1
|
Assylbekova A, Allayarova M, Konysbekova M, Bekturgan A, Makhanova A, Brown S, Grzegorzek N, Kalbacher H, Kalendar R, Burster T. The Proteolytic Activity of Neutrophil-Derived Serine Proteases Bound to the Cell Surface Arming Lung Epithelial Cells for Viral Defense. Molecules 2024; 29:4449. [PMID: 39339444 PMCID: PMC11434079 DOI: 10.3390/molecules29184449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The collaboration between cellular proteases and host cells is pivotal in mounting an effective innate immune defense. Of particular interest is the synergistic interaction between cathepsin G (CatG) and neutrophil elastase (NE), which are proteases secreted by activated neutrophils, and the human alveolar basal epithelial cell line (A549) and the human lung epithelial-like cell line (H1299), because of the potential implications for viral infection. Our study aimed to investigate the binding capacity of CatG and NE on the surface of A549 and H1299 cells through preincubation with purified CatG and NE; thereby, the proteolytic activity could be detected using activity-based probes. Both CatG and NE were capable of binding to the cell surface and exhibited proteolytic activity, leading to increased cell surface levels of MHC I molecules, which is crucial for displaying the endogenous antigenic repertoire. In addition, CatG cleaved the S2' site of the SARS-CoV-2 spike protein at two specific sites (815RS816 and 817FI818) as well as NE (813SK814 and 818IE819), which potentially leads to the destruction of the fusion peptide. Additionally, furin required the presence of Ca2+ ions for the distinct cleavage site necessary to generate the fusion peptide. Overall, the findings suggest that CatG and NE can fortify target cells against viral entry, underscoring the potential significance of cell surface proteases in protecting against viral invasion.
Collapse
Affiliation(s)
- Akmaral Assylbekova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan (M.K.); (A.B.); (A.M.)
| | - Maiya Allayarova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan (M.K.); (A.B.); (A.M.)
| | - Moldir Konysbekova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan (M.K.); (A.B.); (A.M.)
| | - Amanbek Bekturgan
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan (M.K.); (A.B.); (A.M.)
| | - Aiya Makhanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan (M.K.); (A.B.); (A.M.)
| | - Samantha Brown
- Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany
| | - Norbert Grzegorzek
- Mass Spectrometry Facility, Organic Chemistry, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Hubert Kalbacher
- Institute of Clinical Anatomy and Cell Analysis, University Hospital Tübingen, Eberhard Karls University Tübingen, Österbergstraße 3, 72074 Tübingen, Germany
| | - Ruslan Kalendar
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan;
| | - Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan (M.K.); (A.B.); (A.M.)
| |
Collapse
|
2
|
Du L, Gong Y, Zhang X, Sun J, Gao F, Shen M, Bai H, Yang T, Cheng X, Li S, Peng J, Liu Z, Ding S, Chen J, Cheng W. PD-L1 siRNA hitched polyethyleneimine-elastase constituting nanovesicle induces tumor immunogenicity and PD-L1 silencing for synergistic antitumor immunotherapy. J Nanobiotechnology 2024; 22:442. [PMID: 39068444 PMCID: PMC11282766 DOI: 10.1186/s12951-024-02700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND PD-1/PD-L1 blockade has become a powerful method to treat malignant tumors. However, a large proportion of patients still do not benefit from this treatment, due to low tumor immunogenicity and low tumor penetration of the agents. Recently, neutrophil elastase has been shown to induce robust tumor immunogenicity, while the insufficient enzyme activity at the tumor site restricted its anti-tumor application. Here, we designed polyethyleneimine-modified neutrophil elastase (PEI-elastase) loaded with PD-L1small interfering RNA (PD-L1 siRNA) for improving enzymatic activity and delivering siRNA to tumor, which was expected to solve the above-mentioned problems. RESULTS We first demonstrated that PEI-elastase possessed high enzymatic activity, which was also identified as an excellent gene-delivery material. Then, we synthesized anti-tumor lipopolymer (P-E/S Lip) by encapsulating PEI-elastase and PD-L1siRNA with pH-responsive anionic liposomes. The P-E/S Lip could be rapidly cleaved in tumor acidic environment, leading to exposure of the PEI-elastase/PD-L1 siRNA. Consequently, PEI-elastase induced powerful tumor immunogenicity upon direct tumor killing with minimal toxicity to normal cells. In parallel, PEI-elastase delivered PD-L1siRNA into the tumor and reduced PD-L1 expression. Orthotopic tumor administration of P-E/S Lip not only attenuated primary tumor growth, but also produced systemic anti-tumor immune response to inhibit growth of distant tumors and metastasis. Moreover, intravenous administration of P-E/S Lip into mice bearing subcutaneous tumors leaded to an effective inhibition of established B16-F10 tumor and 4T1 tumor, with histological analyses indicating an absence of detectable toxicity. CONCLUSIONS In our study, a protease-based nanoplatform was used to cooperatively provoke robust tumor immunogenicity and down-regulate PD-L1 expression, which exhibited great potential as a combination therapy for precisely treating solid tumors.
Collapse
Affiliation(s)
- Li Du
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Biobank, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yao Gong
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoying Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jide Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Fengxia Gao
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Meiying Shen
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Huili Bai
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tiantian Yang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoxue Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Siqiao Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jian Peng
- Biobank, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhangling Liu
- Biobank, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Biobank, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Yu X, Li C, Wang Z, Xu Y, Shao S, Shao F, Wang H, Liu J. Neutrophils in cancer: dual roles through intercellular interactions. Oncogene 2024; 43:1163-1177. [PMID: 38472320 DOI: 10.1038/s41388-024-03004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play crucial and diverse roles in tumor development. In the tumor microenvironment (TME), cancer cells regulate the recruitment and behaviors of neutrophils, transforming some of them into a pro-tumor phenotype. Pro-tumor neutrophils interact with cancer cells in various ways to promote cancer initiation, growth, and metastasis, while anti-tumor neutrophils interact with cancer cells to induce senescence and death. Neutrophils can also interact with other cells in TME, including T cells, macrophages, stromal cells, etc. to exert anti- or pro-tumor functions. In this review, we will analyze the anti- and pro-tumor intercellular interactions mediated by neutrophils, with a focus on generalizing the mechanisms underlying the interaction of neutrophils with tumor cells and T cells. Furthermore, we will provide an overview of cancer treatment strategies targeting neutrophil-mediated cellular interactions.
Collapse
Affiliation(s)
- Xinyu Yu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Changhui Li
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Zijin Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Yaping Xu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Fangwei Shao
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, China
- -University of Illinois Urbana-Champaign Institute, Zhejiang University, Haining, 314400, China
- National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou, 310027, China
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China.
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, China.
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310002, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Tatarova Z, Blumberg DC, Korkola JE, Heiser LM, Muschler JL, Schedin PJ, Ahn SW, Mills GB, Coussens LM, Jonas O, Gray JW. A multiplex implantable microdevice assay identifies synergistic combinations of cancer immunotherapies and conventional drugs. Nat Biotechnol 2022; 40:1823-1833. [PMID: 35788566 PMCID: PMC9750874 DOI: 10.1038/s41587-022-01379-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/31/2022] [Indexed: 01/14/2023]
Abstract
Systematically identifying synergistic combinations of targeted agents and immunotherapies for cancer treatments remains difficult. In this study, we integrated high-throughput and high-content techniques-an implantable microdevice to administer multiple drugs into different sites in tumors at nanodoses and multiplexed imaging of tumor microenvironmental states-to investigate the tumor cell and immunological response signatures to different treatment regimens. Using a mouse model of breast cancer, we identified effective combinations from among numerous agents within days. In vivo studies in three immunocompetent mammary carcinoma models demonstrated that the predicted combinations synergistically increased therapeutic efficacy. We identified at least five promising treatment strategies, of which the panobinostat, venetoclax and anti-CD40 triple therapy was the most effective in inducing complete tumor remission across models. Successful drug combinations increased spatial association of cancer stem cells with dendritic cells during immunogenic cell death, suggesting this as an important mechanism of action in long-term breast cancer control.
Collapse
Affiliation(s)
- Zuzana Tatarova
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dylan C Blumberg
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Portland, OR, USA
| | - James E Korkola
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - John L Muschler
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Pepper J Schedin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Sebastian W Ahn
- Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gordon B Mills
- Division of Oncologic Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Lisa M Coussens
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Oliver Jonas
- Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Joe W Gray
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
5
|
Cui C, Chakraborty K, Tang XA, Zhou G, Schoenfelt KQ, Becker KM, Hoffman A, Chang YF, Blank A, Reardon CA, Kenny HA, Vaisar T, Lengyel E, Greene G, Becker L. Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis. Cell 2021; 184:3163-3177.e21. [PMID: 33964209 PMCID: PMC10712736 DOI: 10.1016/j.cell.2021.04.016] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
Cancer cell genetic variability and similarity to host cells have stymied development of broad anti-cancer therapeutics. Our innate immune system evolved to clear genetically diverse pathogens and limit host toxicity; however, whether/how innate immunity can produce similar effects in cancer is unknown. Here, we show that human, but not murine, neutrophils release catalytically active neutrophil elastase (ELANE) to kill many cancer cell types while sparing non-cancer cells. ELANE proteolytically liberates the CD95 death domain, which interacts with histone H1 isoforms to selectively eradicate cancer cells. ELANE attenuates primary tumor growth and produces a CD8+T cell-mediated abscopal effect to attack distant metastases. Porcine pancreatic elastase (ELANE homolog) resists tumor-derived protease inhibitors and exhibits markedly improved therapeutic efficacy. Altogether, our studies suggest that ELANE kills genetically diverse cancer cells with minimal toxicity to non-cancer cells, raising the possibility of developing it as a broad anti-cancer therapy.
Collapse
Affiliation(s)
- Chang Cui
- Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA; Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Kasturi Chakraborty
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Xu Anna Tang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Guolin Zhou
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Kelly Q Schoenfelt
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Kristen M Becker
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Alexandria Hoffman
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA; Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL 60637, USA
| | - Ya-Fang Chang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Ariane Blank
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Catherine A Reardon
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Hilary A Kenny
- Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Obstetrics and Gynecology, Section of Gynecological Oncology, The University of Chicago, Chicago, IL 60637, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ernst Lengyel
- Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Obstetrics and Gynecology, Section of Gynecological Oncology, The University of Chicago, Chicago, IL 60637, USA; University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| | - Geoffrey Greene
- Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA; Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA; University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| | - Lev Becker
- Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA; Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA; Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL 60637, USA; University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Huang H, Zhang H, Onuma AE, Tsung A. Neutrophil Elastase and Neutrophil Extracellular Traps in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:13-23. [PMID: 32588320 DOI: 10.1007/978-3-030-44518-8_2] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor-associated neutrophils (TANs) play a major role during cancer development and progression in the tumor microenvironment. Neutrophil elastase (NE) is a serine protease normally expressed in neutrophil primary granules. Formation of neutrophil extracellular traps (NETs), a mechanism used by neutrophils, has been traditionally associated with the capture and killing of bacteria. However, there are recent discoveries suggesting that NE secretion and NETs formation are also involved in the tumor microenvironment. Here, we focus on how NE and NETs play a key regulatory function in the tumor microenvironment, such as tumor proliferation, distant metastasis, tumor-associated thrombosis, and antitumor activity. Additionally, the potential use of NETs, NE, or associated molecules as potential disease activity biomarkers or therapeutic targets will be introduced.
Collapse
Affiliation(s)
- Hai Huang
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Hongji Zhang
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA.,Department of Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Amblessed E Onuma
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Allan Tsung
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
7
|
Galdiero MR, Marone G, Mantovani A. Cancer Inflammation and Cytokines. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028662. [PMID: 28778871 DOI: 10.1101/cshperspect.a028662] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is a well-recognized tumor-enabling capability, which allows nascent tumors to escape immunosurveillance. A number of soluble and cellular inflammatory mediators take part in the various phases of cancer initiation and progression, giving rise to a fatal conspiracy, which is difficult to efficiently overcome. Tumor-associated macrophages (TAMs) are pivotal players of the tumor microenvironment and, because of their characteristic plasticity, can acquire a number of distinct phenotypes and contribute in different ways to the various phases of cancerogenesis. Tumor-associated neutrophils (TANs) are also emerging as important components of the tumor microenvironment, given their unexpected heterogeneity and plasticity. TAMs and TANs are both integrated in cancer-related inflammation and an ever better understanding of their functions can be useful to tailor the use of anticancer therapeutic approaches and patient follow-up.
Collapse
Affiliation(s)
- Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Alberto Mantovani
- Istituto di Ricovero e Cura a Carattere Scientifo (IRCCS), Istituto Clinico Humanitas, Rozzano, Milan, Italy.,Humanitas University, Rozzano, Milan, Italy
| |
Collapse
|
8
|
Attia Z, Rowe JC, Kim E, Varikuti S, Steiner HE, Zaghawa A, Hassan H, Cormet-Boyaka E, Satoskar AR, Boyaka PN. Inhibitors of elastase stimulate murine B lymphocyte differentiation into IgG- and IgA-producing cells. Eur J Immunol 2018; 48:1295-1301. [PMID: 29710424 DOI: 10.1002/eji.201747264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/17/2018] [Accepted: 04/25/2018] [Indexed: 01/11/2023]
Abstract
It is well established that dendritic cells and macrophages play a role in antigen presentation to B and T cells and in shaping B and T cell responses via cytokines they produce. We have previously reported that depletion of neutrophils improves the production of mucosal IgA after sublingual immunization with Bacillus anthracis edema toxin as adjuvant. These past studies also demonstrated that an inverse correlation exists between the number of neutrophils and production of IgA by B cells. Using specific inhibitors of elastase, we addressed whether the elastase activity of neutrophil could be the factor that interferes with production of IgA and possibly other immunoglobulin isotypes. We found that murine splenocytes and mesenteric lymph node cells cultured for 5 days in the presence of neutrophil elastase inhibitors secreted higher levels of IgG and IgA than cells cultured in the absence of inhibitors. The effect of the inhibitors was dose-dependent and was consistent with increased frequency of CD138+ cells expressing IgG or IgA. Finally, neutrophil elastase inhibitors increased transcription of mRNA for AID, IL-10, BAFF and APRIL, factors involved in B cell differentiation. These findings identify inhibitors of elastase as potential adjuvants for increasing production of antibodies.
Collapse
Affiliation(s)
- Zayed Attia
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.,Department of Medicine and Infectious Diseases, University of Sadat City, Sadat City, Egypt
| | - John C Rowe
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Eunsoo Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Sanjay Varikuti
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Haley E Steiner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Ahmad Zaghawa
- Department of Medicine and Infectious Diseases, University of Sadat City, Sadat City, Egypt
| | - Hany Hassan
- Department of Medicine and Infectious Diseases, University of Sadat City, Sadat City, Egypt
| | | | - Abhay R Satoskar
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Al-Awadhi FH, Paul VJ, Luesch H. Structural Diversity and Anticancer Activity of Marine-Derived Elastase Inhibitors: Key Features and Mechanisms Mediating the Antimetastatic Effects in Invasive Breast Cancer. Chembiochem 2018; 19:815-825. [PMID: 29405541 PMCID: PMC6366850 DOI: 10.1002/cbic.201700627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 01/01/2023]
Abstract
Three new 3-amino-6-hydroxy-2-piperidone (Ahp)-containing cyclic depsipeptides, named loggerpeptins A-C (1-3), along with molassamide (4), were discovered from a marine cyanobacterium, extending the structural diversity of this prevalent scaffold of cyanobacterial serine protease inhibitors. Molassamide, which contains a 2-amino-butenoic (Abu) unit in the cyclic core, was the most potent and selective analogue against human neutrophil elastase (HNE). Given the growing evidence supporting the role of HNE in breast cancer progression and metastasis, we assessed the cellular effects of compounds 3 and 4 in the context of targeting invasive breast cancer. Both compounds inhibited cleavage of the elastase substrate CD40 in biochemical assays; however, only 4 exhibited significant cellular activity. As CD40 and other receptor proteolytic processing culminates in NFκB activation, we assessed the effects of 4 on the expression of target genes, including ICAM-1. ICAM-1 is also a direct target of elastase and, in our studies, compound 4 attenuated both elastase-induced ICAM-1 gene expression and ICAM-1 proteolytic processing by elastase, revealing a potential dual effect on migration through modulation of gene expression and proteolytic processing. Molassamide also specifically inhibited the elastase-mediated migration of highly invasive triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Fatma H. Al-Awadhi
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Valerie J. Paul
- Smithsonian Marine Station, Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida 34949, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| |
Collapse
|
10
|
Khan M, Carmona S, Sukhumalchandra P, Roszik J, Philips A, Perakis AA, Kerros C, Zhang M, Qiao N, John LSS, Zope M, Goldberg J, Qazilbash M, Jakher H, Clise-Dwyer K, Qiu Y, Mittendorf EA, Molldrem JJ, Kornblau SM, Alatrash G. Cathepsin G Is Expressed by Acute Lymphoblastic Leukemia and Is a Potential Immunotherapeutic Target. Front Immunol 2018; 8:1975. [PMID: 29422892 PMCID: PMC5790053 DOI: 10.3389/fimmu.2017.01975] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022] Open
Abstract
Cathepsin G (CG) is a myeloid azurophil granule protease that is highly expressed by acute myeloid leukemia (AML) blasts and leukemia stem cells. We previously identified CG1 (FLLPTGAEA), a human leukocyte antigen-A2-restricted nonameric peptide derived from CG, as an immunogenic target in AML. In this report, we aimed to assess the level of CG expression in acute lymphoid leukemia (ALL) and its potential as an immunotherapeutic target in ALL. Using RT-PCR and western blots, we identified CG mRNA and protein, respectively, in B-ALL patient samples and cell lines. We also examined CG expression in a large cohort of 130 patients with ALL via reverse-phase protein array (RPPA). Our data show that CG is widely expressed by ALL and is a poor prognosticator. In addition to endogenous expression, we also provide evidence that CG can be taken up by ALL cells. Finally, we demonstrate that patient ALL can be lysed by CG1-specific cytotoxic T lymphocytes in vitro. Together, these data show high expression of CG by ALL and implicate CG as a target for immunotherapy in ALL.
Collapse
Affiliation(s)
- Maliha Khan
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Selena Carmona
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Pariya Sukhumalchandra
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Jason Roszik
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX, United States
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Anne Philips
- Surgical Oncology, MD Anderson Cancer Center, Houston, TX, United States
| | - Alexander A. Perakis
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Celine Kerros
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Mao Zhang
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Na Qiao
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Lisa S. St. John
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Madhushree Zope
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Jonathan Goldberg
- Surgical Oncology, MD Anderson Cancer Center, Houston, TX, United States
| | - Mariam Qazilbash
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Haroon Jakher
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Yihua Qiu
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Jeffrey J. Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Steven M. Kornblau
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
11
|
Galdiero MR, Varricchi G, Loffredo S, Mantovani A, Marone G. Roles of neutrophils in cancer growth and progression. J Leukoc Biol 2017; 103:457-464. [DOI: 10.1002/jlb.3mr0717-292r] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/15/2017] [Accepted: 10/09/2017] [Indexed: 01/01/2023] Open
Affiliation(s)
- Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II; Naples Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II; Naples Italy
- WAO Center of Excellence, University of Naples Federico II; Naples Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II; Naples Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II; Naples Italy
- WAO Center of Excellence, University of Naples Federico II; Naples Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II; Naples Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II; Naples Italy
- WAO Center of Excellence, University of Naples Federico II; Naples Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center; Rozzano Milan Italy
- Department of Biomedical Sciences; Humanitas University; Milan Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II; Naples Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II; Naples Italy
- WAO Center of Excellence, University of Naples Federico II; Naples Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS); National Research Council (CNR); Naples Italy
| |
Collapse
|
12
|
Gall VA, Philips AV, Qiao N, Clise-Dwyer K, Perakis AA, Zhang M, Clifton GT, Sukhumalchandra P, Ma Q, Reddy SM, Yu D, Molldrem JJ, Peoples GE, Alatrash G, Mittendorf EA. Trastuzumab Increases HER2 Uptake and Cross-Presentation by Dendritic Cells. Cancer Res 2017; 77:5374-5383. [PMID: 28819024 DOI: 10.1158/0008-5472.can-16-2774] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/25/2017] [Accepted: 08/04/2017] [Indexed: 12/22/2022]
Abstract
Early-phase clinical trials evaluating CD8+ T cell-eliciting, HER2-derived peptide vaccines administered to HER2+ breast cancer patients in the adjuvant setting suggest synergy between the vaccines and trastuzumab, the mAb targeting the HER2 protein. Among 60 patients enrolled in clinical trials evaluating the E75 + GM-CSF and GP2 + GM-CSF vaccines, there have been no recurrences in patients vaccinated after receiving trastuzumab as part of standard therapy in the per treatment analyses conducted after a median follow-up of greater than 34 months. Here, we describe a mechanism by which this synergy may occur. Flow cytometry showed that trastuzumab facilitated uptake of HER2 by dendritic cells (DC), which was mediated by the Fc receptor and was specific to trastuzumab. In vitro, increased HER2 uptake by DC increased cross-presentation of E75, the immunodominant epitope derived from the HER2 protein, an observation confirmed in two in vivo mouse models. This increased E75 cross-presentation, mediated by trastuzumab treatment, enabled more efficient expansion of E75-specific cytotoxic T cells (E75-CTL). These results demonstrate a mechanism by which trastuzumab links innate and adaptive immunity by facilitating activation of antigen-specific T cells. On the basis of these data, we conclude that HER2-positive breast cancer patients that have been treated with trastuzumab may experience a more robust antitumor immune response by restimulation of T cells with the E75 peptide vaccine, thereby accounting for the improved disease-free survival observed with combination therapy. Cancer Res; 77(19); 5374-83. ©2017 AACR.
Collapse
Affiliation(s)
- Victor A Gall
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne V Philips
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Na Qiao
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation & Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander A Perakis
- Department of Stem Cell Transplantation & Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mao Zhang
- Department of Stem Cell Transplantation & Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guy T Clifton
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pariya Sukhumalchandra
- Department of Stem Cell Transplantation & Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing Ma
- Department of Stem Cell Transplantation & Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sangeetha M Reddy
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey J Molldrem
- Department of Stem Cell Transplantation & Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Gheath Alatrash
- Department of Stem Cell Transplantation & Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Elizabeth A Mittendorf
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
13
|
Loke I, Østergaard O, Heegaard NHH, Packer NH, Thaysen-Andersen M. Paucimannose-Rich N-glycosylation of Spatiotemporally Regulated Human Neutrophil Elastase Modulates Its Immune Functions. Mol Cell Proteomics 2017; 16:1507-1527. [PMID: 28630087 PMCID: PMC5546201 DOI: 10.1074/mcp.m116.066746] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 06/04/2017] [Indexed: 12/22/2022] Open
Abstract
Human neutrophil elastase (HNE) is an important N-glycosylated serine protease in the innate immune system, but the structure and immune-modulating functions of HNE N-glycosylation remain undescribed. Herein, LC-MS/MS-based glycan, glycopeptide and glycoprotein profiling were utilized to first determine the heterogeneous N-glycosylation of HNE purified from neutrophil lysates and then from isolated neutrophil granules of healthy individuals. The spatiotemporal expression of HNE during neutrophil activation and the biological importance of its N-glycosylation were also investigated using immunoblotting, cell surface capture, native MS, receptor interaction, protease inhibition, and bacteria growth assays. Site-specific HNE glycoprofiling demonstrated that unusual paucimannosidic N-glycans, particularly Manα1,6Manβ1,4GlcNAcβ1,4(Fucα1,6)GlcNAcβ, predominantly occupied Asn124 and Asn173. The equally unusual core fucosylated monoantenna complex-type N-sialoglycans also decorated these two fully occupied sites. In contrast, the mostly unoccupied Asn88 carried nonfucosylated paucimannosidic N-glycans probably resulting from low glycosylation site solvent accessibility. Asn185 was not glycosylated. Subcellular- and site-specific glycoprofiling showed highly uniform N-glycosylation of HNE residing in distinct neutrophil compartments. Stimulation-induced cell surface mobilization demonstrated a spatiotemporal regulation, but not cell surface-specific glycosylation signatures, of HNE in activated human neutrophils. The three glycosylation sites of HNE were located distal to the active site indicating glycan functions other than interference with HNE enzyme activity. Functionally, the paucimannosidic HNE glycoforms displayed preferential binding to human mannose binding lectin compared with the HNE sialoglycoforms, suggesting a glycoform-dependent involvement of HNE in complement activation. The heavily N-glycosylated HNE protease inhibitor, α1-antitrypsin, displayed concentration-dependent complex formation and preferred glycoform-glycoform interactions with HNE. Finally, both enzymatically active HNE and isolated HNE N-glycans demonstrated low micromolar concentration-dependent growth inhibition of clinically-relevant Pseudomonas aeruginosa, suggesting some bacteriostatic activity is conferred by the HNE N-glycans. Taken together, these observations support that the unusual HNE N-glycosylation, here reported for the first time, is involved in modulating multiple immune functions central to inflammation and infection.
Collapse
Affiliation(s)
- Ian Loke
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ole Østergaard
- §Department of Autoimmunology and Biomarkers, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Niels H H Heegaard
- §Department of Autoimmunology and Biomarkers, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Nicolle H Packer
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Morten Thaysen-Andersen
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia;
| |
Collapse
|
14
|
Peters HL, Tripathi SC, Kerros C, Katayama H, Garber HR, St John LS, Federico L, Meraz IM, Roth JA, Sepesi B, Majidi M, Ruisaard K, Clise-Dwyer K, Roszik J, Gibbons DL, Heymach JV, Swisher SG, Bernatchez C, Alatrash G, Hanash S, Molldrem JJ. Serine Proteases Enhance Immunogenic Antigen Presentation on Lung Cancer Cells. Cancer Immunol Res 2017; 5:319-329. [PMID: 28254787 DOI: 10.1158/2326-6066.cir-16-0141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/28/2016] [Accepted: 02/27/2017] [Indexed: 11/16/2022]
Abstract
Immunotherapies targeting immune checkpoints have proven efficacious in reducing the burden of lung cancer in patients; however, the antigenic targets of these reinvigorated T cells remain poorly defined. Lung cancer tumors contain tumor-associated macrophages (TAM) and neutrophils, which release the serine proteases neutrophil elastase (NE) and proteinase 3 (P3) into the tumor microenvironment. NE and P3 shape the antitumor adaptive immune response in breast cancer and melanoma. In this report, we demonstrate that lung cancer cells cross-presented the tumor-associated antigen PR1, derived from NE and P3. Additionally, NE and P3 enhanced the expression of human leukocyte antigen (HLA) class I molecules on lung cancer cells and induced unique, endogenous peptides in the immunopeptidome, as detected with mass spectrometry sequencing. Lung cancer patient tissues with high intratumoral TAMs were enriched for MHC class I genes and T-cell markers, and patients with high TAM and cytotoxic T lymphocyte (CTL) infiltration had improved overall survival. We confirmed the immunogenicity of unique, endogenous peptides with cytotoxicity assays against lung cancer cell lines, using CTLs from healthy donors that had been expanded against select peptides. Finally, CTLs specific for serine proteases-induced endogenous peptides were detected in lung cancer patients using peptide/HLA-A2 tetramers and were elevated in tumor-infiltrating lymphocytes. Thus, serine proteases in the tumor microenvironment of lung cancers promote the presentation of HLA class I immunogenic peptides that are expressed by lung cancer cells, thereby increasing the antigen repertoire that can be targeted in lung cancer. Cancer Immunol Res; 5(4); 319-29. ©2017 AACR.
Collapse
Affiliation(s)
- Haley L Peters
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Celine Kerros
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haven R Garber
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lisa S St John
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lorenzo Federico
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ismail M Meraz
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mourad Majidi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kathryn Ruisaard
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir Hanash
- Department of Clinical Cancer Prevention-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey J Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
15
|
Eruslanov EB, Singhal S, Albelda SM. Mouse versus Human Neutrophils in Cancer: A Major Knowledge Gap. Trends Cancer 2017; 3:149-160. [PMID: 28718445 DOI: 10.1016/j.trecan.2016.12.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 01/06/2023]
Abstract
Many types of cancer recruit neutrophils that could have protumor or antitumor effects on tumor development. Numerous findings in murine models suggest a predominantly protumoral role for neutrophils in cancer development. However, there are fundamental differences between mouse and human tumors in the evolution of tumors, genetic diversity, immune response, and also in the intrinsic biology of neutrophils that might have a profound impact on tumor development and the function of these cells. A crucial difference is that the majority of mouse tumor models lack the prolonged initial phases of multistage tumor evolution present in humans when antitumoral mechanisms are activated. In this review, we discuss the challenges specific to cross-species extrapolation of neutrophil function during mouse versus human tumor development.
Collapse
Affiliation(s)
- Evgeniy B Eruslanov
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Thoracic Surgery, Department of Surgery, Philadelphia VA Medical Center, Philadelphia, PA 19104, USA
| | - Steven M Albelda
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Margaroli C, Tirouvanziam R. Neutrophil plasticity enables the development of pathological microenvironments: implications for cystic fibrosis airway disease. Mol Cell Pediatr 2016; 3:38. [PMID: 27868161 PMCID: PMC5136534 DOI: 10.1186/s40348-016-0066-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/04/2016] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The pathological course of several chronic inflammatory diseases, including cystic fibrosis, chronic obstructive pulmonary disease, and rheumatoid arthritis, features an aberrant innate immune response dominated by neutrophils. In cystic fibrosis, neutrophil burden and activity of neutrophil elastase in the extracellular fluid have been identified as strong predictors of lung disease severity. REVIEW Although neutrophils are generally considered to be rigid, pre-programmed effector leukocytes, recent studies suggest extensive plasticity in how neutrophil functions unfold upon recruitment to peripheral tissues, and how they choose their ultimate fate. Indeed, upon migration to cystic fibrosis airways, neutrophils display dysregulated lifespan, metabolic activation, and altered effector and regulatory functions, consistent with profound adaptation and phenotypic reprogramming. Licensed by signals present in cystic fibrosis airway microenvironment to survive and develop these novel functions, neutrophils orchestrate, in partnership with the epithelium and with the resident microbiota, the evolution of a pathological microenvironment. This microenvironment is defined by altered proteolytic, redox, and metabolic balance and the presence of stable luminal structures in which neutrophils and microbes coexist. CONCLUSIONS The elucidation of molecular mechanisms driving neutrophil plasticity in vivo will open new treatment opportunities designed to modulate, rather than block, the crucial adaptive functions fulfilled by neutrophils. This review aims to outline emerging mechanisms of neutrophil plasticity and their participation in the building of pathological microenvironments in the context of cystic fibrosis and other diseases with similar features.
Collapse
Affiliation(s)
- Camilla Margaroli
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
- Emory + Children's Center, 2015 Uppergate Dr NE, Rm 344, Atlanta, GA, 30322-1014, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
- Emory + Children's Center, 2015 Uppergate Dr NE, Rm 344, Atlanta, GA, 30322-1014, USA.
| |
Collapse
|
17
|
Cheng YT, Yang CC, Shyur LF. Phytomedicine-Modulating oxidative stress and the tumor microenvironment for cancer therapy. Pharmacol Res 2016; 114:128-143. [PMID: 27794498 DOI: 10.1016/j.phrs.2016.10.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/18/2022]
Abstract
In spite of the current advances and achievements in systems biology and translational medicinal research, the current strategies for cancer therapy, such as radiotherapy, targeted therapy, immunotherapy and chemotherapy remain palliative or unsatisfactory due to tumor metastasis or recurrence after surgery/therapy, drug resistance, adverse side effects, and so on. Oxidative stress (OS) plays a critical role in chronic/acute inflammation, carcinogenesis, tumor progression, and tumor invasion/metastasis which is also attributed to the dynamic and complex properties and activities in the tumor microenvironment (TME). Re-educating or reprogramming tumor-associated stromal or immune cells in the TME provides an approach for restoring immune surveillance impaired by disease in cancer patients to increase overall survival and reduce drug resistance. Herbal medicines or plant-derived natural products have historically been a major source of anti-cancer drugs. Delving into the lore of herbal medicine may uncover new leads for anti-cancer drugs. Phytomedicines have been widely documented to directly or indirectly target multiple signaling pathways and networks in cancer cells. A combination of anti-cancer drugs and polypharmacological plant-derived extracts or compounds may offer a significant advantage in sensitizing the efficacy of monotherapy and overcoming drug-induced resistance in cancer patients. This review introduces several phytochemicals and phytoextracts derived from medicinal plants or dietary vegetables that have been studied for their efficacy in preclinical cancer models. We address the underlying modes of action of induction of OS and deregulation of TME-associated stromal cells, mediators and signaling pathways, and reference the related clinical investigations that look at the single or combination use of phytochemicals and phytoextracts to sensitize anti-cancer drug effects and/or overcome drug resistance.
Collapse
Affiliation(s)
- Yu-Ting Cheng
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Chun-Chih Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taiwan
| | - Lie-Fen Shyur
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|