1
|
Antunovic L, Artesani A, Viganò A, Chiti A, Santoro A, Sollini M, Morbelli SD, De Sanctis R. Imaging Correlates between Headache and Breast Cancer: An [ 18F]FDG PET Study. Cancers (Basel) 2023; 15:4147. [PMID: 37627174 PMCID: PMC10453040 DOI: 10.3390/cancers15164147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to examine brain metabolic patterns on [18F]Fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET) in breast cancer (BC), comparing patients with tension-type headache (TTH), migraine (MiG), and those without headache. Further association with BC response to neoadjuvant chemotherapy (NAC) was explored. In this prospective study, BC patients eligible for NAC performed total-body [18F]FDG PET/CT with a dedicated brain scan. A voxel-wise analysis (two-sample t-test) and a multiple regression model were used to compare brain metabolic patterns among TTH, MiG, and no-headache patients and to correlate them with clinical covariates. A single-subject analysis compared each patient's brain uptake before and after NAC with a healthy control group. Primary headache was diagnosed in 39/46 of BC patients (39% TTH and 46% MiG). TTH patients exhibited hypometabolism in specific brain regions before NAC. TTH patients with a pathological complete response (pCR) to NAC showed hypermetabolic brain regions in the anterior medial frontal cortex. The correlation between tumor uptake and brain metabolism varied before and after NAC, suggesting an inverse relationship. Additionally, the single-subject analysis revealed that hypometabolic brain regions were not present after NAC. Primary headache, especially MiG, was associated with a better response to NAC. These findings suggest complex interactions between BC, headache, and hormonal status, warranting further investigation in larger prospective cohorts.
Collapse
Affiliation(s)
- Lidija Antunovic
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.A.); (A.A.); (A.C.); (A.S.); (R.D.S.)
| | - Alessia Artesani
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.A.); (A.A.); (A.C.); (A.S.); (R.D.S.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
| | | | - Arturo Chiti
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.A.); (A.A.); (A.C.); (A.S.); (R.D.S.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
| | - Armando Santoro
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.A.); (A.A.); (A.C.); (A.S.); (R.D.S.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
| | - Martina Sollini
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.A.); (A.A.); (A.C.); (A.S.); (R.D.S.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
| | - Silvia D. Morbelli
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Rita De Sanctis
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.A.); (A.A.); (A.C.); (A.S.); (R.D.S.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
| |
Collapse
|
2
|
Wu D, Yang L, Gong G, Zheng Y, Jin C, Qi L, Li Y, Wu D, Cui Z, He X, Ren L. Characterizing the hyper- and hypometabolism in temporal lobe epilepsy using multivariate machine learning. J Neurosci Res 2021; 99:3035-3046. [PMID: 34498762 DOI: 10.1002/jnr.24951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/21/2021] [Accepted: 08/07/2021] [Indexed: 11/08/2022]
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most common type of focal epilepsy, presenting both structural and metabolic abnormalities in the ipsilateral mesial temporal lobe. While it has been demonstrated that the metabolic abnormalities in MTLE actually extend beyond the epileptogenic zone, how such multidimensional information is associated with the diagnosis of MTLE remains to be tested. Here, we explore the whole-brain metabolic patterns in 23 patients with MTLE and 24 healthy controls using [18 F]fluorodeoxyglucose PET imaging. Based on a multivariate machine learning approach, we demonstrate that the brain metabolic patterns can discriminate patients with MTLE from controls with a superior accuracy (>95%). Importantly, voxels showing the most extreme contributing weights to the classification (i.e., the most important regional predictors) distribute across both hemispheres, involving both ipsilateral negative weights over the anterior part of lateral and medial temporal lobe, posterior insula, and lateral orbital frontal gyrus, and contralateral positive weights over the anterior frontal lobe, temporal lobe, and lingual gyrus. Through region-of-interest analyses, we verify that in patients with MTLE, the negatively weighted regions are hypometabolic, and the positively weighted regions are hypermetabolic, compared to controls. Interestingly, despite that both hypo- and hypermetabolism have mutually contributed to our model, they may reflect different pathological and/or compensative responses. For instance, patients with earlier age at epilepsy onset present greater hypometabolism in the ipsilateral inferior temporal gyrus, while we find no evidence of such association with hypermetabolism. In summary, quantitative models utilizing multidimensional brain metabolic information may provide additional assistance to presurgical workups in TLE.
Collapse
Affiliation(s)
- Dongyan Wu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Liyuan Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yumin Zheng
- Department of Nuclear Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chaoling Jin
- Department of Nuclear Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lei Qi
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanran Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, China
| | - Liankun Ren
- Comprehensive Epilepsy Center of Beijing, The Beijing Key Laboratory of Neuromodulation, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Banerji R, Huynh C, Figueroa F, Dinday MT, Baraban SC, Patel M. Enhancing glucose metabolism via gluconeogenesis is therapeutic in a zebrafish model of Dravet syndrome. Brain Commun 2021; 3:fcab004. [PMID: 33842883 PMCID: PMC8023476 DOI: 10.1093/braincomms/fcab004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/18/2023] Open
Abstract
Energy-producing pathways are novel therapeutic targets for the treatment of neurodevelopmental disorders. Here, we focussed on correcting metabolic defects in a catastrophic paediatric epilepsy, Dravet syndrome which is caused by mutations in sodium channel NaV1.1 gene, SCN1A. We utilized a translatable zebrafish model of Dravet syndrome (scn1lab) which exhibits key characteristics of patients with Dravet syndrome and shows metabolic deficits accompanied by down-regulation of gluconeogenesis genes, pck1 and pck2. Using a metabolism-based small library screen, we identified compounds that increased gluconeogenesis via up-regulation of pck1 gene expression in scn1lab larvae. Treatment with PK11195, a pck1 activator and a translocator protein ligand, normalized dys-regulated glucose levels, metabolic deficits, translocator protein expression and significantly decreased electrographic seizures in mutant larvae. Inhibition of pck1 in wild-type larvae mimicked metabolic and behaviour defects observed in scn1lab mutants. Together, this suggests that correcting dys-regulated metabolic pathways can be therapeutic in neurodevelopmental disorders such as Dravet syndrome arising from ion channel dysfunction.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, CA 80045, USA
| | - Christopher Huynh
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, CA 80045, USA
| | - Francisco Figueroa
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, CA 94143, USA
| | - Matthew T Dinday
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, CA 94143, USA
| | - Scott C Baraban
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, CA 94143, USA
| | - Manisha Patel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, CA 80045, USA
| |
Collapse
|
4
|
Zhu Y, Feng J, Wu S, Hou H, Ji J, Zhang K, Chen Q, Chen L, Cheng H, Gao L, Chen Z, Zhang H, Tian M. Glucose Metabolic Profile by Visual Assessment Combined with Statistical Parametric Mapping Analysis in Pediatric Patients with Epilepsy. J Nucl Med 2017; 58:1293-1299. [PMID: 28104740 DOI: 10.2967/jnumed.116.187492] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/15/2016] [Indexed: 11/16/2022] Open
Abstract
PET with 18F-FDG has been used for presurgical localization of epileptogenic foci; however, in nonsurgical patients, the correlation between cerebral glucose metabolism and clinical severity has not been fully understood. The aim of this study was to evaluate the glucose metabolic profile using 18F-FDG PET/CT imaging in patients with epilepsy. Methods: One hundred pediatric epilepsy patients who underwent 18F-FDG PET/CT, MRI, and electroencephalography examinations were included. Fifteen age-matched controls were also included. 18F-FDG PET images were analyzed by visual assessment combined with statistical parametric mapping (SPM) analysis. The absolute asymmetry index (|AI|) was calculated in patients with regional abnormal glucose metabolism. Results: Visual assessment combined with SPM analysis of 18F-FDG PET images detected more patients with abnormal glucose metabolism than visual assessment only. The |AI| significantly positively correlated with seizure frequency (P < 0.01) but negatively correlated with the time since last seizure (P < 0.01) in patients with abnormal glucose metabolism. The only significant contributing variable to the |AI| was the time since last seizure, in patients both with hypometabolism (P = 0.001) and with hypermetabolism (P = 0.005). For patients with either hypometabolism (P < 0.01) or hypermetabolism (P = 0.209), higher |AI| values were found in those with drug resistance than with seizure remission. In the post-1-y follow-up PET studies, a significant change of |AI| (%) was found in patients with clinical improvement compared with those with persistence or progression (P < 0.01). Conclusion:18F-FDG PET imaging with visual assessment combined with SPM analysis could provide cerebral glucose metabolic profiles in nonsurgical epilepsy patients. |AI| might be used for evaluation of clinical severity and progress in these patients. Patients with a prolonged period of seizure freedom may have more subtle (or no) metabolic abnormalities on PET. The clinical value of PET might be enhanced by timing the scan closer to clinical seizures.
Collapse
Affiliation(s)
- Yuankai Zhu
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Center, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Jianhua Feng
- Department of Pediatrics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China; and
| | - Shuang Wu
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Center, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Haifeng Hou
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Center, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Jianfeng Ji
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Center, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Kai Zhang
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Center, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Qing Chen
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Center, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Lin Chen
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Center, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Haiying Cheng
- Department of Pediatrics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China; and
| | - Liuyan Gao
- Department of Pediatrics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China; and
| | - Zexin Chen
- Department of Clinical Epidemiology & Biostatistics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhang
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Center, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Mei Tian
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China .,Zhejiang University Medical PET Center, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Abstract
Nuclear medicine imaging can provide important complementary information in the management of pediatric patients with neurological diseases. Pre-surgical localization of the epileptogenic focus in medically refractory epilepsy patients is the most common indication for nuclear medicine imaging in pediatric neurology. In patients with temporal lobe epilepsy, nuclear medicine imaging is particularly useful when magnetic resonance imaging findings are normal or its findings are discordant with electroencephalogram findings. In pediatric patients with brain tumors, nuclear medicine imaging can be clinically helpful in the diagnosis, directing biopsy, planning therapy, differentiating tumor recurrence from post-treatment sequelae, and assessment of response to therapy. Among other neurological diseases in which nuclear medicine has proved to be useful are patients with head trauma, inflammatory-infectious diseases and hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Ümit Özgür Akdemir
- Gazi University Faculty of Medicine, Department of Nuclear Medicine, Ankara, Turkey Phone: +90 312 202 61 75 E-mail:
| | | |
Collapse
|
6
|
Expression of HIF-1α and MDR1/P-glycoprotein in refractory mesial temporal lobe epilepsy patients and pharmacoresistant temporal lobe epilepsy rat model kindled by coriaria lactone. Neurol Sci 2014; 35:1203-8. [DOI: 10.1007/s10072-014-1681-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/11/2014] [Indexed: 11/27/2022]
|
7
|
Kerr WT, Nguyen ST, Cho AY, Lau EP, Silverman DH, Douglas PK, Reddy NM, Anderson A, Bramen J, Salamon N, Stern JM, Cohen MS. Computer-Aided Diagnosis and Localization of Lateralized Temporal Lobe Epilepsy Using Interictal FDG-PET. Front Neurol 2013; 4:31. [PMID: 23565107 PMCID: PMC3615243 DOI: 10.3389/fneur.2013.00031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/18/2013] [Indexed: 11/13/2022] Open
Abstract
Interictal FDG-PET (iPET) is a core tool for localizing the epileptogenic focus, potentially before structural MRI, that does not require rare and transient epileptiform discharges or seizures on EEG. The visual interpretation of iPET is challenging and requires years of epilepsy-specific expertise. We have developed an automated computer-aided diagnostic (CAD) tool that has the potential to work both independent of and synergistically with expert analysis. Our tool operates on distributed metabolic changes across the whole brain measured by iPET to both diagnose and lateralize temporal lobe epilepsy (TLE). When diagnosing left TLE (LTLE) or right TLE (RTLE) vs. non-epileptic seizures (NES), our accuracy in reproducing the results of the gold standard long term video-EEG monitoring was 82% [95% confidence interval (CI) 69-90%] or 88% (95% CI 76-94%), respectively. The classifier that both diagnosed and lateralized the disease had overall accuracy of 76% (95% CI 66-84%), where 89% (95% CI 77-96%) of patients correctly identified with epilepsy were correctly lateralized. When identifying LTLE, our CAD tool utilized metabolic changes across the entire brain. By contrast, only temporal regions and the right frontal lobe cortex, were needed to identify RTLE accurately, a finding consistent with clinical observations and indicative of a potential pathophysiological difference between RTLE and LTLE. The goal of CADs is to complement - not replace - expert analysis. In our dataset, the accuracy of manual analysis (MA) of iPET (∼80%) was similar to CAD. The square correlation between our CAD tool and MA, however, was only 30%, indicating that our CAD tool does not recreate MA. The addition of clinical information to our CAD, however, did not substantively change performance. These results suggest that automated analysis might provide clinically valuable information to focus treatment more effectively.
Collapse
Affiliation(s)
- Wesley T. Kerr
- Department of Biomathematics, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
| | - Stefan T. Nguyen
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| | - Andrew Y. Cho
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
| | - Edward P. Lau
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
| | - Daniel H. Silverman
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| | - Pamela K. Douglas
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
| | - Navya M. Reddy
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| | - Ariana Anderson
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
| | - Jennifer Bramen
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
| | - Noriko Salamon
- Department of Neurology, Seizure Disorder Center, University of California Los AngelesLos Angeles, CA, USA
| | - John M. Stern
- Department of Neurology, Seizure Disorder Center, University of California Los AngelesLos Angeles, CA, USA
| | - Mark S. Cohen
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
- Laboratory of Integrative Neuroimaging Technology, Departments of Psychiatry, Neurology, Radiology, Biomedical Physics, Psychology and Bioengineering, University of California Los AngelesLos Angeles, CA, USA
| |
Collapse
|
8
|
Takahashi M, Soma T, Kawai K, Koyama K, Ohtomo K, Momose T. Voxel-based comparison of preoperative FDG-PET between mesial temporal lobe epilepsy patients with and without postoperative seizure-free outcomes. Ann Nucl Med 2012; 26:698-706. [DOI: 10.1007/s12149-012-0629-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/24/2012] [Indexed: 11/30/2022]
|
9
|
Jupp B, Williams J, Binns D, Hicks RJ, Cardamone L, Jones N, Rees S, O’Brien TJ. Hypometabolism precedes limbic atrophy and spontaneous recurrent seizures in a rat model of TLE. Epilepsia 2012; 53:1233-44. [DOI: 10.1111/j.1528-1167.2012.03525.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Affiliation(s)
- H V Srinivas
- Sagar Hospital, 30 Cross, Tilaknagar, Jayanagar, Bangalore-560 041, India. E-mail:
| |
Collapse
|
11
|
Presurgical epilepsy localization with interictal cerebral dysfunction. Epilepsy Behav 2011; 20:194-208. [PMID: 21257351 DOI: 10.1016/j.yebeh.2010.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/07/2010] [Indexed: 11/22/2022]
Abstract
Localization of interictal cerebral dysfunction with 2-[(18)F]fluoro-2-D-deoxyglucose (FDG) positron emission tomography (PET) and neuropsychological examination usefully supplements electroencephalography (EEG) and brain magnetic resonance imaging (MRI) in planning epilepsy surgery. In MRI-negative mesial temporal lobe epilepsy, correlation of temporal lobe hypometabolism with extracranial ictal EEG can support resection without prior intracranial EEG monitoring. In refractory localization-related epilepsies, hypometabolic sites may supplement other data in hypothesizing likely ictal onset zones in order to intracranial electrodes for ictal recording. Prognostication of postoperative seizure freedom with FDG PET appears to have greater positive than negative predictive value. Neuropsychological evaluation is critical to evaluating the potential benefit of epilepsy surgery. Cortical deficits measured with neuropsychometry are limited in lateralizing and localizing value for determination of ictal onset sites, however. Left temporal resection risks iatrogenic verbal memory deficits and dysnomia, and neuropsychological findings are useful in predicting those at greatest risk. Prognostication of cognitive risks with resection at other sites is less satisfactory.
Collapse
|
12
|
Giovacchini G, Squitieri F, Esmaeilzadeh M, Milano A, Mansi L, Ciarmiello A. PET translates neurophysiology into images: A review to stimulate a network between neuroimaging and basic research. J Cell Physiol 2011; 226:948-61. [DOI: 10.1002/jcp.22451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Wong CH, Bleasel A, Wen L, Eberl S, Byth K, Fulham M, Somerville E, Mohamed A. The topography and significance of extratemporal hypometabolism in refractory mesial temporal lobe epilepsy examined by FDG-PET. Epilepsia 2010; 51:1365-73. [DOI: 10.1111/j.1528-1167.2010.02552.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Akman CI, Ichise M, Olsavsky A, Tikofsky RS, Van Heertum RL, Gilliam F. Epilepsy duration impacts on brain glucose metabolism in temporal lobe epilepsy: results of voxel-based mapping. Epilepsy Behav 2010; 17:373-80. [PMID: 20149754 PMCID: PMC10694865 DOI: 10.1016/j.yebeh.2009.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/10/2009] [Accepted: 12/13/2009] [Indexed: 11/26/2022]
Abstract
OBJECTIVE [(18)F]Fluorodeoxyglucose positron emission tomography ([(18)F]FDG-PET) is a valuable method for detecting focal brain dysfunction associated with epilepsy. Evidence suggests that a progressive decrease in [(18)F]FDG uptake occurs in the epileptogenic cortex with an increase in the duration of epilepsy. In this study, our aim was to use statistical parametric mapping (SPM) to test the validity of this relationship in a retrospective study of patients with temporal lobe epilepsy (TLE). METHODS [(18)F]FDG-PET scans of 46 adult patients with pharmacoresistant unilateral TLE (25 RTLE and 21 LTLE) were subjected to SPM analysis. RESULTS Forty-six patients were diagnosed with nonlesional TLE, 16 of whom had hippocampal sclerosis (HS). The average duration of epilepsy was 17.4 +/- 12.3 years (3-46 years), <5 years in 10 patients and >or=10 years in 30 patients. Visual analysis of [(18)F]FDG-PET scans revealed hypometabolism in the epileptogenic temporal cortex in 31 (67%) patients. After SPM analysis of all [(18)F]FDG-PET images, hypometabolism was unilateral and reported in lateral and mesial structures of the epileptogenic temporal cortex in addition to the ipsilateral fusiform and middle occipital gyrus. Subsequent analysis revealed that temporal lobe hypometabolism was present only in patients with longer epilepsy duration (>or=10 years) in parahippocampal gyrus, uncus, and middle and superior temporal gyrus (P < 0.05 corrected). Epilepsy duration was inversely correlated with decreased glucose uptake in the inferior temporal gyrus, hippocampus, and parahippocampal gyrus of the epileptogenic temporal cortex (P < 0.05). Age at seizure onset did not affect the correlation between epilepsy duration and glucose uptake except in the inferior temporal gyrus (P < 0.05). CONCLUSION Voxel-based mapping supports the assertion that glucose hypometabolism of the epileptogenic temporal lobe cortex and other neighboring cortical regions increases with longer epilepsy duration in TLE.
Collapse
Affiliation(s)
- Cigdem I Akman
- Comprehensive Epilepsy Center, Department of Neurology, Columbia University College of Physicians & Surgeons, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Intractable seizures can have a devastating effect on the development of a child. In children with intractable epilepsy that is refractory to medication, surgical treatment may be needed. Magnetic resonance imaging is an essential neuroimaging tool to assist in the identification of an epileptogenic substrate. The interpretation of MR images should be done in the context of clinical knowledge of the seizure symptomatology and electroencephalographic findings. Quantitative processing of structural MR data and advanced MR imaging such as diffusion tensor imaging and MR spectroscopy have the potential to identify subtle lesions that may otherwise have been missed. In addition to lesion localization, identification of eloquent cortex and white matter tracts are also an essential component of epilepsy surgery workup. Functional MR imaging maps the sensorimotor cortex and also lateralizes language. Diffusion tensor imaging tractography can be used to map the corticospinal tracts and the optic radiations. In addition to MR imaging, magnetoencephalography and nuclear medicine studies such as PET and SPECT scanning may be used to lateralize seizure focus when clinical, electrophysiological, and structural MR imaging findings are discordant.
Collapse
|
16
|
|
17
|
Patil S, Biassoni L, Borgwardt L. Nuclear Medicine in Pediatric Neurology and Neurosurgery: Epilepsy and Brain Tumors. Semin Nucl Med 2007; 37:357-81. [PMID: 17707242 DOI: 10.1053/j.semnuclmed.2007.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In pediatric drug-resistant epilepsy, nuclear medicine can provide important additional information in the presurgical localization of the epileptogenic focus. The main modalities used are interictal (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) and ictal regional cerebral perfusion study with single-photon emission computed tomography (SPECT). Nuclear medicine techniques have a sensitivity of approximately 85% to 90% in the localization of an epileptogenic focus in temporal lobe epilepsy; however, in this clinical setting, they are not always clinically indicated because other techniques (eg, icterictal and ictal electroencephalogram, video telemetry, magnetic resonance imaging [MRI]) may be successful in the identification of the epileptogenic focus. Nuclear medicine is very useful when MRI is negative and/or when electroencephalogram and MRI are discordant. A good technique to identify the epileptogenic focus is especially needed in the setting of extra-temporal lobe epilepsy; however, in this context, identification of the epileptogenic focus is more difficult for all techniques and the sensitivity of the isotope techniques is only 50% to 60%. This review article discusses the clinical value of the different techniques in the clinical context; it also gives practical suggestions on how to acquire good ictal SPECT and interictal FDG-PET scans. Nuclear medicine in pediatric brain tumors can help in differentiating tumor recurrence from post-treatment sequelae, in assessing the response to treatment, in directing biopsy, and in planning therapy. Both PET and SPECT tracers can be used. In this review, we discuss the use of the different tracers available in this still very new, but promising, application of radioisotope techniques.
Collapse
Affiliation(s)
- Shekhar Patil
- University College London-Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust and the National Centre for Young People with Epilepsy, London, United Kingdom
| | | | | |
Collapse
|
18
|
Juhasz C, Batista CEA, Chugani DC, Muzik O, Chugani HT. Evolution of cortical metabolic abnormalities and their clinical correlates in Sturge-Weber syndrome. Eur J Paediatr Neurol 2007; 11:277-84. [PMID: 17408998 PMCID: PMC2020508 DOI: 10.1016/j.ejpn.2007.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/05/2007] [Accepted: 02/05/2007] [Indexed: 12/01/2022]
Abstract
BACKGROUND The natural course of Sturge-Weber syndrome (SWS) is poorly understood, although neurological symptoms are often progressive. AIMS To track longitudinal changes in brain glucose metabolism measured with positron emission tomography (PET) and their relation to clinical changes during the early course of SWS. METHODS Fourteen children (age 3 months to 3.9 years at enrollment) with SWS and unilateral leptomeningeal angioma underwent two consecutive glucose metabolism PET scans with a mean follow-up time of 1.2 years. Longitudinal changes of the extent of cortical glucose hypometabolism on the angioma side were measured and correlated with age, clinical seizure frequency and hemiparesis. RESULTS An increase in the size of the hypometabolic cortex was seen in 6 children, coinciding with an age-related increase in cortical glucose metabolism measured in unaffected contralateral cortex. These 6 patients were younger both at the initial (mean age 0.75 vs. 2.8 years; p<0.001) and the second scan (mean age 1.8 vs. 4.2 years; p=0.001) than those with no change in the extent of hypometabolic cortex (n=6). The area of cortical hypometabolism decreased in the two remaining children, and this was associated with resolution of an initial hemiparesis in one of them. Seizure frequency between the two scans was higher in children who showed progressive enlargement of cortical hypometabolism, as compared to those with no progression (p=0.008). CONCLUSIONS In SWS, detrimental metabolic changes occur before 3 years of age coinciding with a sharp increase of developmentally regulated cerebral metabolic demand. Progressive hypometabolism is associated with high seizure frequency in these children. However, metabolic abnormalities may remain limited or even partially recover later in some children with well-controlled seizures. Metabolic recovery accompanied by neurological improvement suggests a window for therapeutic intervention in children with unilateral SWS.
Collapse
Affiliation(s)
- C Juhasz
- Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, 3901 Beaubien Boulevard, Detroit, MI, USA.
| | | | | | | | | |
Collapse
|
19
|
Carne RP, O'Brien TJ, Kilpatrick CJ, MacGregor LR, Litewka L, Hicks RJ, Cook MJ. 'MRI-negative PET-positive' temporal lobe epilepsy (TLE) and mesial TLE differ with quantitative MRI and PET: a case control study. BMC Neurol 2007; 7:16. [PMID: 17588263 PMCID: PMC1929122 DOI: 10.1186/1471-2377-7-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 06/24/2007] [Indexed: 12/03/2022] Open
Abstract
Background 'MRI negative PET positive temporal lobe epilepsy' represents a substantial minority of temporal lobe epilepsy (TLE). Clinicopathological and qualitative imaging differences from mesial temporal lobe epilepsy are reported. We aimed to compare TLE with hippocampal sclerosis (HS+ve) and non lesional TLE without HS (HS-ve) on MRI, with respect to quantitative FDG-PET and MRI measures. Methods 30 consecutive HS-ve patients with well-lateralised EEG were compared with 30 age- and sex-matched HS+ve patients with well-lateralised EEG. Cerebral, cortical lobar and hippocampal volumetric and co-registered FDG-PET metabolic analyses were performed. Results There was no difference in whole brain, cerebral or cerebral cortical volumes. Both groups showed marginally smaller cerebral volumes ipsilateral to epileptogenic side (HS-ve 0.99, p = 0.02, HS+ve 0.98, p < 0.001). In HS+ve, the ratio of epileptogenic cerebrum to whole brain volume was less (p = 0.02); the ratio of epileptogenic cerebral cortex to whole brain in the HS+ve group approached significance (p = 0.06). Relative volume deficits were seen in HS+ve in insular and temporal lobes. Both groups showed marked ipsilateral hypometabolism (p < 0.001), most marked in temporal cortex. Mean hypointensity was more marked in epileptogenic-to-contralateral hippocampus in HS+ve (ratio: 0.86 vs 0.95, p < 0.001). The mean FDG-PET ratio of ipsilateral to contralateral cerebral cortex however was low in both groups (ratio: HS-ve 0.97, p < 0.0001; HS+ve 0.98, p = 0.003), and more marked in HS-ve across all lobes except insula. Conclusion Overall, HS+ve patients showed more hippocampal, but also marginally more ipsilateral cerebral and cerebrocortical atrophy, greater ipsilateral hippocampal hypometabolism but similar ipsilateral cerebral cortical hypometabolism, confirming structural and functional differences between these groups.
Collapse
Affiliation(s)
- Ross P Carne
- Victorian Epilepsy Centre, St Vincent's Hospital, Melbourne, Australia
- Department of Neurology, St. Vincent's Hospital, Melbourne, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Neuroscience, The Geelong Hospital, Barwon Health, Geelong, Australia
- School of Medicine, Deakin University, Geelong, Australia
- Faculty of Medicine, The University of Melbourne, Melbourne, Australia
| | - Terence J O'Brien
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, The Royal Melbourne Hospital, Melbourne, Australia
- Faculty of Medicine, The University of Melbourne, Melbourne, Australia
| | - Christine J Kilpatrick
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, The Royal Melbourne Hospital, Melbourne, Australia
- Faculty of Medicine, The University of Melbourne, Melbourne, Australia
| | - Lachlan R MacGregor
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Clinical Epidemiology and Biostatistics, The Royal Melbourne Hospital, Melbourne, Australia
| | - Lucas Litewka
- Victorian Epilepsy Centre, St Vincent's Hospital, Melbourne, Australia
| | - Rodney J Hicks
- PET Centre, The Peter MacCallum Cancer Institute, Melbourne, Australia
- Faculty of Medicine, The University of Melbourne, Melbourne, Australia
| | - Mark J Cook
- Victorian Epilepsy Centre, St Vincent's Hospital, Melbourne, Australia
- Department of Neurology, St. Vincent's Hospital, Melbourne, Australia
- Department of Medicine, St. Vincent's Hospital, Melbourne, Australia
- Faculty of Medicine, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The surgical approach to nonlesional temporal lobe epilepsy presents a significant challenge due to uncertainties regarding the extent of resection necessary to result in a seizure-free state. To outline an optimum surgical strategy, an understanding of the clinical and diagnostic presentation of mesial and lateral temporal epilepsy is required in order to properly characterize the location of the ictal onset zone. This review focuses on several methods used to identify this ictal onset zone, with emphasis on the impact each modality has on surgical outcome. RECENT FINDINGS Factors predicting an excellent surgical outcome include the presence of a discrete zone of low voltage fast activity and prolonged propagation time on the electroencephalogram, and the absence of metabolic dysfunction in the contralateral temporal lobe. Identifying epileptogenic regions in the temporal lobe using magnetic source imaging is a recent technique that has also yielded promising surgical outcomes. Recent prospective studies have shown that a temporal neocortical resection is very effective in providing a seizure free outcome given strict localization of the ictal onset zone to the lateral temporal region, highlighting the need for accurate characterization of mesial versus lateral nonlesional epilepsy. SUMMARY With accurate identification of the ictal onset zone with intracranial electroencephalography, a tailored temporal resection can yield excellent surgical results.
Collapse
Affiliation(s)
- Deepak Madhavan
- New York University Comprehensive Epilepsy Center, New York, New York 10016, USA
| | | |
Collapse
|
21
|
Carne RP, Cook MJ, MacGregor LR, Kilpatrick CJ, Hicks RJ, O'Brien TJ. "Magnetic resonance imaging negative positron emission tomography positive" temporal lobe epilepsy: FDG-PET pattern differs from mesial temporal lobe epilepsy. Mol Imaging Biol 2007; 9:32-42. [PMID: 17176980 DOI: 10.1007/s11307-006-0073-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Some patients with temporal lobe epilepsy (TLE) lack evidence of hippocampal sclerosis (HS) on MRI (HS-ve). We hypothesized that this group would have a different pattern of 2-deoxy-2-[F-18]fluoro-D-glucose (FDG)-positron emission tomography (PET) hypometabolism than typical mesial TLE/HS patients with evidence of hippocampal atrophy on magnetic resonance imaging (MRI) (HS+ve), with a lateral temporal neocortical rather than mesial focus. PROCEDURES Thirty consecutive HS-ve patients and 30 age- and sex-matched HS+ve patients with well-lateralized EEG were identified. FDG-PET was performed on 28 HS-ve patients and 24 HS+ve patients. Both groups were compared using statistical parametric mapping (SPM), directly and with FDG-PET from 20 healthy controls. RESULTS Both groups showed lateralized temporal hypometabolism compared to controls. In HS+ve, this was antero-infero-mesial (T = 17.13); in HS-ve the main clustering was inferolateral (T = 17.63). When directly compared, HS+ve had greater hypometabolism inmesial temporal/hippocampal regions (T = 4.86); HS-ve had greater inferolateral temporal hypometabolism (T = 4.18). CONCLUSIONS These data support the hypothesis that focal hypometabolism involves primarily lateal neocortical rather than mesial temporal structures in 'MRI-negative PET-positive TLE.'
Collapse
Affiliation(s)
- R P Carne
- Victorian Epilepsy Centre, St. Vincent's Hospital, Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
22
|
Sood S, Chugani HT. Functional neuroimaging in the preoperative evaluation of children with drug-resistant epilepsy. Childs Nerv Syst 2006; 22:810-20. [PMID: 16799821 DOI: 10.1007/s00381-006-0137-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Indexed: 10/24/2022]
Abstract
UNLABELLED FUNCTIONAL NEUROIMAGING: Although the primary imaging modality in the management of epilepsy is magnetic resonance imaging MRI, functional neuroimaging with positron-emission tomography (PET) and single photon emission computed tomography (SPECT) often provides complementary information and, in a number of situations, provides unique information that cannot be obtained with MRI. The most commonly used PET tracers used for epilepsy evaluation are 2-deoxy-2-[(18)F]fluoro-D: -glucose (FDG) and [(11)C]flumazenil (FMZ). Recently, interictal PET with alpha-[(11)C]methyl-L: -tryptophan was found to be highly specific for the epileptic focus and can differentiate between epileptogenic and nonepileptogenic lesions in the same patient (e.g., in patients with tuberous sclerosis). DISCUSSION In this review, we discuss clinical applications of these three PET tracers in drug-resistant temporal and extratemporal lobe epilepsy, selected epilepsy syndromes of childhood, lesional and nonlesional epilepsy, and the challenges of imaging secondary epileptic foci. A brief discussion of SPECT applications in epilepsy is also included. With further development of new tracers highly sensitive and specific for epileptogenic brain regions, the presurgical evaluation of refractory epilepsy will be greatly facilitated. Approximately 0.5 to 1.0% of the population suffer from epilepsy, of which 15-20% are intractable. Infants and children, whose seizures have a focal onset are refractory to anticonvulsants and are prolonged, tend to have the worst cognitive outcome [Meador KJ, Neurology 58 (Suppl 5):S21-S26, 2002]. Seizures themselves affect the developing brain and contribute to an adverse neurologic outcome (Holmes, Pediatric Neurology 33:1-110, 2005). CONCLUSION Therefore, in treating children with intractable epilepsy, it is important to consider seizure control and to give allowance for normal cognitive development.
Collapse
Affiliation(s)
- Sandeep Sood
- Department of Neurosurgery, Children's Hospital of Michigan, Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
23
|
Nelissen N, Van Paesschen W, Baete K, Van Laere K, Palmini A, Van Billoen H, Dupont P. Correlations of interictal FDG-PET metabolism and ictal SPECT perfusion changes in human temporal lobe epilepsy with hippocampal sclerosis. Neuroimage 2006; 32:684-95. [PMID: 16762567 DOI: 10.1016/j.neuroimage.2006.04.185] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 04/07/2006] [Accepted: 04/13/2006] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND The pathophysiological role of the extensive interictal cerebral hypometabolism in complex partial seizures (CPS) in refractory mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) is poorly understood. Our aim was to study ictal-interictal SPECT perfusion versus interictal fluorodeoxyglucose (FDG)-PET metabolic patterns. METHODS Eleven adults with refractory unilateral mTLE-HS, who were rendered seizure free after epilepsy surgery, were included. All had an interictal FDG-PET and an interictal and ictal perfusion SPECT scan. FDG-PET data were reconstructed using an anatomy-based reconstruction algorithm, which corrected for partial volume effects, and analyzed semi-quantitatively after normalization to white matter activity. Using Statistical Parametric Mapping (SPM), we compared interictal metabolism of the patient group with a control group. We correlated metabolic with ictal perfusion changes in the patient group. RESULTS Global cerebral grey matter glucose metabolism in patients was decreased 10-25% compared with control subjects. Interictal PET hypometabolism and ictal SPECT hypoperfusion were maximal in the ipsilateral frontal lobe. Ictal frontal lobe hypoperfusion was associated with crossed cerebellar diaschisis. The ipsilateral temporal lobe showed maximal ictal hyperperfusion and interictal hypometabolism, which was relatively mild compared with the degree of hypometabolism affecting the frontal lobes. CONCLUSION Interictal hypometabolism in mTLE-HS was greatest in the ipsilateral frontal lobe and represented a seizure-related dynamic process in view of further ictal decreases. Crossed cerebellar diaschisis suggested that there is a strong ipsilateral frontal lobe inhibition during CPS. We speculate that surround inhibition in the frontal lobe is a dynamic defense mechanism against seizure propagation, and may be responsible for functional deficits observed in mTLE.
Collapse
Affiliation(s)
- N Nelissen
- Department of Neurology, University Hospital Gasthuisberg, 49 Herestraat, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
24
|
Benedek K, Juhász C, Chugani DC, Muzik O, Chugani HT. Longitudinal changes in cortical glucose hypometabolism in children with intractable epilepsy. J Child Neurol 2006; 21:26-31. [PMID: 16551449 DOI: 10.1177/08830738060210011101] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In children with partial epilepsy, there is increasing evidence to suggest that not all cortical regions showing glucose hypometabolism on positron emission tomography (PET) represent epileptogenic cortex but that some hypometabolic areas might be the result of repeated seizures. Most of the supportive data, however, have come from cross-sectional imaging studies. To evaluate longitudinal changes in cortical glucose hypometabolism, we compared two sequential [(18)F]fluorodeoxyglucose (FDG) PET scans performed 7 to 44 months apart in 15 children with intractable nonlesional partial epilepsy. The extent of hypometabolic cortex on the side of the electroencephalography-verified epileptic focus and its changes between the two PET scans were measured and correlated to clinical seizure variables. The change in seizure frequency between the two PET scans correlated positively with the change in the extent of cortical glucose hypometabolism (r = .8, P <.001). Most patients with persistent or increased seizure frequency (one or more seizures per day) showed enlargement in the area of hypometabolic cortex on the second PET scan. In contrast, patients whose seizure frequency had decreased below daily seizures between the first and second PET scans showed a decrease in the size of the hypometabolic cortex. These results support the notion that the extent of cortical glucose hypometabolism on PET scanning can undergo dynamic changes, and these are, at least partly, related to the frequency of seizures. The findings have implications on how aggressively persistent seizures should be treated in children. (J Child Neurol 2006;21:26-31).
Collapse
Affiliation(s)
- Krisztina Benedek
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
25
|
Weitemeyer L, Kellinghaus C, Weckesser M, Matheja P, Loddenkemper T, Schuierer G, Schober O, Ringelstein EB, Lüdemann P. The Prognostic Value of [18F]FDG-PET in Nonrefractory Partial Epilepsy. Epilepsia 2005; 46:1654-60. [PMID: 16190939 DOI: 10.1111/j.1528-1167.2005.00258.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Regional abnormalities of cerebral glucose metabolism, as identified by 18-fluorodeoxyglucose positron emission tomography (FDG-PET) have prognostic value regarding the outcome of epilepsy surgery in patients with refractory partial epilepsy. The value of FDG-PET abnormalities in nonrefractory patients has not been investigated systematically. This study examines whether FDG-PET could be used for early identification of nonrefractory epilepsy in patients who will become pharmacoresistant later during the course of their disease. METHODS We investigated interictal abnormalities of cerebral glucose metabolism by using FDG-PET in 125 consecutive patients with nonrefractory cryptogenic partial epilepsy and normal cranial magnetic resonance imaging (MRI), and we compared relative changes in seizure frequency in 90 patients after > or =2 years of follow-up. RESULTS Regional asymmetry of tracer distribution was seen in 43 of the 90 patients. Forty-one patients had regional glucose hypometabolism in the temporal and two patients in an extratemporal region. No difference between patients with and without a hypometabolic focus was found regarding seizure freedom after follow-up. This held true also for the subgroup of patients with epilepsy onset within 1 year before admission. Only patients with regional glucose metabolism showed an increase in seizure frequency. Multivariate analysis showed that only anticonvulsive treatment before index admission and the possibility of localizing the epileptogenic focus by using all available clinical and EEG data were independently associated with continuing seizures after a median follow-up period of 43 months. CONCLUSIONS Regional hypometabolism in FDG-PET is not significantly associated with a lower likelihood of successful anticonvulsant drug therapy in patients with nonrefractory partial epilepsy. Careful analysis of all routinely available clinical and neurophysiologic data has a much better predictive power to identify patients with medically refractory epilepsy early in the course of the disease. However, if PET data are available, they could help in identifying patients with a less benign course.
Collapse
Affiliation(s)
- Lars Weitemeyer
- Department of Neurology, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Van Paesschen W. Qualitative and quantitative imaging of the hippocampus in mesial temporal lobe epilepsy with hippocampal sclerosis. Neuroimaging Clin N Am 2004; 14:373-400, vii. [PMID: 15324854 DOI: 10.1016/j.nic.2004.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
MR imaging allows the in vivo detection of hippocampal sclerosis (HS) and has been instrumental in the delineation of the syndrome of mesial temporal lobe epilepsy with HS (mTLE-HS). MR features of HS include hippocampal atrophy with an increased T2 signal. Quantitative MR imaging accurately reflects the degree of hippocampal damage.Ictal single photon emission computed tomography (SPECT) in mTLE-HS shows typical perfusion patterns of ipsilateral temporal lobe hyperperfusion, and ipsilateral frontoparietal and contralateral cerebellar hypoperfusion. Interictal 18fluoro-2-deoxyglucose positron emission tomography (PET) shows multiregional hypometabolism, involving predominantly the ipsilateral temporal lobe. 11C-flumazenil PET shows hippocampal decreases in central benzodiazepine receptor density. Future strategies to study the etiology and pathogenesis of HS should include longitudinal MR imaging studies,MR studies in families with epilepsy and febrile seizures, stratification for genetic background, coregistration with SPECT and PET, partial volume correction and statistical parametric mapping analysis of SPECT and PET images.
Collapse
Affiliation(s)
- Wim Van Paesschen
- Department of Neurology, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, 49 Herestraat, 3000 Leuven, Belgium.
| |
Collapse
|
27
|
Henry TR, Votaw JR. The role of positron emission tomography with [18F]fluorodeoxyglucose in the evaluation of the epilepsies. Neuroimaging Clin N Am 2004; 14:517-35, ix. [PMID: 15324862 DOI: 10.1016/j.nic.2004.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cerebral glucose metabolic mapping using positron emission tomography (PET) and 2-[18F]fluoro-2-deoxyglucose (FDG) has been extensively studied in the epilepsies. Regions of interictal glucose hypometabolism are highly associated with cerebral sites of seizure generation-propagation in focal epilepsies. The volume of reduced glucose metabolism is often widespread and even bilateral in focal epilepsies, although ictal onset zones typically are located at the sites of most severe hypometabolism within a larger volume of hypometabolism.
Collapse
Affiliation(s)
- Thomas R Henry
- Department of Neurology, Emory University School of Medicine, Woodruff Memorial Building, Suite 6000, PO Drawer V, 1639 Pierce Drive, Atlanta, GA 30322, USA.
| | | |
Collapse
|
28
|
Theodore WH, Kelley K, Toczek MT, Gaillard WD. Epilepsy Duration, Febrile Seizures, and Cerebral Glucose Metabolism. Epilepsia 2004; 45:276-9. [PMID: 15009230 DOI: 10.1111/j.0013-9580.2004.51803.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Studies using magnetic resonance imaging have shown that reduced hippocampal volume is associated with a history of febrile seizures, the duration of epilepsy, and the number of generalized tonic-clonic seizures. It is uncertain whether these factors have the same influence on functional as on structural measures of the integrity of the epileptogenic zone. METHODS We used positron emission tomography (PET) with fluorine 18 2-deoxyglucose to study 91 patients with temporal lobe seizure foci localized by ictal video-EEG. PET was performed in the awake interictal resting state with ears plugged and eyes patched. We recorded surface EEG during injection (5 mCi) and the 30-min uptake period. We used a standard template to analyze PET scans. RESULTS A significant negative relation was found between the duration of epilepsy and hippocampal glucose metabolism ipsilateral to the epileptic focus. Patients with a history of either any febrile seizures, or complex, or prolonged febrile seizures, did not have greater hypometabolism ipsilateral to the epileptic focus than did patients without a febrile seizure history. We found no effect of generalized tonic-clonic seizure history. CONCLUSIONS Longer epilepsy duration is associated with greater hypometabolism, suggesting that epilepsy is a progressive disease.
Collapse
|
29
|
Diehl B, LaPresto E, Najm I, Raja S, Rona S, Babb T, Ying Z, Bingaman W, Lüders HO, Ruggieri P. Neocortical temporal FDG-PET hypometabolism correlates with temporal lobe atrophy in hippocampal sclerosis associated with microscopic cortical dysplasia. Epilepsia 2003; 44:559-64. [PMID: 12681005 DOI: 10.1046/j.1528-1157.2003.36202.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Medically intractable temporal lobe epilepsy (TLE) due to hippocampal sclerosis (HS), with or without cortical dysplasia (CD), is associated with atrophy of the hippocampal formation and regional fluorodeoxyglucose positron-emission tomography (FDG-PET) hypometabolism. The relation between areas of functional and structural abnormalities is not well understood. We investigate the relation between FDG-PET metabolism and temporal lobe (TL) and hippocampal atrophy in patients with histologically proven isolated HS and HS associated with CD. METHODS Twenty-three patients underwent en bloc resection of the mesial and anterolateral neocortical structures. Ten patients were diagnosed with isolated HS; 13 patients had associated microscopic CD. Temporal lobe volumes (TLVs) and hippocampal volumes were measured. Magnetic resonance imaging (MRI) and PET were co-registered, and regions of interest (ROIs) determined as gray matter of the mesial, lateral, and anterior temporal lobe. RESULTS All patients (HS with or without CD) had significant ipsilateral PET hypometabolism in all three regions studied (p < 0.0001). In patients with isolated HS, the most prominent hypometabolism was in the anterior and mesial temporal lobe, whereas in dual pathology, it was in the lateral temporal lobe. TLVs and hippocampal volumes were significantly smaller on the epileptogenic side (p < 0.05). The PET asymmetries ipsilateral/contralateral to the epileptogenic zone and TLV asymmetries correlated significantly for the anterior and lateral temporal lobes (p < 0.05) in the HS+CD group, but not in the isolated HS group. Mesial temporal hypometabolism was not significantly different between the two groups. CONCLUSIONS Temporal neocortical microscopic CD with concurrent HS is associated with more prominent lateral temporal metabolic dysfunction compared with isolated HS in TL atrophy. Further studies are needed to confirm these findings and correlate the PET hypometabolic patterns with outcome data in patients operated on for HS with or without CD.
Collapse
Affiliation(s)
- Beate Diehl
- Department of Neurology, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Montz Andrée R, Jiménez Vicioso A, Coullaut Jáuregui J, López-Ibor Aliño JJ, Carreras Delgado JL. [PET in neurology and psychiatry I. PET with FDG in the study of the CNS]. REVISTA ESPANOLA DE MEDICINA NUCLEAR 2002; 21:370-86; quiz 387-9. [PMID: 12236914 DOI: 10.1016/s0212-6982(02)72110-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Abstract
Positron emission tomography can be used for localization of epileptic foci, and preoperative functional mapping. Rapid improvements in magnetic resonance imaging, however, have restricted the need for positron emission tomography to a minority of patients who have unrevealing magnetic resonance imaging scans. Positron emission tomography will continue to be of value in investigations of the pathophysiology of seizure disorders.
Collapse
Affiliation(s)
- William H Theodore
- Clinical Epilepsy Section, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|