1
|
Gonzalez-Ortiz F, Karikari TK, Taylor-Te Vruchte D, Shepherd D, Kirsebom BE, Fladby T, Platt F, Blennow K. Plasma phosphorylated-tau217 is increased in Niemann-Pick disease type C. Brain Commun 2024; 6:fcae375. [PMID: 39502943 PMCID: PMC11535543 DOI: 10.1093/braincomms/fcae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/15/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Niemann-Pick disease type C and Alzheimer's disease are distinct neurodegenerative disorders that share the presence of neurofibrillary tangle pathology. In this multicentre study, we measured plasma phosphorylated-tau217 in controls (n = 60), Niemann-Pick disease type C (n = 71) and Alzheimer's disease (n = 30 positive for amyloid and negative for tau in CSF [A+T-] and n = 30 positive for both [A+T+]). Annual Severity Increment Score and Lysotracker measurements were evaluated in the Niemann-Pick disease type C group to estimate the rate of progression and lysosomal enlargement, respectively. In the cross-sectional analysis, plasma phosphorylated-tau217 was increased in Niemann-Pick disease type C compared with controls (2.52 ± 1.93 versus 1.02 ± 0.34 pg/mL, respectively, P < 0.001) and inversely correlated with age at disease onset (R = -0.54, P < 0.001). In the longitudinal analysis, plasma phosphorylated-tau217 was associated with disease progression determined by Annual Severity Increment Score (R = 0.48, P < 0.001) and lysosomal enlargement (R = 0.26, P = 0.004). We found no differences between A+T- Alzheimer's disease and Niemann-Pick disease type C (2.67 ± 1.18 versus 2.52 ± 1. 93 pg/mL, P = 0.31); however, A+T+ Alzheimer's disease had significantly higher levels than Niemann-Pick disease type C (3.26 ± 1.36 versus 2.52 ± 1.93 pg/mL, P = 0.001). Our findings suggest that plasma p-tau217 can increase in brain disorders with isolated tau pathology. Plasma p-tau217 associations with disease progression and severity make it a potential marker in Niemann-Pick disease type C.
Collapse
Affiliation(s)
- Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, 43180, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 43180, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, 43180, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | | | - Dawn Shepherd
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromsø, 9019, Norway
- Department of Psychology, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, 9031, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, 1478, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, 0316, Norway
| | - Frances Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, 43180, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 43180, Sweden
- Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, 75013, France
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Stern S, Crisamore K, Schuck R, Pacanowski M. Evaluation of the landscape of pharmacodynamic biomarkers in Niemann-Pick Disease Type C (NPC). Orphanet J Rare Dis 2024; 19:280. [PMID: 39061081 PMCID: PMC11282650 DOI: 10.1186/s13023-024-03233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/27/2024] [Indexed: 07/28/2024] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive, progressive disorder resulting from variants in NPC1 or NPC2 that leads to the accumulation of cholesterol and other lipids in late endosomes and lysosomes. The clinical manifestations of the disease vary by age of onset, and severity is often characterized by neurological involvement. To date, no disease-modifying therapy has been approved by the United States Food and Drug Administration (FDA) and treatment is typically supportive. The lack of robust biomarkers contributes to challenges associated with disease monitoring and quantifying treatment response. In recent years, advancements in detection methods have facilitated the identification of biomarkers in plasma and cerebral spinal fluid from patients with NPC, namely calbindin D, neurofilament light chain, 24(S)hydroxycholesterol, cholestane-triol, trihydroxycholanic acid glycinate, amyloid-β, total and phosphorylated tau, and N-palmitoyl-O-phosphocholine-serine. These biomarkers have been used to support several clinical trials as pharmacodynamic endpoints. Despite the significant advancements in laboratory techniques, translation of those advancements has lagged, and it remains unclear which biomarkers correlate with disease severity and progression, or which biomarkers could inform treatment response. In this review, we assess the landscape of biomarkers currently proposed to guide disease monitoring or indicate treatment response in patients with NPC.
Collapse
Affiliation(s)
- Sydney Stern
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA.
| | - Karryn Crisamore
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Robert Schuck
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Michael Pacanowski
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| |
Collapse
|
3
|
Wu F, Su D, Wang W, Song X, Fan S, Su J, Ma L, Xu J, Rao Q. Case report: Clinical, imaging, and genetic characteristics of type B niemann pick disease combined with segawa syndrome diagnosed via dual gene sequencing. Front Genet 2024; 15:1391936. [PMID: 38826802 PMCID: PMC11140116 DOI: 10.3389/fgene.2024.1391936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/02/2024] [Indexed: 06/04/2024] Open
Abstract
Niemann Pick disease B (NPB) often presents with hepatosplenomegaly and lung pathological changes, but it usually does not present with central nervous system symptoms. This report presents the unique case of a 21-year-old woman with a 10-year history of hard skin and hepatosplenomegaly. Genetic sequencing revealed NPB and also suggested Segawa syndrome. Although symptomatic supportive treatments were administered in an attempt to improve muscle tone and treat the skin sclerosis, their efficacy was not satisfactory, and the patient refused further treatment. This case provides several noteworthy findings. First, although NPB and Segawa syndrome are rare, both are autosomal recessive inherited diseases that share common clinical symptoms and imaging manifestations. Second, when NPB and Segawa syndrome are highly suspected, screening for tyrosine hydroxylase (TH) and sphingomyelin phosphodiesterase-1 (SMPD1) gene mutations is critical to determine an accurate diagnosis. Finally, early diagnosis and comprehensive therapies are crucial for improving the prognosis of patients with NPB and Segawa syndrome.
Collapse
Affiliation(s)
- Fang Wu
- Department of Radiology, Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Dongying Su
- Department of Radiology, Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Weisi Wang
- Department of Respiratory, Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xia Song
- Department of Radiology, Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Shufeng Fan
- Department of Radiology, Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jinzhan Su
- Department of Radiology, Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Linying Ma
- Department of Radiology, Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jianxia Xu
- Department of Radiology, Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Qinpan Rao
- Department of Radiology, Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Cooper O, Hallett P, Isacson O. Upstream lipid and metabolic systems are potential causes of Alzheimer's disease, Parkinson's disease and dementias. FEBS J 2024; 291:632-645. [PMID: 36165619 PMCID: PMC10040476 DOI: 10.1111/febs.16638] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Brain health requires circuits, cells and molecular pathways to adapt when challenged and to promptly reset once the challenge has resolved. Neurodegeneration occurs when adaptability becomes confined, causing challenges to overwhelm neural circuitry. Studies of rare and common neurodegenerative diseases suggest that the accumulation of lipids can compromise circuit adaptability. Using microglia as an example, we review data that suggest increased lipid concentrations cause dysfunctional inflammatory responses to immune challenges, leading to Alzheimer's disease, Parkinson's disease and dementia. We highlight current approaches to treat lipid metabolic and clearance pathways and identify knowledge gaps towards restoring adaptive homeostasis in individuals who are at-risk of losing cognition.
Collapse
Affiliation(s)
- Oliver Cooper
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Penny Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| |
Collapse
|
5
|
Ravanfar P, Syeda WT, Rushmore RJ, Moffat B, Lyall AE, Merritt AH, Devenyi GA, Chakravarty MM, Desmond P, Cropley VL, Makris N, Shenton ME, Bush AI, Velakoulis D, Pantelis C, Walterfang M. Investigation of Brain Iron in Niemann-Pick Type C: A 7T Quantitative Susceptibility Mapping Study. AJNR Am J Neuroradiol 2023; 44:768-775. [PMID: 37348967 PMCID: PMC10337610 DOI: 10.3174/ajnr.a7894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/03/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND AND PURPOSE While brain iron dysregulation has been observed in several neurodegenerative disorders, its association with the progressive neurodegeneration in Niemann-Pick type C is unknown. Systemic iron abnormalities have been reported in patients with Niemann-Pick type C and in animal models of Niemann-Pick type C. In this study, we examined brain iron using quantitative susceptibility mapping MR imaging in individuals with Niemann-Pick type C compared with healthy controls. MATERIALS AND METHODS A cohort of 10 patients with adolescent- and adult-onset Niemann-Pick type C and 14 age- and sex-matched healthy controls underwent 7T brain MR imaging with T1 and quantitative susceptibility mapping acquisitions. A probing whole-brain voxelwise comparison of quantitative susceptibility mapping between groups was conducted. Mean quantitative susceptibility mapping in the ROIs (thalamus, hippocampus, putamen, caudate nucleus, and globus pallidus) was further compared. The correlations between regional volume, quantitative susceptibility mapping values, and clinical features, which included disease severity on the Iturriaga scale, cognitive function, and the Social and Occupational Functioning Assessment Scale, were explored as secondary analyses. RESULTS We observed lower volume in the thalamus and voxel clusters of higher quantitative susceptibility mapping in the pulvinar nuclei bilaterally in patients with Niemann-Pick type C compared with the control group. In patients with Niemann-Pick type C, higher quantitative susceptibility mapping in the pulvinar nucleus clusters correlated with lower volume of the thalamus on both sides. Moreover, higher quantitative susceptibility mapping in the right pulvinar cluster was associated with greater disease severity. CONCLUSIONS Our findings suggest iron deposition in the pulvinar nucleus in Niemann-Pick type C disease, which is associated with thalamic atrophy and disease severity. This preliminary evidence supports the link between iron and neurodegeneration in Niemann-Pick type C, in line with existing literature on other neurodegenerative disorders.
Collapse
Affiliation(s)
- P Ravanfar
- From Melbourne Neuropsychiatry Centre (P.R., W.T.S., A.H.M., V.L.C., D.V., C.P., M.W.), the Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Psychiatry Neuroimaging Laboratory (P.R., R.J.R., A.E.L., N.M., M.E.S.)
| | - W T Syeda
- From Melbourne Neuropsychiatry Centre (P.R., W.T.S., A.H.M., V.L.C., D.V., C.P., M.W.), the Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - R J Rushmore
- Psychiatry Neuroimaging Laboratory (P.R., R.J.R., A.E.L., N.M., M.E.S.)
- Center for Morphometric Analysis (R.J.R., N.M.), Massachusetts General Hospital, Charlestown, Massachusetts
- Department of Anatomy and Neurobiology (R.J.R.), Boston University School of Medicine, Boston, Massachusetts
| | - B Moffat
- Melbourne Brain Centre Imaging Unit (B.M.), Department of Radiology, University of Melbourne, Parkville, Victoria, Australia
| | - A E Lyall
- Psychiatry Neuroimaging Laboratory (P.R., R.J.R., A.E.L., N.M., M.E.S.)
- Department of Psychiatry (A.E.L., M.E.S.)
- Department of Psychiatry (A.E.L., M.E.S.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - A H Merritt
- From Melbourne Neuropsychiatry Centre (P.R., W.T.S., A.H.M., V.L.C., D.V., C.P., M.W.), the Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - G A Devenyi
- Cerebral Imaging Center (G.A.D., M.M.C.), Douglas Research Centre, Montreal, Quebec, Canada
- Departments of Psychiatry (G.A.D., M.M.C.)
| | - M M Chakravarty
- Cerebral Imaging Center (G.A.D., M.M.C.), Douglas Research Centre, Montreal, Quebec, Canada
- Departments of Psychiatry (G.A.D., M.M.C.)
- Biomedical Engineering (M.M.C.), McGill University, Montreal, Quebec, Canada
| | | | - V L Cropley
- From Melbourne Neuropsychiatry Centre (P.R., W.T.S., A.H.M., V.L.C., D.V., C.P., M.W.), the Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - N Makris
- Psychiatry Neuroimaging Laboratory (P.R., R.J.R., A.E.L., N.M., M.E.S.)
- Center for Morphometric Analysis (R.J.R., N.M.), Massachusetts General Hospital, Charlestown, Massachusetts
| | - M E Shenton
- Psychiatry Neuroimaging Laboratory (P.R., R.J.R., A.E.L., N.M., M.E.S.)
- Department of Psychiatry (A.E.L., M.E.S.)
- Department of Radiology (M.E.S.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry (A.E.L., M.E.S.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - A I Bush
- Melbourne Dementia Research Centre (A.I.B.)
| | - D Velakoulis
- From Melbourne Neuropsychiatry Centre (P.R., W.T.S., A.H.M., V.L.C., D.V., C.P., M.W.), the Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Neuropsychiatry (D.V., M.W.), Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - C Pantelis
- From Melbourne Neuropsychiatry Centre (P.R., W.T.S., A.H.M., V.L.C., D.V., C.P., M.W.), the Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health (C.P.), The University of Melbourne, Parkville, Victoria, Australia
| | - M Walterfang
- From Melbourne Neuropsychiatry Centre (P.R., W.T.S., A.H.M., V.L.C., D.V., C.P., M.W.), the Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Neuropsychiatry (D.V., M.W.), Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Golden E, van Gool R, Cay M, Goodlett B, Cao A, Al-Hertani W, Upadhyay J. The experience of living with Niemann-Pick type C: a patient and caregiver perspective. Orphanet J Rare Dis 2023; 18:120. [PMID: 37210540 DOI: 10.1186/s13023-023-02741-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/18/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Niemann-Pick disease type C (NPC) is a rare inherited lysosomal storage disease typified by accumulation of cholesterol and other lipids in late endosomes/lysosomes, thereby resulting in a spectrum of neurological, psychiatric, and systemic symptoms (notably liver disease). Though it is well-known that NPC exacts a physical and emotional toll on both patients and caregivers, the burden of NPC can vary between patients, while the challenges of living with NPC can evolve over time (i.e., from time of diagnosis to the present day). To further grasp patient and caregiver perceptions and experiences with NPC, we carried out focus group discussions with pediatric and adult individuals with NPC (N = 19), with partial or full representation of the patient by their caregiver. Furthermore, we utilized our NPC focus group discussion to provide guidance on study design parameters and feasibility of prospective investigations aiming to characterize the central manifestations of NPC using neuroimaging, specifically, magnetic resonance imaging (MRI) methodology. RESULTS Focus group discussions revealed that neurological signs, including declining cognition, memory loss, and psychiatric symptoms, as well as increasingly impaired mobility and motor function, are among the most pressing past and current concerns for patients and caregivers. Moreover, several participants also expressed concern over a loss of independence, social exclusion, and uncertainty for what the future holds. Caregivers described the challenges that participation in research poses, which included logistical difficulties mainly due to traveling with medical equipment and the need for sedation in a minority of patients when undergoing MRI. CONCLUSIONS The findings derived from focus group discussions highlight the outstanding challenges that NPC patients and their caregivers face daily, while also providing direction on the potential scope and feasibility of future studies focusing on the central phenotypes of NPC.
Collapse
Affiliation(s)
- Emma Golden
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Raquel van Gool
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Mariesa Cay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Benjamin Goodlett
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda Cao
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Walla Al-Hertani
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
7
|
Fiorenza MT, La Rosa P, Canterini S, Erickson RP. The Cerebellum in Niemann-Pick C1 Disease: Mouse Versus Man. CEREBELLUM (LONDON, ENGLAND) 2023; 22:102-119. [PMID: 35040097 PMCID: PMC7617266 DOI: 10.1007/s12311-021-01347-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 02/01/2023]
Abstract
Selective neuronal vulnerability is common to most degenerative disorders, including Niemann-Pick C (NPC), a rare genetic disease with altered intracellular trafficking of cholesterol. Purkinje cell dysfunction and loss are responsible for cerebellar ataxia, which is among the prevailing neurological signs of the NPC disease. In this review, we focus on some questions that are still unresolved. First, we frame the cerebellar vulnerability in the context of the extended postnatal time length by which the development of this structure is completed in mammals. In line with this thought, the much later development of cerebellar symptoms in humans is due to the later development and/or maturation of the cerebellum. Hence, the occurrence of developmental events under a protracted condition of defective intracellular cholesterol mobilization hits the functional maturation of the various cell types generating the ground of increased vulnerability. This is particularly consistent with the high cholesterol demand required for cell proliferation, migration, differentiation, and synapse formation/remodeling. Other major questions we address are why the progression of Purkinje cells loss is always from the anterior to the posterior lobes and why cerebellar defects persist in the mouse model even when genetic manipulations can lead to nearly normal survival.
Collapse
Affiliation(s)
- Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy.
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179, Rome, Italy.
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona School of Medicine, Tucson, AZ, 85724-5073, USA.
| |
Collapse
|
8
|
Duan Y, Gong K, Xu S, Zhang F, Meng X, Han J. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduct Target Ther 2022; 7:265. [PMID: 35918332 PMCID: PMC9344793 DOI: 10.1038/s41392-022-01125-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Disturbed cholesterol homeostasis plays critical roles in the development of multiple diseases, such as cardiovascular diseases (CVD), neurodegenerative diseases and cancers, particularly the CVD in which the accumulation of lipids (mainly the cholesteryl esters) within macrophage/foam cells underneath the endothelial layer drives the formation of atherosclerotic lesions eventually. More and more studies have shown that lowering cholesterol level, especially low-density lipoprotein cholesterol level, protects cardiovascular system and prevents cardiovascular events effectively. Maintaining cholesterol homeostasis is determined by cholesterol biosynthesis, uptake, efflux, transport, storage, utilization, and/or excretion. All the processes should be precisely controlled by the multiple regulatory pathways. Based on the regulation of cholesterol homeostasis, many interventions have been developed to lower cholesterol by inhibiting cholesterol biosynthesis and uptake or enhancing cholesterol utilization and excretion. Herein, we summarize the historical review and research events, the current understandings of the molecular pathways playing key roles in regulating cholesterol homeostasis, and the cholesterol-lowering interventions in clinics or in preclinical studies as well as new cholesterol-lowering targets and their clinical advances. More importantly, we review and discuss the benefits of those interventions for the treatment of multiple diseases including atherosclerotic cardiovascular diseases, obesity, diabetes, nonalcoholic fatty liver disease, cancer, neurodegenerative diseases, osteoporosis and virus infection.
Collapse
Affiliation(s)
- Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Suowen Xu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xianshe Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China. .,College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
9
|
Wibawa P, Kurth F, Luders E, Pantelis C, Cropley VL, Di Biase MA, Velakoulis D, Walterfang M. Differential involvement of hippocampal subfields in Niemann-Pick type C disease: a case-control study. Metab Brain Dis 2021; 36:2071-2078. [PMID: 34146215 DOI: 10.1007/s11011-021-00782-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/07/2021] [Indexed: 12/01/2022]
Abstract
Hippocampal brain regions are strongly implicated in Niemann Pick type C disease (NPC), but little is known regarding distinct subregions of the hippocampal complex and whether these are equally or differentially affected. To address this gap, we compared volumes of five hippocampal subfields between NPC and healthy individuals using MRI. To this end, 9 adult-onset NPC cases and 9 age- and gender-matched controls underwent a 3 T T1-weighted MRI scan. Gray matter volumes of the cornu ammonis (CA1, CA2 and CA3), dentate gyrus (DG), subiculum, entorhinal cortex and hippocampal-amygdalar transition area were calculated by integrating MRI-based image intensities with microscopically defined cytoarchitectonic probabilities. Compared to healthy controls, NPC patients showed smaller volumes of the CA1-3 and DG regions bilaterally, with the greatest difference localized to the left DG (Cohen's d = 1.993, p = 0.008). No significant associations were shown between hippocampal subfield volumes and key clinical features of NPC, including disease duration, symptom severity and psychosis. The pattern of hippocampal subregional atrophy in NPC differs from those seen in other dementias, which may indicate unique cytoarchitectural vulnerabilities in this earlier-onset disorder. Future MRI studies of hippocampal subfields may clarify its potential as a biomarker of neurodegeneration in NPC.
Collapse
Affiliation(s)
- Pierre Wibawa
- Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia.
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland, New Zealand
- Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Maria A Di Biase
- Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
- Psychiatry Neuroimaging Laboratory, Harvard Medical School, Boston, MA, USA
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Mark Walterfang
- Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Maresca G, Formica C, Nocito V, Latella D, Leonardi S, De Cola MC, Triglia G, Bramanti P, Corallo F. Neuropsychological assessment in Niemann-Pick disease type C: a systematic review. Neurol Sci 2021; 42:3167-3175. [PMID: 34021815 DOI: 10.1007/s10072-021-05337-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The neuropsychological profile of Niemann-Pick type C (NP-C) patients is characterized by an early deterioration in executive functions and attention. There are few studies on cognitive impairment and on neuropsychological assessment of NP-C disease. The purpose of this review is to analyze the studies on a psychological assessment for NP-C patients. METHOD This review aims to identify a neuropsychological assessment to evaluate cognitive domains and neuropsychological changes in these patients. There were a total of 73 articles. The search terms were identified as titles and abstracts. All articles were evaluated by title, abstract, and text. RESULTS Only four of the 73 articles were included because they met the criteria of our review. Furthermore, in these studies, possible diagnostic protocols are proposed on NP-C subjects. DISCUSSION AND CONCLUSION The cognitive impairment in NP-C has a negative impact on daily functioning and quality of life. Early diagnosis could identify cognitive deficits and promote cognitive interventions to improve the neuropsychological profile. The management of NP-C disease should be based on a multidisciplinary approach, to treating symptoms, preserving neurological functions, and guaranteeing the best possible quality of life. Early identification of neurological and psychological symptoms of the disease is necessary in order to decrease the progression of neurological disease and improve patient care and treatment outcomes. Furthermore, research should focus more on cognitive aspects, not only in the diagnostic process but also in the rehabilitation process.
Collapse
Affiliation(s)
- Giuseppa Maresca
- IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124, Messina, Italy
| | - Caterina Formica
- IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124, Messina, Italy.
| | - Vanessa Nocito
- IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124, Messina, Italy
| | - Desiree Latella
- IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124, Messina, Italy
| | - Simona Leonardi
- IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124, Messina, Italy
| | - Maria Cristina De Cola
- IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124, Messina, Italy
| | - Giuseppe Triglia
- IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124, Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124, Messina, Italy
| | - Francesco Corallo
- IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124, Messina, Italy
| |
Collapse
|
11
|
Lau TY, Kao YH, Toh HB, Sivaratnam D, Lichtenstein M, Velakoulis D, Walterfang M. Brain hypometabolic changes in 14 adolescent-adult patients with Niemann-Pick disease type C assessed by 18F-fluorodeoxyglucose positron emission tomography. J Neurol 2021; 268:3878-3885. [PMID: 33830335 DOI: 10.1007/s00415-021-10535-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Niemann Pick disease type C (NPC) is a rare progressive neurovisceral lysosomal disorder caused by autosomal recessive mutations in the NPC1 or NPC2 genes. 18F-fluorodeoxyglucose (FDG) is a positron-emitting glucose analogue for non-invasive imaging of brain metabolism. FDG PET is commonly used for dementia imaging but its specific application to NPC is rarely described. METHODS This is a retrospective study of all baseline brain FDG PET performed for NPC patients. Images were assessed using a normal database statistical comparison of metabolic changes expressed in standard deviations and three-dimensional Stereotactic Surface Projection maps. Typical hypometabolic patterns in NPC were identified. We further investigated any correlation between the degree of regional brain hypometabolism and the Iturriaga clinical severity scale. RESULTS Brain FDG PET images of 14 adolescent-adult NPC patients were analysed, with mean age of 35 years. We found significant frontal lobe hypometabolism in 12 patients (86%), thalamic hypometabolism in eight patients (57%) and variable parietal lobe hypometabolism in 13 patients (93%). Hypometabolic changes were usually bilateral and symmetric. Ten out of 13 ataxic patients showed cerebellar or thalamic hypometabolism (sensitivity 77%, specificity 100%). Linear regression analysis showed frontal lobe hypometabolism to have the best correlation with the Iturriaga clinical scale (R2 = 0.439; p = 0.01). CONCLUSIONS We found bilateral symmetric hypometabolism of the frontal lobes, thalami and parietal lobes (especially posterior cingulate gyrus) to be typical of adolescent-adult NPC. Ataxia was commonly associated with cerebellar or thalamic hypometabolism. Frontal lobe hypometabolism showed the best inverse correlation with clinical severity.
Collapse
Affiliation(s)
- Theodore Y Lau
- Department of Nuclear Medicine, The Royal Melbourne Hospital, Melbourne, Australia
| | - Yung Hsiang Kao
- Department of Nuclear Medicine, The Royal Melbourne Hospital, Melbourne, Australia
| | - H B Toh
- Department of Nuclear Medicine, The Royal Melbourne Hospital, Melbourne, Australia
| | - Dinesh Sivaratnam
- Department of Nuclear Medicine, The Royal Melbourne Hospital, Melbourne, Australia
| | - Meir Lichtenstein
- Department of Nuclear Medicine, The Royal Melbourne Hospital, Melbourne, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Unit, The Royal Melbourne Hospital, Level 2, John Cade Building, Melbourne, 3050, Australia.,Melbourne Neuropsychiatry Centre, University of Melbourne and North Western Mental Health, Melbourne, Australia
| | - Mark Walterfang
- Neuropsychiatry Unit, The Royal Melbourne Hospital, Level 2, John Cade Building, Melbourne, 3050, Australia. .,Melbourne Neuropsychiatry Centre, University of Melbourne and North Western Mental Health, Melbourne, Australia. .,Florey Institute of Neuroscience and Mental Health, Melbourne, Australia.
| |
Collapse
|
12
|
Yan M, Zheng T. Role of the endolysosomal pathway and exosome release in tau propagation. Neurochem Int 2021; 145:104988. [PMID: 33582164 DOI: 10.1016/j.neuint.2021.104988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 02/08/2023]
Abstract
The progressive deposition of misfolded and aggregated forms of Tau protein in the brain is a pathological hallmark of tauopathies, such as Alzheimer's disease (AD) and frontotemporal degeneration (FTD). The misfolded Tau can be released into the extracellular space and internalized by neighboring cells, acting as seeds to trigger the robust conversion of soluble Tau into insoluble filamentous aggregates in a prion-like manner, ultimately contributing to the progression of the disease. However, molecular mechanisms accountable for the propagation of Tau pathology are poorly defined. We reviewed the Tau processing imbalance in endosomal, lysosomal, and exosomal pathways in AD. Increased exosome release counteracts the endosomal-lysosomal dysfunction of Tau processing but increases the number of aggregates and the propagation of Tau. This review summarizes our current understanding of the underlying tauopathy mechanisms with an emphasis on the emerging role of the endosomal-lysosomal-exosome pathways in this process. The components CHMP6, TSG101, and other components of the ESCRT complex, as well as Rab GTPase such as Rab35 and Rab7A, regulate vesicle cargoes routing from endosome to lysosome and affect Tau traffic, degradation, or secretion. Thus, the significant molecular pathways that should be potential therapeutic targets for treating tauopathies are determined.
Collapse
Affiliation(s)
- Minli Yan
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, 310009, China
| | - Tingting Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, 310009, China.
| |
Collapse
|
13
|
Ganguly J, Jog M. Tauopathy and Movement Disorders-Unveiling the Chameleons and Mimics. Front Neurol 2020; 11:599384. [PMID: 33250855 PMCID: PMC7674803 DOI: 10.3389/fneur.2020.599384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
The spectrum of tauopathy encompasses heterogenous group of neurodegenerative disorders characterized by neural or glial deposition of pathological protein tau. Clinically they can present as cognitive syndromes, movement disorders, motor neuron disease, or mixed. The heterogeneity in clinical presentation, genetic background, and underlying pathology make it difficult to classify and clinically approach tauopathy. In the literature, tauopathies are thus mostly highlighted from pathological perspective. From clinical standpoint, cognitive syndromes are often been focussed while reviewing tauopathies. However, the spectrum of tauopathy has also evolved significantly in the domain of movement disorders and has transgressed beyond the domain of primary tauopathies. Secondary tauopathies from neuroinflammation or autoimmune insults and some other "novel" tauopathies are increasingly being reported in the current literature, while some of them are geographically isolated. Because of the overlapping clinical phenotypes, it often becomes difficult for the clinician to diagnose them clinically and have to wait for the pathological confirmation by autopsy. However, each of these tauopathies has some clinical and radiological signatures those can help in clinical diagnosis and targeted genetic testing. In this review, we have exposed the heterogeneity of tauopathy from a movement disorder perspective and have provided a clinical approach to diagnose them ante mortem before confirmatory autopsy. Additionally, phenotypic variability of these disorders (chameleons) and the look-alikes (mimics) have been discussed with potential clinical pointers for each of them. The review provides a framework within which new and as yet undiscovered entities can be classified in the future.
Collapse
Affiliation(s)
| | - Mandar Jog
- Movement Disorder Centre, London Health Sciences Centre, University of Western Ontario, London, ON, Canada
| |
Collapse
|
14
|
Haploinsufficiency of tau decreases survival of the mouse model of Niemann-Pick disease type C1 but does not alter tau phosphorylation. J Appl Genet 2020; 61:567-570. [PMID: 32794098 DOI: 10.1007/s13353-020-00572-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/18/2020] [Accepted: 07/29/2020] [Indexed: 02/01/2023]
Abstract
Niemann-Pick C1 (NPC1) mouse models show neurofibrillary tangles as do human patients. A previous study in NPC1/tau double-null mutant mice showed that tau knockout nulls and heterozygotes unexpectedly had decreased survival when compared with NPC1 single mutants (Pacheco et al., Hum Molec Genetics 18:956-965, 2009). This was done in a null model of NPC1 (Npc1-/-). We have extended these results to a hypomorphic model (Npc1nmf164) and additionally studied tau phosphorylation, which has not been previously done in a tau heterozygote. As before, NPC1/tau double-mutant mice had shortened survival when compared with the NPC1 single mutant. Tau dosage was not affected by the Npc1 mutation. The increased phosphorylation of tau-ser396 previously noted in NPC1 mouse models was also present, but unaffected by the tau knockout, indicating that changes in tau phosphorylation are not the cause of decreased survival in NPC1/tau double mutants. Thus, the reason for shortened survival of NPC1 mouse models with concomitant tau haploinsufficiency is uncertain.
Collapse
|
15
|
Single Cell Transcriptome Analysis of Niemann-Pick Disease, Type C1 Cerebella. Int J Mol Sci 2020; 21:ijms21155368. [PMID: 32731618 PMCID: PMC7432835 DOI: 10.3390/ijms21155368] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Niemann-Pick disease, type C1 (NPC1) is a lysosomal disease characterized by endolysosomal storage of unesterified cholesterol and decreased cellular cholesterol bioavailability. A cardinal symptom of NPC1 is cerebellar ataxia due to Purkinje neuron loss. To gain an understanding of the cerebellar neuropathology we obtained single cell transcriptome data from control (Npc1+/+) and both three-week-old presymptomatic and seven-week-old symptomatic mutant (Npc1-/-) mice. In seven-week-old Npc1-/- mice, differential expression data was obtained for neuronal, glial, vascular, and myeloid cells. As anticipated, we observed microglial activation and increased expression of innate immunity genes. We also observed increased expression of innate immunity genes by other cerebellar cell types, including Purkinje neurons. Whereas neuroinflammation mediated by microglia may have both neuroprotective and neurotoxic components, the contribution of increased expression of these genes by non-immune cells to NPC1 pathology is not known. It is possible that dysregulated expression of innate immunity genes by non-immune cells is neurotoxic. We did not anticipate a general lack of transcriptomic changes in cells other than microglia from presymptomatic three-week-old Npc1-/- mice. This observation suggests that microglia activation precedes neuronal dysfunction. The data presented in this paper will be useful for generating testable hypotheses related to disease progression and Purkinje neurons loss as well as providing insight into potential novel therapeutic interventions.
Collapse
|
16
|
Lewis C, Keage M, Watanabe M, Schubiger D, Velakoulis D, Walterfang M, Vogel AP. Characterization of Dysphagia and Longitudinal Changes in Swallowing Function in Adults with Niemann-Pick Disease Type C Treated with Miglustat. Dysphagia 2020; 36:362-373. [PMID: 32562141 DOI: 10.1007/s00455-020-10145-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 06/06/2020] [Indexed: 11/26/2022]
Abstract
Niemann-Pick disease type C (NPC) is a rare, autosomal recessive neurodegenerative disease, characterized by progressive psychiatric and neurological deficits. Neurological symptoms include cognitive decline and dysphagia. Aspiration pneumonia secondary to dysphagia is a leading cause of death in NPC. Miglustat is currently the only approved disease-specific treatment shown to be effective in stabilizing neurological symptoms. Miglustat has previously been reported to halt or improve early dysphagia and cognitive symptoms. Here we examine the characteristics of dysphagia, the relationship between dysphagia and the presence of cognitive impairment, and longitudinal changes in swallowing function during miglustat treatment in adult-and-adolescent-onset NPC. Retrospective analysis of videofluoroscopic swallow studies (VFSS) was completed for ten adults with NPC (mean age 28.44 years ± 9.34 years). Participants were recruited through the Royal Melbourne Hospital in Australia between 2008 and 2015. The Bethlehem Swallowing Scale and the Penetration-Aspiration Scale were used to quantify VFSS data. Dysphagia was present in 90% of participants at baseline with reduced lingual function and a delayed swallowing reflex as the most common symptoms. Swallow impairment appeared to stabilize during miglustat therapy for periods up to 66 months, with no significant changes in scores (p > 0.05). Data were in accordance with the literature and support the use of miglustat as an efficacious treatment for reducing swallowing impairment and stabilizing cognitive function. Findings provide detailed information on the impairments experienced by patients, give context to events leading to aspiration in NPC and, importantly, inform how management of dysphagia can complement pharmaceutical treatment.
Collapse
Affiliation(s)
- Courtney Lewis
- Centre for Neuroscience of Speech, The University of Melbourne, 550 Swanston Street, Parkville, Melbourne, VIC, 3010, Australia
| | - Megan Keage
- Centre for Neuroscience of Speech, The University of Melbourne, 550 Swanston Street, Parkville, Melbourne, VIC, 3010, Australia
| | - Miyuki Watanabe
- Centre for Neuroscience of Speech, The University of Melbourne, 550 Swanston Street, Parkville, Melbourne, VIC, 3010, Australia
| | | | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Australia
| | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Adam P Vogel
- Centre for Neuroscience of Speech, The University of Melbourne, 550 Swanston Street, Parkville, Melbourne, VIC, 3010, Australia.
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- Redenlab, Melbourne, Australia.
| |
Collapse
|
17
|
LI LY, WANG XY. Progress in Analysis of Tau Protein. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60024-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Esposito M, Dubbioso R, Tozza S, Iodice R, Aiello M, Nicolai E, Cavaliere C, Salvatore M, Santoro L, Manganelli F. In vivo evidence of cortical amyloid deposition in the adult form of Niemann Pick type C. Heliyon 2019; 5:e02776. [PMID: 31844711 PMCID: PMC6895717 DOI: 10.1016/j.heliyon.2019.e02776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 11/24/2022] Open
Abstract
Background Niemann Pick disease type C (NPC) is a lysosomal lipid storage disorder presenting visceral and neurological impairment with cognitive decline. Neurodegeneration in NPC is associated to deposition of amyloid-β and abnormal tau aggregations likewise Alzheimer disease (AD). Dementia is also related to intracortical circuiting abnormalities that can be detected by neurophysiological procedures both in NPC and in AD. Aim of this study is to find the in vivo evidence of amyloid deposition in NPC patients with cognitive impairment and to investigate the pathophysiology of dementia according to similarities with AD. Methods Two sisters affected by NPC and cognitive decline underwent neuropsychological tests, PET scans with 18F- Florbetaben and neurophysiological protocols to assess cortex excitability by means of transcranial magnetic stimulation (TMS), such as short-latency afferent inhibition (SAI), short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). Results Both patients presented a multidomain cognitive impairment. 18F- Florbetaben uptake was detected in brain frontal areas, while SAI and SICI were abnormal in both patients. Discussion Cognitive impairment in NPC is associated to cortical amyloid deposition as revealed by 18F- Florbetaben PET scan. Amyloid imaging data, together with specific abnormalities found at TMS studies, suggest similar mechanisms underlying NPC and AD dementia.
Collapse
Affiliation(s)
- Marcello Esposito
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Italy
| | - Raffaele Dubbioso
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Italy
- Corresponding author.
| | - Stefano Tozza
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Italy
| | - Rosa Iodice
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Italy
| | - Marco Aiello
- IRCCS SDN, Via Emanuele Gianturco 113, 80143, Napoli, Italy
| | | | | | | | - Lucio Santoro
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Italy
| | - Fiore Manganelli
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Italy
| |
Collapse
|