancer xenograft mouse model supports clinical therapeutic strategies that use paired therapeutic radiopharmaceuticals (such as [177Lu]Lu-PSMA-617), especially strategies with a quantitative radiation dose estimate for target lesions while minimizing radiation-induced toxicity to off-target tissues.
Collapse
Affiliation(s)
- Su Bin Kim
- Department
of Applied Bioengineering, Graduate School of Convergence Science
and Technology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul08826, Korea,Department
of Nuclear Medicine, Seoul National University
College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173
Beon-gil, Bundang-gu, Seongnam13620, Korea
| | - In Ho Song
- Department
of Nuclear Medicine, Seoul National University
College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173
Beon-gil, Bundang-gu, Seongnam13620, Korea
| | - Seon Yoo Kim
- Department
of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul03722, Korea
| | - Hae Young Ko
- Department
of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul03722, Korea
| | - Hee Seup Kil
- Research
Institute of Radiopharmaceuticals, FutureChem
Co. Ltd, Seoul04793, Korea
| | - Dae Yoon Chi
- Research
Institute of Radiopharmaceuticals, FutureChem
Co. Ltd, Seoul04793, Korea
| | - Frederik L. Giesel
- Department
of Nuclear Medicine, Heinreich-Heine-University,
University Hospital Duesseldorf, Duesseldorf40225, Germany
| | - Klaus Kopka
- Institute
of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.v., Bautzner Landstrasse 400, Dresden01328, Germany,Technische
Universität Dresden, Faculty of Chemistry and Food Chemistry,
School of Science, Dresden01069, Germany,National
Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, Dresden01307, Germany,German
Cancer Consortium (DKTK), Partner Site Dresden, Dresden01307, Germany
| | - Alexander Hoepping
- Department
of Medicinal Chemistry, ABX Advanced Biochemical
Compounds GmbH, Radeberg1454, Germany
| | - Joong-Hyun Chun
- Department
of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul03722, Korea
| | - Hyun Soo Park
- Department
of Nuclear Medicine, Seoul National University
College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173
Beon-gil, Bundang-gu, Seongnam13620, Korea,Department
of Molecular Medicine and Biopharmaceutical Sciences, Graduate School
of Convergence Science and Technology, Seoul
National University, 1 Gwanak-ro, Gwanak-gu, Seoul08826, Korea,. Tel: +82-31-787-2936. Fax: +82-31-787-4018
| | - Mijin Yun
- Department
of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul03722, Korea,. Tel: +82-2-2228-6068. Fax: +82-2-2227-8354
| | - Sang Eun Kim
- Department
of Nuclear Medicine, Seoul National University
College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173
Beon-gil, Bundang-gu, Seongnam13620, Korea,Department
of Molecular Medicine and Biopharmaceutical Sciences, Graduate School
of Convergence Science and Technology, Seoul
National University, 1 Gwanak-ro, Gwanak-gu, Seoul08826, Korea,Advanced
Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon16229, Korea,BIK Therapeutics Inc., 172 Dolma-ro, Bundang-gu, Seongnam13605, Korea,. Tel: +82-31-787-7671. Fax: +82-31-787-4018
| |
Collapse
|
13
|
Saule L, Radzina M, Liepa M, Roznere L, Lioznovs A, Ratniece M, Mamis E, Vjaters E. Recurrent Prostate Cancer Diagnostics with 18F-PSMA-1007 PET/CT: A Systematic Review of the Current State. Diagnostics (Basel) 2022; 12:diagnostics12123176. [PMID: 36553183 PMCID: PMC9777208 DOI: 10.3390/diagnostics12123176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Early diagnosis of recurrent prostate cancer is a cornerstone for further adequate therapy planning. Therefore, clinical practice and research still focuses on diagnostic tools that can detect prostate cancer in early recurrence when it is undetectable in conventional diagnostic imaging. 18F-PSMA-1007 PET/CT is a novel method to evaluate patients with biochemical recurrent PCa. The aim of this review was to evaluate the role of 18F-PSMA-1007 PET/CT in prostate cancer local recurrence, lymph node metastases and bone metastases detection. METHODS Original studies, reviews and five meta-analyses were included in this article. A total of 70 studies were retrieved, 31 were included in the study. RESULTS All patients described in the studies underwent 18F-PSMA-1007 PET/CT. The administered 18F-PSMA-1007 individual dose ranged from 159 ± 31 MBq to 363.93 ± 69.40 MBq. Results showed that 18F-PSMA-1007 PET/CT demonstrates a good detection rate in recurrent prostate cancer. CONCLUSIONS 18F-PSMA-1007 PET/CT appears to achieve reliable performance in detecting recurrent prostate cancer. The high detection rate of 18F-PSMA-1007 PET/CT in recurrent prostate cancer was confirmed, especially in local recurrence and small lymph nodes with non-specific characteristics on conventional diagnostic imaging methods. However, several authors emphasize some limitations for this tracer-for example, non-specific uptake in bone lesions that can mimic bone metastases.
Collapse
Affiliation(s)
- Laura Saule
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
- Diagnostic Radiology Institute, Paula Stradina Clinical University Hospital, LV-1002 Riga, Latvia
- Medical Faculty, University of Latvia, LV-1004 Riga, Latvia
- Correspondence: ; Tel.: +371-26131556
| | - Maija Radzina
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
- Diagnostic Radiology Institute, Paula Stradina Clinical University Hospital, LV-1002 Riga, Latvia
- Medical Faculty, University of Latvia, LV-1004 Riga, Latvia
| | - Mara Liepa
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
- Diagnostic Radiology Institute, Paula Stradina Clinical University Hospital, LV-1002 Riga, Latvia
| | - Lilita Roznere
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
| | - Andrejs Lioznovs
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
- Diagnostic Radiology Institute, Paula Stradina Clinical University Hospital, LV-1002 Riga, Latvia
| | - Madara Ratniece
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
| | - Edgars Mamis
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
- Medical Faculty, University of Latvia, LV-1004 Riga, Latvia
| | - Egils Vjaters
- Medical Faculty, University of Latvia, LV-1004 Riga, Latvia
- Center of Urology, Paula Stradina Clinical University Hospital, LV-1002 Riga, Latvia
| |
Collapse
|
14
|
Huang YT, Tseng NC, Chen YK, Huang KH, Lin HY, Huang YY, Hwang TIS, Ou YC. The Detection Performance of 18 F-Prostate-Specific Membrane Antigen-1007 PET/CT in Primary Prostate Cancer : A Systemic Review and Meta-analysis. Clin Nucl Med 2022; 47:755-762. [PMID: 35452013 DOI: 10.1097/rlu.0000000000004228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Multiple tools are now available to determine the requirement for a biopsy to diagnose prostate cancer, and PET/CT with radiolabeled prostate-specific membrane antigen (PSMA)-targeting radiotracers has been recommended for detecting primary prostate cancer. Particularly, the radiotracer 18 F-PSMA-1007 was found to be more favorable for primary tumors compared with other PSMA-targeting radiotracers because of its low clearance via the urinary tract and better image resolution. Thus, we performed a systematic review and meta-analysis to more accurately evaluate the detection performance of 18 F-PSMA-1007 PET/CT in primary prostate cancer patients. METHODS An update on the databases of PubMed/MEDLINE, EMBASE, and Cochrane Library for comprehensive literature search was performed on September 30, 2021. The pooling detection rate was calculated on a per-patient basis. The pooling median of the SUV max was analyzed from the included studies. Furthermore, the positive predictive value of 18 F-PSMA-1007 PET/CT with pathologic lesions was analyzed using the criterion standard. RESULTS Twelve studies (540 patients total) were included in the meta-analysis. The overall pooling detection rate of 18 F-PSMA-1007 per patient was 94%, and the pooling median of SUV max located at the intraprostate tumor was 16 (range, 3.7-77.7). The positive predictive value of 18 F-PSMA-1007 per lesion with histopathological validation was 0.90, detecting regional lymph node metastasis was 0.94, and detecting localized prostatic tumors was 0.84. CONCLUSIONS In the current meta-analysis, we revealed the excellent performance of 18 F-PSMA-1007 to detect localized prostatic tumor lesions and regional lymph node metastasis. Moreover, the uptake of localized tumors in primary prostate cancer was nearly liver uptake and may be considered a suspicious malignancy if it was equal to or greater than the liver uptake.
Collapse
|
15
|
Alberts I, Bütikofer L, Rominger A, Afshar-Oromieh A. A randomised, prospective and head-to-head comparison of [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 for the detection of recurrent prostate cancer in PSMA-ligand PET/CT-Protocol design and rationale. PLoS One 2022; 17:e0270269. [PMID: 35853017 PMCID: PMC9295986 DOI: 10.1371/journal.pone.0270269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
Background A number of radiopharmaceuticals are available for the detection of recurrent prostate cancer (rPC), but few comparative imaging trials have been performed comparing them. In particular, there are no prospective head-to-head comparisons of the recently introduced [18F]PSMA-1007 to the existing standard of care [68Ga]Ga-PSMA-11. The purpose of this trial is to establish the non-inferiority of the new radiopharmaceutical in terms of the rate of PET-positive findings and to obtain an intra-individual comparison of accuracy and radiopharmaceutical kinetics. Methods In this cross-over trial we will randomise 100 individuals to receive either first a standard-of-care PET/CT using [68Ga]Ga-PSMA-11 followed by an additional [18F]PSMA-1007 PET/CT within 2 weeks, or vice-versa. Inclusion criteria include patients 18 years and older with biochemical recurrence of prostate cancer following radical prostatectomy, defined as two consecutive prostate specific antigen (PSA) levels > 0.2 ng/ml. Detection rate at the patient-based level is the primary end-point. Each scan will be interpreted by a panel of six independent and masked readers (three for [68Ga]Ga-PSMA-11 and three for [18F]PSMA-1007) which consensus majority in cases of discrepancy. To confirm the PET-positivity rate at a patient based level, follow up at 6 months following the first scan will be performed to a composite standard of truth. Secondary endpoints shall include an intra-individual comparison of radiopharmaceutical-kinetics, per-region detection rate and positive predictive value. Discussion This is the first randomised prospective comparative imaging trial to compare the established [68Ga]Ga-PSMA-11 with [18F]PSMA-1007 and will determine whether the new radiopharmaceutical is non-inferior to the established standard-of-care in terms of patient-level detection rate. Clinical trial registration Registered with and approved by the regional ethics authority #2020–02903 (submitted 09.12.2020, approval 16.12.2021) and the regulatory authority SwissMedic 2020DR2103. Registered with ClinicalTrials.gov Identifier NCT05079828 and additionally in a national language in the Swiss National Clinical Trials Portal (SNCTP).
Collapse
Affiliation(s)
- Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- * E-mail:
| | | | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Liu X, Jiang T, Gao C, Liu H, Sun Y, Zou Q, Tang R, Zeng W. Detection rate of fluorine-18 prostate-specific membrane antigen-1007 PET/CT for prostate cancer in primary staging and biochemical recurrence with different serum PSA levels: A systematic review and meta-analysis. Front Oncol 2022; 12:911146. [PMID: 35936732 PMCID: PMC9353183 DOI: 10.3389/fonc.2022.911146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Background We performed a systematic review and meta-analysis to evaluate the detection rate (DR) of fluoro-prostate-specific membrane antigen (18F-PSMA-1007) PET/CT in patients with different serum prostate-specific antigen (PSA) levels in the setting of primary staging of prostate cancer (PCa) or biochemically recurring PCa. Methods A comprehensive electronic literature search of the PubMed, Embase, and Cochrane Library databases was conducted in accordance with the PRISMA statement. This study was registered in the PROSPERO database (registration number: CRD42022331595). We calculated the DR of 18F-PSMA-1007 PET/CT in PCa. Results The final analysis included 15 studies that described 1,022 patients and 2,034 lesions with 18F-PSMA-1007 PET/CT in PCa. The DR of 18F-PSMA-1007 PET/CT in patients with PCa in primary staging ranged from 90% to 100%, with a pooled estimate of 94% (95% CI: 92%–96%). The DR of 18F-PSMA-1007 PET/CT in patients with PCa in BCR ranged from 47% to 100%, with a pooled estimate of 86% (95% CI: 76%–95%). The DRs of PSA levels >2.0, 1.1–2.0, 0.51–1.0, and ≤0.5 ng/ml detected by 18F-PSMA-1007 PET/CT in a patient-based analysis were 97% (95% CI: 93%–99%), 95% (95% CI: 88%–99%), 79% (95% CI: 68%–88%), and 68% (95% CI: 58%–78%), respectively. Conclusion This meta-analysis concluded that 18F-PSMA-1007 PET/CT had a high application value for prostate cancer, including primary tumors and biochemical recurrence. The DR of 18F-PSMA-1007 PET/CT was slightly higher in primary prostate tumors than in biochemical recurrence. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022331595.
Collapse
Affiliation(s)
- Xue Liu
- PET-CT Center, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Tao Jiang
- Department of Nuclear Medicine, The First People’s Hospital of Huaihua City, Hunan, China
| | - CaiLiang Gao
- PET-CT Center, Chongqing University Three Gorges Hospital, Chongqing, China
| | - HuiTing Liu
- PET-CT Center, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yu Sun
- PET-CT Center, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qiao Zou
- PET-CT Center, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Rui Tang
- PET-CT Center, Chongqing University Three Gorges Hospital, Chongqing, China
| | - WenBing Zeng
- PET-CT Center, Chongqing University Three Gorges Hospital, Chongqing, China
- *Correspondence: WenBing Zeng,
| |
Collapse
|
17
|
Morigi JJ, Kovaleva N, Phan S. Spotlight on: “dynamic PET/CT imaging”. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Dynamic PET in prostate cancer: basic concepts and potential applications. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Lengana T, Lawal I, Janse Van Rensburg C, Mokoala K, Moshokoa E, Mazibuko S, Van de Wiele C, Maes A, Vorster M, Sathekge MM. The Diagnostic Performance of 18F-PSMA-1007 PET/CT in Prostate Cancer Patients with Early Recurrence after Definitive Therapy with a PSA <10 ng/ml. Nuklearmedizin 2022; 61:120-129. [PMID: 35421900 DOI: 10.1055/a-1759-1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM The prostate bed is one of the common sites of early recurrence of prostate cancer. The currently used PSMA ligands (68Ga-PSMA-11 and 99mTc-PSMA) undergo early urinary clearance resulting in interfering physiological activity within and surrounding the prostate. This can result in sites of cancer recurrence being obscured. 18F-PSMA-1007 has an advantage of delayed urinary clearance thus the prostate region is reviewed without any interfering physiological activity. The aim of this study was to determine the diagnostic performance of 18F-PSMA-1007 PET/CT in patients with early biochemical recurrence after definitive therapy. METHODS Forty-six Prostate cancer (mean age 66.7±7.5, range 48-87 years) presenting with biochemical recurrence (median PSA 1.6ng/ml, range 0.1-10.0) underwent non-contrast-enhanced 18F-PSMA-1007 PET/CT. PET/CT findings were evaluated qualitatively and semiquantitatively (SUVmax) and compared to the results of histology, Gleason grade, and conventional imaging. RESULTS Twenty-four of the 46 (52.2%) patients demonstrated a site of recurrence on 18F-PSMA-1007 PET/CT. Oligometastatic disease was detected in 15 (32.6%) of these patients. Of these 10 (37.5%) demonstrated intra-prostatic recurrence, lymph node disease was noted in 11 (45.8%) whilst two patients demonstrated skeletal metastases. The detection rates for PSA levels 0-<0.5, 0.5-<1, 1-2, >2 were 31.3%, 33.3%, 55.6% and 72.2% respectively. 7 (29.2%) of the positive patients had been described as negative or equivocal on conventional imaging. An optimal PSA cut-off level of 1.3ng/ml was found. CONCLUSION 18F-PSMA-1007 demonstrated good diagnostic performance detecting sites of recurrence. Its ability to detect sites of recurrence in the setting of early biochemical recurrence will have a significant impact on patient management.
Collapse
Affiliation(s)
- Thabo Lengana
- Nuclear Medicine, University of Pretoria, Pretoria, South Africa
| | - Ismaheel Lawal
- Nuclear Medicine, University of Pretoria, Pretoria, South Africa
| | - Charl Janse Van Rensburg
- Biostatistics Unit, Pretoria MRC, South African Medical Research Council, Pretoria, South Africa
| | - Kgomotso Mokoala
- Nuclear Medicine, University of Pretoria, Pretoria, South Africa
| | | | | | - Christophe Van de Wiele
- Nuclear Medicine, Universiteit Gent Faculteit Geneeskunde en Gezondheidswetenschappen, Gent, Belgium
| | - Alex Maes
- Department Nuclear Medicine, University Hospital Leuven, Kortrijk, Belgium
| | - Mariza Vorster
- Nuclear Medicine, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
20
|
Driscoll B, Shek T, Vines D, Sun A, Jaffray D, Yeung I. Phantom Validation of a Conservation of Activity-Based Partial Volume Correction Method for Arterial Input Function in Dynamic PET Imaging. Tomography 2022; 8:842-857. [PMID: 35314646 PMCID: PMC8938778 DOI: 10.3390/tomography8020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Dynamic PET (dPET) imaging can be utilized to perform kinetic modelling of various physiologic processes, which are exploited by the constantly expanding range of targeted radiopharmaceuticals. To date, dPET remains primarily in the research realm due to a number of technical challenges, not least of which is addressing partial volume effects (PVE) in the input function. We propose a series of equations for the correction of PVE in the input function and present the results of a validation study, based on a purpose built phantom. 18F-dPET experiments were performed using the phantom on a set of flow tubes representing large arteries, such as the aorta (1" 2.54 cm ID), down to smaller vessels, such as the iliac arteries and veins (1/4" 0.635 cm ID). When applied to the dPET experimental images, the PVE correction equations were able to successfully correct the image-derived input functions by as much as 59 ± 35% in the presence of background, which resulted in image-derived area under the curve (AUC) values within 8 ± 9% of ground truth AUC. The peak heights were similarly well corrected to within 9 ± 10% of the scaled DCE-CT curves. The same equations were then successfully applied to correct patient input functions in the aorta and internal iliac artery/vein. These straightforward algorithms can be applied to dPET images from any PET-CT scanner to restore the input function back to a more clinically representative value, without the need for high-end Time of Flight systems or Point Spread Function correction algorithms.
Collapse
Affiliation(s)
- Brandon Driscoll
- Quantitative Imaging for Personalized Cancer Medicine (QIPCM)—Techna Institute, University Health Network, Toronto, ON M5G 2C4, Canada; (T.S.); (D.J.); (I.Y.)
- Correspondence:
| | - Tina Shek
- Quantitative Imaging for Personalized Cancer Medicine (QIPCM)—Techna Institute, University Health Network, Toronto, ON M5G 2C4, Canada; (T.S.); (D.J.); (I.Y.)
| | - Douglass Vines
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; (D.V.); (A.S.)
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Alex Sun
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; (D.V.); (A.S.)
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - David Jaffray
- Quantitative Imaging for Personalized Cancer Medicine (QIPCM)—Techna Institute, University Health Network, Toronto, ON M5G 2C4, Canada; (T.S.); (D.J.); (I.Y.)
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; (D.V.); (A.S.)
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Ivan Yeung
- Quantitative Imaging for Personalized Cancer Medicine (QIPCM)—Techna Institute, University Health Network, Toronto, ON M5G 2C4, Canada; (T.S.); (D.J.); (I.Y.)
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; (D.V.); (A.S.)
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
21
|
Is there a diagnostic benefit of late-phase abdomino-pelvic PET/CT after urination as part of whole-body 68 Ga-PSMA-11 PET/CT for restaging patients with biochemical recurrence of prostate cancer after radical prostatectomy? EJNMMI Res 2022; 12:12. [PMID: 35244791 PMCID: PMC8897520 DOI: 10.1186/s13550-022-00885-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/15/2022] [Indexed: 12/31/2022] Open
Abstract
Background To assess the diagnostic value of an additional late-phase PET/CT scan after urination as part of 68 Ga-PSMA-11 PET/CT for the restaging of patients with biochemically recurrent prostate cancer (BCR). Methods This retrospective trial included patients with BCR following radical prostatectomy, who underwent standard whole-body early-phase PET/CT performed 105 ± 45 min and an additional late-phase PET/CT performed 159 ± 13 min after injection of 68 Ga-PSMA-11. Late-phase PET/CT covered a body volume from below the liver to the upper thighs and was conducted after patients had used the bathroom to empty their urinary bladder. Early- and late-phase images were evaluated regarding lesion count, type, localisation, and SUVmax. Reference standard was histopathology and/or follow-up imaging. Results Whole-body early-phase PET/CT detected 93 prostate cancer lesions in 33 patients. Late-phase PET/CT detected two additional lesions in two patients, both local recurrences. In total, there were 57 nodal, 28 bone, and 3 lung metastases, and 7 local recurrences. Between early- and late-phase PET/CT, lymph node metastases showed a significant increase of SUVmax from 14.5 ± 11.6 to 21.5 ± 17.6 (p = 0.00007), translating to a factor of + 1.6. Benign lymph nodes in the respective regions showed a significantly lower increase of SUVmax of 1.4 ± 0.5 to 1.7 ± 0.5 (p = 0.0014, factor of + 1.2). Local recurrences and bone metastases had a SUVmax on late-phase PET/CT that was + 1.7 and + 1.1 times higher than the SUVmax on early-phase PET/CT, respectively. Conclusion In patients with BCR following radical prostatectomy, an additional abdomino-pelvic late-phase 68 Ga-PSMA-11 PET/CT scan performed after emptying the urinary bladder may help to detect local recurrences missed on standard whole-body 68 Ga-PSMA-11 PET/CT. Lymph node metastases show a higher SUVmax and a stronger increase of SUVmax than benign lymph nodes on late-phase PET/CT, hence, biphasic 68 Ga-PSMA-11 PET/CT might help to distinguish between malignant and benign nodes. Bone metastases, and especially local recurrences, also demonstrate a metabolic increase over time.
Collapse
|
22
|
18F-PSMA-1007 PET in Biochemical Recurrent Prostate Cancer: An Updated Meta-Analysis. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:3502389. [PMID: 35002568 PMCID: PMC8710160 DOI: 10.1155/2021/3502389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/05/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022]
Abstract
Background Prostate-specific membrane antigen- (PSMA-) targeted agents labeled with fluorine-18 (18F) have recently become available to evaluate patients with biochemical recurrent prostate cancer (BRPCa) by using positron emission tomography/computed tomography (PET/CT) or positron emission tomography/magnetic resonance imaging (PET/MRI). We performed a systematic review and meta-analysis about the detection rate (DR) of 18F-PSMA-1007 PET/CT or PET/MRI in BRPCa patients. Methods A comprehensive computer literature search of PubMed/MEDLINE, EMBASE, and Cochrane Library databases for studies published through 17 May 2021 was carried out using the following search algorithm: “PSMA” AND “1007”. Only studies providing data on the DR of 18F-PSMA-1007 PET/CT or PET/MRI in BRPCa were included. A random-effects model was used to calculate the pooled DR on a per scan basis. Results Fifteen articles (853 patients) were selected and included in the systematic review, and ten were included in the quantitative analysis. Most of the studies reported a good DR of 18F-PSMA-1007 PET/CT or PET/MRI in BRPCa including also patients with low prostate-specific membrane antigen (PSA) values. The DR of 18F-PSMA-1007 PET/CT or PET/MRI was dependent on PSA serum values. The pooled DR was 81.3% (95% confidence interval: 74.6–88%) with statistical heterogeneity. A significant reporting bias (publication bias) was not detected. Conclusions 18F-PSMA-1007 PET/CT or PET/MRI showed a good DR in BRPCa patients in line with other PSMA-targeted agents. The DR of 18F-PSMA-1007 PET/CT or PET/MRI is influenced by serum PSA values. These findings should be confirmed by prospective multicentric trials.
Collapse
|
23
|
Dimitrakopoulou-Strauss A, Pan L, Sachpekidis C. Parametric Imaging With Dynamic PET for Oncological Applications: Protocols, Interpretation, Current Applications and Limitations for Clinical Use. Semin Nucl Med 2021; 52:312-329. [PMID: 34809877 DOI: 10.1053/j.semnuclmed.2021.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear medicine imaging modalities, and in particular positron emission tomography (PET), provide functional images that demonstrate the mean radioactivity distribution at a defined point in time. With the help of mathematical model's, it is possible to depict isolated parameters of the radiotracers' pharmacokinetics and to visualize them. These so called parametric images add a new dimension to the existing conventional PET images and provide more detailed information about the tracer distribution over time and space. Prerequisite for the calculation of parametric images, which reflect specific pharmacokinetic parameters, is the dynamic PET (dPET) data acquisition. Hitherto, PET parametric imaging has mainly found use for research purposes. However, it has not been yet implemented into clinical routine, since it is more time-consuming, it requires a complicated analysis and still lacks a clear benefit over conventional PET imaging. However, the recent introduction of new PET-CT scanners with an ultralong field of view, which allow a faster data acquisition and are associated with higher sensitivity, as well as the development of more sophisticated evaluation software packages will probably lead to a renaissance of dPET and parametric maps even of the whole body. The implementation of dPET imaging in daily routine with appropriate acquisition protocols, as well as the calculation, interpretation and potential clinical applications of parametric images will be discussed in this review article.
Collapse
Affiliation(s)
| | - Leyun Pan
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
24
|
Wang G, Hong H, Zang J, Liu Q, Jiang Y, Fan X, Zhu Z, Zhu L, Kung HF. Head-to-head comparison of [ 68 Ga]Ga-P16-093 and [ 68 Ga]Ga-PSMA-617 in dynamic PET/CT evaluation of the same group of recurrent prostate cancer patients. Eur J Nucl Med Mol Imaging 2021; 49:1052-1062. [PMID: 34557930 DOI: 10.1007/s00259-021-05539-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE This study was prospectively designed to evaluate the early dynamic organ distribution and tumor detection capability of [68 Ga]Ga-P16-093, which was compared with [68 Ga]Ga-PSMA-617 in the same group of recurrent prostate cancer patients. METHODS Twenty patients with recurrent prostate cancer were enrolled. In 2 consecutive days, each patient underwent a 60-min dynamic PET/CT scan after intravenous administration of 148-185 MBq (4-5 mCi) [68 Ga]Ga-P16-093 and [68 Ga]Ga-PSMA-617, respectively. Following a low-dose CT scan, serial dynamic PET scans were performed from head to proximal thigh at 9 time points (30 s/bed at 4, 7, 10, 13, and 16 min; 1 min/bed at 20, 30, and 45 min; and 2 min/bed at 60 min). Standardized uptake values were measured for semi-quantitative comparison. RESULTS [68 Ga]Ga-P16-093 PET/CT revealed a significantly higher tumor uptake at 4 min (SUVmax 7.88 ± 5.26 vs. 6.01 ± 3.88, P < 0.001), less blood pool retention at 4 min (SUVmean 5.12 ± 1.16 vs. 6.14 ± 0.98, P < 0.001), and lower bladder accumulation at 60 min (SUVmean 31.33 ± 27.47 vs. 48.74 ± 34.01, P = 0.042) than [68 Ga]Ga-PSMA-617 scan. Significantly higher [68 Ga]Ga-P16-093 uptakes were also observed in the parotid gland, liver, spleen, and kidney. Besides, [68 Ga]Ga-P16-093 exhibited a better detectability of tumor than [68 Ga]Ga-PSMA-617 (366 vs. 321, P = 0.009). CONCLUSIONS [68 Ga]Ga-P16-093 showed advantages over [68 Ga]Ga-PSMA-617 with higher tumor uptakes, tumor-to-blood pool ratio and detection capability, less blood pool, and bladder accumulation in recurrent prostate cancer patients. TRIAL REGISTRATION [68 Ga]Ga-P16-093 and [68 Ga]Ga-PSMA-617 PET/CT Imaging in the Same Group of Prostate Cancer Patients (NCT04796467, Registered 12 March 2021, retrospectively registered) URL of registry: https://clinicaltrials.gov/ct2/show/NCT04796467.
Collapse
Affiliation(s)
- Guochang Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Haiyan Hong
- College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Jie Zang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Qingxing Liu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Yuanyuan Jiang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Xinrong Fan
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Zhaohui Zhu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Lin Zhu
- College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, China.
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
Strauss DS, Sachpekidis C, Kopka K, Pan L, Haberkorn U, Dimitrakopoulou-Strauss A. Pharmacokinetic studies of [ 68 Ga]Ga-PSMA-11 in patients with biochemical recurrence of prostate cancer: detection, differences in temporal distribution and kinetic modelling by tissue type. Eur J Nucl Med Mol Imaging 2021; 48:4472-4482. [PMID: 34110436 PMCID: PMC8566392 DOI: 10.1007/s00259-021-05420-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022]
Abstract
Purpose [68 Ga]Ga-PSMA-11 is a promising radiopharmaceutical for detecting tumour lesions in prostate cancer, but knowledge of the pharmacokinetics is limited. Dynamic PET-CT was performed to investigate the tumour detection and differences in temporal distribution, as well as in kinetic modelling of [68 Ga]Ga-PSMA-11 by tissue type. Methods Dynamic PET-CT over the lower abdomen and static whole-body PET-CT 80–90 min p.i. from 142 patients with biochemical recurrence were retrospectively analysed. Detection rates were compared to PSA levels. Average time-activity curves were calculated from tumour lesions and normal tissue. A three-compartment model and non-compartment model were used to calculate tumour kinetics. Results Overall detection rate was 70.42%, and in patients with PSA > 0.4 ng/mL 76.67%. All tumour lesions presented the steepest standardised uptake value (SUV) incline in the first 7–8 min before decreasing to different degrees. Normal tissue presented with a low uptake, except for the bladder, which accumulated activity the steepest 15–16 min. p.i.. While all tumour lesions continuously increased, bone metastases showed the steepest decline, resulting in a significantly lower SUV than lymph node metastases (60 and 80–90 min). Transport rate from the blood and tracer binding and internalisation rate were lower in bone metastases. Heterogeneity (fractal dimension) and vascular density were significantly lower in bone metastases. Conclusion Even at low PSA between 0.51 and 0.99 ng/mL, detection rate was 57%. Dynamic imaging showed a time window in the first 10 min where tumour uptake is high, but no bladder activity is measured, aiding accuracy in distinction of local recurrence. Kinetic modelling provided additional information for tumour characterisation by tissue type. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05420-1.
Collapse
Affiliation(s)
- Dimitrios S Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.
| | - C Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - K Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz Zentrum Dresden Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), Heidelberg and partner site Dresden, Germany.,Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Dresden, Germany
| | - L Pan
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - U Haberkorn
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg and partner site Dresden, Germany.,Division of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany
| | - A Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| |
Collapse
|
26
|
Ahmadi Bidakhvidi N, Laenen A, Jentjens S, Deroose CM, Van Laere K, De Wever L, Mai C, Berghen C, De Meerleer G, Haustermans K, Joniau S, Everaerts W, Goffin K. Parameters predicting [ 18F]PSMA-1007 scan positivity and type and number of detected lesions in patients with biochemical recurrence of prostate cancer. EJNMMI Res 2021; 11:41. [PMID: 33929626 PMCID: PMC8087750 DOI: 10.1186/s13550-021-00783-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Detection of the site of recurrence using PSMA-PET/CT is important to guide treatment in patients with biochemical recurrence of prostate cancer (PCa). The aim of this study was to evaluate the positivity rate of [18F]PSMA-1007-PET/CT in patients with biochemically recurrent PCa and identify parameters that predict scan positivity as well as the type and number of detected lesions. This monocentric retrospective study included 137 PCa patients with biochemical recurrence who underwent one or more [18F]PSMA-1007-PET/CT scans between August 2018 and June 2019. PET-positive malignant lesions were classified as local recurrence, lymph node (LN), bone or soft tissue lesions. The association between biochemical/paraclinical parameters, as PSA value, PSA doubling time, PSA velocity, Gleason score (GS) and androgen deprivation therapy (ADT), and scan positivity as well as type and number of detected lesions was evaluated using logistic regression analysis (binary outcomes) and Poisson models (count-type outcomes). RESULTS We included 175 [18F]PSMA-1007-PET/CT scans after radical prostatectomy (78%), external beam radiation therapy (8.8%), ADT (7.3%), brachytherapy (5.1%) and high intensity focused ultrasound (0.7%) as primary treatment (median PSA value 1.6 ng/ml). Positivity rate was 80%. PSA value and PSA velocity were significant predictors of scan positivity as well as of the presence of bone and soft tissue lesions and number of bone, LN and soft tissue lesions, both in uni- and/or multivariable analysis. Multivariable analysis also showed prior ADT as predictor of bone and soft tissue lesions, GS as predictor of the number of bone lesions and ongoing ADT as predictor of the number of LN lesions. CONCLUSION [18F]PSMA-1007-PET/CT showed a high positivity rate in patients with biochemically recurrent PCa. PSA value and PSA velocity were significant predictors of scan positivity as well as of the presence and number of bone and soft tissue lesions and the number of LN lesions. Our findings can guide clinicians in optimal patient selection for [18F]PSMA-1007-PET/CT and support further research leading to the development of a prediction nomogram.
Collapse
Affiliation(s)
| | - Annouschka Laenen
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, 3000, Leuven, Belgium
| | - Sander Jentjens
- Department of Nuclear Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Christophe M Deroose
- Department of Nuclear Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium
| | - Koen Van Laere
- Department of Nuclear Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium
| | - Liesbeth De Wever
- Department of Radiology, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Cindy Mai
- Department of Radiology, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Charlien Berghen
- Department of Radiation Oncology, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Gert De Meerleer
- Department of Radiation Oncology, University Hospitals Leuven, 3000, Leuven, Belgium.,Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000, Leuven, Belgium
| | - Karin Haustermans
- Department of Radiation Oncology, University Hospitals Leuven, 3000, Leuven, Belgium.,Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000, Leuven, Belgium
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, 3000, Leuven, Belgium.,Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, 3000, Leuven, Belgium
| | - Wouter Everaerts
- Department of Urology, University Hospitals Leuven, 3000, Leuven, Belgium.,Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, 3000, Leuven, Belgium
| | - Karolien Goffin
- Department of Nuclear Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
27
|
Foley RW, Redman SL, Graham RN, Loughborough WW, Little D. Fluorine-18 labelled prostate-specific membrane antigen (PSMA)-1007 positron-emission tomography-computed tomography: normal patterns, pearls, and pitfalls. Clin Radiol 2020; 75:903-913. [PMID: 32782128 DOI: 10.1016/j.crad.2020.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/30/2020] [Indexed: 11/15/2022]
Abstract
Prostate-specific membrane antigen (PSMA)-based positron-emission tomography (PET)-computed tomography (CT) has shown great promise in prostate cancer imaging. This technique has demonstrated particular utility in the staging of high-risk primary cancer and in the localisation of recurrent disease. The use of fluorine-18 PSMA-1007 is advantageous, as it is excreted via the hepatobiliary system rather than urinary and the longer half-life of fluorine-18 compared to gallium tracers, allows for PSMA imaging in centres without a gallium generator. However, imaging with this tracer is not without flaws and areas of ambiguity remain. In this article, the biodistribution, clinical indications, and pearls of 18F-PSMA-1007 PET-CT in patients with prostate cancer will be discussed, as well as the potential pitfalls in the reporting of these studies.
Collapse
Affiliation(s)
- R W Foley
- Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Avon, Bath, BA1 3NG, UK
| | - S L Redman
- Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Avon, Bath, BA1 3NG, UK
| | - R N Graham
- Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Avon, Bath, BA1 3NG, UK
| | - W W Loughborough
- Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Avon, Bath, BA1 3NG, UK
| | - D Little
- Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Avon, Bath, BA1 3NG, UK.
| |
Collapse
|
28
|
Morigi JJ, Anderson J, DE Nunzio C, Fanti S. Prostate specific membrane antigen positron emission tomography/computed tomography and staging high risk prostate cancer: a non-systematic review of high clinical impact literature. Minerva Urol Nephrol 2020; 73:32-41. [PMID: 32550630 DOI: 10.23736/s2724-6051.20.03739-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Prostate specific membrane antigen (PSMA) positron emission tomography (PET) with computed tomography (CT) is a promising molecular imaging technique for prostate cancer (PCa). Although not yet included in international guidelines, PSMA PET/CT is commonly used in clinical practice to stage patients with newly diagnosed PCa. This review focuses on the most up-to-date literature on staging high-risk prostate cancer with PSMA PET/CT. EVIDENCE ACQUISITION An online based literature research encompassing original studies, reviews and meta-analysis was performed in the month of November of 2019. The most relevant and impactful research was then extracted based on the expertise of the authors, with the specific focus of highlighting the clinical impact and appropriateness of PSMA PET/CT in staging PCa. EVIDENCE SYNTHESIS The use of PSMA PET/CT is appropriate in all high-risk patients with newly diagnosed PCa as it will often have a significant clinical impact. Although preliminary findings are promising, there is still a scarcity of data regarding the performance of PSMA PET/CT vs. other modalities in defining disease within the prostate gland. There is good evidence suggesting that PSMA PET/CT may be superior to every other imaging modality in assessing loco-regional and distant metastatic disease. CONCLUSIONS PSMA PET/CT has the potential to become a gold standard in staging high risk prostate cancer, providing clinicians with accurate information on the extent of disease within the prostate and the presence of loco-regional and distant metastatic disease within a single scan.
Collapse
Affiliation(s)
- Joshua J Morigi
- Unit of Positron Emission Tomography and Computed Tomography, Royal Darwin Hospital, Darwin, Australia -
| | - Jack Anderson
- Unit of Positron Emission Tomography and Computed Tomography, Royal Darwin Hospital, Darwin, Australia
| | | | - Stefano Fanti
- Unit of Metropolitan Nuclear Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
29
|
Dimitrakopoulou-Strauss A, Pan L, Sachpekidis C. Kinetic modeling and parametric imaging with dynamic PET for oncological applications: general considerations, current clinical applications, and future perspectives. Eur J Nucl Med Mol Imaging 2020; 48:21-39. [PMID: 32430580 PMCID: PMC7835173 DOI: 10.1007/s00259-020-04843-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Dynamic PET (dPET) studies have been used until now primarily within research purposes. Although it is generally accepted that the information provided by dPET is superior to that of conventional static PET acquisitions acquired usually 60 min post injection of the radiotracer, the duration of dynamic protocols, the limited axial field of view (FOV) of current generation clinical PET systems covering a relatively small axial extent of the human body for a dynamic measurement, and the complexity of data evaluation have hampered its implementation into clinical routine. However, the development of new-generation PET/CT scanners with an extended FOV as well as of more sophisticated evaluation software packages that offer better segmentation algorithms, automatic retrieval of the arterial input function, and automatic calculation of parametric imaging, in combination with dedicated shorter dynamic protocols, will facilitate the wider use of dPET. This is expected to aid in oncological diagnostics and therapy assessment. The aim of this review is to present some general considerations about dPET analysis in oncology by means of kinetic modeling, based on compartmental and noncompartmental approaches, and parametric imaging. Moreover, the current clinical applications and future perspectives of the modality are outlined.
Collapse
Affiliation(s)
- Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Leyun Pan
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|