1
|
Ediriweera GR, Li M, Fletcher NL, Houston ZH, Ahamed M, Blakey I, Thurecht KJ. Harnessing nanoparticles and bioorthogonal chemistries for improving precision of nuclear medicine. Biomater Sci 2025. [PMID: 40135276 DOI: 10.1039/d4bm01387e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The convergence of nanotechnology, radiopharmaceutical development and molecular imaging has unveiled exciting opportunities for the progress of innovative diagnostic and therapeutic strategies, paving the way for significant advancements in biomedical research, especially in relation to cancer. For example, the use of highly sensitive and quantitative nuclear imaging techniques including PET and SPECT, together with nanoparticles for tumour imaging and therapy has recently expanded rapidly. While the long circulating properties of many nanomaterials are beneficial for prodrug chemotherapy formulations, due to the constant decay processes involved in nuclear medicines, directly labelled materials result in prolonged systemic radiation exposure and reduced therapeutic indices due to the unfavourable target-to-background ratios. This is due to the tendency for long circulating nanomaterials to distribute within the blood to other organs, such as the liver and spleen. The recent integration of bioorthogonal chemistry with nanotechnology and molecular imaging/radiotherapy has revolutionized the field by allowing the decoupling of the targeting molecule (i.e. nanomaterial with a bioorthogonal tag) and the imaging/therapeutic radioisotope. In this way, the detection/therapeutic element can be administered as a secondary "chase" molecule that contains the bioorthogonal partner, thereby creating an avenue to improve therapeutic index and provide imaging and treatments with reduced risk. This review will provide an overview of the progress made thus far in the field of nuclear imaging and radiotherapy for cancer using the combination of nanomaterials and bioorthogonal chemistry. We also provide a critical evaluation of the challenges and opportunities for using these approaches to better understand disease and treatment mechanisms, with the potential for downstream clinical translation.
Collapse
Affiliation(s)
- Gayathri R Ediriweera
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- ARC Research Hub for Advanced Manufacture of Targeted Radiopharmaceuticals, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mengdie Li
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Nicholas L Fletcher
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- ARC Research Hub for Advanced Manufacture of Targeted Radiopharmaceuticals, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zachary H Houston
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Muneer Ahamed
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Idriss Blakey
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- ARC Research Hub for Advanced Manufacture of Targeted Radiopharmaceuticals, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- ARC Research Hub for Advanced Manufacture of Targeted Radiopharmaceuticals, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
2
|
Vaughn BA, Lee SG, Vargas DB, Seo S, Rinne SS, Xu H, Guo HF, Le Roux AB, Gajecki L, Krebs S, Yang G, Ouerfelli O, Zanzonico PB, Fung EK, St Jean S, Carrasco SE, Jungbluth A, Cheung NKV, Larson SM, Veach DR, Cheal SM. Theranostic GPA33-Pretargeted Radioimmunotherapy of Human Colorectal Carcinoma with a Bivalent 177Lu-Labeled Radiohapten. J Nucl Med 2024; 65:1611-1618. [PMID: 39168519 PMCID: PMC11448610 DOI: 10.2967/jnumed.124.267685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Radiolabeled small-molecule DOTA-haptens can be combined with antitumor/anti-DOTA bispecific antibodies (BsAbs) for pretargeted radioimmunotherapy (PRIT). For optimized delivery of the theranostic γ- and β-emitting isotope 177Lu with DOTA-based PRIT (DOTA-PRIT), bivalent Gemini (DOTA-Bn-thiourea-PEG4-thiourea-Bn-DOTA, aka (3,6,9,12-tetraoxatetradecane-1,14-diyl)bis(DOTA-benzyl thiourea)) was developed. Methods: Gemini was synthesized by linking 2 S-2-(4-isothiocyanatobenzyl)-DOTA molecules together via a 1,14-diamino-PEG4 linker. [177Lu]Lu-Gemini was prepared with no-carrier-added 177LuCl3 to a molar-specific activity of 123 GBq/μmol and radiochemical purity of more than 99%. The specificity of BsAb-177Lu-Gemini was verified in vitro. Subsequently, we evaluated biodistribution and whole-body clearance for [177Lu]Lu-Gemini and, for comparison, our gold-standard monovalent [177Lu]Lu-S-2-(4-aminobenzyl)-DOTA ([177Lu]Lu-DOTA-Bn) in naïve (tumor-free) athymic nude mice. For our proof-of-concept system, a 3-step pretargeting approach was performed with an established DOTA-PRIT regimen (anti-GPA33/anti-DOTA IgG-scFv BsAb, a clearing agent, and [177Lu]Lu-Gemini) in mouse models. Results: Initial in vivo studies showed that [177Lu]Lu-Gemini behaved similarly to [177Lu]Lu-DOTA-Bn, with almost identical blood and whole-body clearance kinetics, as well as biodistribution and mouse kidney dosimetry. Pretargeting [177Lu]Lu-Gemini to GPA33-expressing SW1222 human colorectal xenografts was highly effective, leading to absorbed doses of [177Lu]Lu-Gemini for blood, tumor, liver, spleen, and kidneys of 3.99, 455, 6.93, 5.36, and 14.0 cGy/MBq, respectively. Tumor-to-normal tissue absorbed-dose ratios (i.e., therapeutic indices [TIs]) for the blood and kidneys were 114 and 33, respectively. In addition, we demonstrate that the use of bivalent [177Lu]Lu-Gemini in DOTA-PRIT leads to improved TIs and augmented [177Lu]Lu-Gemini tumor uptake and retention in comparison to monovalent [177Lu]Lu-DOTA-Bn. Finally, we established efficacy in SW1222 tumor-bearing mice, demonstrating that a single injection of anti-GPA33 DOTA-PRIT with 44 MBq (1.2 mCi) of [177Lu]Lu-Gemini (estimated tumor-absorbed dose, 200 Gy) induced complete responses in 5 of 5 animals and a histologic cure in 2 of 5 (40%) animals. Moreover, a significant increase in survival compared with nontreated controls was noted (maximum tolerated dose not reached). Conclusion: We have developed a bivalent DOTA-radiohapten, [177Lu]Lu-Gemini, that showed improved radiopharmacology for DOTA-PRIT application. The use of bivalent [177Lu]Lu-Gemini in DOTA-PRIT, as opposed to monovalent [177Lu]Lu-DOTA-Bn, allows curative treatments with considerably less administered 177Lu activity while still achieving high TIs for both the blood (>100) and the kidneys (>30).
Collapse
Affiliation(s)
- Brett A Vaughn
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sang-Gyu Lee
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniela Burnes Vargas
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Shin Seo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sara S Rinne
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hong Xu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hong-Fen Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexandre B Le Roux
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Leah Gajecki
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Guangbin Yang
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ouathek Ouerfelli
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pat B Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edward K Fung
- Department of Medical Physics, Weill Cornell Medicine, New York, New York
| | - Samantha St Jean
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center-Weill Cornell Medicine-Rockefeller University, New York, New York; and
| | - Sebastian E Carrasco
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center-Weill Cornell Medicine-Rockefeller University, New York, New York; and
| | - Achim Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nai Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Steven M Larson
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Darren R Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Sarah M Cheal
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York;
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
3
|
Nessler I, Rubahamya B, Kopp A, Hofsess S, Cardillo TM, Sathyanarayan N, Donnell J, Govindan SV, Thurber GM. Improving Intracellular Delivery of an Antibody-Drug Conjugate Targeting Carcinoembryonic Antigen Increases Efficacy at Clinically Relevant Doses In Vivo. Mol Cancer Ther 2024; 23:343-353. [PMID: 37913500 PMCID: PMC10932886 DOI: 10.1158/1535-7163.mct-23-0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/11/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Solid tumor antibody-drug conjugates (ADC) have experienced more clinical success in the last 5 years than the previous 18-year span since the first ADC approval in 2000. While recent advances in protein engineering, linker design, and payload variations have played a role in this success, high expression and readily internalized targets have also been crucial to solid tumor therapy. However, these factors are also paradoxically connected to poor tissue penetration and lower efficacy. Previous work shows that potent ADCs can benefit from slower internalization under subsaturating doses to improve tissue penetration and increase tumor response. In contrast, faster internalization is predicted to increase efficacy under higher, tumor saturating doses. In this work, the intracellular delivery of SN-38 conjugated to an anti-carcinoembryonic antigen (anti-CEA) antibody (Ab) is increased by coadministering a noncompeting (cross-linking) anti-CEA Ab to improve efficacy in a colorectal carcinoma animal model. The SN-38 payload enables broad tumor saturation with clinically-tolerable doses, and under these saturating conditions, using a second CEA receptor cross-linking Ab yields faster internalization, which increases tumor killing efficacy. Our spheroid results show indirect bystander killing can also occur, but the more efficient direct cell killing from targeted intracellular payload release drives a greater tumor response. These results provide a strategy to increase therapeutic effectiveness with improved intracellular delivery under tumor saturating doses with the potential to expand the ADC target repertoire.
Collapse
Affiliation(s)
- Ian Nessler
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Baron Rubahamya
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Anna Kopp
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | | | - Greg M. Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
4
|
Narbona J, Hernández-Baraza L, Gordo RG, Sanz L, Lacadena J. Nanobody-Based EGFR-Targeting Immunotoxins for Colorectal Cancer Treatment. Biomolecules 2023; 13:1042. [PMID: 37509078 PMCID: PMC10377705 DOI: 10.3390/biom13071042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Immunotoxins (ITXs) are chimeric molecules that combine the specificity of a targeting domain, usually derived from an antibody, and the cytotoxic potency of a toxin, leading to the selective death of tumor cells. However, several issues must be addressed and optimized in order to use ITXs as therapeutic tools, such as the selection of a suitable tumor-associated antigen (TAA), high tumor penetration and retention, low kidney elimination, or low immunogenicity of foreign proteins. To this end, we produced and characterized several ITX designs, using a nanobody against EGFR (VHH 7D12) as the targeting domain. First, we generated a nanoITX, combining VHH 7D12 and the fungal ribotoxin α-sarcin (αS) as the toxic moiety (VHHEGFRαS). Then, we incorporated a trimerization domain (TIEXVIII) into the construct, obtaining a trimeric nanoITX (TriVHHEGFRαS). Finally, we designed and characterized a bispecific ITX, combining the VHH 7D12 and the scFv against GPA33 as targeting domains, and a deimmunized (DI) variant of α-sarcin (BsITXαSDI). The results confirm the therapeutic potential of α-sarcin-based nanoITXs. The incorporation of nanobodies as target domains improves their therapeutic use due to their lower molecular size and binding features. The enhanced avidity and toxic load in the trimeric nanoITX and the combination of two different target domains in the bispecific nanoITX allow for increased antitumor effectiveness.
Collapse
Affiliation(s)
- Javier Narbona
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Luisa Hernández-Baraza
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
- University Institute of Biomedical and Health Research (IUIBS), Las Palmas University, 35016 Las Palmas de Gran Canaria, Spain
| | - Rubén G Gordo
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute, Hospital Universitario Puerta de Hierro, Majadahonda, 28222 Madrid, Spain
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
5
|
Deshmukh R, Prajapati M, Harwansh RK. A review on emerging targeted therapies for the management of metastatic colorectal cancers. Med Oncol 2023; 40:159. [PMID: 37097307 DOI: 10.1007/s12032-023-02020-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
Colorectal cancers are among the most commonly found cancers over the world. In spite of the recent advancements in diagnosis and prognosis, the management of this metastatic condition remains a challenge. The utility of monoclonal antibodies in the healing of patients with colorectal cancer has opened a new chapter in the quest for newer therapies. The resistance to the standard treatment regimen made it mandatory to search for newer targets. Mutagenic alterations in the gene engaged in cellular differentiation and growth pathway have been the reason for resistance to treatment. The newer therapies target the various proteins and receptors involved in the signal transduction and down streaming pathways leading to cell proliferation. This review presents an insight into the newer targeted therapies for colorectal cancer involving tyrosine kinase blockers, epidermal growth factor receptors, vascular endothelial growth factor, immune checkpoint therapy, and BRAF inhibitors.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India.
| | - Mahendra Prajapati
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| |
Collapse
|
6
|
Narbona J, Gordo RG, Tomé-Amat J, Lacadena J. A New Optimized Version of a Colorectal Cancer-Targeted Immunotoxin Based on a Non-Immunogenic Variant of the Ribotoxin α-Sarcin. Cancers (Basel) 2023; 15:cancers15041114. [PMID: 36831456 PMCID: PMC9954630 DOI: 10.3390/cancers15041114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Due to its incidence and mortality, cancer remains one of the main risks to human health and lifespans. In order to overcome this worldwide disease, immunotherapy and the therapeutic use of immunotoxins have arisen as promising approaches. However, the immunogenicity of foreign proteins limits the dose of immunotoxins administered, thereby leading to a decrease in its therapeutic benefit. In this study, we designed two different variants of non-immunogenic immunotoxins (IMTXA33αSDI and IMTXA33furαSDI) based on a deimmunized variant of the ribotoxin α-sarcin. The inclusion of a furin cleavage site in IMTXA33furαSDI would allow a more efficient release of the toxic domain to the cytosol. Both immunotoxins were produced and purified in the yeast Pichia pastoris and later functionally characterized (both in vitro and in vivo), and immunogenicity assays were carried out. The results showed that both immunotoxins were functionally active and less immunogenic than the wild-type immunotoxin. In addition, IMTXA33furαSDI showed a more efficient antitumor effect (both in vitro and in vivo) due to the inclusion of the furin linker. These results constituted a step forward in the optimization of immunotoxins with low immunogenicity and enhanced antitumor activity, which can lead to potential better outcomes in cancer treatment.
Collapse
Affiliation(s)
- Javier Narbona
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Rubén G. Gordo
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Jaime Tomé-Amat
- Centre for Plant Biotechnology and Genomics (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
7
|
Huda MN, Nurunnabi M. Potential Application of Exosomes in Vaccine Development and Delivery. Pharm Res 2022; 39:2635-2671. [PMID: 35028802 PMCID: PMC8757927 DOI: 10.1007/s11095-021-03143-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
Exosomes are cell-derived components composed of proteins, lipid, genetic information, cytokines, and growth factors. They play a vital role in immune modulation, cell-cell communication, and response to inflammation. Immune modulation has downstream effects on the regeneration of damaged tissue, promoting survival and repair of damaged resident cells, and promoting the tumor microenvironment via growth factors, antigens, and signaling molecules. On top of carrying biological messengers like mRNAs, miRNAs, fragmented DNA, disease antigens, and proteins, exosomes modulate internal cell environments that promote downstream cell signaling pathways to facilitate different disease progression and induce anti-tumoral effects. In this review, we have summarized how vaccines modulate our immune response in the context of cancer and infectious diseases and the potential of exosomes as vaccine delivery vehicles. Both pre-clinical and clinical studies show that exosomes play a decisive role in processes like angiogenesis, prognosis, tumor growth metastasis, stromal cell activation, intercellular communication, maintaining cellular and systematic homeostasis, and antigen-specific T- and B cell responses. This critical review summarizes the advancement of exosome based vaccine development and delivery, and this comprehensive review can be used as a valuable reference for the broader delivery science community.
Collapse
Affiliation(s)
- Md Nurul Huda
- Department of Pharmaceutical Sciences, University of Texas at El Paso School of Pharmacy, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Enviromental Science and Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, University of Texas at El Paso School of Pharmacy, 1101 N. Campbell St, El Paso, TX, 79902, USA.
- Enviromental Science and Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA.
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
8
|
Dettling DE, Kwok E, Quach L, Datt A, Degenhardt JD, Panchal A, Seto P, Krakow JL, Wall R, Hillier BJ, Zhu Y, Vinogradova M, DuBridge RB, May C. Regression of EGFR positive established solid tumors in mice with the conditionally active T cell engager TAK-186. J Immunother Cancer 2022; 10:jitc-2021-004336. [PMID: 35728872 PMCID: PMC9214390 DOI: 10.1136/jitc-2021-004336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background Despite clinical success with T cell engagers (TCEs) targeting hematological malignancies, achieving a safe and efficacious dose in patients with solid tumors remains challenging. Due to potency, low levels of target antigen expression on normal tissues may not be tolerated. To overcome this, we engineered a novel conditionally active TCE design called COBRA (Conditional Bispecific Redirected Activation). Administered as prodrugs, COBRAs bind to cell surface antigens on both normal and tumor tissues but are preferentially activated within the tumor microenvironment. Methods A COBRA was engineered to target EGFR, TAK-186. The potency of precleaved TAK-186 relative to a non-cleavable control was assessed in vitro. Mice bearing established solid tumors expressing a range of EGFR levels were administered a single bolus of human T cells, and concurrently treated with TAK-186 and associated controls intravenously. We assessed the plasma and tumor exposure of intact and cleaved TAK-186. Results TAK-186 shows potent redirected T cell killing of antigen expressing tumor cells. In vivo efficacy studies demonstrate regressions of established solid tumors, dependent on intratumoral COBRA cleavage. Pharmacokinetic studies reveal TAK-186 is stable in circulation, but once activated is rapidly cleared due to loss of its albumin-binding half-life extension domain. Conclusions The studies shown support the advancement of TAK-186, and the pursuit of additional COBRA TCEs for the treatment of solid tumors.
Collapse
Affiliation(s)
- Danielle E Dettling
- Oncology Drug Development Unit, Takeda Development Centers America, Inc (TDCA), Lexington, Massachusetts, USA
| | - Eilene Kwok
- Oncology Drug Development Unit, Takeda Development Centers America, Inc (TDCA), Lexington, Massachusetts, USA
| | - Lucy Quach
- Oncology Drug Development Unit, Takeda Development Centers America, Inc (TDCA), Lexington, Massachusetts, USA
| | - Aakash Datt
- Oncology Drug Development Unit, Takeda Development Centers America, Inc (TDCA), Lexington, Massachusetts, USA
| | - Jeremiah D Degenhardt
- Oncology Drug Development Unit, Takeda Development Centers America, Inc (TDCA), Lexington, Massachusetts, USA
| | - Anand Panchal
- Oncology Drug Development Unit, Takeda Development Centers America, Inc (TDCA), Lexington, Massachusetts, USA
| | - Pui Seto
- Oncology Drug Development Unit, Takeda Development Centers America, Inc (TDCA), Lexington, Massachusetts, USA
| | - Jessica L Krakow
- Oncology Drug Development Unit, Takeda Development Centers America, Inc (TDCA), Lexington, Massachusetts, USA
| | - Russell Wall
- Oncology Drug Development Unit, Takeda Development Centers America, Inc (TDCA), Lexington, Massachusetts, USA
| | - Brian J Hillier
- Oncology Drug Development Unit, Takeda Development Centers America, Inc (TDCA), Lexington, Massachusetts, USA
| | - Ying Zhu
- Oncology Drug Development Unit, Takeda Development Centers America, Inc (TDCA), Lexington, Massachusetts, USA
| | - Maia Vinogradova
- Oncology Drug Development Unit, Takeda Development Centers America, Inc (TDCA), Lexington, Massachusetts, USA
| | - Robert B DuBridge
- Oncology Drug Development Unit, Takeda Development Centers America, Inc (TDCA), Lexington, Massachusetts, USA
| | - Chad May
- Oncology Drug Development Unit, Takeda Development Centers America, Inc (TDCA), Lexington, Massachusetts, USA
| |
Collapse
|
9
|
Recent Advances in the Development of Tetrazine Ligation Tools for Pretargeted Nuclear Imaging. Pharmaceuticals (Basel) 2022; 15:ph15060685. [PMID: 35745604 PMCID: PMC9227058 DOI: 10.3390/ph15060685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023] Open
Abstract
Tetrazine ligation has gained interest as a bio-orthogonal chemistry tool within the last decade. In nuclear medicine, tetrazine ligation is currently being explored for pretargeted approaches, which have the potential to revolutionize state-of-the-art theranostic strategies. Pretargeting has been shown to increase target-to-background ratios for radiopharmaceuticals based on nanomedicines, especially within early timeframes. This allows the use of radionuclides with short half-lives which are more suited for clinical applications. Pretargeting bears the potential to increase the therapeutic dose delivered to the target as well as reduce the respective dose to healthy tissue. Combined with the possibility to be applied for diagnostic imaging, pretargeting could be optimal for theranostic approaches. In this review, we highlight efforts that have been made to radiolabel tetrazines with an emphasis on imaging.
Collapse
|
10
|
Eddama MMR, Gurung R, Fragkos K, Lorgelly P, Cohen R, Loizidou M, Clapp L. The role of microvesicles as biomarkers in the screening of colorectal neoplasm. Cancer Med 2022; 11:2957-2968. [PMID: 35343093 PMCID: PMC9359869 DOI: 10.1002/cam4.4664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/26/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
Background Colorectal cancer (CRC) is the second cause of cancer death worldwide. The role of circulating microvesicles as a screening tool is a novel, yet effective approach that warrants prioritised research. Methods In a two‐gate diagnostic accuracy study, 35 patients with benign colorectal polyps (BCRP) (n = 16) and colorectal cancer (CRC) (n = 19) were compared to 17 age‐matched healthy controls. Total annexin‐V positive microvesicles and sub‐populations positive for selected biomarkers relevant to bowel neoplasm were evaluated in patients' plasma using flow cytometry. Statistical methods including factor analysis utilising two component factors were performed to obtain optimal diagnostic accuracy of microvesicles in identifying patients with colorectal neoplasms. Results Total plasma microvesicles, and sub‐populations positive for CD31, CD42a, CD31+/CD42a‐, EPHB2, ICAM and LGR5 (component factor‐1) were able to identify patients with BCRP and CRC with a receiver operator curve (AUC) accuracy of a 100% (95% CI: 100%–100%) and 95% (95% CI: 88%–100%), respectively. To identify patients with BCRP, a cut‐off point value of component factor‐1761 microvesicles/μl demonstrated a 100% sensitivity, specificity and negative predictive value (NPV) and a 93% positive predictive value (PPV). To identify patients with CRC, a cut‐off value of component factor‐1 3439 microvesicles/μl demonstrated a 100% sensitivity, specificity and NPV and a 65% PPV. CEA+ microvesicles sub‐population were significantly (p < 0.02) higher in CRC in comparison to BCRP. Conclusions Microvesicles as biomarkers for the early and accurate detection of CRC is a simple and effective tool that yields a potential breakthrough in clinical management.
Collapse
Affiliation(s)
- Mohammad M R Eddama
- Research Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK.,Department of Surgery, University College London Hospital, London, UK
| | - Rijan Gurung
- Research Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
| | | | - Paula Lorgelly
- Department of Applied Health Research, Institute of Epidemiology and Health, University College London, London, UK
| | - Richard Cohen
- Research Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK.,Department of Surgery, University College London Hospital, London, UK
| | - Marilena Loizidou
- Research Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
| | - Lucie Clapp
- Institute of Cardiovascular Sciences, University College London, London, UK
| |
Collapse
|
11
|
Novel Diagnostic Biomarkers in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23020852. [PMID: 35055034 PMCID: PMC8776048 DOI: 10.3390/ijms23020852] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is still a leading cause of cancer death worldwide. Less than half of cases are diagnosed when the cancer is locally advanced. CRC is a heterogenous disease associated with a number of genetic or somatic mutations. Diagnostic markers are used for risk stratification and early detection, which might prolong overall survival. Nowadays, the widespread use of semi-invasive endoscopic methods and feacal blood tests characterised by suboptimal accuracy of diagnostic results has led to the detection of cases at later stages. New molecular noninvasive tests based on the detection of CRC alterations seem to be more sensitive and specific then the current methods. Therefore, research aiming at identifying molecular markers, such as DNA, RNA and proteins, would improve survival rates and contribute to the development of personalized medicine. The identification of “ideal” diagnostic biomarkers, having high sensitivity and specificity, being safe, cheap and easy to measure, remains a challenge. The purpose of this review is to discuss recent advances in novel diagnostic biomarkers for tumor tissue, blood and stool samples in CRC patients.
Collapse
|
12
|
Sanz L, Ibáñez-Pérez R, Guerrero-Ochoa P, Lacadena J, Anel A. Antibody-Based Immunotoxins for Colorectal Cancer Therapy. Biomedicines 2021; 9:1729. [PMID: 34829955 PMCID: PMC8615520 DOI: 10.3390/biomedicines9111729] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023] Open
Abstract
Monoclonal antibodies (mAbs) are included among the treatment options for advanced colorectal cancer (CRC). However, while these mAbs effectively target cancer cells, they may have limited clinical activity. A strategy to improve their therapeutic potential is arming them with a toxic payload. Immunotoxins (ITX) combining the cell-killing ability of a toxin with the specificity of a mAb constitute a promising strategy for CRC therapy. However, several important challenges in optimizing ITX remain, including suboptimal pharmacokinetics and especially the immunogenicity of the toxin moiety. Nonetheless, ongoing research is working to solve these limitations and expand CRC patients' therapeutic armory. In this review, we provide a comprehensive overview of targets and toxins employed in the design of ITX for CRC and highlight a wide selection of ITX tested in CRC patients as well as preclinical candidates.
Collapse
Affiliation(s)
- Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute, Hospital Universitario Puerta de Hierro, 28222 Madrid, Spain
| | - Raquel Ibáñez-Pérez
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| | - Patricia Guerrero-Ochoa
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| |
Collapse
|
13
|
Azadi A, Golchini A, Delazar S, Abarghooi Kahaki F, Dehnavi SM, Payandeh Z, Eyvazi S. Recent Advances on Immune Targeted Therapy of Colorectal Cancer Using bi-Specific Antibodies and Therapeutic Vaccines. Biol Proced Online 2021; 23:13. [PMID: 34193050 PMCID: PMC8245152 DOI: 10.1186/s12575-021-00147-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a universal heterogeneous disease that is characterized by genetic and epigenetic alterations. Immunotherapy using monoclonal antibodies (mAb) and cancer vaccines are substitute strategies for CRC treatment. When cancer immunotherapy is combined with chemotherapy, surgery, and radiotherapy, the CRC treatment would become excessively efficient. One of the compelling immunotherapy approaches to increase the efficiency of CRC therapy is the deployment of therapeutic mAbs, nanobodies, bi-specific antibodies and cancer vaccines, which improve clinical outcomes in patients. Also, among the possible therapeutic approaches for CRC patients, gene vaccines in combination with antibodies are recently introduced as a new perspective. Here, we aimed to present the current progress in CRC immunotherapy, especially using Bi-specific antibodies and dendritic cells mRNA vaccines. For this aim, all data were extracted from Google Scholar, PubMed, Scopus, and Elsevier, using keywords cancer vaccines; CRC immunotherapy and CRC mRNA vaccines. About 97 articles were selected and investigated completely based on the latest developments and novelties on bi-specific antibodies, mRNA vaccines, nanobodies, and MGD007.
Collapse
Affiliation(s)
- Ali Azadi
- Department of Medicine, De La Salle Health Sciences Institute, Dasmariñas, Philippines
| | - Alireza Golchini
- Cancer surgery Department; Shiraz Medical School, Shiraz University of medical Sciences, Shiraz, Iran
| | - Sina Delazar
- Department of Radiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abarghooi Kahaki
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Dehnavi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Payandeh
- Immunology Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
14
|
Sarrett SM, Keinänen O, Dayts EJ, Dewaele-Le Roi G, Rodriguez C, Carnazza KE, Zeglis BM. Inverse electron demand Diels-Alder click chemistry for pretargeted PET imaging and radioimmunotherapy. Nat Protoc 2021; 16:3348-3381. [PMID: 34127865 PMCID: PMC8917728 DOI: 10.1038/s41596-021-00540-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/22/2021] [Indexed: 11/08/2022]
Abstract
Radiolabeled antibodies have shown promise as tools for both the nuclear imaging and endoradiotherapy of cancer, but the protracted circulation time of radioimmunoconjugates can lead to high radiation doses to healthy tissues. To circumvent this issue, we have developed an approach to positron emission tomography (PET) imaging and radioimmunotherapy (RIT) predicated on radiolabeling the antibody after it has reached its target within the body. This in vivo pretargeting strategy is based on the rapid and bio-orthogonal inverse electron demand Diels-Alder reaction between tetrazine (Tz) and trans-cyclooctene (TCO). Pretargeted PET imaging and RIT using TCO-modified antibodies in conjunction with Tz-bearing radioligands produce high activity concentrations in target tissues as well as reduced radiation doses to healthy organs compared to directly labeled radioimmunoconjugates. Herein, we describe how to prepare a TCO-modified antibody (humanized A33-TCO) as well as how to synthesize two Tz-bearing radioligands: one labeled with the positron-emitting radiometal copper-64 ([64Cu]Cu-SarAr-Tz) and one labeled with the β-emitting radiolanthanide lutetium-177 ([177Lu]Lu-DOTA-PEG7-Tz). We also provide a detailed description of pretargeted PET and pretargeted RIT experiments in a murine model of human colorectal carcinoma. Proper training in both radiation safety and the handling of laboratory mice is required for the successful execution of this protocol.
Collapse
Affiliation(s)
- Samantha M Sarrett
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Outi Keinänen
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Eric J Dayts
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
| | - Guillaume Dewaele-Le Roi
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Cindy Rodriguez
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Kathryn E Carnazza
- Brain and Mind Research Institute & Appel Institute for Alzheimer's Disease Research, Weill Cornell Medical College, New York, NY, USA
| | - Brian M Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA.
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
15
|
Hosseini SS, Khalili S, Baradaran B, Bidar N, Shahbazi MA, Mosafer J, Hashemzaei M, Mokhtarzadeh A, Hamblin MR. Bispecific monoclonal antibodies for targeted immunotherapy of solid tumors: Recent advances and clinical trials. Int J Biol Macromol 2020; 167:1030-1047. [PMID: 33197478 DOI: 10.1016/j.ijbiomac.2020.11.058] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Bispecific antibodie (BsAbs) combine two or more epitope-recognizing sequences into a single protein molecule. The first therapeutic applications of BsAbs were focused on cancer therapy. However, these antibodies have grown to cover a wider disease spectrum, including imaging, diagnosis, prophylaxis, and therapy of inflammatory and autoimmune diseases. BsAbs can be categorized into IgG-like formats and non-IgG-like formats. Different technologies have been used for the construction of BsAbs including "CrossMAb", "Quadroma", "knobs-into-holes" and molecular cloning. The mechanism of action for BsAbs includes the induction of CDC, ADCC, ADCP, apoptosis, and recruitment of cell surface receptors, as well as activation or inhibition of signaling pathways. The first clinical trials included mainly leukemia and lymphoma, but solid tumors are now being investigated. The BsAbs bind to a tumor-specific antigen using one epitope, while the second epitope binds to immune cell receptors such as CD3, CD16, CD64, and CD89, with the goal of stimulating the immune response against cancer cells. Currently, over 20 different commercial methods have been developed for the construction of BsAbs. Three BsAbs are currently clinically approved and marketed, and more than 85 clinical trials are in progress. In the present review, we discuss recent trends in the design, engineering, clinical applications, and clinical trials of BsAbs in solid tumors.
Collapse
Affiliation(s)
- Seyed Samad Hosseini
- Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Bidar
- Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Jafar Mosafer
- Nanotechnology Research center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, School of Paramedical Science, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
16
|
Abstract
Over the past decade, theranostic imaging has emerged as a powerful clinical tool in oncology for identifying patients likely to respond to targeted therapies and for monitoring the response of patients to treatment. Herein, we report a theranostic approach to pretargeted radioimmunotherapy (PRIT) based on a pair of radioisotopes of copper: positron-emitting copper-64 (64Cu, t 1/2 = 12.7 h) and beta particle-emitting copper-67 (67Cu, t 1/2 = 61.8 h). This strategy is predicated on the in vivo ligation between a trans-cyclooctene (TCO)-bearing antibody and a tetrazine (Tz)-based radioligand via the rapid and bioorthogonal inverse electron-demand Diels-Alder reaction. Longitudinal therapy studies were conducted in a murine model of human colorectal carcinoma using an immunoconjugate of the huA33 antibody modified with TCO (huA33-TCO) and a 67Cu-labeled Tz radioligand ([67Cu]Cu-MeCOSar-Tz). The injection of huA33-TCO followed 72 h later by the administration of 18.5, 37.0, or 55.5 MBq of [67Cu]Cu-MeCOSar-Tz produced a dose-dependent therapeutic response, with the median survival time increasing from 68 d for the lowest dose to >200 d for the highest. Furthermore, we observed that mice that received the highest dose of [67Cu]Cu-MeCOSar-Tz in a fractionated manner exhibited improved hematological values without sacrificing therapeutic efficacy. Dual radionuclide experiments in which a single administration of huA33-TCO was followed by separate injections of [64Cu]Cu-MeCOSar-Tz and [67Cu]Cu-MeCOSar-Tz revealed that the positron emission tomography images produced by the former accurately predicted the efficacy of the latter. In these experiments, a correlation was observed between the tumoral uptake of [64Cu]Cu-MeCOSar-Tz and the subsequent therapeutic response to [67Cu]Cu-MeCOSar-Tz.
Collapse
|
17
|
Cheal SM, McDevitt MR, Santich BH, Patel M, Yang G, Fung EK, Veach DR, Bell M, Ahad A, Vargas DB, Punzalan B, Pillarsetty NVK, Xu H, Guo HF, Monette S, Michel AO, Piersigilli A, Scheinberg DA, Ouerfelli O, Cheung NKV, Larson SM. Alpha radioimmunotherapy using 225Ac-proteus-DOTA for solid tumors - safety at curative doses. Theranostics 2020; 10:11359-11375. [PMID: 33052220 PMCID: PMC7546012 DOI: 10.7150/thno.48810] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
This is the initial report of an α-based pre-targeted radioimmunotherapy (PRIT) using 225Ac and its theranostic pair, 111In. We call our novel tumor-targeting DOTA-hapten PRIT system "proteus-DOTA" or "Pr." Herein we report the first results of radiochemistry development, radiopharmacology, and stoichiometry of tumor antigen binding, including the role of specific activity, anti-tumor efficacy, and normal tissue toxicity with the Pr-PRIT approach (as α-DOTA-PRIT). A series of α-DOTA-PRIT therapy studies were performed in three solid human cancer xenograft models of colorectal cancer (GPA33), breast cancer (HER2), and neuroblastoma (GD2), including evaluation of chronic toxicity at ~20 weeks of select survivors. Methods: Preliminary biodistribution experiments in SW1222 tumor-bearing mice revealed that 225Ac could not be efficiently pretargeted with current DOTA-Bn hapten utilized for 177Lu or 90Y, leading to poor tumor uptake in vivo. Therefore, we synthesized Pr consisting of an empty DOTA-chelate for 225Ac, tethered via a short polyethylene glycol linker to a lutetium-complexed DOTA for picomolar anti-DOTA chelate single-chain variable fragment (scFv) binding. Pr was radiolabeled with 225Ac and its imaging surrogate, 111In. In vitro studies verified anti-DOTA scFv recognition of [225Ac]Pr, and in vivo biodistribution and clearance studies were performed to evaluate hapten suitability and in vivo targeting efficiency. Results: Intravenously (i.v.) administered 225Ac- or 111In-radiolabeled Pr in mice showed rapid renal clearance and minimal normal tissue retention. In vivo pretargeting studies show high tumor accumulation of Pr (16.71 ± 5.11 %IA/g or 13.19 ± 3.88 %IA/g at 24 h p.i. for [225Ac]Pr and [111In]Pr, respectively) and relatively low uptake in normal tissues (all average ≤ 1.4 %IA/g at 24 h p.i.). Maximum tolerated dose (MTD) was not reached for either [225Ac]Pr alone or pretargeted [225Ac]Pr at administered activities up to 296 kBq/mouse. Single-cycle treatment consisting of α-DOTA-PRIT with either huA33-C825 bispecific anti-tumor/anti-DOTA-hapten antibody (BsAb), anti-HER2-C825 BsAb, or hu3F8-C825 BsAb for targeting GPA33, HER2, or GD2, respectively, was highly effective. In the GPA33 model, no complete responses (CRs) were observed but prolonged overall survival of treated animals was 42 d for α-DOTA-PRIT vs. 25 d for [225Ac]Pr only (P < 0.0001); for GD2, CRs (7/7, 100%) and histologic cures (4/7, 57%); and for HER2, CRs (7/19, 37%) and histologic cures (10/19, 56%) with no acute or chronic toxicity. Conclusions: [225Ac]Pr and its imaging biomarker [111In]Pr demonstrate optimal radiopharmacologic behavior for theranostic applications of α-DOTA-PRIT. For this initial evaluation of efficacy and toxicity, single-cycle treatment regimens were performed in all three systems. Histologic toxicity was not observed, so MTD was not observed. Prolonged overall survival, CRs, and histologic cures were observed in treated animals. In comparison to RIT with anti-tumor IgG antibodies, [225Ac]Pr has a much improved safety profile. Ultimately, these data will be used to guide clinical development of toxicity and efficacy studies of [225Ac]Pr, with the goal of delivering massive lethal doses of radiation to achieve a high probability of cure without toxicity.
Collapse
|
18
|
Dewulf J, Adhikari K, Vangestel C, Wyngaert TVD, Elvas F. Development of Antibody Immuno-PET/SPECT Radiopharmaceuticals for Imaging of Oncological Disorders-An Update. Cancers (Basel) 2020; 12:E1868. [PMID: 32664521 PMCID: PMC7408676 DOI: 10.3390/cancers12071868] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 01/12/2023] Open
Abstract
Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are molecular imaging strategies that typically use radioactively labeled ligands to selectively visualize molecular targets. The nanomolar sensitivity of PET and SPECT combined with the high specificity and affinity of monoclonal antibodies have shown great potential in oncology imaging. Over the past decades a wide range of radio-isotopes have been developed into immuno-SPECT/PET imaging agents, made possible by novel conjugation strategies (e.g., site-specific labeling, click chemistry) and optimization and development of novel radiochemistry procedures. In addition, new strategies such as pretargeting and the use of antibody fragments have entered the field of immuno-PET/SPECT expanding the range of imaging applications. Non-invasive imaging techniques revealing tumor antigen biodistribution, expression and heterogeneity have the potential to contribute to disease diagnosis, therapy selection, patient stratification and therapy response prediction achieving personalized treatments for each patient and therefore assisting in clinical decision making.
Collapse
Affiliation(s)
- Jonatan Dewulf
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Karuna Adhikari
- Faculty of Pharmaceutical Biomedical and Veterinary Sciences, Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium;
| | - Christel Vangestel
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Tim Van Den Wyngaert
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| |
Collapse
|
19
|
Wei D, Tao Z, Shi Q, Wang L, Liu L, She T, Yi Q, Wen X, Liu L, Li S, Yang H, Jiang X. Selective Photokilling of Colorectal Tumors by Near-Infrared Photoimmunotherapy with a GPA33-Targeted Single-Chain Antibody Variable Fragment Conjugate. Mol Pharm 2020; 17:2508-2517. [PMID: 32396000 DOI: 10.1021/acs.molpharmaceut.0c00210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antibody-based near-infrared photoimmunotherapy (NIR-PIT) is an attractive strategy for cancer treatment. Tumor cells can be selectively and efficiently killed by the targeted delivery of an antibody-photoabsorber complex followed by exposure to NIR light. Glycoprotein A33 antigen (GPA33) is highly expressed in most human colorectal cancers (CRCs) and is an ideal diagnostic and therapeutic target. We previously produced a single-chain fragment of a variable antibody against GPA33 (A33scFv antibody). Here, we investigate the efficacy of NIR-PIT by combining A33scFv with the NIR photoabsorber IR700 (A33scFv-IR700). In vitro, recombinant A33scFv displayed specific binding and delivery of an NIR dye to GPA33-positive tumor cells. Furthermore, A33scFv-IR700-mediated NIR-PIT was successful in rapidly and specifically killing GPA33-positive colorectal tumor cells. NIR-PIT treatment induced the release of lactate dehydrogenase from tumor cells, followed by cell necrosis, rather than apoptosis, through the promotion of reactive oxygen species accumulation in tumor cells. In mice bearing LS174T tumor grafts, A33scFv selectively accumulated in GPA33-positive tumors. Following only a single injection of the conjugate and subsequent illumination, A33scFv-IR700-mediated NIR-PIT induced a significant increase in therapeutic response in LS174T-tumor mice compared with that in the non-NIR-PIT groups (p < 0.001). Because the GPA33 antigen is specifically expressed in CRC tumors, A33scFv-IR700 might be a promising antibody fragment-photoabsorber conjugate for NIR-PIT of CRC.
Collapse
Affiliation(s)
- Danfeng Wei
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China.,Medical Research Center, The Third People's Hospital of Chengdu, The Second Affiliated Chengdu Clinical College of Chongqing Medical University, Chengdu 610031, China.,Key Laboratory of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ze Tao
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiuxiao Shi
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lijun Wang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Second Affiliated Chengdu Clinical College of Chongqing Medical University, Chengdu 610031, China
| | - Lei Liu
- Medical Research Center, The Third People's Hospital of Chengdu, The Second Affiliated Chengdu Clinical College of Chongqing Medical University, Chengdu 610031, China
| | - Tianshan She
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qin Yi
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Liu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengfu Li
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Practical Guide for Quantification of In Vivo Degradation Rates for Therapeutic Proteins with Single-Cell Resolution Using Fluorescence Ratio Imaging. Pharmaceutics 2020; 12:pharmaceutics12020132. [PMID: 32033318 PMCID: PMC7076450 DOI: 10.3390/pharmaceutics12020132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/20/2020] [Accepted: 02/02/2020] [Indexed: 12/20/2022] Open
Abstract
Many tools for studying the pharmacokinetics of biologics lack single-cell resolution to quantify the heterogeneous tissue distribution and subsequent therapeutic degradation in vivo. This protocol describes a dual-labeling technique using two near-infrared dyes with widely differing residualization rates to efficiently quantify in vivo therapeutic protein distribution and degradation rates at the single cell level (number of proteins/cell) via ex vivo flow cytometry and histology. Examples are shown for four biologics with varying rates of receptor internalization and degradation and a secondary dye pair for use in systems with lower receptor expression. Organ biodistribution, tissue-level confocal microscopy, and cellular-level flow cytometry were used to image the multi-scale distribution of these agents in tumor xenograft mouse models. The single-cell measurements reveal highly heterogeneous delivery, and degradation results show the delay between peak tumor uptake and maximum protein degradation. This approach has broad applicability in tracking the tissue and cellular distribution of protein therapeutics for drug development and dose determination.
Collapse
|
21
|
Marques AT, Anjo SI, Bhide M, Varela Coelho A, Manadas B, Lecchi C, Grilli G, Ceciliani F. Changes in the intestinal mucosal proteome of turkeys (Meleagris gallopavo) infected with haemorrhagic enteritis virus. Vet Immunol Immunopathol 2019; 213:109880. [PMID: 31307669 DOI: 10.1016/j.vetimm.2019.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
Abstract
Haemorrhagic enteritis (HE) is a viral disease affecting intestinal integrity and barrier function in turkey (Meleagris gallopavo) and resulting in a significant economic loss. Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH-MS) was applied to identify crucial proteins involved in HE infection. A total of 938 proteins were identified and used to generate a reference library for SWATH-MS analysis. In total, 523 proteins were reliably quantified, and 64 proteins were found to be differentially expressed, including 49 up-regulated and 15 down-regulated proteins between healthy and HE-affected intestinal mucosa. Functional analysis suggested that these proteins were involved in the following categories of cellular pathways and metabolisms: 1) energy pathways; 2) intestine lipid and amino acid metabolism; 3) oxidative stress; 4) intestinal immune response. Major findings of this study demonstrated that natural HE infection is related to the changes in abundance of several proteins involved in cell-intrinsic immune defense against viral invasion, systemic inflammation, modulation of excessive inflammation, B and T cell development and function and antigen presentation. mRNA quantitative expression demonstrated that most of the proteins involved in innate immunity that were found to be differentially abundant were produced by intestinal mucosa, suggesting its direct involvement in immune defences against HE infection.
Collapse
Affiliation(s)
- Andreia Tomás Marques
- Università degli Studi di Milano, Department of Veterinary Medicine, Via Celoria 10, 20133, Milano, Italy
| | - Sandra I Anjo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1° andar, 3004-504, Coimbra, Portugal; Faculty of Sciences and Technology, University of Coimbra, Universidade de Coimbra - Pólo II, Rua Sílvio Lima, 3030-790, Coimbra, Portugal
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenskeho 73 Kosice, Slovakia
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1° andar, 3004-504, Coimbra, Portugal
| | - Cristina Lecchi
- Università degli Studi di Milano, Department of Veterinary Medicine, Via Celoria 10, 20133, Milano, Italy
| | - Guido Grilli
- Università degli Studi di Milano, Department of Veterinary Medicine, Via Celoria 10, 20133, Milano, Italy
| | - Fabrizio Ceciliani
- Università degli Studi di Milano, Department of Veterinary Medicine, Via Celoria 10, 20133, Milano, Italy.
| |
Collapse
|
22
|
Membreno R, Keinänen OM, Cook BE, Tully KM, Fung KC, Lewis JS, Zeglis BM. Toward the Optimization of Click-Mediated Pretargeted Radioimmunotherapy. Mol Pharm 2019; 16:2259-2263. [PMID: 30912951 DOI: 10.1021/acs.molpharmaceut.9b00062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pretargeted radioimmunotherapy (PRIT) based on the inverse electron demand Diels-Alder reaction has shown promise in murine models of disease, yet the radiation dosimetry of this approach must be optimized to make it a viable clinical option. To this end, we have leveraged two recent developments in pretargeted imaging-dendritic scaffolds and masking agents-to improve the dosimetric profile of a proof-of-concept PRIT system that is based on the huA33 antibody, a 177Lu-labeled tetrazine radioligand ([177Lu]Lu-DOTA-PEG7-Tz), and a mouse model of A33 antigen-expressing colorectal carcinoma. Pretargeting using an huA33 immunoconjugate bearing a trans-cyclooctene-decorated dendritic scaffold (sshuA33-DEN-TCO) produced significantly higher tumoral activity concentrations at 120 h post-injection (23.0 ± 2.2 %ID/g) than those achieved with an analogous, dendrimer-lacking immunoconjugate (12.7 ± 2.6 %ID/g). However, pretargeting using sshuA33-DEN-TCO also resulted in increased activity concentrations in the blood at the same time point (1.9 ± 0.4 %ID/g) compared to the dendrimer-lacking construct (0.7 ± 0.2 %ID/g), thereby curtailing improvements to the tumor-to-blood therapeutic ratio of the system. In order to circumvent this issue, a tetrazine-labeled, dextran-based masking agent (Tz-DP) was injected prior to the radioligand to prevent the ligation between [177Lu]Lu-DOTA-PEG7-Tz and circulating immunoconjugate. This approach dramatically decreased the absorbed dose to the blood but also attenuated the absorbed dose to the tumor and increased the absorbed dose to the lungs. Ultimately, these data suggest that dendritic scaffolds and masking agents could be used to improve the dosimetry of PRIT, but the combination of these technologies will require extensive optimization.
Collapse
Affiliation(s)
- Rosemery Membreno
- Department of Chemistry , Hunter College of the City University of New York , New York , New York 10021 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Outi M Keinänen
- Department of Chemistry , Hunter College of the City University of New York , New York , New York 10021 , United States
| | - Brendon E Cook
- Department of Chemistry , Hunter College of the City University of New York , New York , New York 10021 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | | | - Kimberly C Fung
- Department of Chemistry , Hunter College of the City University of New York , New York , New York 10021 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | | | - Brian M Zeglis
- Department of Chemistry , Hunter College of the City University of New York , New York , New York 10021 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| |
Collapse
|
23
|
Antibody-cytokine fusion proteins: Biopharmaceuticals with immunomodulatory properties for cancer therapy. Adv Drug Deliv Rev 2019; 141:67-91. [PMID: 30201522 DOI: 10.1016/j.addr.2018.09.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/07/2023]
Abstract
Cytokines have long been used for therapeutic applications in cancer patients. Substantial side effects and unfavorable pharmacokinetics limit their application and may prevent dose escalation to therapeutically active regimens. Antibody-cytokine fusion proteins (often referred to as immunocytokines) may help localize immunomodulatory cytokine payloads to the tumor, thereby activating anticancer immune responses. A variety of formats (e.g., intact IgGs or antibody fragments), molecular targets (e.g., extracellular matrix components and cell membrane antigens) and cytokine payloads have been considered for the development of this novel class of biopharmaceuticals. This review presents the basic concepts on the design and engineering of immunocytokines, reviews their potential limitations, points out emerging opportunities and summarizes key features of preclinical and clinical-stage products.
Collapse
|
24
|
Cook BE, Membreno R, Zeglis BM. Dendrimer Scaffold for the Amplification of In Vivo Pretargeting Ligations. Bioconjug Chem 2018; 29:2734-2740. [PMID: 29969558 DOI: 10.1021/acs.bioconjchem.8b00385] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The development of immunoconjugates requires a careful balance between preserving the functionality of the antibody and modifying the immunoglobulin with the desired cargo. Herein, we describe the synthesis, development, and in vivo evaluation of a novel bifunctional dendrimeric scaffold and its application in pretargeted PET imaging. The site-specific modification of the huA33 antibody with this dendrimeric scaffold yields an immunoconjugate-sshuA33-DEN-TCO-decorated with ∼8 trans-cyclooctene (TCO) moieties, a marked increase compared to the ∼2 TCO/mAb of a nondendrimeric control immunoconjugate (sshuA33-PEG12-TCO). Pretargeted PET imaging and biodistribution experiments were used to compare the in vivo performance of these two immunoconjugates in athymic nude mice bearing subcutaneous SW1222 human colorectal cancer xenografts. To this end, the mice were administered 100 μg of each immunoconjugate followed 120 h later by the injection of a tetrazine-bearing radioligand, [64Cu]Cu-SarAr-Tz. Pretargeting with sshuA33-DEN-TCO produced excellent tumoral uptake at 24 h (8.9 ± 1.9 %ID/g), more than double that created by sshuA33-PEG12-TCO (4.1 ± 1.3 %ID/g). Critically-and somewhat surprisingly-the attachment of the G0.5 dendrimeric structures did not hamper the in vivo behavior of the immunoconjugate, suggesting that this versatile bifunctional scaffold may have applications beyond pretargeting.
Collapse
Affiliation(s)
- Brendon E Cook
- Department of Chemistry , Hunter College of the City University of New York , New York , New York 10065 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States.,Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Rosemery Membreno
- Department of Chemistry , Hunter College of the City University of New York , New York , New York 10065 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Brian M Zeglis
- Department of Chemistry , Hunter College of the City University of New York , New York , New York 10065 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States.,Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.,Department of Radiology , Weill Cornell Medical College , New York , New York 10065 , United States
| |
Collapse
|
25
|
Stéen EJL, Edem PE, Nørregaard K, Jørgensen JT, Shalgunov V, Kjaer A, Herth MM. Pretargeting in nuclear imaging and radionuclide therapy: Improving efficacy of theranostics and nanomedicines. Biomaterials 2018; 179:209-245. [PMID: 30007471 DOI: 10.1016/j.biomaterials.2018.06.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
Pretargeted nuclear imaging and radiotherapy have recently attracted increasing attention for diagnosis and treatment of cancer with nanomedicines. This is because it conceptually offers better imaging contrast and therapeutic efficiency while reducing the dose to radiosensitive tissues compared to conventional strategies. In conventional imaging and radiotherapy, a directly radiolabeled nano-sized vector is administered and allowed to accumulate in the tumor, typically on a timescale of several days. In contrast, pretargeting is based on a two-step approach. First, a tumor-accumulating vector carrying a tag is administered followed by injection of a fast clearing radiolabeled agent that rapidly recognizes the tag of the tumor-bound vector in vivo. Therefore, pretargeting circumvents the use of long-lived radionuclides that is a necessity for sufficient tumor accumulation and target-to-background ratios using conventional approaches. In this review, we give an overview of recent advances in pretargeted imaging strategies. We will critically reflect on the advantages and disadvantages of current state-of-the-art conventional imaging approaches and compare them to pretargeted strategies. We will discuss the pretargeted imaging concept and the involved chemistry. Finally, we will discuss the steps forward in respect to clinical translation, and how pretargeted strategies could be applied to improve state-of-the-art radiotherapeutic approaches.
Collapse
Affiliation(s)
- E Johanna L Stéen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Patricia E Edem
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Kamilla Nørregaard
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Jesper T Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
26
|
Moore PA, Shah K, Yang Y, Alderson R, Roberts P, Long V, Liu D, Li JC, Burke S, Ciccarone V, Li H, Fieger CB, Hooley J, Easton A, Licea M, Gorlatov S, King KL, Young P, Adami A, Loo D, Chichili GR, Liu L, Smith DH, Brown JG, Chen FZ, Koenig S, Mather J, Bonvini E, Johnson S. Development of MGD007, a gpA33 x CD3-Bispecific DART Protein for T-Cell Immunotherapy of Metastatic Colorectal Cancer. Mol Cancer Ther 2018; 17:1761-1772. [PMID: 29866746 DOI: 10.1158/1535-7163.mct-17-1086] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/23/2018] [Accepted: 05/31/2018] [Indexed: 11/16/2022]
Abstract
We have developed MGD007 (anti-glycoprotein A33 x anti-CD3), a DART protein designed to redirect T cells to target gpA33 expressing colon cancer. The gpA33 target was selected on the basis of an antibody-based screen to identify cancer antigens universally expressed in both primary and metastatic colorectal cancer specimens, including putative cancer stem cell populations. MGD007 displays the anticipated-bispecific binding properties and mediates potent lysis of gpA33-positive cancer cell lines, including models of colorectal cancer stem cells, through recruitment of T cells. Xenograft studies showed tumor growth inhibition at doses as low as 4 μg/kg. Both CD8 and CD4 T cells mediated lysis of gpA33-expressing tumor cells, with activity accompanied by increases in granzyme and perforin. Notably, suppressive T-cell populations could also be leveraged to mediate lysis of gpA33-expressing tumor cells. Concomitant with CTL activity, both T-cell activation and expansion are observed in a gpA33-dependent manner. No cytokine activation was observed with human PBMC alone, consistent with the absence of gpA33 expression on peripheral blood cell populations. Following prolonged exposure to MGD007 and gpA33 positive tumor cells, T cells express PD-1 and LAG-3 and acquire a memory phenotype but retain ability to support potent cell killing. In cynomolgus monkeys, 4 weekly doses of 100 μg/kg were well tolerated, with prolonged PK consistent with that of an Fc-containing molecule. Taken together, MGD007 displays potent activity against colorectal cancer cells consistent with a mechanism of action endowed in its design and support further investigation of MGD007 as a potential novel therapeutic treatment for colorectal cancer. Mol Cancer Ther; 17(8); 1761-72. ©2018 AACR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hua Li
- MacroGenics, Rockville, Maryland
| | | | - Jeff Hooley
- MacroGenics, South San Francisco, California
| | - Ann Easton
- MacroGenics, South San Francisco, California
| | | | | | | | - Peter Young
- MacroGenics, South San Francisco, California
| | | | - Deryk Loo
- MacroGenics, South San Francisco, California
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Keinänen O, Fung K, Pourat J, Jallinoja V, Vivier D, Pillarsetty NK, Airaksinen AJ, Lewis JS, Zeglis BM, Sarparanta M. Pretargeting of internalizing trastuzumab and cetuximab with a 18F-tetrazine tracer in xenograft models. EJNMMI Res 2017; 7:95. [PMID: 29198065 PMCID: PMC5712296 DOI: 10.1186/s13550-017-0344-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/19/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pretargeting-based approaches are being investigated for radioimmunoimaging and therapy applications to reduce the effective radiation burden to the patient. To date, only a few studies have used short-lived radioisotopes for pretargeting of antibodies, and such examples with internalizing antibodies are even rarer. Herein, we have investigated pretargeting methodology using inverse electron-demand Diels-Alder (IEDDA) for tracing two clinically relevant, internalizing monoclonal antibodies, cetuximab and trastuzumab. RESULTS Bioorthogonal reaction between tetrazine and trans-cyclooctene (TCO) was used for tracing cetuximab and trastuzumab in vivo with a fluorine-18 (t ½ = 109.8 min) labelled tracer. TCO-cetuximab or TCO-trastuzumab was administered 24, 48, or 72 h prior to the injection of tracer to A431 or BT-474 tumour-bearing mice, respectively. With cetuximab, the highest tumour-to-blood ratios were achieved when the lag time between antibody and tracer injections was 72 h. With trastuzumab, no difference was observed between different lag times. For both antibodies, the tumour could be clearly visualized in the PET images with the highest tumour uptake of 3.7 ± 0.1%ID/g for cetuximab and 1.5 ± 0.1%ID/g for trastuzumab as quantified by ex vivo biodistribution. In vivo IEDDA reaction was observed in the blood for both antibodies, but with trastuzumab, this was to a much lower degree than with cetuximab. CONCLUSIONS We could successfully visualize the tumours by using cetuximab and trastuzumab in pretargeted PET imaging despite the challenging circumstances where the antibody is internalized and there is still some unbound antibody circulating in the blood flow. This clearly demonstrates the potential of a pretargeted approach for targeting internalizing antigens and warrants development of pharmacokinetic optimization of the biorthogonal reactants to this end.
Collapse
Affiliation(s)
- Outi Keinänen
- Department of Chemistry, Radiochemistry, University of Helsinki, P.O. Box 55, FI-00014, Helsinki, Finland.,Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Kimberly Fung
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, NY, 10065, USA.,Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, 10016, NY, USA
| | - Jacob Pourat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Vilma Jallinoja
- Department of Chemistry, Radiochemistry, University of Helsinki, P.O. Box 55, FI-00014, Helsinki, Finland.,Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Delphine Vivier
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, NY, 10065, USA
| | - NagaVara Kishore Pillarsetty
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Anu J Airaksinen
- Department of Chemistry, Radiochemistry, University of Helsinki, P.O. Box 55, FI-00014, Helsinki, Finland
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.,Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Brian M Zeglis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, NY, 10065, USA.,Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, 10016, NY, USA
| | - Mirkka Sarparanta
- Department of Chemistry, Radiochemistry, University of Helsinki, P.O. Box 55, FI-00014, Helsinki, Finland. .,Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
28
|
Adumeau P, Carnazza KE, Brand C, Carlin SD, Reiner T, Agnew BJ, Lewis JS, Zeglis BM. A Pretargeted Approach for the Multimodal PET/NIRF Imaging of Colorectal Cancer. Theranostics 2016; 6:2267-2277. [PMID: 27924162 PMCID: PMC5135447 DOI: 10.7150/thno.16744] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/10/2016] [Indexed: 01/15/2023] Open
Abstract
The complementary nature of positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging makes the development of strategies for the multimodal PET/NIRF imaging of cancer a very enticing prospect. Indeed, in the context of colorectal cancer, a single multimodal PET/NIRF imaging agent could be used to stage the disease, identify candidates for surgical intervention, and facilitate the image-guided resection of the disease. While antibodies have proven to be highly effective vectors for the delivery of radioisotopes and fluorophores to malignant tissues, the use of radioimmunoconjugates labeled with long-lived nuclides such as 89Zr poses two important clinical complications: high radiation doses to the patient and the need for significant lag time between imaging and surgery. In vivo pretargeting strategies that decouple the targeting vector from the radioactivity at the time of injection have the potential to circumvent these issues by facilitating the use of positron-emitting radioisotopes with far shorter half-lives. Here, we report the synthesis, characterization, and in vivo validation of a pretargeted strategy for the multimodal PET and NIRF imaging of colorectal carcinoma. This approach is based on the rapid and bioorthogonal ligation between a trans-cyclooctene- and fluorophore-bearing immunoconjugate of the huA33 antibody (huA33-Dye800-TCO) and a 64Cu-labeled tetrazine radioligand (64Cu-Tz-SarAr). In vivo imaging experiments in mice bearing A33 antigen-expressing SW1222 colorectal cancer xenografts clearly demonstrate that this approach enables the non-invasive visualization of tumors and the image-guided resection of malignant tissue, all at only a fraction of the radiation dose created by a directly labeled radioimmunoconjugate. Additional in vivo experiments in peritoneal and patient-derived xenograft models of colorectal carcinoma reinforce the efficacy of this methodology and underscore its potential as an innovative and useful clinical tool.
Collapse
|
29
|
Circulating intestine-derived exosomal miR-328 in plasma, a possible biomarker for estimating BCRP function in the human intestines. Sci Rep 2016; 6:32299. [PMID: 27571936 PMCID: PMC5004159 DOI: 10.1038/srep32299] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 08/01/2016] [Indexed: 11/21/2022] Open
Abstract
A variant in the breast cancer resistance protein (BCRP) gene, 421C> A is a useful biomarker for describing large inter-individual differences in the pharmacokinetics of sulfasalazine (SASP), a BCRP substrate. However, large intra-genotypic variability still exists in spite of the incorporation of this variant into the pharmacokinetics of SASP. Since miR-328 negatively regulates BCRP expression in human tissues, we hypothesized that exosomal miR-328 in plasma, which leaks from the intestines, is a possible biomarker for estimating BCRP activity in the human intestines. We established an immunoprecipitation-based quantitative method for circulating intestine-derived miR-328 in plasma using an anti-glycoprotein A33 antibody. A clinical study was conducted with an open-label, non-randomized, and single-arm design involving 33 healthy participants. Intestine-derived exosomal miR-328 levels positively correlated (P < 0.05) with SASP AUC0-48, suggesting that subjects with high miR-328 levels have low intestinal BCRP activity, resulting in the high AUC of SASP. Circulating intestine-derived exosomal miR-328 in plasma has potential as a possible biomarker for estimating BCRP function in the human intestines.
Collapse
|
30
|
Zeglis BM, Brand C, Abdel-Atti D, Carnazza KE, Cook BE, Carlin S, Reiner T, Lewis JS. Optimization of a Pretargeted Strategy for the PET Imaging of Colorectal Carcinoma via the Modulation of Radioligand Pharmacokinetics. Mol Pharm 2015; 12:3575-87. [PMID: 26287993 PMCID: PMC4696756 DOI: 10.1021/acs.molpharmaceut.5b00294] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pretargeted PET imaging has emerged as an effective strategy for merging the exquisite selectivity of antibody-based targeting vectors with the rapid pharmacokinetics of radiolabeled small molecules. We previously reported the development of a strategy for the pretargeted PET imaging of colorectal cancer based on the bioorthogonal inverse electron demand Diels-Alder reaction between a tetrazine-bearing radioligand and a transcyclooctene-modified huA33 immunoconjugate. Although this method effectively delineated tumor tissue, its clinical potential was limited by the somewhat sluggish clearance of the radioligand through the gastrointestinal tract. Herein, we report the development and in vivo validation of a pretargeted strategy for the PET imaging of colorectal carcinoma with dramatically improved pharmacokinetics. Two novel tetrazine constructs, Tz-PEG7-NOTA and Tz-SarAr, were synthesized, characterized, and radiolabeled with (64)Cu in high yield (>90%) and radiochemical purity (>99%). PET imaging and biodistribution experiments in healthy mice revealed that although (64)Cu-Tz-PEG7-NOTA is cleared via both the gastrointestinal and urinary tracts, (64)Cu-Tz-SarAr is rapidly excreted by the renal system alone. On this basis, (64)Cu-Tz-SarAr was selected for further in vivo evaluation. To this end, mice bearing A33 antigen-expressing SW1222 human colorectal carcinoma xenografts were administered huA33-TCO, and the immunoconjugate was given 24 h to accumulate at the tumor and clear from the blood, after which (64)Cu-Tz-SarAr was administered via intravenous tail vein injection. PET imaging and biodistribution experiments revealed specific uptake of the radiotracer in the tumor at early time points (5.6 ± 0.7 %ID/g at 1 h p.i.), high tumor-to-background activity ratios, and rapid elimination of unclicked radioligand. Importantly, experiments with longer antibody accumulation intervals (48 and 120 h) yielded slight decreases in tumoral uptake but also concomitant increases in tumor-to-blood activity concentration ratios. This new strategy offers dosimetric benefits as well, yielding a total effective dose of 0.041 rem/mCi, far below the doses produced by directly labeled (64)Cu-NOTA-huA33 (0.133 rem/mCi) and (89)Zr-DFO-huA33 (1.54 rem/mCi). Ultimately, this pretargeted PET imaging strategy boasts a dramatically improved pharmacokinetic profile compared to our first generation system and is capable of clearly delineating tumor tissue with high image contrast at only a fraction of the radiation dose created by directly labeled radioimmunoconjugates.
Collapse
Affiliation(s)
- Brian M. Zeglis
- Department of Chemistry and Biochemistry, Hunter College and the Graduate Center of the City University of New York, New York, New York 10021, United States
| | - Christian Brand
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Dalya Abdel-Atti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Kathryn E. Carnazza
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Brendon E. Cook
- Department of Chemistry and Biochemistry, Hunter College and the Graduate Center of the City University of New York, New York, New York 10021, United States
| | - Sean Carlin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Jason S. Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Program in Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| |
Collapse
|
31
|
PET-based compartmental modeling of (124)I-A33 antibody: quantitative characterization of patient-specific tumor targeting in colorectal cancer. Eur J Nucl Med Mol Imaging 2015; 42:1700-1706. [PMID: 26194713 DOI: 10.1007/s00259-015-3061-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE The molecular specificity of monoclonal antibodies (mAbs) directed against tumor antigens has proven effective for targeted therapy of human cancers, as shown by a growing list of successful antibody-based drug products. We describe a novel, nonlinear compartmental model using PET-derived data to determine the "best-fit" parameters and model-derived quantities for optimizing biodistribution of intravenously injected (124)I-labeled antitumor antibodies. METHODS As an example of this paradigm, quantitative image and kinetic analyses of anti-A33 humanized mAb (also known as "A33") were performed in 11 colorectal cancer patients. Serial whole-body PET scans of (124)I-labeled A33 and blood samples were acquired and the resulting tissue time-activity data for each patient were fit to a nonlinear compartmental model using the SAAM II computer code. RESULTS Excellent agreement was observed between fitted and measured parameters of tumor uptake, "off-target" uptake in bowel mucosa, blood clearance, tumor antigen levels, and percent antigen occupancy. CONCLUSION This approach should be generally applicable to antibody-antigen systems in human tumors for which the masses of antigen-expressing tumor and of normal tissues can be estimated and for which antibody kinetics can be measured with PET. Ultimately, based on each patient's resulting "best-fit" nonlinear model, a patient-specific optimum mAb dose (in micromoles, for example) may be derived.
Collapse
|
32
|
Williams BB, Tebbutt NC, Buchert M, Putoczki TL, Doggett K, Bao S, Johnstone CN, Masson F, Hollande F, Burgess AW, Scott AM, Ernst M, Heath JK. Glycoprotein A33 deficiency: a new mouse model of impaired intestinal epithelial barrier function and inflammatory disease. Dis Model Mech 2015; 8:805-15. [PMID: 26035389 PMCID: PMC4527289 DOI: 10.1242/dmm.019935] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022] Open
Abstract
The cells of the intestinal epithelium provide a selectively permeable barrier between the external environment and internal tissues. The integrity of this barrier is maintained by tight junctions, specialised cell-cell contacts that permit the absorption of water and nutrients while excluding microbes, toxins and dietary antigens. Impairment of intestinal barrier function contributes to multiple gastrointestinal disorders, including food hypersensitivity, inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Glycoprotein A33 (GPA33) is an intestinal epithelium-specific cell surface marker and member of the CTX group of transmembrane proteins. Roles in cell-cell adhesion have been demonstrated for multiple CTX family members, suggesting a similar function for GPA33 within the gastrointestinal tract. To test a potential requirement for GPA33 in intestinal barrier function, we generated Gpa33−/− mice and subjected them to experimental regimens designed to produce food hypersensitivity, colitis and CAC. Gpa33−/− mice exhibited impaired intestinal barrier function. This was shown by elevated steady-state immunosurveillance in the colonic mucosa and leakiness to oral TRITC-labelled dextran after short-term exposure to dextran sodium sulphate (DSS) to injure the intestinal epithelium. Gpa33−/− mice also exhibited rapid onset and reduced resolution of DSS-induced colitis, and a striking increase in the number of colitis-associated tumours produced by treatment with the colon-specific mutagen azoxymethane (AOM) followed by two cycles of DSS. In contrast, Gpa33−/− mice treated with AOM alone showed no increase in sporadic tumour formation, indicating that their increased tumour susceptibility is dependent on inflammatory stimuli. Finally, Gpa33−/− mice displayed hypersensitivity to food allergens, a common co-morbidity in humans with IBD. We propose that Gpa33−/− mice provide a valuable model to study the mechanisms linking intestinal permeability and multiple inflammatory pathologies. Moreover, this model could facilitate preclinical studies aimed at identifying drugs that restore barrier function. Highlighted Article: We show that GPA33, an intestine-specific cell surface protein, plays a role in the maintenance of intestinal barrier function and the prevention of intestinal pathologies such as food hypersensitivity, inflammatory bowel disease and colitis-associated cancer.
Collapse
Affiliation(s)
- Benjamin B Williams
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria 3050, Australia
| | - Niall C Tebbutt
- Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria 3050, Australia Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Heidelberg, Victoria 3084, Australia
| | - Michael Buchert
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria 3050, Australia
| | - Tracy L Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria 3050, Australia
| | - Karen Doggett
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Shisan Bao
- Discipline of Pathology, School of Medical Science and Bosch Institute, University of Sydney, Camperdown, NSW 2006, Australia
| | - Cameron N Johnstone
- Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria 3050, Australia Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Frederick Masson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Frederic Hollande
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Antony W Burgess
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria 3050, Australia
| | - Andrew M Scott
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Heidelberg, Victoria 3084, Australia
| | - Matthias Ernst
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria 3050, Australia
| | - Joan K Heath
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria 3050, Australia
| |
Collapse
|
33
|
Tomé-Amat J, Olombrada M, Ruiz-de-la-Herrán J, Pérez-Gómez E, Andradas C, Sánchez C, Martínez L, Martínez-Del-Pozo Á, Gavilanes JG, Lacadena J. Efficient in vivo antitumor effect of an immunotoxin based on ribotoxin α-sarcin in nude mice bearing human colorectal cancer xenografts. SPRINGERPLUS 2015; 4:168. [PMID: 25883890 PMCID: PMC4393403 DOI: 10.1186/s40064-015-0943-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/12/2015] [Accepted: 03/24/2015] [Indexed: 11/17/2022]
Abstract
Tagging of RNases, such as the ribotoxin α-sarcin, with the variable domains of antibodies directed to surface antigens that are selectively expressed on tumor cells endows cellular specificity to their cytotoxic action. A recombinant single-chain immunotoxin based on the ribotoxin α-sarcin (IMTXA33αS), produced in the generally regarded as safe (GRAS) yeast Pichia pastoris, has been recently described as a promising candidate for the treatment of colorectal cancer cells expressing the glycoprotein A33 (GPA33) antigen, due to its high specific and effective cytotoxic effect on in vitro assays against targeted cells. Here we report the in vivo antitumor effectiveness of this immunotoxin on nude mice bearing GPA33-positive human colon cancer xenografts. Two sets of independent assays were performed, including three experimental groups: control (PBS) and treatment with two different doses of immunotoxin (50 or 100 μg/ injection) (n = 8). Intraperitoneal administration of IMTXA33αS resulted in significant dose-dependent tumor growth inhibition. In addition, the remaining tumors excised from immunotoxin-treated mice showed absence of the GPA33 antigen and a clear inhibition of angiogenesis and proliferative capacity. No signs of immunotoxin-induced pathological changes were observed from specimens tissues. Overall these results show efficient and selective cytotoxic action on tumor xenografts, combined with the lack of severe side effects, suggesting that IMTXA33αS is a potential therapeutic agent against colorectal cancer.
Collapse
Affiliation(s)
- Jaime Tomé-Amat
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040 Spain ; Present address: Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Miriam Olombrada
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040 Spain
| | - Javier Ruiz-de-la-Herrán
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040 Spain
| | - Eduardo Pérez-Gómez
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040 Spain ; Instituto de Investigación Hospital 12 de Octubre, Madrid, 28041 Spain
| | - Clara Andradas
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040 Spain ; Instituto de Investigación Hospital 12 de Octubre, Madrid, 28041 Spain
| | - Cristina Sánchez
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040 Spain ; Instituto de Investigación Hospital 12 de Octubre, Madrid, 28041 Spain
| | | | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040 Spain
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040 Spain
| | - Javier Lacadena
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040 Spain
| |
Collapse
|
34
|
Tomé-Amat J, Herrero-Galán E, Oñaderra M, Martínez-Del-Pozo Á, Gavilanes JG, Lacadena J. Preparation of an engineered safer immunotoxin against colon carcinoma based on the ribotoxin hirsutellin A. FEBS J 2015; 282:2131-41. [PMID: 25752204 DOI: 10.1111/febs.13262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/03/2015] [Accepted: 03/09/2015] [Indexed: 11/27/2022]
Abstract
Immunotoxins are chimeric proteins composed of an antibody domain that specifically directs the action of the toxic domain, resulting in the death of the targeted cells. Over recent years, immunotoxins have been widely studied and the number of different constructions has increased exponentially. Protein engineering has allowed the design of optimized versions of immunotoxins with an improved tumor binding affinity, stability or cytotoxic efficacy, although sometimes this has compromised the safety of the patient in terms of undesirable adverse secondary reactions. A triple mutant at three Trp residues (HtA3ΔW) of the ribotoxin hirsutellin A retains its specific ribonucleolytic activity, although cell internalization capacity is lacking. This toxin variant has been fused to the single chain variable fragment A33 (scFvA33). This immunoconjugate (IMTXA33HtA3ΔW) was produced in the methylotrophic yeast Pichia pastoris and purified using nickel-nitrilotriacetic acid affinity chromatography. Both target and toxic domains were characterized. The immunotoxin showed an exquisite specific binding against GPA33-positive culture cells, which results in the death of the targeted cells because of specific ribonucleolytic activity against ribosomes of the engineered hirsutellin A variant. IMTXA33HtA3ΔW represents a promising structure in the search for an improved immunotoxin without compromising the safety of patients.
Collapse
Affiliation(s)
- Jaime Tomé-Amat
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense, Madrid, Spain.,Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Elías Herrero-Galán
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Mercedes Oñaderra
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense, Madrid, Spain
| | | | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense, Madrid, Spain
| | - Javier Lacadena
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense, Madrid, Spain
| |
Collapse
|
35
|
Reiner T, Lewis JS, Zeglis BM. Harnessing the bioorthogonal inverse electron demand Diels-Alder cycloaddition for pretargeted PET imaging. J Vis Exp 2015:e52335. [PMID: 25742199 DOI: 10.3791/52335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Due to their exquisite affinity and specificity, antibodies have become extremely promising vectors for the delivery of radioisotopes to cancer cells for PET imaging. However, the necessity of labeling antibodies with radionuclides with long physical half-lives often results in high background radiation dose rates to non-target tissues. In order to circumvent this issue, we have employed a pretargeted PET imaging strategy based on the inverse electron demand Diels-Alder cycloaddition reaction. The methodology decouples the antibody from the radioactivity and thus exploits the positive characteristics of antibodies, while eschewing their pharmacokinetic drawbacks. The system is composed of four steps: (1) the injection of a mAb-trans-cyclooctene (TCO) conjugate; (2) a localization time period during which the antibody accumulates in the tumor and clears from the blood; (3) the injection of the radiolabeled tetrazine; and (4) the in vivo click ligation of the components followed by the clearance of excess radioligand. In the example presented in the work at hand, a (64)Cu-NOTA-labeled tetrazine radioligand and a trans-cyclooctene-conjugated humanized antibody (huA33) were successfully used to delineate SW1222 colorectal cancer tumors with high tumor-to-background contrast. Further, the pretargeting methodology produces high quality images at only a fraction of the radiation dose to non-target tissue created by radioimmunoconjugates directly labeled with (64)Cu or (89)Zr. Ultimately, the modularity of this protocol is one of its greatest assets, as the trans-cyclooctene moiety can be appended to any non-internalizing antibody, and the tetrazine can be attached to a wide variety of radioisotopes.
Collapse
Affiliation(s)
- Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center
| | - Brian M Zeglis
- Department of Radiology, Memorial Sloan Kettering Cancer Center;
| |
Collapse
|
36
|
Ciprotti M, Chong G, Gan HK, Chan A, Murone C, MacGregor D, Lee FT, Johns TG, Heath JK, Ernst M, Burgess AW, Scott AM. Quantitative intratumoural microdistribution and kinetics of (131)I-huA33 antibody in patients with colorectal carcinoma. EJNMMI Res 2014; 4:22. [PMID: 24995151 PMCID: PMC4070025 DOI: 10.1186/s13550-014-0022-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ability of recombinant antibodies to adequately penetrate into tumours is a key factor in achieving therapeutic effect; however, the behaviour of antibodies at a cellular level in tumours is poorly understood. The purpose of this study was to investigate those factors that influence the macroscopic and microscopic intratumoural distribution of an IgG1-humanized antibody, huA33, in colorectal tumours. METHODS Twelve patients were infused with radiolabelled huA33 at 7 days prior to elective surgery for colorectal carcinoma. Macroscopic huA33 uptake was determined by both gamma well counter and autoradiography measurements of the resected tumour specimens. Microscopic uptake was then quantitated at a cellular level and compared to vascular penetrance. The impact of variation in tumour antigen (GPA33) expression, tumour size, specimen type (primary vs metastatic), presence of macroscopic necrosis, and tumour vasculature on huA33 uptake were examined. RESULTS The I-huA33 uptake in whole tumour sections was (mean ± SD) 5.13 ± 2.71 × 10(-3)% injected dose per gram (ID/g). GPA33 was expressed in all viable tumour cells, and huA33 uptake was excellent regardless of tumour size and specimen type. In tumours with macroscopically evident central necrosis (n = 5), huA33 uptake in tumour necrotic centres was lower than in viable peripheries (0.606 ± 0.493 vs 2.98 ± 2.17 × 10(-3)%ID, p = 0.06). However, when corrected for low cell viability in necrotic centres, uptake of huA33 at the cellular level was highly comparable to that in the more viable tumour periphery (7.10 ± 5.10 × 10(-9) vs 3.82 ± 3.67 × 10(-9)%ID/cell, p = 0.4). In the five patients who exhibited macroscopic necrosis in their tumours, huA33 showed excellent tissue penetration, with a maximum penetration distance of 26 μm in peripheral tumour regions and 118 μm in central regions. No correlation was observed between (131)I-huA33 uptake in tumour on a cellular basis and tumour vascularity. CONCLUSIONS In patients with colorectal carcinoma, monoclonal antibody huA33 effectively targets viable tumour cells in all cellular milieus examined, including effective penetration into necrotic tumour centres, a novel and therapeutically important finding.
Collapse
Affiliation(s)
- Marika Ciprotti
- Ludwig Institute for Cancer Research, Austin Health, Melbourne 3084, Australia
| | - Geoffrey Chong
- Ludwig Institute for Cancer Research, Austin Health, Melbourne 3084, Australia
| | - Hui K Gan
- Ludwig Institute for Cancer Research, Austin Health, Melbourne 3084, Australia
| | - Anthony Chan
- Ludwig Institute for Cancer Research, Austin Health, Melbourne 3084, Australia
| | - Carmel Murone
- Ludwig Institute for Cancer Research, Austin Health, Melbourne 3084, Australia ; Department of Anatomical Pathology, Austin Health, Melbourne 3084, Australia
| | - Duncan MacGregor
- Department of Anatomical Pathology, Austin Health, Melbourne 3084, Australia
| | - Fook-Thean Lee
- Ludwig Institute for Cancer Research, Austin Health, Melbourne 3084, Australia
| | - Terrance G Johns
- Monash Institute for Medical Research, Melbourne 3168, Australia
| | - Joan K Heath
- Ludwig Institute for Cancer Research, Austin Health, Melbourne 3084, Australia ; Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
| | - Matthias Ernst
- Ludwig Institute for Cancer Research, Austin Health, Melbourne 3084, Australia ; Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
| | - Antony W Burgess
- Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
| | - Andrew M Scott
- Ludwig Institute for Cancer Research, Austin Health, Melbourne 3084, Australia ; Department of Nuclear Medicine and Centre for PET, Austin Health, Melbourne 3084, Australia
| |
Collapse
|
37
|
Nichols B, Qin Z, Yang J, Vera DR, Devaraj NK. 68Ga chelating bioorthogonal tetrazine polymers for the multistep labeling of cancer biomarkers. Chem Commun (Camb) 2014; 50:5215-5217. [PMID: 24589653 PMCID: PMC4119763 DOI: 10.1039/c3cc49530b] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a (68)Ga metal chelating bioorthogonal tetrazine dextran probe that is highly reactive with trans-cyclooctene modified monoclonal antibodies for multistep imaging applications. Confocal microscopy and positron emission tomography (PET) were used to characterize the dextran probe in vitro and in vivo.
Collapse
Affiliation(s)
- Brandon Nichols
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zhengtao Qin
- Department of Radiology, UCSD in vivo Cancer and Molecular Imaging Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jun Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - David R. Vera
- Department of Radiology, UCSD in vivo Cancer and Molecular Imaging Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Neal K. Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
38
|
Delker DA, McGettigan BM, Kanth P, Pop S, Neklason DW, Bronner MP, Burt RW, Hagedorn CH. RNA sequencing of sessile serrated colon polyps identifies differentially expressed genes and immunohistochemical markers. PLoS One 2014; 9:e88367. [PMID: 24533081 PMCID: PMC3922809 DOI: 10.1371/journal.pone.0088367] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sessile serrated adenomas/polyps (SSA/Ps) may account for 20-30% of colon cancers. Although large SSA/Ps are generally recognized phenotypically, small (<1 cm) or dysplastic SSA/Ps are difficult to differentiate from hyperplastic or small adenomatous polyps by endoscopy and histopathology. Our aim was to define the comprehensive gene expression phenotype of SSA/Ps to better define this cancer precursor. RESULTS RNA sequencing was performed on 5' capped RNA from seven SSA/Ps collected from patients with the serrated polyposis syndrome (SPS) versus eight controls. Highly expressed genes were analyzed by qPCR in additional SSA/Ps, adenomas and controls. The cellular localization and level of gene products were examined by immunohistochemistry in syndromic and sporadic SSA/Ps, adenomatous and hyperplastic polyps and controls. We identified 1,294 differentially expressed annotated genes, with 106 increased ≥10-fold, in SSA/Ps compared to controls. Comparing these genes with an array dataset for adenomatous polyps identified 30 protein coding genes uniquely expressed ≥10-fold in SSA/Ps. Biological pathways altered in SSA/Ps included mucosal integrity, cell adhesion, and cell development. Marked increased expression of MUC17, the cell junction protein genes VSIG1 and GJB5, and the antiapoptotic gene REG4 were found in SSA/Ps, relative to controls and adenomas, were verified by qPCR analysis of additional SSA/Ps (n = 21) and adenomas (n = 10). Immunohistochemical staining of syndromic (n≥11) and sporadic SSA/Ps (n≥17), adenomatous (n≥13) and hyperplastic (n≥10) polyps plus controls (n≥16) identified unique expression patterns for VSIG1 and MUC17 in SSA/Ps. CONCLUSION A subset of genes and pathways are uniquely increased in SSA/Ps, compared to adenomatous polyps, thus supporting the concept that cancer develops by different pathways in these phenotypically distinct polyps with markedly different gene expression profiles. Immunostaining for a subset of these genes differentiates both syndromic and sporadic SSA/Ps from adenomatous and hyperplastic polyps.
Collapse
Affiliation(s)
- Don A. Delker
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Brett M. McGettigan
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Priyanka Kanth
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Stelian Pop
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Deborah W. Neklason
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Mary P. Bronner
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Randall W. Burt
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Curt H. Hagedorn
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- The Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
39
|
Mulvey JJ, Villa CH, McDevitt MR, Escorcia FE, Casey E, Scheinberg DA. Self-assembly of carbon nanotubes and antibodies on tumours for targeted amplified delivery. NATURE NANOTECHNOLOGY 2013; 8:763-771. [PMID: 24077028 PMCID: PMC3798027 DOI: 10.1038/nnano.2013.190] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 08/23/2013] [Indexed: 05/27/2023]
Abstract
Single-walled carbon nanotubes (SWNTs) can deliver imaging agents or drugs to tumours and offer significant advantages over approaches based on antibodies or other nanomaterials. In particular, the nanotubes can carry a substantial amount of cargo (100 times more than a monoclonal antibody), but can still be rapidly eliminated from the circulation by renal filtration, like a small molecule, due to their high aspect ratio. Here we show that SWNTs can target tumours in a two-step approach in which nanotubes modified with morpholino oligonucleotide sequences bind to cancer cells that have been pretargeted with antibodies modified with oligonucleotide strands complementary to those on the nanotubes. The nanotubes can carry fluorophores or radioisotopes, and are shown to selectively bind to cancer cells in vitro and in tumour-bearing xenografted mice. The binding process is also found to lead to antigen capping and internalization of the antibody-nanotube complexes. The nanotube conjugates were labelled with both alpha-particle and gamma-ray emitting isotopes, at high specific activities. Conjugates labelled with alpha-particle-generating (225)Ac were found to clear rapidly, thus mitigating radioisotope toxicity, and were shown to be therapeutically effective in vivo.
Collapse
Affiliation(s)
- J. Justin Mulvey
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065
- Weill-Cornell Medical College, New York, New York, 10065
| | - Carlos H. Villa
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065
- Weill-Cornell Medical College, New York, New York, 10065
| | - Michael R. McDevitt
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, 10065
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065
| | - Freddy E. Escorcia
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065
- Weill-Cornell Medical College, New York, New York, 10065
| | - Emily Casey
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065
| | - David A. Scheinberg
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065
- Weill-Cornell Medical College, New York, New York, 10065
| |
Collapse
|
40
|
Kirui DK, Khalidov I, Wang Y, Batt CA. Targeted near-IR hybrid magnetic nanoparticles for in vivo cancer therapy and imaging. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:702-11. [DOI: 10.1016/j.nano.2012.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/04/2012] [Accepted: 11/18/2012] [Indexed: 11/25/2022]
|
41
|
Zeglis BM, Sevak KK, Reiner T, Mohindra P, Carlin SD, Zanzonico P, Weissleder R, Lewis JS. A pretargeted PET imaging strategy based on bioorthogonal Diels-Alder click chemistry. J Nucl Med 2013; 54:1389-96. [PMID: 23708196 DOI: 10.2967/jnumed.112.115840] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED The specificity of antibodies have made immunoconjugates promising vectors for the delivery of radioisotopes to cancer cells; however, their long pharmacologic half-lives necessitate the use of radioisotopes with long physical half-lives, a combination that leads to high radiation doses to patients. Therefore, the development of targeting modalities that harness the advantages of antibodies without their pharmacokinetic limitations is desirable. To this end, we report the development of a methodology for pretargeted PET imaging based on the bioorthogonal Diels-Alder click reaction between tetrazine and transcyclooctene. METHODS A proof-of-concept system based on the A33 antibody, SW1222 colorectal cancer cells, and (64)Cu was used. The huA33 antibody was covalently modified with transcyclooctene, and a NOTA-modified tetrazine was synthesized and radiolabeled with (64)Cu. Pretargeted in vivo biodistribution and PET imaging experiments were performed with athymic nude mice bearing A33 antigen-expressing, SW1222 colorectal cancer xenografts. RESULTS The huA33 antibody was modified with transcyclooctene to produce a conjugate with high immunoreactivity, and the (64)Cu-NOTA-labeled tetrazine ligand was synthesized with greater than 99% purity and a specific activity of 9-10 MBq/μg. For in vivo experiments, mice bearing SW1222 xenografts were injected with transcyclooctene-modified A33; after allowing 24 h for accumulation of the antibody in the tumor, the mice were injected with (64)Cu-NOTA-labeled tetrazine for PET imaging and biodistribution experiments. At 12 h after injection, the retention of uptake in the tumor (4.1 ± 0.3 percent injected dose per gram), coupled with the fecal excretion of excess radioligand, produced images with high tumor-to-background ratios. PET imaging and biodistribution experiments performed using A33 directly labeled with either (64)Cu or (89)Zr revealed that although absolute tumor uptake was higher with the directly radiolabeled antibodies, the pretargeted system yielded comparable images and tumor-to-muscle ratios at 12 and 24 h after injection. Further, dosimetry calculations revealed that the (64)Cu pretargeting system resulted in only a fraction of the absorbed background dose of A33 directly labeled with (89)Zr (0.0124 mSv/MBq vs. 0.4162 mSv/MBq, respectively). CONCLUSION The high quality of the images produced by this pretargeting approach, combined with the ability of the methodology to dramatically reduce nontarget radiation doses to patients, marks this system as a strong candidate for clinical translation.
Collapse
Affiliation(s)
- Brian M Zeglis
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Greening DW, Kapp EA, Ji H, Speed TP, Simpson RJ. Colon tumour secretopeptidome: insights into endogenous proteolytic cleavage events in the colon tumour microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2396-407. [PMID: 23684732 DOI: 10.1016/j.bbapap.2013.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/26/2013] [Accepted: 05/08/2013] [Indexed: 12/20/2022]
Abstract
The secretopeptidome comprises endogenous peptides derived from proteins secreted into the tumour microenvironment through classical and non-classical secretion. This study characterised the low-Mr (<3kDa) component of the human colon tumour (LIM1215, LIM1863) secretopeptidome, as a first step towards gaining insights into extracellular proteolytic cleavage events in the tumour microenvironment. Based on two biological replicates, this secretopeptidome isolation strategy utilised differential centrifugal ultrafiltration in combination with analytical RP-HPLC and nanoLC-MS/MS. Secreted peptides were identified using a combination of Mascot and post-processing analyses including MSPro re-scoring, extended feature sets and Percolator, resulting in 474 protein identifications from 1228 peptides (≤1% q-value, ≤5% PEP) - a 36% increase in peptide identifications when compared with conventional Mascot (homology ionscore thresholding). In both colon tumour models, 122 identified peptides were derived from 41 cell surface protein ectodomains, 23 peptides (12 proteins) from regulated intramembrane proteolysis (RIP), and 12 peptides (9 proteins) generated from intracellular domain proteolysis. Further analyses using the protease/substrate database MEROPS, (http://merops.sanger.ac.uk/), revealed 335 (71%) proteins classified as originating from classical/non-classical secretion, or the cell membrane. Of these, peptides were identified from 42 substrates in MEROPS with defined protease cleavage sites, while peptides generated from a further 205 substrates were fragmented by hitherto unknown proteases. A salient finding was the identification of peptides from 88 classical/non-classical secreted substrates in MEROPS, implicated in tumour progression and angiogenesis (FGFBP1, PLXDC2), cell-cell recognition and signalling (DDR1, GPA33), and tumour invasiveness and metastasis (MACC1, SMAGP); the nature of the proteases responsible for these proteolytic events is unknown. To confirm reproducibility of peptide fragment abundance in this study, we report the identification of a specific cleaved peptide fragment in the secretopeptidome from the colon-specific GPA33 antigen in 4/14 human CRC models. This improved secretopeptidome isolation and characterisation strategy has extended our understanding of endogenous peptides generated through proteolysis of classical/non-classical secreted proteins, extracellular proteolytic processing of cell surface membrane proteins, and peptides generated through RIP. The novel peptide cleavage site information in this study provides a useful first step in detailing proteolytic cleavage associated with tumourigenesis and the extracellular environment. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
Affiliation(s)
- David W Greening
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia.
| | | | | | | | | |
Collapse
|
43
|
Feruglio PF, Vinegoni C, Fexon L, Thurber G, Sbarbati A, Weissleder R. Noise suppressed, multifocus image fusion for enhanced intraoperative navigation. JOURNAL OF BIOPHOTONICS 2013; 6:363-70. [PMID: 22887724 PMCID: PMC3779878 DOI: 10.1002/jbio.201200086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/12/2012] [Accepted: 07/15/2012] [Indexed: 05/08/2023]
Abstract
Current intraoperative imaging systems are typically not able to provide 'sharp' images over entire large areas or entire organs. Distinct structures such as tissue margins or groups of malignant cells are therefore often difficult to detect, especially under low signal-to-noise-ratio conditions. In this report, we introduce a noise suppressed multifocus image fusion algorithm, that provides detailed reconstructions even when images are acquired under sub-optimal conditions, such is the case for real time fluorescence intraoperative surgery. The algorithm makes use of the Anscombe transform combined with a multi-level stationary wavelet transform with individual threshold-based shrinkage. While the imaging system is integrated with a respiratory monitor triggering system, it can be easily adapted to any commercial imaging system. The developed algorithm is made available as a plugin for Osirix.
Collapse
Affiliation(s)
- Paolo Fumene Feruglio
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA
- Department Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Claudio Vinegoni
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA
| | - Lyuba Fexon
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA
| | - Greg Thurber
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA
| | - Andrea Sbarbati
- Department Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Ralph Weissleder
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA
| |
Collapse
|
44
|
Thurber GM, Dane Wittrup K. A mechanistic compartmental model for total antibody uptake in tumors. J Theor Biol 2012; 314:57-68. [PMID: 22974563 DOI: 10.1016/j.jtbi.2012.08.034] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 08/23/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
Antibodies are under development to treat a variety of cancers, such as lymphomas, colon, and breast cancer. A major limitation to greater efficacy for this class of drugs is poor distribution in vivo. Localization of antibodies occurs slowly, often in insufficient therapeutic amounts, and distributes heterogeneously throughout the tumor. While the microdistribution around individual vessels is important for many therapies, the total amount of antibody localized in the tumor is paramount for many applications such as imaging, determining the therapeutic index with antibody drug conjugates, and dosing in radioimmunotherapy. With imaging and pretargeted therapeutic strategies, the time course of uptake is critical in determining when to take an image or deliver a secondary reagent. We present here a simple mechanistic model of antibody uptake and retention that captures the major rates that determine the time course of antibody concentration within a tumor including dose, affinity, plasma clearance, target expression, internalization, permeability, and vascularization. Since many of the parameters are known or can be estimated in vitro, this model can approximate the time course of antibody concentration in tumors to aid in experimental design, data interpretation, and strategies to improve localization.
Collapse
Affiliation(s)
- Greg M Thurber
- Dept. Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
45
|
Tomé-Amat J, Menéndez-Méndez A, García-Ortega L, Batt CA, Oñaderra M, Martínez-del-Pozo A, Gavilanes JG, Lacadena J. Production and characterization of scFvA33T1, an immunoRNase targeting colon cancer cells. FEBS J 2012; 279:3022-32. [PMID: 22748038 DOI: 10.1111/j.1742-4658.2012.08683.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Within the last 10 years, the use of different RNases as therapeutic agents for various diseases has been pursued. Furthermore, the advancements of recombinant technology have allowed the assembly of proteins with different functions. In this regard, immunoribonucleases (immunoRNases) stand out as some of the most promising therapeutic candidates given their enzymatic and non-mutagenic character. Accordingly, the work reported here describes fusing RNase T1, one of the most studied members of the microbial RNase family, to the single-chain variable fragment (scFv) of a monoclonal antibody that targets the glycoprotein A33 antigen (GPA33) from human colon cancer cells. A heterologous production system, which employs the yeast Pichia pastoris, has been optimized to produce this immunoRNase (scFvA33T1) with yields of ∼ 5-10 mg · L(-1). The purified protein appears to be correctly folded as it retains its antigen specificity and ribonucleolytic activity. Finally, it also shows specific binding to, internalization into and toxicity against GPA33-positive cell lines compared with the control, GPA33-negative cells. Overall, it can be concluded that scFvA33T1 is a promising therapeutic fusion protein with the additional advantage that presumably it can be produced and purified in large amounts using an easily scalable yeast-based system.
Collapse
Affiliation(s)
- Jaime Tomé-Amat
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Carreras-Sangrà N, Tomé-Amat J, García-Ortega L, Batt CA, Oñaderra M, Martínez-del-Pozo A, Gavilanes JG, Lacadena J. Production and characterization of a colon cancer-specific immunotoxin based on the fungal ribotoxin α-sarcin. Protein Eng Des Sel 2012; 25:425-35. [PMID: 22718791 DOI: 10.1093/protein/gzs032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A single-chain fusion protein that directed the cytolytic activity of α-sarcin to A33 tumor antigen expressing cells was constructed and shown to effectively kill targeted cells. Glycoprotein A33 (GPA33) is a well-known colon cancer marker and a humanized antibody against it was used to target the α-sarcin. The fungal ribotoxin α-sarcin is one of the most potent and specific toxins known. It is small, protease resistant, thermostable and highly efficient towards the inactivation of ribosomes. This work describes the production and characterization of an immunotoxin resulting from fusing the single-chain variable fragment (scFv) of the monoclonal antibody that targets GPA33 to fungal α-sarcin. This chimeric protein (scFvA33αsarcin), produced in Pichia pastoris and purified in high yield was proven to be properly folded, active, specific and stable. It showed high specific toxicity against GPA33-positive tumoral cell lines providing scientific evidence to sustain that scFvA33αsarcin is a good immunotherapeutic candidate against GPA33-positive colon carcinomas.
Collapse
Affiliation(s)
- Nelson Carreras-Sangrà
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
There has been intense interest in the development of selective bioorthogonal reactions or "click" chemistry that can proceed in live animals. Until now however, most reactions still require vast surpluses of reactants because of steep temporal and spatial concentration gradients. Using computational modeling and design of pharmacokinetically optimized reactants, we have developed a predictable method for efficient in vivo click reactions. Specifically, we show that polymer modified tetrazines (PMT) are a key enabler for in vivo bioorthogonal chemistry based on the very fast and catalyst-free [4 + 2] tetrazine/trans-cyclooctene cycloaddition. Using fluorescent PMT for cellular resolution and (18)F labeled PMT for whole animal imaging, we show that cancer cell epitopes can be easily reacted in vivo. This generic strategy should help guide the design of future chemistries and find widespread use for different in vivo bioorthogonal applications, particularly in the biomedical sciences.
Collapse
|
48
|
Shimoni O, Postma A, Yan Y, Scott AM, Heath JK, Nice EC, Zelikin AN, Caruso F. Macromolecule functionalization of disulfide-bonded polymer hydrogel capsules and cancer cell targeting. ACS NANO 2012; 6:1463-1472. [PMID: 22260171 DOI: 10.1021/nn204319b] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present a generic and versatile method for functionalization of disulfide-stabilized PMA hydrogel capsules (HCs) with macromolecules, including a number of specific antibodies to cancer cells. Functionalization was achieved by reversible addition-fragmentation chain transfer (RAFT) polymerization of poly(N-vinyl pyrrolidone) (PVPON), which introduced biorelevant heterotelechelic end groups (thiol and amine) to the polymer chain. The PVPON with heterotelechelic end groups was conjugated to the outermost layer of PMA HCs through the thiol groups and reacted with biotin via the amine groups to generate PMA/PVPON(biotin) HCs. On the basis of the high specific interaction and high affinity between biotin and avidin, and its derivates, such as NeutrAvidin (NAv), we functionalized the PMA HCs with biotinylated antibodies. We demonstrate significantly enhanced cellular binding and internalization of the antibody (Ab)-functionalized capsules compared with control human immunoglobulin (IgG)-functionalized capsules, suggesting these capsules can specifically interact with cells through antibody/antigen recognition. We anticipate that the versatility of the functionalization approach reported in this study will assist in targeted therapeutic delivery applications.
Collapse
Affiliation(s)
- Olga Shimoni
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
49
|
O'Donoghue JA, Smith-Jones PM, Humm JL, Ruan S, Pryma DA, Jungbluth AA, Divgi CR, Carrasquillo JA, Pandit-Taskar N, Fong Y, Strong VE, Kemeny NE, Old LJ, Larson SM. 124I-huA33 antibody uptake is driven by A33 antigen concentration in tissues from colorectal cancer patients imaged by immuno-PET. J Nucl Med 2011; 52:1878-85. [PMID: 22068895 DOI: 10.2967/jnumed.111.095596] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The primary aim of this analysis was to examine the quantitative features of antibody-antigen interactions in tumors and normal tissue after parenteral administration of antitumor antibodies to human patients. METHODS Humanized anti-A33 antibody (10 mg) labeled with the positron-emitting radionuclide (124)I ((124)I-huA33) was injected intravenously in 15 patients with colorectal cancer. Clinical PET/CT was performed approximately 1 wk later, followed by a detailed assay of surgically removed tissue specimens including radioactivity counting, autoradiography, immunohistochemistry, and antigen density determination. RESULTS PET/CT showed high levels of antibody targeting in tumors and normal bowel. In tissue specimens, the spatial distribution of (124)I-huA33 conformed to that of A33 antigen, and there was a linear relationship between the amount of bound antibody and antigen concentration. Antibody uptake was high in 1- to 2-mm regions of antigen-positive tumor cells (mean, ~0.05 percentage injected dose per gram) and in antigen-positive normal colonic mucosa (mean, ~0.03 percentage injected dose per gram). The estimated binding site occupancy for tumor and normal colon was 20%-50%. CONCLUSION The in vivo biodistribution of (124)I-huA33 in human patients 1 wk after antibody administration was determined by A33 antigen expression. Our data imply that the optimal strategy for A33-based radioimmunotherapy of colon cancer will consist of a multistep treatment using a radionuclide with short-range (α- or β-particle) emissions.
Collapse
Affiliation(s)
- Joseph A O'Donoghue
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Thurber GM, Weissleder R. Quantitating antibody uptake in vivo: conditional dependence on antigen expression levels. Mol Imaging Biol 2011; 13:623-32. [PMID: 20809210 DOI: 10.1007/s11307-010-0397-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE Antibodies form an important class of cancer therapeutics, and there is intense interest in using them for imaging applications in diagnosis and monitoring of cancer treatment. Despite the expanding body of knowledge describing pharmacokinetic and pharmacodynamic interactions of antibodies in vivo, discrepancies remain over the effect of antigen expression level on tumoral uptake with some reports indicating a relationship between uptake and expression and others showing no correlation. PROCEDURES Using a cell line with high epithelial cell adhesion molecule expression and moderate epidermal growth factor receptor expression, fluorescent antibodies with similar plasma clearance were imaged in vivo. A mathematical model and mouse xenograft experiments were used to describe the effect of antigen expression on uptake of these high-affinity antibodies. RESULTS As predicted by the theoretical model, under subsaturating conditions, uptake of the antibodies in such tumors is similar because localization of both probes is limited by delivery from the vasculature. In a separate experiment, when the tumor is saturated, the uptake becomes dependent on the number of available binding sites. In addition, targeting of small micrometastases is shown to be higher than larger vascularized tumors. CONCLUSIONS These results are consistent with the prediction that high affinity antibody uptake is dependent on antigen expression levels for saturating doses and delivery for subsaturating doses. It is imperative for any probe to understand whether quantitative uptake is a measure of biomarker expression or transport to the region of interest. The data provide support for a predictive theoretical model of antibody uptake, enabling it to be used as a starting point for the design of more efficacious therapies and timely quantitative imaging probes.
Collapse
Affiliation(s)
- Greg M Thurber
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|