1
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Khan M, Dong Y, Ullah R, Li M, Huang Q, Hu Y, Yang L, Luo Z. Recent Advances in Bacterium-Based Therapeutic Modalities for Melanoma Treatment. Adv Healthc Mater 2024:e2401076. [PMID: 39375965 DOI: 10.1002/adhm.202401076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/16/2024] [Indexed: 10/09/2024]
Abstract
Melanoma is one of the most severe skin cancer indications with rapid progression and a high risk of metastasis. However, despite the accumulated advances in melanoma treatment including adjuvant radiation, chemotherapy, and immunotherapy, the overall melanoma treatment efficacy in the clinics is still not satisfactory. Interestingly, bacterial therapeutics have demonstrated unique properties for tumor-related therapeutic applications, such as tumor-targeted motility, tailorable cytotoxicity, and immunomodulatory capacity of the tumor microenvironment, which have emerged as a promising platform for melanoma therapy. Indeed, the recent advances in genetic engineering and nanotechnologies have boosted the application potential of bacterium-based therapeutics for treating melanoma by further enhancing their tumor-homing, cell-killing, drug delivery, and immunostimulatory capacities. This review provides a comprehensive summary of the state-of-the-art bacterium-based anti-melanoma modalities, which are categorized according to their unique functional merits, including tumor-specific cytotoxins, tumor-targeted drug delivery platforms, and immune-stimulatory agents. Furthermore, a perspective is provided discussing the potential challenges and breakthroughs in this area. The insights in this review may facilitate the development of more advanced bacterium-based therapeutic modalities for improved melanoma treatment efficacy.
Collapse
Affiliation(s)
- Mubassir Khan
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Yilong Dong
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325016, P. R. China
| | - Razi Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Lab for Vascular Implants College of Bioengineering Chongqing University, Chongqing, 400030, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| | - Qiping Huang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
3
|
Oberstein PE, Dias Costa A, Kawaler EA, Cardot-Ruffino V, Rahma OE, Beri N, Singh H, Abrams TA, Biller LH, Cleary JM, Enzinger P, Huffman BM, McCleary NJ, Perez KJ, Rubinson DA, Schlechter BL, Surana R, Yurgelun MB, Wang SJ, Remland J, Brais LK, Bollenrucher N, Chang E, Ali LR, Lenehan PJ, Dolgalev I, Werba G, Lima C, Keheler CE, Sullivan KM, Dougan M, Hajdu C, Dajee M, Pelletier MR, Nazeer S, Squires M, Bar-Sagi D, Wolpin BM, Nowak JA, Simeone DM, Dougan SK. Blockade of IL1β and PD1 with Combination Chemotherapy Reduces Systemic Myeloid Suppression in Metastatic Pancreatic Cancer with Heterogeneous Effects in the Tumor. Cancer Immunol Res 2024; 12:1221-1235. [PMID: 38990554 PMCID: PMC11369625 DOI: 10.1158/2326-6066.cir-23-1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/15/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Innate inflammation promotes tumor development, although the role of innate inflammatory cytokines in established human tumors is unclear. Herein, we report clinical and translational results from a phase Ib trial testing whether IL1β blockade in human pancreatic cancer would alleviate myeloid immunosuppression and reveal antitumor T-cell responses to PD1 blockade. Patients with treatment-naïve advanced pancreatic ductal adenocarcinoma (n = 10) were treated with canakinumab, a high-affinity monoclonal human antiinterleukin-1β (IL1β), the PD1 blocking antibody spartalizumab, and gemcitabine/n(ab)paclitaxel. Analysis of paired peripheral blood from patients in the trial versus patients receiving multiagent chemotherapy showed a modest increase in HLA-DR+CD38+ activated CD8+ T cells and a decrease in circulating monocytic myeloid-derived suppressor cells (MDSC) by flow cytometry for patients in the trial but not in controls. Similarly, we used patient serum to differentiate monocytic MDSCs in vitro and showed that functional inhibition of T-cell proliferation was reduced when using on-treatment serum samples from patients in the trial but not when using serum from patients treated with chemotherapy alone. Within the tumor, we observed few changes in suppressive myeloid-cell populations or activated T cells as assessed by single-cell transcriptional profiling or multiplex immunofluorescence, although increases in CD8+ T cells suggest that improvements in the tumor immune microenvironment might be revealed by a larger study. Overall, the data indicate that exposure to PD1 and IL1β blockade induced a modest reactivation of peripheral CD8+ T cells and decreased circulating monocytic MDSCs; however, these changes did not lead to similarly uniform alterations in the tumor microenvironment.
Collapse
Affiliation(s)
- Paul E. Oberstein
- Department of Medicine, NYU Langone Health, New York, New York.
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
| | - Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| | - Emily A. Kawaler
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
- Department of Surgery, NYU Langone Health, New York, New York.
| | - Victoire Cardot-Ruffino
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Immunology, Harvard Medical School, Boston, Massachusetts.
| | - Osama E. Rahma
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Nina Beri
- Department of Medicine, NYU Langone Health, New York, New York.
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
| | - Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Thomas A. Abrams
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Leah H. Biller
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - James M. Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Peter Enzinger
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Brandon M. Huffman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Nadine J. McCleary
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Kimberly J. Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Douglas A. Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Benjamin L. Schlechter
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Rishi Surana
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Matthew B. Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - S. Jennifer Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Joshua Remland
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| | - Lauren K. Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| | - Naima Bollenrucher
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Eugena Chang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Lestat R. Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Immunology, Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Patrick J. Lenehan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Immunology, Harvard Medical School, Boston, Massachusetts.
| | - Igor Dolgalev
- Department of Medicine, NYU Langone Health, New York, New York.
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
| | - Gregor Werba
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
- Department of Surgery, NYU Langone Health, New York, New York.
| | - Cibelle Lima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| | - C. Elizabeth Keheler
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Keri M. Sullivan
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Michael Dougan
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Cristina Hajdu
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
- Department of Pathology, NYU Langone Health, New York, New York.
| | - Maya Dajee
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts.
| | - Marc R. Pelletier
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts.
| | | | | | - Dafna Bar-Sagi
- Department of Medicine, NYU Langone Health, New York, New York.
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Jonathan A. Nowak
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Diane M. Simeone
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
- Department of Surgery, NYU Langone Health, New York, New York.
| | - Stephanie K. Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Immunology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
4
|
Krzysiek R, Bitoun S, Belkhir R, Hacein-Bey-Abina S, Mariette X. Clonal CD8 + T-cell expansion is associated with complete response to elranatamab in refractory multiple myeloma. Haematologica 2024; 109:3078-3080. [PMID: 38546659 PMCID: PMC11367229 DOI: 10.3324/haematol.2023.284942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/18/2024] [Indexed: 09/03/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Roman Krzysiek
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France; UMR 996 INSERM, Inflammation Microbiome and Immunosurveillance, Paris-Saclay University, Orsay
| | - Samuel Bitoun
- Department of Rheumatology, Université Paris Saclay, FHU CARE, INSERM UMR1184, APHP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Paris-Saclay University, Faculty of Medicine, INSERM, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre
| | - Rakiba Belkhir
- Department of Rheumatology, Université Paris Saclay, FHU CARE, INSERM UMR1184, APHP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Paris-Saclay University, Faculty of Medicine, INSERM, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre
| | - Salima Hacein-Bey-Abina
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France; Université Paris Cité, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris
| | - Xavier Mariette
- Department of Rheumatology, Université Paris Saclay, FHU CARE, INSERM UMR1184, APHP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Paris-Saclay University, Faculty of Medicine, INSERM, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre.
| |
Collapse
|
5
|
Saba NF, Wong SJ, Nasti T, McCook-Veal AA, McDonald MW, Stokes WA, Anderson AM, Ekpenyong A, Rupji M, Abousaud M, Rudra S, Bates JE, Remick JS, Joshi NP, Woody NM, Awan M, Geiger JL, Shreenivas A, Samsa J, Ward MC, Schmitt NC, Patel MR, Higgins KA, Teng Y, Steuer CE, Shin DM, Liu Y, Ahmed R, Koyfman SA. Intensity-Modulated Reirradiation Therapy With Nivolumab in Recurrent or Second Primary Head and Neck Squamous Cell Carcinoma: A Nonrandomized Controlled Trial. JAMA Oncol 2024; 10:896-904. [PMID: 38780927 PMCID: PMC11117153 DOI: 10.1001/jamaoncol.2024.1143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/15/2024] [Indexed: 05/25/2024]
Abstract
Importance Intensity-modulated radiation therapy (IMRT) reirradiation of nonmetastatic recurrent or second primary head and neck squamous cell carcinoma (HNSCC) results in poor progression-free survival (PFS) and overall survival (OS). Objective To investigate the tolerability, PFS, OS, and patient-reported outcomes with nivolumab (approved standard of care for patients with HNSCC) during and after IMRT reirradiation. Design, Setting, and Participants In this multicenter nonrandomized phase 2 single-arm trial, the treatment outcomes of patients with recurrent or second primary HNSCC who satisfied recursive partitioning analysis class 1 and 2 definitions were evaluated. Between July 11, 2018, and August 12, 2021, 62 patients were consented and screened. Data were evaluated between June and December 2023. Intervention Sixty- to 66-Gy IMRT in 30 to 33 daily fractions over 6 to 6.5 weeks with nivolumab, 240 mg, intravenously 2 weeks prior and every 2 weeks for 5 cycles during IMRT, then nivolumab, 480 mg, intravenously every 4 weeks for a total nivolumab duration of 52 weeks. Main Outcomes and Measures The primary end point was PFS. Secondary end points included OS, incidence, and types of toxic effects, including long-term treatment-related toxic effects, patient-reported outcomes, and correlatives of tissue and blood biomarkers. Results A total of 62 patients were screened, and 51 were evaluable (median [range] age was 62 [56-67] years; 42 [82%] were male; 6 [12%] had p16+ disease; 38 [75%] had salvage surgery; and 36 [71%.] had neck dissection). With a median follow-up of 24.5 months (95% CI, 19.0-25.0), the estimated 1-year PFS was 61.7% (95% CI, 49.2%-77.4%), rejecting the null hypothesis of 1-year PFS rate of less than 43.8% with 1-arm log-rank test P = .002 within a 1-year timeframe. The most common treatment-related grade 3 or higher adverse event (6 [12%]) was lymphopenia with 2 patients (4%) and 1 patient each (2%) exhibiting colitis, diarrhea, myositis, nausea, mucositis, and myasthenia gravis. Functional Assessment of Cancer Therapy-General and Functional Assessment of Cancer Therapy-Head and Neck Questionnaire quality of life scores remained stable and consistent across all time points. A hypothesis-generating trend favoring worsening PFS and OS in patients with an increase in blood PD1+, KI67+, and CD4+ T cells was observed. Conclusions and Relevance This multicenter nonrandomized phase 2 trial of IMRT reirradiation therapy and nivolumab suggested a promising improvement in PFS over historical controls. The treatment was well tolerated and deserves further evaluation. Trial Registration ClinicalTrials.gov Identifier: NCT03521570.
Collapse
Affiliation(s)
- Nabil F. Saba
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Stuart J. Wong
- Department of Medicine, Medical College of Wisconsin, Pleasant Prairie
| | - Tahseen Nasti
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- The Emory Vaccine Center, Emory University, Atlanta, Georgia
| | - Ashley Alesia McCook-Veal
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Mark W. McDonald
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - William A. Stokes
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia
| | | | - Asari Ekpenyong
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Manali Rupji
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Marin Abousaud
- Astellas Pharma Global Development Inc, Northbrook, Illinois
| | - Soumon Rudra
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - James E. Bates
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Jill S. Remick
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Nikhil P. Joshi
- Department of Radiation Oncology, Cleveland Clinic Taussig Cancer Center, Cleveland, Ohio
| | - Neil M. Woody
- Department of Radiation Oncology, Cleveland Clinic Taussig Cancer Center, Cleveland, Ohio
| | - Musaddiq Awan
- Department of Medicine, Medical College of Wisconsin, Pleasant Prairie
| | - Jessica L. Geiger
- Department of Radiation Oncology, Cleveland Clinic Taussig Cancer Center, Cleveland, Ohio
| | - Aditya Shreenivas
- Department of Medicine, Medical College of Wisconsin, Pleasant Prairie
| | - Julia Samsa
- Department of Radiation Oncology, Cleveland Clinic Taussig Cancer Center, Cleveland, Ohio
| | | | - Nicole C. Schmitt
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Otolaryngology, Emory University, Atlanta, Georgia
| | - Mihir R. Patel
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Otolaryngology, Emory University, Atlanta, Georgia
| | - Kristin A. Higgins
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Yong Teng
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Conor E. Steuer
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Yuan Liu
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Rafi Ahmed
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- The Emory Vaccine Center, Emory University, Atlanta, Georgia
| | - Shlomo A. Koyfman
- Department of Radiation Oncology, Cleveland Clinic Taussig Cancer Center, Cleveland, Ohio
| |
Collapse
|
6
|
Shahjahan, Dey JK, Dey SK. Translational bioinformatics approach to combat cardiovascular disease and cancers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:221-261. [PMID: 38448136 DOI: 10.1016/bs.apcsb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Bioinformatics is an interconnected subject of science dealing with diverse fields including biology, chemistry, physics, statistics, mathematics, and computer science as the key fields to answer complicated physiological problems. Key intention of bioinformatics is to store, analyze, organize, and retrieve essential information about genome, proteome, transcriptome, metabolome, as well as organisms to investigate the biological system along with its dynamics, if any. The outcome of bioinformatics depends on the type, quantity, and quality of the raw data provided and the algorithm employed to analyze the same. Despite several approved medicines available, cardiovascular disorders (CVDs) and cancers comprises of the two leading causes of human deaths. Understanding the unknown facts of both these non-communicable disorders is inevitable to discover new pathways, find new drug targets, and eventually newer drugs to combat them successfully. Since, all these goals involve complex investigation and handling of various types of macro- and small- molecules of the human body, bioinformatics plays a key role in such processes. Results from such investigation has direct human application and thus we call this filed as translational bioinformatics. Current book chapter thus deals with diverse scope and applications of this translational bioinformatics to find cure, diagnosis, and understanding the mechanisms of CVDs and cancers. Developing complex yet small or long algorithms to address such problems is very common in translational bioinformatics. Structure-based drug discovery or AI-guided invention of novel antibodies that too with super-high accuracy, speed, and involvement of considerably low amount of investment are some of the astonishing features of the translational bioinformatics and its applications in the fields of CVDs and cancers.
Collapse
Affiliation(s)
- Shahjahan
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Joy Kumar Dey
- Central Council for Research in Homoeopathy, Ministry of Ayush, Govt. of India, New Delhi, Delhi, India
| | - Sanjay Kumar Dey
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| |
Collapse
|
7
|
Nenclares P, Larkeryd A, Manodoro F, Lee JY, Lalondrelle S, Gilbert DC, Punta M, O’Leary B, Rullan A, Sadanandam A, Chain B, Melcher A, Harrington KJ, Bhide SA. T-cell receptor determinants of response to chemoradiation in locally-advanced HPV16-driven malignancies. Front Oncol 2024; 13:1296948. [PMID: 38234396 PMCID: PMC10791873 DOI: 10.3389/fonc.2023.1296948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Background The effect of chemoradiation on the anti-cancer immune response is being increasingly acknowledged; however, its clinical implications in treatment responses are yet to be fully understood. Human papillomavirus (HPV)-driven malignancies express viral oncogenic proteins which may serve as tumor-specific antigens and represent ideal candidates for monitoring the peripheral T-cell receptor (TCR) changes secondary to chemoradiotherapy (CRT). Methods We performed intra-tumoral and pre- and post-treatment peripheral TCR sequencing in a cohort of patients with locally-advanced HPV16-positive cancers treated with CRT. An in silico computational pipeline was used to cluster TCR repertoire based on epitope-specificity and to predict affinity between these clusters and HPV16-derived epitopes. Results Intra-tumoral repertoire diversity, intra-tumoral and post-treatment peripheral CDR3β similarity clustering were predictive of response. In responders, CRT triggered an increase peripheral TCR clonality and clonal relatedness. Post-treatment expansion of baseline peripheral dominant TCRs was associated with response. Responders showed more baseline clustered structures of TCRs maintained post-treatment and displayed significantly more maintained clustered structures. When applying clustering by TCR-specificity methods, responders displayed a higher proportion of intra-tumoral TCRs predicted to recognise HPV16 peptides. Conclusions Baseline TCR characteristics and changes in the peripheral T-cell clones triggered by CRT are associated with treatment outcome. Maintenance and boosting of pre-existing clonotypes are key elements of an effective anti-cancer immune response driven by CRT, supporting a paradigm in which the immune system plays a central role in the success of CRT in current standard-of-care protocols.
Collapse
Affiliation(s)
- Pablo Nenclares
- Radiotherapy and Imaging Division, The Institute of Cancer Research, London, United Kingdom
- Head and Neck Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Adrian Larkeryd
- Bioinformatics Unit, The Centre for Translational Immunotherapy, The Institute of Cancer Research, London, United Kingdom
| | - Floriana Manodoro
- Genomics Facility, The Institute of Cancer Research, London, United Kingdom
| | - Jen Y. Lee
- Radiotherapy and Imaging Division, The Institute of Cancer Research, London, United Kingdom
| | - Susan Lalondrelle
- Radiotherapy and Imaging Division, The Institute of Cancer Research, London, United Kingdom
| | - Duncan C. Gilbert
- Sussex Cancer Centre, University Hospitals Sussex NHS Foundation Trust, Brighton, United Kingdom
| | - Marco Punta
- Unit of Immunogenetic, Leukemia Genomics and Immunobiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ben O’Leary
- Radiotherapy and Imaging Division, The Institute of Cancer Research, London, United Kingdom
- Head and Neck Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Antonio Rullan
- Radiotherapy and Imaging Division, The Institute of Cancer Research, London, United Kingdom
- Head and Neck Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Anguraj Sadanandam
- Systems and Precision Cancer Medicine Team, The Institute of Cancer Research, London, United Kingdom
| | - Benny Chain
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Alan Melcher
- Radiotherapy and Imaging Division, The Institute of Cancer Research, London, United Kingdom
| | - Kevin J. Harrington
- Radiotherapy and Imaging Division, The Institute of Cancer Research, London, United Kingdom
- Head and Neck Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Shreerang A. Bhide
- Radiotherapy and Imaging Division, The Institute of Cancer Research, London, United Kingdom
- Head and Neck Unit, The Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
8
|
Reticker-Flynn NE, Engleman EG. Lymph nodes: at the intersection of cancer treatment and progression. Trends Cell Biol 2023; 33:1021-1034. [PMID: 37149414 PMCID: PMC10624650 DOI: 10.1016/j.tcb.2023.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
Metastasis to lymph nodes (LNs) is a common feature of disease progression in most solid organ malignancies. Consequently, LN biopsy and lymphadenectomy are common clinical practices, not only because of their diagnostic utility but also as a means of deterring further metastatic spread. LN metastases have the potential to seed additional tissues and can induce metastatic tolerance, a process by which tumor-specific immune tolerance in LNs promotes further disease progression. Nonetheless, phylogenetic studies have revealed that distant metastases are not necessarily derived from nodal metastases. Furthermore, immunotherapy efficacy is increasingly being attributed to initiation of systemic immune responses within LNs. We argue that lymphadenectomy and nodal irradiation should be approached with caution, particularly in patients receiving immunotherapy.
Collapse
Affiliation(s)
- Nathan E Reticker-Flynn
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Jeon SH, Song C, Eom KY, Kim IA, Kim JS. Modulation of CD8 + T Cell Responses by Radiotherapy-Current Evidence and Rationale for Combination with Immune Checkpoint Inhibitors. Int J Mol Sci 2023; 24:16691. [PMID: 38069014 PMCID: PMC10706388 DOI: 10.3390/ijms242316691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Radiotherapy for cancer has been known to affect the responses of immune cells, especially those of CD8+ T cells that play a pivotal role in anti-tumor immunity. Clinical success of immune checkpoint inhibitors led to an increasing interest in the ability of radiation to modulate CD8+ T cell responses. Recent studies that carefully analyzed CD8+ T cell responses following radiotherapy suggest the beneficial roles of radiotherapy on anti-tumor immunity. In addition, numerous clinical trials to evaluate the efficacy of combining radiotherapy with immune checkpoint inhibitors are currently undergoing. In this review, we summarize the current status of knowledge regarding the changes in CD8+ T cells following radiotherapy from various preclinical and clinical studies. Furthermore, key biological mechanisms that underlie such modulation, including both direct and indirect effects, are described. Lastly, we discuss the current evidence and essential considerations for harnessing radiotherapy as a combination partner for immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Jae-Sung Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea; (S.H.J.); (C.S.); (K.-Y.E.); (I.A.K.)
| |
Collapse
|
10
|
Britsch I, van Wijngaarden AP, Helfrich W. Applications of Anti-Cytomegalovirus T Cells for Cancer (Immuno)Therapy. Cancers (Basel) 2023; 15:3767. [PMID: 37568582 PMCID: PMC10416821 DOI: 10.3390/cancers15153767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Infection with cytomegalovirus (CMV) is highly prevalent in the general population and largely controlled by CD8pos T cells. Intriguingly, anti-CMV T cells accumulate over time to extraordinarily high numbers, are frequently present as tumor-resident 'bystander' T cells, and remain functional in cancer patients. Consequently, various strategies for redirecting anti-CMV CD8pos T cells to eliminate cancer cells are currently being developed. Here, we provide an overview of these strategies including immunogenic CMV peptide-loading onto endogenous HLA complexes on cancer cells and the use of tumor-directed fusion proteins containing a preassembled CMV peptide/HLA-I complex. Additionally, we discuss conveying the advantageous characteristics of anti-CMV T cells in adoptive cell therapy. Utilization of anti-CMV CD8pos T cells to generate CAR T cells promotes their in vivo persistence and expansion due to appropriate co-stimulation through the endogenous (CMV-)TCR signaling complex. Designing TCR-engineered T cells is more challenging, as the artificial and endogenous TCR compete for expression. Moreover, the use of expanded/reactivated anti-CMV T cells to target CMV peptide-expressing glioblastomas is discussed. This review highlights the most important findings and compares the benefits, disadvantages, and challenges of each strategy. Finally, we discuss how anti-CMV T cell therapies can be further improved to enhance treatment efficacy.
Collapse
Affiliation(s)
| | | | - Wijnand Helfrich
- Department of Surgery, Translational Surgical Oncology, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.B.)
| |
Collapse
|
11
|
Xie L, Meng Z. Immunomodulatory effect of locoregional therapy in the tumor microenvironment. Mol Ther 2023; 31:951-969. [PMID: 36694462 PMCID: PMC10124087 DOI: 10.1016/j.ymthe.2023.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/15/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Cancer immunotherapy appears to be a promising treatment option; however, only a subset of patients with cancer responds favorably to treatment. Locoregional therapy initiates a local antitumor immune response by disrupting immunosuppressive components, releasing immunostimulatory damage-associated molecular patterns, recruiting immune effectors, and remodeling the tumor microenvironment. Many studies have shown that locoregional therapy can produce specific antitumor immunity alone; nevertheless, the effect is relatively weak and transient. Furthermore, increasing research efforts have explored the potential synergy between locoregional therapy and immunotherapy to enhance the long-term systemic antitumor immune effect and improve survival. Therefore, further research is needed into the immunomodulatory effects of locoregional therapy and immunotherapy to augment antitumor effects. This review article summarizes the key components of the tumor microenvironment, discusses the immunomodulatory role of locoregional therapy in the tumor microenvironment, and emphasizes the therapeutic potential of locoregional therapy in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lin Xie
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zhiqiang Meng
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China.
| |
Collapse
|
12
|
Gao Y, Bergman I. Anti-tumor memory CD4 and CD8 T-cells quantified by bulk T-cell receptor (TCR) clonal analysis. Front Immunol 2023; 14:1137054. [PMID: 37033929 PMCID: PMC10076582 DOI: 10.3389/fimmu.2023.1137054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Simple, reliable methods to detect anti-tumor memory T-cells are necessary to develop a clinical tumor vaccination program. A mouse model of curative viral onco-immunotherapy found that peritoneal tumor challenge following cure identified an oligoclonal anti-tumor memory CD4 and CD8 T-cell response. Clonotypes differed among the challenged animals but were congruent in blood, spleen and peritoneal cells (PC) of the same animal. Adoptive transfer demonstrated that the high-frequency responding T-cells were tumor specific. Tetramer analysis confirmed that clonotype frequency determined by T-cell receptor (TCR)- chain (TRB) analysis closely approximated cell clone frequency. The mean frequency of resting anti-tumor memory CD4 T-cells in unchallenged spleen was 0.028% and of memory CD8 T-cells was 0.11% which was not high enough to distinguish them from background. Stimulation produced a mean ~10-fold increase in splenic and 100-fold increase in peritoneal anti-tumor memory T-cell clonotypes. This methodology can be developed to use blood and tissue sampling to rapidly quantify the effectiveness of a tumor vaccine or any vaccine generating therapeutic T-cells.
Collapse
Affiliation(s)
- Yanhua Gao
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ira Bergman
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Frank ML, Lu K, Erdogan C, Han Y, Hu J, Wang T, Heymach JV, Zhang J, Reuben A. T-Cell Receptor Repertoire Sequencing in the Era of Cancer Immunotherapy. Clin Cancer Res 2023; 29:994-1008. [PMID: 36413126 PMCID: PMC10011887 DOI: 10.1158/1078-0432.ccr-22-2469] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
T cells are integral components of the adaptive immune system, and their responses are mediated by unique T-cell receptors (TCR) that recognize specific antigens from a variety of biological contexts. As a result, analyzing the T-cell repertoire offers a better understanding of immune responses and of diseases like cancer. Next-generation sequencing technologies have greatly enabled the high-throughput analysis of the TCR repertoire. On the basis of our extensive experience in the field from the past decade, we provide an overview of TCR sequencing, from the initial library preparation steps to sequencing and analysis methods and finally to functional validation techniques. With regards to data analysis, we detail important TCR repertoire metrics and present several computational tools for predicting antigen specificity. Finally, we highlight important applications of TCR sequencing and repertoire analysis to understanding tumor biology and developing cancer immunotherapies.
Collapse
Affiliation(s)
- Meredith L. Frank
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Kaylene Lu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Can Erdogan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Rice University, Houston, Texas
| | - Yi Han
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jian Hu
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John V. Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
14
|
Khojandi N, Connelly L, Piening A, Hoft SG, Pherson M, Donlin MJ, DiPaolo RJ, Teague RM. Single-cell analysis of peripheral CD8 + T cell responses in patients receiving checkpoint blockade immunotherapy for cancer. Cancer Immunol Immunother 2023; 72:397-408. [PMID: 35907015 PMCID: PMC10306114 DOI: 10.1007/s00262-022-03263-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/20/2022] [Indexed: 01/26/2023]
Abstract
Checkpoint blockade immunotherapy has become a first-line treatment option for cancer patients, with success in increasingly diverse cancer types. Still, many patients do not experience durable responses and the reasons for clinical success versus failure remain largely undefined. Investigation of immune responses within the tumor microenvironment can be highly informative but access to tumor tissue is not always available, highlighting the need to identify biomarkers in the blood that correlate with clinical success. Here, we used single-cell RNA sequencing coupled with T cell receptor sequencing to define CD8+ T cell responses in peripheral blood of two patients with melanoma before and after immunotherapy with either anti-PD-1 (nivolumab) alone or the combination of anti-PD-1 and CTLA-4 (ipilimumab). Both treatment regimens increased transcripts associated with cytolytic effector function and decreased transcripts associated with naive T cells. These responses were further evaluated at the protein level and extended to a total of 53 patients with various cancer types. Unexpectedly, the induction of CD8+ T cell responses associated with cytolytic function was variable and did not predict therapeutic success in this larger patient cohort. Rather, a decrease in the frequency of T cells with a naive-like phenotype was consistently observed after immunotherapy and correlated with prolonged patient survival. In contrast, a more detailed clonotypic analysis of emerging and expanding CD8+ T cells in the blood revealed that a majority of individual T cell clones responding to immunotherapy acquired a transcriptional profile consistent with cytolytic effector function. These results suggest that responses to checkpoint blockade immunotherapy are evident and traceable in patients' blood, with outcomes predicted by the simultaneous loss of naive-like CD8+ T cells and the expansion of mostly rare and diverse cytotoxic CD8+ T cell clones.
Collapse
Affiliation(s)
- Niloufar Khojandi
- Molecular Microbiology and Immunology Department, Saint Louis University School of Medicine, 1100 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Louis Connelly
- Molecular Microbiology and Immunology Department, Saint Louis University School of Medicine, 1100 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Alexander Piening
- Molecular Microbiology and Immunology Department, Saint Louis University School of Medicine, 1100 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Stella G Hoft
- Molecular Microbiology and Immunology Department, Saint Louis University School of Medicine, 1100 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Michelle Pherson
- Genomics Core Facility, Saint Louis University School of Medicine, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Maureen J Donlin
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Richard J DiPaolo
- Molecular Microbiology and Immunology Department, Saint Louis University School of Medicine, 1100 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Ryan M Teague
- Molecular Microbiology and Immunology Department, Saint Louis University School of Medicine, 1100 South Grand Blvd, St. Louis, MO, 63104, USA.
- Alvin J. Siteman National Cancer Institute Comprehensive Cancer Center, St. Louis, MO, USA.
| |
Collapse
|
15
|
Hudson WH, Wieland A. Technology meets TILs: Deciphering T cell function in the -omics era. Cancer Cell 2023; 41:41-57. [PMID: 36206755 PMCID: PMC9839604 DOI: 10.1016/j.ccell.2022.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Accepted: 09/15/2022] [Indexed: 01/17/2023]
Abstract
T cells are at the center of cancer immunology because of their ability to recognize mutations in tumor cells and directly mediate cancer cell killing. Immunotherapies to rejuvenate exhausted T cell responses have transformed the clinical management of several malignancies. In parallel, the development of novel multidimensional analysis platforms, such as single-cell RNA sequencing and high-dimensional flow cytometry, has yielded unprecedented insights into immune cell biology. This convergence has revealed substantial heterogeneity of tumor-infiltrating immune cells in single tumors, across tumor types, and among individuals with cancer. Here we discuss the opportunities and challenges of studying the complex tumor microenvironment with -omics technologies that generate vast amounts of data, highlighting the opportunities and limitations of these technologies with a particular focus on interpreting high-dimensional studies of CD8+ T cells in the tumor microenvironment.
Collapse
Affiliation(s)
- William H Hudson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Andreas Wieland
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
A Hybrid Discrete–Continuum Modelling Approach to Explore the Impact of T-Cell Infiltration on Anti-tumour Immune Response. Bull Math Biol 2022; 84:141. [DOI: 10.1007/s11538-022-01095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/06/2022] [Indexed: 11/02/2022]
|
17
|
Eisner JR, Beebe KD, Mayhew GM, Shibata Y, Guo Y, Farhangfar C, Farhangfar F, Uronis JM, Mooney J, Milburn MV, Foureau D, White RL, Amin A, Milla ME. Distinct Predictive Immunogenomic Profiles of Response to Immune Checkpoint Inhibitors and IL2: A Real-world Evidence Study of Patients with Advanced Renal Cancer. CANCER RESEARCH COMMUNICATIONS 2022; 2:894-903. [PMID: 36923304 PMCID: PMC10010312 DOI: 10.1158/2767-9764.crc-21-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
Abstract
Recombinant human high-dose IL2 (HD-IL2; aldesleukin) was one of the first approved immune-oncology agents based upon clinical activity in renal cell carcinoma (RCC) and metastatic melanoma but use was limited due to severe toxicity. Next-generation IL2 agents designed to improve tolerability are in development, increasing the need for future identification of genomic markers of clinical benefit and/or clinical response. In this retrospective study, we report clinical and tumor molecular profiling from patients with metastatic RCC (mRCC) treated with HD-IL2 and compare findings with patients with RCC treated with anti-PD-1 therapy. Genomic characteristics common and unique to IL2 and/or anti-PD-1 therapy response are presented, with insight into rational combination strategies for these agents. Residual pretreatment formalin-fixed paraffin embedded tumor samples from n = 36 patients with HD-IL2 mRCC underwent RNA-sequencing and corresponding clinical data were collected. A de novo 40-gene nearest centroid IL2 treatment response classifier and individual gene and/or immune marker signature differences were correlated to clinical response and placed into context with a separate dataset of n = 35 patients with anti-PD-1 mRCC. Immune signatures and genes, comprising suppressor and effector cells, were increased in patients with HD-IL2 clinical benefit. The 40-gene response classifier was also highly enriched for immune genes. While several effector immune signatures and genes were common between IL2 and anti-PD-1 treated patients, multiple inflammatory and/or immunosuppressive genes, previously reported to predict poor response to anti-PD-L1 immunotherapy, were only increased in IL2-responsive tumors. These findings suggest that common and distinct immune-related response markers for IL2 and anti-PD-1 therapy may help guide their use, either alone or in combination. Significance Next-generation IL2 agents, designed for improved tolerability over traditional HD-IL2 (aldesleukin), are in clinical development. Retrospective molecular tumor profiling of patients treated with HD-IL2 or anti-PD-1 therapy provides insights into genomic characteristics of therapy response. This study revealed common and distinct immune-related predictive response markers for IL2 and anti-PD-1 therapy which may play a role in therapy guidance, and rational combination strategies for these agents.
Collapse
Affiliation(s)
- Joel R Eisner
- GeneCentric Therapeutics, Inc., Durham, North Carolina
| | - Kirk D Beebe
- GeneCentric Therapeutics, Inc., Durham, North Carolina
| | | | | | - Yuelong Guo
- GeneCentric Therapeutics, Inc., Durham, North Carolina
| | - Carol Farhangfar
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | | | | | - Jill Mooney
- Synthorx, Inc - A Sanofi Company, La Jolla, California
| | | | - David Foureau
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Richard L White
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Asim Amin
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | | |
Collapse
|
18
|
Harnessing anti-cytomegalovirus immunity for local immunotherapy against solid tumors. Proc Natl Acad Sci U S A 2022; 119:e2116738119. [PMID: 35749366 PMCID: PMC9245622 DOI: 10.1073/pnas.2116738119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumor infiltration by T cells profoundly affects cancer progression and responses to immunotherapy. However, the tumor immunosuppressive microenvironment can impair the induction, trafficking, and local activity of antitumor T cells. Here, we investigated whether intratumoral injection of virus-derived peptide epitopes could activate preexisting antiviral T cell responses locally and promote antitumor responses or antigen spreading. We focused on a mouse model of cytomegalovirus (CMV), a highly prevalent human infection that induces vigorous and durable T cell responses. Mice persistently infected with murine CMV (MCMV) were challenged with lung (TC-1), colon (MC-38), or melanoma (B16-F10) tumor cells. Intratumoral injection of MCMV-derived T cell epitopes triggered in situ and systemic expansion of their cognate, MCMV-specific CD4+ or CD8+ T cells. The MCMV CD8+ T cell epitopes injected alone provoked arrest of tumor growth and some durable remissions. Intratumoral injection of MCMV CD4+ T cell epitopes with polyinosinic acid:polycytidylic acid (pI:C) preferentially elicited tumor antigen-specific CD8+ T cells, promoted tumor clearance, and conferred long-term protection against tumor rechallenge. Notably, secondary proliferation of MCMV-specific CD8+ T cells correlated with better tumor control. Importantly, intratumoral injection of MCMV-derived CD8+ T cell-peptide epitopes alone or CD4+ T cell-peptide epitopes with pI:C induced potent adaptive and innate immune activation of the tumor microenvironment. Thus, CMV-derived peptide epitopes, delivered intratumorally, act as cytotoxic and immunotherapeutic agents to promote immediate tumor control and long-term antitumor immunity that could be used as a stand-alone therapy. The tumor antigen-agnostic nature of this approach makes it applicable across a broad range of solid tumors regardless of their origin.
Collapse
|
19
|
Eberhardt CS, Kissick HT, Patel MR, Cardenas MA, Prokhnevska N, Obeng RC, Nasti TH, Griffith CC, Im SJ, Wang X, Shin DM, Carrington M, Chen ZG, Sidney J, Sette A, Saba NF, Wieland A, Ahmed R. Functional HPV-specific PD-1 + stem-like CD8 T cells in head and neck cancer. Nature 2021; 597:279-284. [PMID: 34471285 PMCID: PMC10201342 DOI: 10.1038/s41586-021-03862-z] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/28/2021] [Indexed: 01/06/2023]
Abstract
T cells are important in tumour immunity but a better understanding is needed of the differentiation of antigen-specific T cells in human cancer1,2. Here we studied CD8 T cells in patients with human papillomavirus (HPV)-positive head and neck cancer and identified several epitopes derived from HPV E2, E5 and E6 proteins that allowed us to analyse virus-specific CD8 T cells using major histocompatibility complex (MHC) class I tetramers. HPV-specific CD8 T cells expressed PD-1 and were detectable in the tumour at levels that ranged from 0.1% to 10% of tumour-infiltrating CD8 T lymphocytes (TILs) for a given epitope. Single-cell RNA-sequencing analyses of tetramer-sorted HPV-specific PD-1+ CD8 TILs revealed three transcriptionally distinct subsets. One subset expressed TCF7 and other genes associated with PD-1+ stem-like CD8 T cells that are critical for maintaining T cell responses in conditions of antigen persistence. The second subset expressed more effector molecules, representing a transitory cell population, and the third subset was characterized by a terminally differentiated gene signature. T cell receptor clonotypes were shared between the three subsets and pseudotime analysis suggested a hypothetical differentiation trajectory from stem-like to transitory to terminally differentiated cells. More notably, HPV-specific PD-1+TCF-1+ stem-like TILs proliferated and differentiated into more effector-like cells after in vitro stimulation with the cognate HPV peptide, whereas the more terminally differentiated cells did not proliferate. The presence of functional HPV-specific PD-1+TCF-1+CD45RO+ stem-like CD8 T cells with proliferative capacity shows that the cellular machinery to respond to PD-1 blockade exists in HPV-positive head and neck cancer, supporting the further investigation of PD-1 targeted therapies in this malignancy. Furthermore, HPV therapeutic vaccination efforts have focused on E6 and E7 proteins; our results suggest that E2 and E5 should also be considered for inclusion as vaccine antigens to elicit tumour-reactive CD8 T cell responses of maximal breadth.
Collapse
Affiliation(s)
- Christiane S Eberhardt
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Centre for Vaccinology, University Hospitals Geneva, Geneva, Switzerland
- Division of General Pediatrics, Department of Pediatrics, Gynecology & Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Haydn T Kissick
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mihir R Patel
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA
| | - Maria A Cardenas
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Rebecca C Obeng
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tahseen H Nasti
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher C Griffith
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Se Jin Im
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Xu Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dong M Shin
- Division of General Pediatrics, Department of Pediatrics, Gynecology & Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, National Cancer Institute, Bethesda, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Zhuo G Chen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nabil F Saba
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Andreas Wieland
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| |
Collapse
|
20
|
Vroman H, Balzaretti G, Belderbos RA, Klarenbeek PL, van Nimwegen M, Bezemer K, Cornelissen R, Niewold ITG, van Schaik BD, van Kampen AH, Aerts JGJV, de Vries N, Hendriks RW. T cell receptor repertoire characteristics both before and following immunotherapy correlate with clinical response in mesothelioma. J Immunother Cancer 2021; 8:jitc-2019-000251. [PMID: 32234848 PMCID: PMC7174074 DOI: 10.1136/jitc-2019-000251] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 11/08/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is a highly lethal malignancy in need for new treatment options. Although immunotherapies have been shown to boost a tumor-specific immune response, not all patients respond and prognostic biomarkers are scarce. In this study, we determined the peripheral blood T cell receptor β (TCRβ) chain repertoire of nine MPM patients before and 5 weeks after the start of dendritic cell (DC)-based immunotherapy. Materials and methods We separately profiled PD1+ and PD1−CD4+ and CD8+ T cells, as well as Tregs and analyzed 70 000 TCRβ sequences per patient. Results Strikingly, limited TCRβ repertoire diversity and high average clone sizes in total CD3+ T cells before the start of immunotherapy were associated with a better clinical response. To explore the differences in TCRβ repertoire prior-DC-therapy and post-DC-therapy, for each patient the TCRβ clones present in the total CD3+ T cell fractions were classified into five categories, based on therapy-associated frequency changes: expanding, decreasing, stable, newly appearing and disappearing clones. Subsequently, the presence of these five groups of clones was analyzed in the individual sorted T cell fractions. DC-therapy primarily induced TCRβ repertoire changes in the PD1+CD4+ and PD1+CD8+ T cell fractions. In particular, in the PD1+CD8+ T cell subpopulation we found high frequencies of expanding, decreasing and newly appearing clones. Conversion from a PD1− to a PD1+ phenotype was significantly more frequent in CD8+ T cells than in CD4+ T cells. Hereby, the number of expanding PD1+CD8+ T cell clones—and not expanding PD1+CD4+ T cell clones following immunotherapy positively correlated with overall survival, progression-free survival and reduction of tumor volume. Conclusion We conclude that the clinical response to DC-mediated immunotherapy is dependent on both the pre-existing TCRβ repertoire of total CD3+ T cells and on therapy-induced changes, in particular expanding PD1+CD8+ T cell clones. Therefore, TCRβ repertoire profiling in sorted T cell subsets could serve as predictive biomarker for the selection of MPM patients that benefit from immunotherapy. Trial registration number NCT02395679.
Collapse
Affiliation(s)
- Heleen Vroman
- Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Giulia Balzaretti
- Clinical Immunology & Rheumatology, Amsterdam UMC - Locatie AMC, Amsterdam, The Netherlands.,Experimental Immunology, Amsterdam UMC - Locatie AMC, Amsterdam, The Netherlands
| | - Robert A Belderbos
- Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Paul L Klarenbeek
- Clinical Immunology & Rheumatology, Amsterdam UMC - Locatie AMC, Amsterdam, The Netherlands.,Experimental Immunology, Amsterdam UMC - Locatie AMC, Amsterdam, The Netherlands
| | | | - Koen Bezemer
- Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robin Cornelissen
- Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ilse T G Niewold
- Laboratory of Genome Analysis, Amsterdam UMC - Locatie AMC, Amsterdam, The Netherlands
| | | | | | - Joachim G J V Aerts
- Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Niek de Vries
- Clinical Immunology & Rheumatology, Amsterdam UMC - Locatie AMC, Amsterdam, The Netherlands
| | - Rudi W Hendriks
- Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Liu H, Pan W, Tang C, Tang Y, Wu H, Yoshimura A, Deng Y, He N, Li S. The methods and advances of adaptive immune receptors repertoire sequencing. Theranostics 2021; 11:8945-8963. [PMID: 34522220 PMCID: PMC8419057 DOI: 10.7150/thno.61390] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
The adaptive immune response is a powerful tool, capable of recognizing, binding to, and neutralizing a vast number of internal and external threats via T or B lymphatic receptors with widespread sets of antigen specificities. The emergence of high-throughput sequencing technology and bioinformatics provides opportunities for research in the fields of life sciences and medicine. The analysis and annotation for immune repertoire data can reveal biologically meaningful information, including immune prediction, target antigens, and effective evaluation. Continuous improvements of the immunological repertoire sequencing methods and analysis tools will help to minimize the experimental and calculation errors and realize the immunological information to meet the clinical requirements. That said, the clinical application of adaptive immune repertoire sequencing requires appropriate experimental methods and standard analytical tools. At the population cell level, we can acquire the overview of cell groups, but the information about a single cell is not obtained accurately. The information that is ignored may be crucial for understanding the heterogeneity of each cell, gene expression and drug response. The combination of high-throughput sequencing and single-cell technology allows us to obtain single-cell information with low-cost and high-throughput. In this review, we summarized the current methods and progress in this area.
Collapse
Affiliation(s)
- Hongmei Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Wenjing Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Congli Tang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Yujie Tang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hu-nan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
22
|
Bode D, Cull AH, Rubio-Lara JA, Kent DG. Exploiting Single-Cell Tools in Gene and Cell Therapy. Front Immunol 2021; 12:702636. [PMID: 34322133 PMCID: PMC8312222 DOI: 10.3389/fimmu.2021.702636] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Single-cell molecular tools have been developed at an incredible pace over the last five years as sequencing costs continue to drop and numerous molecular assays have been coupled to sequencing readouts. This rapid period of technological development has facilitated the delineation of individual molecular characteristics including the genome, transcriptome, epigenome, and proteome of individual cells, leading to an unprecedented resolution of the molecular networks governing complex biological systems. The immense power of single-cell molecular screens has been particularly highlighted through work in systems where cellular heterogeneity is a key feature, such as stem cell biology, immunology, and tumor cell biology. Single-cell-omics technologies have already contributed to the identification of novel disease biomarkers, cellular subsets, therapeutic targets and diagnostics, many of which would have been undetectable by bulk sequencing approaches. More recently, efforts to integrate single-cell multi-omics with single cell functional output and/or physical location have been challenging but have led to substantial advances. Perhaps most excitingly, there are emerging opportunities to reach beyond the description of static cellular states with recent advances in modulation of cells through CRISPR technology, in particular with the development of base editors which greatly raises the prospect of cell and gene therapies. In this review, we provide a brief overview of emerging single-cell technologies and discuss current developments in integrating single-cell molecular screens and performing single-cell multi-omics for clinical applications. We also discuss how single-cell molecular assays can be usefully combined with functional data to unpick the mechanism of cellular decision-making. Finally, we reflect upon the introduction of spatial transcriptomics and proteomics, its complementary role with single-cell RNA sequencing (scRNA-seq) and potential application in cellular and gene therapy.
Collapse
Affiliation(s)
- Daniel Bode
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Alyssa H. Cull
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Juan A. Rubio-Lara
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - David G. Kent
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
23
|
Sheng J, Wang H, Liu X, Deng Y, Yu Y, Xu P, Shou J, Pan H, Li H, Zhou X, Han W, Sun T, Pan H, Fang Y. Deep Sequencing of T-Cell Receptors for Monitoring Peripheral CD8 + T Cells in Chinese Advanced Non-Small-Cell Lung Cancer Patients Treated With the Anti-PD-L1 Antibody. Front Mol Biosci 2021; 8:679130. [PMID: 34307450 PMCID: PMC8299707 DOI: 10.3389/fmolb.2021.679130] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Atezolizumab, a high-affinity engineered human anti-PD-L1 antibody, has produced a clinical benefit for patients with advanced non-small-cell lung cancer (NSCLC). However, associated with T-cell regulation, the immunomodulatory effect of PD-L1 blockade and its biomarker in peripheral immunity remains elusive. Methods: In a prospective cohort with 12 Chinese advanced NSCLC patients who received atezolizumab 1,200 mg every 3 weeks as a second-line treatment, blood samples were obtained before and 6 weeks after atezolizumab initiation, and when disease progression was confirmed. Patients were classified into a response or progression group according to response evaluation criteria in solid tumors (RECIST) 1.1. Fresh peripheral blood mononuclear cells (PBMCs) from patients were stained with antihuman CD3, CD8, and PD-1 antibodies for flow cytometry analysis. T-cell receptor (TCR)-β chains of CD8+ T cells were analyzed by next-generation sequencing (NGS) at the deep level. Diversity, clonality, and similarity of TCR have been calculated before and after treatment in both groups. Results: Clonal expansion with high PD-1 expression was detected in all patients' peripheral CD8+ T cells before the treatment of atezolizumab. Unlike the progression group, the diversity of TCR repertoire and singletons in the TCRβ pool increased over time with atezolizumab administration, and the TCR repertoire dynamically changes in the response group. The percentage of CD8+ PD-1high terminal exhausted T cells declined in the response group after the PD-L1 blockade. Two patterns of TCR changes among patients who received PD-L1-targeted immunotherapy were observed. Conclusions: Deep sequencing of the T-cell receptors confirmed the existence of CD8+ PD-1high T cells with an exhaustion phenotype in Chinese NSCLC patients. Our study demonstrated that efficient anti-PD-L1 therapy could reshape the TCR repertoire for antitumor patients. Furthermore, singleton frequency may help us select patients who are sensitive to anti-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Jin Sheng
- Department of Medical Oncology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Laboratory of Cancer Biology, Institute of Clinical Science, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Huadi Wang
- Department of Medical Oncology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Laboratory of Cancer Biology, Institute of Clinical Science, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiao Liu
- Department of Human Genetics, University of Chicago, Chicago, IL, United States
| | - Yunyun Deng
- Hangzhou ImmuQuad Biotechnologies, LLC, Hangzhou, China
| | - Yingying Yu
- Hangzhou ImmuQuad Biotechnologies, LLC, Hangzhou, China
| | - Pengfei Xu
- Hangzhou ImmuQuad Biotechnologies, LLC, Hangzhou, China
| | - Jiawei Shou
- Department of Medical Oncology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Laboratory of Cancer Biology, Institute of Clinical Science, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Hong Pan
- Department of Medical Oncology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Laboratory of Cancer Biology, Institute of Clinical Science, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Hongsen Li
- Department of Medical Oncology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Laboratory of Cancer Biology, Institute of Clinical Science, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaoyun Zhou
- Department of Medical Oncology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Weidong Han
- Department of Medical Oncology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Laboratory of Cancer Biology, Institute of Clinical Science, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Tao Sun
- Hangzhou ImmuQuad Biotechnologies, LLC, Hangzhou, China.,Zhejiang-California International Nano-Systems Institute, Zhejiang University, Hangzhou, China
| | - Hongming Pan
- Department of Medical Oncology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yong Fang
- Department of Medical Oncology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Sezen D, Verma V, He K, Abana CO, Barsoumian H, Ning MS, Tang C, Hurmuz P, Puebla-Osorio N, Chen D, Tendler I, Comeaux N, Nguyen QN, Chang JY, Welsh JW. Considerations for Clinical Trials Testing Radiotherapy Combined With Immunotherapy for Metastatic Disease. Semin Radiat Oncol 2021; 31:217-226. [PMID: 34090648 DOI: 10.1016/j.semradonc.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Metastatic cancer is inherently heterogeneous, and patients with metastatic disease can experience vastly different oncologic outcomes depending on several patient- and disease-specific characteristics. Designing trials for such a diverse population is challenging yet necessary to improve treatment outcomes for metastatic-previously thought to be incurable-disease. Here we review core considerations for designing and conducting clinical trials involving radiation therapy and immunotherapy for patients with metastatic cancer.
Collapse
Affiliation(s)
- Duygu Sezen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Radiation Oncology, Koc University School of Medicine, Istanbul, Turkey
| | - Vivek Verma
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kewen He
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Chike O Abana
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hampartsaum Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Matthew S Ning
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chad Tang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Pervin Hurmuz
- Department of Radiation Oncology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dawei Chen
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Irwin Tendler
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nathan Comeaux
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joe Y Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
25
|
De Martino M, Padilla O, Daviaud C, Wu CC, Gartrell RD, Vanpouille-Box C. Exploiting Radiation Therapy to Restore Immune Reactivity of Glioblastoma. Front Oncol 2021; 11:671044. [PMID: 34094969 PMCID: PMC8173136 DOI: 10.3389/fonc.2021.671044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is among the most aggressive of brain tumors and confers a dismal prognosis despite advances in surgical technique, radiation delivery methods, chemotherapy, and tumor-treating fields. While immunotherapy (IT) has improved the care of several adult cancers with previously dismal prognoses, monotherapy with IT in GBM has shown minimal response in first recurrence. Recent discoveries in lymphatics and evaluation of blood brain barrier offer insight to improve the use of ITs and determine the best combinations of therapies, including radiation. We highlight important features of the tumor immune microenvironment in GBM and potential for combining radiation and immunotherapy to improve prognosis in this devastating disease.
Collapse
Affiliation(s)
- Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Oscar Padilla
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, United States
| | - Camille Daviaud
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, United States.,Herbert Irving Comprehensive Cancer Center, New York, NY, United States
| | - Robyn D Gartrell
- Department of Pediatrics, Pediatric Hematology/Oncology/SCT, Columbia University Irving Medical Center, New York, NY, United States
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States.,Sandra and Edward Meyer Cancer Center, New York, NY, United States
| |
Collapse
|
26
|
De Biasi S, Gibellini L, Lo Tartaro D, Puccio S, Rabacchi C, Mazza EMC, Brummelman J, Williams B, Kaihara K, Forcato M, Bicciato S, Pinti M, Depenni R, Sabbatini R, Longo C, Dominici M, Pellacani G, Lugli E, Cossarizza A. Circulating mucosal-associated invariant T cells identify patients responding to anti-PD-1 therapy. Nat Commun 2021; 12:1669. [PMID: 33723257 PMCID: PMC7961017 DOI: 10.1038/s41467-021-21928-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors are used for treating patients with metastatic melanoma. Since the response to treatment is variable, biomarkers are urgently needed to identify patients who may benefit from such therapy. Here, we combine single-cell RNA-sequencing and multiparameter flow cytometry to assess changes in circulating CD8+ T cells in 28 patients with metastatic melanoma starting anti-PD-1 therapy, followed for 6 months: 17 responded to therapy, whilst 11 did not. Proportions of activated and proliferating CD8+ T cells and of mucosal-associated invariant T (MAIT) cells are significantly higher in responders, prior to and throughout therapy duration. MAIT cells from responders express higher level of CXCR4 and produce more granzyme B. In silico analysis support MAIT presence in the tumor microenvironment. Finally, patients with >1.7% of MAIT among peripheral CD8+ population show a better response to treatment. Our results thus suggest that MAIT cells may be considered a biomarker for patients responding to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy.
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Simone Puccio
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Claudio Rabacchi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Emilia M C Mazza
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Jolanda Brummelman
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | | | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Depenni
- Department of Oncology, University of Modena & Reggio Emilia, Modena, Italy
| | - Roberto Sabbatini
- Department of Oncology, University of Modena & Reggio Emilia, Modena, Italy
| | - Caterina Longo
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy.,Department of Oncology, University of Modena & Reggio Emilia, Modena, Italy
| | - Giovanni Pellacani
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Milan, Italy.,Humanitas Flow Cytometry Core, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| |
Collapse
|
27
|
van Pul KM, Fransen MF, van de Ven R, de Gruijl TD. Immunotherapy Goes Local: The Central Role of Lymph Nodes in Driving Tumor Infiltration and Efficacy. Front Immunol 2021; 12:643291. [PMID: 33732264 PMCID: PMC7956978 DOI: 10.3389/fimmu.2021.643291] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint blockade (ICB) has changed the therapeutic landscape of oncology but its impact is limited by primary or secondary resistance. ICB resistance has been related to a lack of T cells infiltrating into the tumor. Strategies to overcome this hurdle have so far focused on the tumor microenvironment, but have mostly overlooked the role of tumor-draining lymph nodes (TDLN). Whereas for CTLA-4 blockade TDLN have long since been implicated due to its perceived mechanism-of-action involving T cell priming, only recently has evidence been emerging showing TDLN to be vital for the efficacy of PD-1 blockade as well. TDLN are targeted by developing tumors to create an immune suppressed pre-metastatic niche which can lead to priming of dysfunctional antitumor T cells. In this review, we will discuss the evidence that therapeutic targeting of TDLN may ensure sufficient antitumor T cell activation and subsequent tumor infiltration to facilitate effective ICB. Indeed, waves of tumor-specific, proliferating stem cell-like, or progenitor exhausted T cells, either newly primed or reinvigorated in TDLN, are vital for PD-1 blockade efficacy. Both tumor-derived migratory dendritic cell (DC) subsets and DC subsets residing in TDLN, and an interplay between them, have been implicated in the induction of these T cells, their imprinting for homing and subsequent tumor control. We propose that therapeutic approaches, involving local delivery of immune modulatory agents for optimal access to TDLN, aimed at overcoming hampered DC activation, will enable ICB by promoting T cell recruitment to the tumor, both in early and in advanced stages of cancer.
Collapse
Affiliation(s)
- Kim M. van Pul
- Department of Medical Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marieke F. Fransen
- Deparment of Pulmonary Diseases Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rieneke van de Ven
- Department of Otolaryngology/Head-Neck Surgery, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tanja D. de Gruijl
- Department of Medical Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Jiang H, Zheng Y, Qian J, Mao C, Xu X, Li N, Xiao C, Wang H, Teng L, Zhou H, Wang S, Zhu D, Sun T, Yu Y, Guo W, Xu N. Efficacy and safety of sintilimab in combination with chemotherapy in previously untreated advanced or metastatic nonsquamous or squamous NSCLC: two cohorts of an open-label, phase 1b study. Cancer Immunol Immunother 2021; 70:857-868. [PMID: 33070260 PMCID: PMC7907015 DOI: 10.1007/s00262-020-02738-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Combining chemotherapy with immunotherapy improves the therapeutic outcome for first-line (1L) patients with advance nonsmall-cell lung cancer (NSCLC). Two cohorts of a phase 1b study (NCT02937116) aimed to evaluate the safety and efficacy of sintilimab, a PD-1 inhibitor, plus chemotherapy in 1L patients with nonsquamous and squamous NSCLC (nsqNSCLC/sqNSCLC); and to identify potential biomarkers for treatment response. Treatment-naïve patients with nsqNSCLC were enrolled and intravenously given sintilimab (200 mg), pemetrexed (500 mg/m2), and cisplatin (75 mg/m2), every 3 weeks (Q3W) for 4 cycles in cohort D. Treatment-naïve patients with sqNSCLC were enrolled and intravenously given sintilimab (200 mg), gemcitabine (1250 mg/m2), and cisplatin (75 mg/m2), Q3W, for 6 cycles in cohort E. The primary objective was to evaluate the safety and efficacy of the treatment. The additional objective was to explore biomarkers for the treatment efficacy. Twenty-one patients with nsqNSCLC, and 20 patients with sqNSCLC were enrolled in cohort D and cohort E, respectively. By the data cutoff (April 17, 2019), 8 (38.1%) patients in cohort D and 17 (85.0%) patients in cohort E experienced grade 3-4 adverse events. The median follow-up duration was 16.4 months (14.8-23.0) in cohort D and 15.9 months (11.7-17.7) in cohort E. The objective response rate was 68.4% (95% CI 43.4%, 87.4%) in cohort D and 64.7% (95% CI 38.3%, 85.8%) in cohort E. Neither PD-L1 expression nor tumor mutation burden value was significantly associated with an improved treatment response. Sintilimab plus chemotherapy exhibited manageable toxicity and an encouraging antitumor activity in patients with nsqNSCLC and sqNSCLC.
Collapse
Affiliation(s)
- Haiping Jiang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Yulong Zheng
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Jiong Qian
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Chenyu Mao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Xin Xu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Ning Li
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Cheng Xiao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Huan Wang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Department of Medical Science and Strategy Oncology, Innovent Biologics, Inc, Suzhou, China
| | - Shuyan Wang
- Department of Medical Science and Strategy Oncology, Innovent Biologics, Inc, Suzhou, China
| | - Donglei Zhu
- Department of Medical Science and Strategy Oncology, Innovent Biologics, Inc, Suzhou, China
| | - Tao Sun
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China
- Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, China
| | - Yingying Yu
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China
| | - Wenying Guo
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
29
|
Barennes P, Quiniou V, Shugay M, Egorov ES, Davydov AN, Chudakov DM, Uddin I, Ismail M, Oakes T, Chain B, Eugster A, Kashofer K, Rainer PP, Darko S, Ransier A, Douek DC, Klatzmann D, Mariotti-Ferrandiz E. Benchmarking of T cell receptor repertoire profiling methods reveals large systematic biases. Nat Biotechnol 2021; 39:236-245. [PMID: 32895550 DOI: 10.1038/s41587-020-0656-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
Monitoring the T cell receptor (TCR) repertoire in health and disease can provide key insights into adaptive immune responses, but the accuracy of current TCR sequencing (TCRseq) methods is unclear. In this study, we systematically compared the results of nine commercial and academic TCRseq methods, including six rapid amplification of complementary DNA ends (RACE)-polymerase chain reaction (PCR) and three multiplex-PCR approaches, when applied to the same T cell sample. We found marked differences in accuracy and intra- and inter-method reproducibility for T cell receptor α (TRA) and T cell receptor β (TRB) TCR chains. Most methods showed a lower ability to capture TRA than TRB diversity. Low RNA input generated non-representative repertoires. Results from the 5' RACE-PCR methods were consistent among themselves but differed from the RNA-based multiplex-PCR results. Using an in silico meta-repertoire generated from 108 replicates, we found that one genomic DNA-based method and two non-unique molecular identifier (UMI) RNA-based methods were more sensitive than UMI methods in detecting rare clonotypes, despite the better clonotype quantification accuracy of the latter.
Collapse
Affiliation(s)
- Pierre Barennes
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | - Valentin Quiniou
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | - Mikhail Shugay
- Center of Life Sciences, Skoltech, Moscow, Russia
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Evgeniy S Egorov
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Alexey N Davydov
- Adaptive Immunity Group, Central European Institute of Technology, Brno, Czechia
| | - Dmitriy M Chudakov
- Center of Life Sciences, Skoltech, Moscow, Russia
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Adaptive Immunity Group, Central European Institute of Technology, Brno, Czechia
| | - Imran Uddin
- Division of Infection and Immunity, University College London, London, UK
| | - Mazlina Ismail
- Division of Infection and Immunity, University College London, London, UK
| | - Theres Oakes
- Division of Infection and Immunity, University College London, London, UK
| | - Benny Chain
- Division of Infection and Immunity, University College London, London, UK
| | - Anne Eugster
- DFG-Centre for Regenerative Therapies Dresden, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Karl Kashofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Peter P Rainer
- Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Samuel Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy Ransier
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Klatzmann
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | - Encarnita Mariotti-Ferrandiz
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.
- AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France.
| |
Collapse
|
30
|
Wu L, Zhu J, Rudqvist NP, Welsh J, Lee P, Liao Z, Xu T, Jiang M, Zhu X, Pan X, Li P, Zhou Z, He X, Yin R, Feng J. T-Cell Receptor Profiling and Prognosis After Stereotactic Body Radiation Therapy For Stage I Non-Small-Cell Lung Cancer. Front Immunol 2021; 12:719285. [PMID: 34733273 PMCID: PMC8559517 DOI: 10.3389/fimmu.2021.719285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022] Open
Abstract
Radiotherapy is known to influence immune function, including T cell receptor (TCR) repertoire. We evaluated the TCR repertoire before and after stereotactic body radiotherapy (SBRT) for stage I non-small-cell lung cancer (NSCLC) and explored correlations between TCR indexes and distant failure after SBRT. TCR repertoires were analyzed in peripheral blood mononuclear cells (PBMCs) collected before and after SBRT from 19 patients. TCR combinational diversity in V and J genes was assessed with multiplex PCR of genomic DNA from PBMCs and tested for associations with clinical response. All patients received definitive SBRT to a biologically effective dose of >=100 Gy. The number of unique TCR clones was decreased after SBRT versus before, but clonality and the Shannon Entropy did not change. Four patients (21%) developed distant metastases after SBRT (median 7 months); those patients had lower Shannon Entropy in post-SBRT samples than patients without metastasis. Patients with a low change in Shannon Entropy from before to after SBRT [(post-SBRT Shannon Entropy minus baseline Shannon)/(baseline Shannon) * 100] had poorer metastasis-free survival than those with high change in Shannon Entropy (P<0.001). Frequencies in V/J gene fragment expression in the TCR β chain were also different for patients with or without metastases (two V fragments in baseline samples and 2 J and 9 V fragments in post-treatment samples). This comprehensive analysis of immune status before and after SBRT showed that quantitative assessments of TCRs can help evaluate prognosis in early-stage NSCLC.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biomarkers
- Carcinoma, Non-Small-Cell Lung/diagnosis
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/radiotherapy
- Female
- Gene Expression Profiling
- High-Throughput Nucleotide Sequencing
- Humans
- Lung Neoplasms/diagnosis
- Lung Neoplasms/genetics
- Lung Neoplasms/mortality
- Lung Neoplasms/radiotherapy
- Male
- Middle Aged
- Neoplasm Staging
- Positron Emission Tomography Computed Tomography
- Prognosis
- ROC Curve
- Radiosurgery
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Tomography, X-Ray Computed
- V(D)J Recombination
Collapse
Affiliation(s)
- Lirong Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jun Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Nils-Petter Rudqvist
- Department of Thoracic/Head & Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James Welsh
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Percy Lee
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhongxing Liao
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ting Xu
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ming Jiang
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangzhi Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Pan
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Pansong Li
- Department of Scientific Research, Geneplus-Beijing Institute, Beijing, China
| | - Zhipeng Zhou
- Department of Scientific Research, Geneplus-Beijing Institute, Beijing, China
| | - Xia He
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xia He, ; Rong Yin, ; Jifeng Feng,
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Biobank of Clinical Resources, Nanjing, China
- *Correspondence: Xia He, ; Rong Yin, ; Jifeng Feng,
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xia He, ; Rong Yin, ; Jifeng Feng,
| |
Collapse
|
31
|
Simon S, Voillet V, Vignard V, Wu Z, Dabrowski C, Jouand N, Beauvais T, Khammari A, Braudeau C, Josien R, Adotevi O, Laheurte C, Aubin F, Nardin C, Rulli S, Gottardo R, Ramchurren N, Cheever M, Fling SP, Church CD, Nghiem P, Dreno B, Riddell SR, Labarriere N. PD-1 and TIGIT coexpression identifies a circulating CD8 T cell subset predictive of response to anti-PD-1 therapy. J Immunother Cancer 2020; 8:e001631. [PMID: 33188038 PMCID: PMC7668369 DOI: 10.1136/jitc-2020-001631] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Clinical benefit from programmed cell death 1 receptor (PD-1) inhibitors relies on reinvigoration of endogenous antitumor immunity. Nonetheless, robust immunological markers, based on circulating immune cell subsets associated with therapeutic efficacy are yet to be validated. METHODS We isolated peripheral blood mononuclear cell from three independent cohorts of melanoma and Merkel cell carcinoma patients treated with PD-1 inhibitor, at baseline and longitudinally after therapy. Using multiparameter flow cytometry and cell sorting, we isolated four subsets of CD8+ T cells, based on PD-1 and TIGIT expression profiles. We performed phenotypic characterization, T cell receptor sequencing, targeted transcriptomic analysis and antitumor reactivity assays to thoroughly characterize each of these subsets. RESULTS We documented that the frequency of circulating PD-1+TIGIT+ (DPOS) CD8+ T-cells after 1 month of anti-PD-1 therapy was associated with clinical response and overall survival. This DPOS T-cell population was enriched in highly activated T-cells, tumor-specific and emerging T-cell clonotypes and T lymphocytes overexpressing CXCR5, a key marker of the CD8 cytotoxic follicular T cell population. Additionally, transcriptomic profiling defined a specific gene signature for this population as well as the overexpression of specific pathways associated with the therapeutic response. CONCLUSIONS Our results provide a convincing rationale for monitoring this PD-1+TIGIT+ circulating population as an early cellular-based marker of therapeutic response to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Sylvain Simon
- Inserm UMR1232, CRCINA, Nantes, Pays de la Loire, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Valentin Voillet
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Virginie Vignard
- Inserm UMR1232, CRCINA, Nantes, Pays de la Loire, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
- CHU of Nantes, Nantes, France
| | - Zhong Wu
- Qiagen Sciences, Frederick, Maryland, USA
| | | | - Nicolas Jouand
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
- Platform Cytocell, SFR Santé Francois Bonamy, Nantes, France
| | - Tiffany Beauvais
- Inserm UMR1232, CRCINA, Nantes, Pays de la Loire, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
- CHU of Nantes, Nantes, France
| | - Amir Khammari
- Inserm UMR1232, CRCINA, Nantes, Pays de la Loire, France
- Dermatology Unit, CHU Nantes, Nantes, France
| | - Cécile Braudeau
- CHU Nantes, Laboratoire d'Immunologie, Nantes, France
- CRTI, INSERM, Université de Nantes, Nantes, France
| | - Régis Josien
- CRTI, INSERM, Université de Nantes, Nantes, France
| | - Olivier Adotevi
- INSERM UMR 1098, Besançon, France
- CHU de BESANCON, Besancon, France
| | | | | | | | | | - Raphael Gottardo
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Nirasha Ramchurren
- Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Martin Cheever
- Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Steven P Fling
- Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Candice D Church
- Dermatology, Division of Dermatology, Department of Medicine, UW School of Medicine, Seattle, Washington, USA
| | - Paul Nghiem
- Dermatology, Division of Dermatology, Department of Medicine, UW School of Medicine, Seattle, Washington, USA
| | - Brigitte Dreno
- Inserm UMR1232, CRCINA, Nantes, Pays de la Loire, France
- Dermatology Unit, CHU Nantes, Nantes, France
| | - Stanley R Riddell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Nathalie Labarriere
- Inserm UMR1232, CRCINA, Nantes, Pays de la Loire, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
32
|
Carlisle JW, Jansen CS, Bilen MA, Kissick H. Considerations for cancer immunotherapy biomarker research during COVID-19. Endocr Relat Cancer 2020; 27:C1-C8. [PMID: 32508308 PMCID: PMC7385701 DOI: 10.1530/erc-20-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Jennifer W Carlisle
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Caroline S Jansen
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mehmet Asim Bilen
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Haydn Kissick
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
33
|
Chang CM, Liao YM, Lan GY, Chang WC, Yen Y. Using T-cell repertoire profiles as predictor in a primary mucosal melanoma. Clin Transl Med 2020; 10:e136. [PMID: 32779855 PMCID: PMC7438817 DOI: 10.1002/ctm2.136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/11/2020] [Accepted: 07/11/2020] [Indexed: 02/03/2023] Open
Affiliation(s)
- Che-Mai Chang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ming Liao
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Gong-Yau Lan
- Section of Diagnostic Radiology, Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Integrative Therapy Center for Gastroenterologic Cancers, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yun Yen
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
34
|
Gascón M, Isla D, Cruellas M, Gálvez EM, Lastra R, Ocáriz M, Paño JR, Ramírez A, Sesma A, Torres-Ramón I, Yubero A, Pardo J, Martínez-Lostao L. Intratumoral Versus Circulating Lymphoid Cells as Predictive Biomarkers in Lung Cancer Patients Treated with Immune Checkpoint Inhibitors: Is the Easiest Path the Best One? Cells 2020; 9:cells9061525. [PMID: 32580514 PMCID: PMC7348938 DOI: 10.3390/cells9061525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
The molecular and cell determinants that modulate immune checkpoint (ICI) efficacy in lung cancer are still not well understood. However, there is a necessity to select those patients that will most benefit from these new treatments. Recent studies suggest the presence and/or the relative balance of specific lymphoid cells in the tumor microenvironment (TEM) including the T cell (activated, memory, and regulatory) and NK cell (CD56dim/bright) subsets, and correlate with a better response to ICI. The analyses of these cell subsets in peripheral blood, as a more accessible and homogeneous sample, might facilitate clinical decisions concerning fast prediction of ICI efficacy. Despite recent studies suggesting that lymphoid circulating cells might correlate with ICI efficacy and toxicity, more analyses and investigation are required to confirm if circulating lymphoid cells are a relevant picture of the lung TME and could be instrumental as ICI response biomarkers. This short review is aimed to discuss the recent advances in this fast-growing field.
Collapse
Affiliation(s)
- Marta Gascón
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.C.); (R.L.); (M.O.); (A.S.); (I.T.-R.); (A.Y.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.R.P.); (J.P.); (L.M.-L.)
- Correspondence:
| | - Dolores Isla
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.C.); (R.L.); (M.O.); (A.S.); (I.T.-R.); (A.Y.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.R.P.); (J.P.); (L.M.-L.)
| | - Mara Cruellas
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.C.); (R.L.); (M.O.); (A.S.); (I.T.-R.); (A.Y.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.R.P.); (J.P.); (L.M.-L.)
| | - Eva M. Gálvez
- Carbochemical Institute (ICB-CSIC), Miguel Luesma 4, 50018 Zaragoza, Spain;
| | - Rodrigo Lastra
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.C.); (R.L.); (M.O.); (A.S.); (I.T.-R.); (A.Y.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.R.P.); (J.P.); (L.M.-L.)
| | - Maitane Ocáriz
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.C.); (R.L.); (M.O.); (A.S.); (I.T.-R.); (A.Y.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.R.P.); (J.P.); (L.M.-L.)
| | - José Ramón Paño
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.R.P.); (J.P.); (L.M.-L.)
- Infectious Disease Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain
| | - Ariel Ramírez
- Nanotoxicology and Immunotoxicology Unit (IIS Aragón), 50009 Zaragoza, Spain;
| | - Andrea Sesma
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.C.); (R.L.); (M.O.); (A.S.); (I.T.-R.); (A.Y.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.R.P.); (J.P.); (L.M.-L.)
| | - Irene Torres-Ramón
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.C.); (R.L.); (M.O.); (A.S.); (I.T.-R.); (A.Y.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.R.P.); (J.P.); (L.M.-L.)
| | - Alfonso Yubero
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.C.); (R.L.); (M.O.); (A.S.); (I.T.-R.); (A.Y.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.R.P.); (J.P.); (L.M.-L.)
| | - Julián Pardo
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.R.P.); (J.P.); (L.M.-L.)
- ARAID Foundation (IIS Aragón), 50009 Zaragoza, Spain
- Microbiology, Preventive Medicine and Public Health Department, Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine Network (CIBER-BBN), 28029 Madrid, Spain
| | - Luis Martínez-Lostao
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.R.P.); (J.P.); (L.M.-L.)
- Immunology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Nanoscience Institute, 50018 Zaragoza, Spain
- Aragon Materials Science Institute, 50009 Zaragoza, Spain
| |
Collapse
|
35
|
Roy S, Sethi TK, Taylor D, Kim YJ, Johnson DB. Breakthrough concepts in immune-oncology: Cancer vaccines at the bedside. J Leukoc Biol 2020; 108:1455-1489. [PMID: 32557857 DOI: 10.1002/jlb.5bt0420-585rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022] Open
Abstract
Clinical approval of the immune checkpoint blockade (ICB) agents for multiple cancer types has reinvigorated the long-standing work on cancer vaccines. In the pre-ICB era, clinical efforts focused on the Ag, the adjuvants, the formulation, and the mode of delivery. These translational efforts on therapeutic vaccines range from cell-based (e.g., dendritic cells vaccine Sipuleucel-T) to DNA/RNA-based platforms with various formulations (liposome), vectors (Listeria monocytogenes), or modes of delivery (intratumoral, gene gun, etc.). Despite promising preclinical results, cancer vaccine trials without ICB have historically shown little clinical activity. With the anticipation and expansion of combinatorial immunotherapeutic trials with ICB, the cancer vaccine field has entered the personalized medicine arena with recent advances in immunogenic neoantigen-based vaccines. In this article, we review the literature to organize the different cancer vaccines in the clinical space, and we will discuss their advantages, limits, and recent progress to overcome their challenges. Furthermore, we will also discuss recent preclinical advances and clinical strategies to combine vaccines with checkpoint blockade to improve therapeutic outcome and present a translational perspective on future directions.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tarsheen K Sethi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David Taylor
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Young J Kim
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
36
|
Qiao G, Wang X, Zhou X, Morse MA, Wu J, Wang S, Song Y, Jiang N, Zhao Y, Zhou L, Zhao J, Di Y, Zhu L, Hobeika A, Ren J, Lyerly HK. Immune correlates of clinical benefit in a phase I study of hyperthermia with adoptive T cell immunotherapy in patients with solid tumors. Int J Hyperthermia 2020; 36:74-82. [PMID: 31795830 DOI: 10.1080/02656736.2019.1647350] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose: To characterize the T cell receptor (TCR) repertoire, serum cytokine levels, peripheral blood T lymphocyte populations, safety, and clinical efficacy of hyperthermia (HT) combined with autologous adoptive cell therapy (ACT) and either salvage chemotherapy (CT) or anti-PD-1 antibody in patients with previously treated advanced solid tumors.Materials and methods: Thirty-three (33) patients with ovarian, pancreatic, gastric, colorectal, cervical, or endometrial cancer were recruited into the following therapeutic groups: HT + ACT (n = 10), HT + ACT + anti-PD-1 inhibitor (pembrolizumab) (n = 11) and HT + ACT + CT (n = 12). Peripheral blood was collected to analyze TCR repertoire, measurements of cytokines levels and lymphocyte sub-populations before and after treatment.Results: The objective response rate (ORR) was 30% (10/33), including three complete responses (CR) (9.1%) and seven partial responses (PR) (21.2%) and a disease control rate (DCR = CR + PR + SD) of 66.7% (22 of 33). The most common adverse reactions, blistering, subcutaneous fat induration, local heat-related pain, vomiting and sinus tachycardia, were observed in association with HT. IL-2, IL-4, TNF-α, and IFN-γ levels in peripheral blood were significantly increased among the clinical responders (p < 0.05) while IL-6 and IL-10 were elevated among those with progressive disease (p < 0.05). Peripheral blood CD8+/CD28+ T cells increased (p = 0.002), while the CD4+/CD25+/CD127+Treg cells decreased after therapy (p = 0.012). TCR diversity was substantially increased among the clinical responders.Conclusions: Combining HT with ACT plus either CT or anti-PD-1 antibody was safe, generated clinical responses in previously treated advanced cancers, and promoted TCR repertoire diversity and favorable changes in serum IL-2, IL-4, TNF-α, and IFN-γ levels in clinical responders.
Collapse
Affiliation(s)
- Guoliang Qiao
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Wang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinna Zhou
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Michael A Morse
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Jiangping Wu
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shuo Wang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yuguang Song
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ni Jiang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Zhao
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Zhou
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jing Zhao
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yan Di
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lihong Zhu
- Department of Gynecological Oncology, Beijing Gynecology Hospital, Capital Medical University, Beijing, China
| | - Amy Hobeika
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Jun Ren
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
37
|
Piconese S, Campello S, Natalini A. Recirculation and Residency of T Cells and Tregs: Lessons Learnt in Anacapri. Front Immunol 2020; 11:682. [PMID: 32431695 PMCID: PMC7214633 DOI: 10.3389/fimmu.2020.00682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/26/2020] [Indexed: 02/01/2023] Open
Abstract
"Location, location, and location": according to this mantra, the place where living beings settle has a key impact on the success of their activities; in turn, the living beings can, in many ways, modify their environment. This idea has now become more and more true for T cells. The ability of T cells to recirculate throughout blood or lymph, or to stably reside in certain tissues, turned out to determine immunity to pathogens, and tumors. If location matters also for human beings, the inspiring environment of Capri Island has contributed to the success of the EFIS-EJI Ruggero Ceppellini Advanced School of Immunology focused on "T cell memory," held in Anacapri from October 12, 2018 to October 15, 2018. In this minireview, we would like to highlight some novel concepts about T cell migration and residency and discuss their implications in relation to recent advances in the field, including the mechanisms regulating compartmentalization and cell cycle entry of T cells during activation, the role of mitochondrial metabolism in T cell movement, and the residency of regulatory T cells.
Collapse
Affiliation(s)
- Silvia Piconese
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy.,Dipartimento di Medicina Molecolare (DMM), Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
38
|
Watanabe T, Firat E, Scholber J, Gaedicke S, Heinrich C, Luo R, Ehrat N, Multhoff G, Schmitt-Graeff A, Grosu AL, Abdollahi A, Hassel JC, von Bubnoff D, Meiss F, Niedermann G. Deep abscopal response to radiotherapy and anti-PD-1 in an oligometastatic melanoma patient with unfavorable pretreatment immune signature. Cancer Immunol Immunother 2020; 69:1823-1832. [PMID: 32350591 PMCID: PMC7413872 DOI: 10.1007/s00262-020-02587-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Radiotherapy can elicit abscopal effects in non-irradiated metastases, particularly under immune checkpoint blockade (ICB). We report on two elderly patients with oligometastatic melanoma treated with anti-PD-1 and stereotactic body radiation therapy (SBRT). Before treatment, patient 1 showed strong tumor infiltration with exhausted CD8+ T cells and high expression of T cell-attracting chemokines. This patient rapidly mounted a complete response, now ongoing for more than 4.5 years. Patient 2 exhibited low CD8+ T cell infiltration and high expression of immunosuppressive arginase. After the first SBRT, his non-irradiated metastases did not regress and new metastases occurred although neoepitope-specific and differentiation antigen-specific CD8+ T cells were detected in the blood. A second SBRT after 10 months on anti-PD-1 induced a radiologic complete response correlating with an increase in activated PD-1-expressing CD8 T cells. Apart from a new lung lesion, which was also irradiated, this deep abscopal response lasted for more than 2.5 years. However, thereafter, his disease progressed and the activated PD-1-expressing CD8 T cells dropped. Our data suggest that oligometastatic patients, where a large proportion of the tumor mass can be irradiated, are good candidates to improve ICB responses by RT, even in the case of an unfavorable pretreatment immune signature, after progression on anti-PD-1, and despite advanced age. Besides repeated irradiation, T cell epitope-based immunotherapies (e.g., vaccination) may prolong antitumor responses even in patients with unfavorable pretreatment immune signature.
Collapse
Affiliation(s)
- Tsubasa Watanabe
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| | - Elke Firat
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany
| | - Jutta Scholber
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany
| | - Simone Gaedicke
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany
| | - Corinne Heinrich
- Department of Dermatology and Venerology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ren Luo
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nicolas Ehrat
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, Technical University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center, Heidelberg, Germany
| | | | - Anca-Ligia Grosu
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center, Heidelberg, Germany
| | - Amir Abdollahi
- Department of Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCOR), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Heidelberg, and German Cancer Research Center, Heidelberg, Germany
| | - Jessica C Hassel
- Skin Cancer Center, Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Dagmar von Bubnoff
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Frank Meiss
- Department of Dermatology and Venerology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Niedermann
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
- German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
39
|
Gibellini L, De Biasi S, Porta C, Lo Tartaro D, Depenni R, Pellacani G, Sabbatini R, Cossarizza A. Single-Cell Approaches to Profile the Response to Immune Checkpoint Inhibitors. Front Immunol 2020; 11:490. [PMID: 32265933 PMCID: PMC7100547 DOI: 10.3389/fimmu.2020.00490] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/03/2020] [Indexed: 12/26/2022] Open
Abstract
Novel treatments based upon the use of immune checkpoint inhibitors have an impressive efficacy in different types of cancer. Unfortunately, most patients do not derive benefit or lasting responses, and the reasons for the lack of therapeutic success are not known. Over the past two decades, a pressing need to deeply profile either the tumor microenvironment or cells responsible for the immune response has led investigators to integrate data obtained from traditional approaches with those obtained with new, more sophisticated, single-cell technologies, including high parameter flow cytometry, single-cell sequencing and high resolution imaging. The introduction and use of these technologies had, and still have a prominent impact in the field of cancer immunotherapy, allowing delving deeper into the molecular and cellular crosstalk between cancer and immune system, and fostering the identification of predictive biomarkers of response. In this review, besides the molecular and cellular cancer-immune system interactions, we are discussing how cutting-edge single-cell approaches are helping to point out the heterogeneity of immune cells in the tumor microenvironment and in blood.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Camillo Porta
- Department of Internal Medicine and Therapeutics, Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, University of Pavia, Pavia, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Depenni
- Department of Oncology, Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Pellacani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Sabbatini
- Department of Oncology, Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy.,Section of Modena, Istituto Nazionale per le Ricerche Cardiovascolari, Bologna, Italy
| |
Collapse
|
40
|
PD-1+ stemlike CD8 T cells are resident in lymphoid tissues during persistent LCMV infection. Proc Natl Acad Sci U S A 2020; 117:4292-4299. [PMID: 32034098 DOI: 10.1073/pnas.1917298117] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The migratory patterns of virus-specific CD8 T cells during chronic viral infection are not well understood. To address this issue, we have done parabiosis experiments during chronic lymphocytic choriomeningitis virus (LCMV) infection of mice. We found that despite the high frequency of virus-specific CD8 T cells in both lymphoid and nonlymphoid tissues there was minimal migration of virus-specific CD8 T cells between the chronically infected conjoined parabiont mice. This was in contrast to parabionts between mice that had undergone an acute LCMV infection where virus-specific CD8 T cells established equilibrium demonstrating circulation of memory T cells generated after viral clearance. We have identified a population of PD-1+ TCF1+CXCR5+Tim-3- stemlike virus-specific CD8 T cells that reside in lymphoid tissues and act as resource cells for maintaining the T cell response during chronic infection. These are the cells that proliferate and give rise to the more terminally differentiated PD-1+ CXCR5-Tim-3+ CD8 T cells. Both the stemlike CD8 T cells and their terminally differentiated progeny showed minimal migration during chronic infection and the few LCMV-specific CD8 T cells that were present in circulation were the recently emerging progeny from the stemlike CD8 T cells. The PD-1+ TCF1+CXCR5+ stemlike CD8 T cells were truly resident in lymphoid tissues and did not circulate in the blood. We propose that this residency in specialized niches within lymphoid tissues is a key aspect of their biology and is essential for maintaining their quiescence and stemlike program under conditions of a chronic viral infection.
Collapse
|
41
|
Valpione S, Galvani E, Tweedy J, Mundra PA, Banyard A, Middlehurst P, Barry J, Mills S, Salih Z, Weightman J, Gupta A, Gremel G, Baenke F, Dhomen N, Lorigan PC, Marais R. Immune-awakening revealed by peripheral T cell dynamics after one cycle of immunotherapy. NATURE CANCER 2020; 1:210-221. [PMID: 32110781 PMCID: PMC7046489 DOI: 10.1038/s43018-019-0022-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022]
Abstract
Our understanding of how checkpoint inhibitors (CPI) affect T cell evolution is incomplete, limiting our ability to achieve full clinical benefit from these drugs. Here we analyzed peripheral T cell populations after one cycle of CPI and identified a dynamic awakening of the immune system revealed by T cell evolution in response to treatment. We sequenced T cell receptors (TCR) in plasma cell-free DNA (cfDNA) and peripheral blood mononuclear cells (PBMC) and performed phenotypic analysis of peripheral T cell subsets from metastatic melanoma patients treated with CPI. We found that early peripheral T cell turnover and TCR repertoire dynamics identified which patients would respond to treatment. Additionally, the expansion of a subset of immune-effector peripheral T cells we call TIE cells correlated with response. These events are prognostic and occur within 3 weeks of starting immunotherapy, raising the potential for monitoring patients responses using minimally invasive liquid biopsies."
Collapse
Affiliation(s)
- Sara Valpione
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Elena Galvani
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Joshua Tweedy
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Piyushkumar A Mundra
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Antonia Banyard
- Advanced Imaging and Flow Cytometry, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Philippa Middlehurst
- Manchester Cancer Research Centre Biobank, The Christie NHS Foundation Trust, Manchester, UK
| | - Jeff Barry
- Advanced Imaging and Flow Cytometry, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Sarah Mills
- Manchester Cancer Research Centre Biobank, The Christie NHS Foundation Trust, Manchester, UK
| | - Zena Salih
- The Christie NHS Foundation Trust, Manchester, UK
| | - John Weightman
- Molecular Biology Core Facility, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | | | - Gabriela Gremel
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
- Boehringer Ingelheim, Vienna, Austria
| | - Franziska Baenke
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
- German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Nathalie Dhomen
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | | | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK.
| |
Collapse
|
42
|
Wang X, Jian X, Dou J, Wei Z, Zhao F. Decreasing Microtubule Actin Cross-Linking Factor 1 Inhibits Melanoma Metastasis by Decreasing Epithelial to Mesenchymal Transition. Cancer Manag Res 2020; 12:663-673. [PMID: 32099463 PMCID: PMC7005719 DOI: 10.2147/cmar.s229156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/28/2019] [Indexed: 12/17/2022] Open
Abstract
Background The microtubule actin cross-linking factor 1 (MACF1) is involved in cellular migration, adhesion, and invasion processes. Its abnormal expression initiates tumor cell proliferation and metastasis in numerous cancer types. Methods In this study, we utilized short hair-pin RNA interference of MACF1 to assess the inhibitory effects on the metastatic potential of B16F10 melanoma cells both in vitro and in vivo a mouse model. Results The MACF1 expression was increased in B16F10 cells-induced tumor tissues; while the down-regulation of MACF1 impacted the B16F10 melanoma cell metastatic behavior by decreasing the ability of colony formation and invasion in vitro as well as inhibiting B16F10 cells-induced tumor growth and lung metastasis in vivo. The results of Western blot and immunohistochemistry indicated that the expression of E-cadherin and Smad-7 was significantly increased whereas the expression of N-cadherin and TGF-β1 was significantly decreased in tumor tissue of mice challenged with the B16F10/MACF1-RNAi cells when compared with the B16F10 cells challenged mice. Conclusion The data presented in this study demonstrated that down-regulated MACF1 expression decreased B16F10 melanoma metastasis in mice by inhibiting the epithelial to mesenchymal transition program. Thus, MACF1 may be a novel target for melanoma therapy.
Collapse
Affiliation(s)
- Xiaoying Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, People's Republic of China
| | - Xiao Jian
- Wuxi School of Medicine, Jiangnan University, Wuxi, People's Republic of China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Zicheng Wei
- Department of Stomatology Affiliated Hospital of Jiangnan University, Wuxi, People's Republic of China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
43
|
Abstract
Our immune system plays a key role in health and disease as it is capable of responding to foreign antigens as well as acquired antigens from cancer cells. Latter are caused by somatic mutations, the so-called neoepitopes, and might be recognized by T cells if they are presented by HLA molecules on the surface of cancer cells. Personalized mutanome vaccines are a class of customized immunotherapies, which is dependent on the detection of individual cancer-specific tumor mutations and neoepitope (i.e., prediction, followed by a rational vaccine design, before on-demand production. The development of next generation sequencing (NGS) technologies and bioinformatic tools allows a large-scale analysis of each parameter involved in this process. Here, we provide an overview of the bioinformatic aspects involved in the design of personalized, neoantigen-based vaccines, including the detection of mutations and the subsequent prediction of potential epitopes, as well as methods for associated biomarker research, such as high-throughput sequencing of T-cell receptors (TCRs), followed by data analysis and the bioinformatics quantification of immune cell infiltration in cancer samples.
Collapse
Affiliation(s)
- Christoph Holtsträter
- TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gemeinnützige GmbH, Freiligrathstraße, Mainz, Germany
| | - Barbara Schrörs
- TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gemeinnützige GmbH, Freiligrathstraße, Mainz, Germany
| | - Thomas Bukur
- TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gemeinnützige GmbH, Freiligrathstraße, Mainz, Germany
| | - Martin Löwer
- TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gemeinnützige GmbH, Freiligrathstraße, Mainz, Germany.
| |
Collapse
|
44
|
Hartigan CR, Sun H, Ford ML. Memory T‐cell exhaustion and tolerance in transplantation. Immunol Rev 2019; 292:225-242. [DOI: 10.1111/imr.12824] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Affiliation(s)
| | - He Sun
- Emory Transplant Center and Department of Surgery Emory University Atlanta GA USA
- Department of Hepatobiliary Surgery and Transplantation The First Hospital of China Medical University Shenyang China
| | - Mandy L. Ford
- Emory Transplant Center and Department of Surgery Emory University Atlanta GA USA
| |
Collapse
|
45
|
Han J, Duan J, Bai H, Wang Y, Wan R, Wang X, Chen S, Tian Y, Wang D, Fei K, Yao Z, Wang S, Lu Z, Wang Z, Wang J. TCR Repertoire Diversity of Peripheral PD-1 +CD8 + T Cells Predicts Clinical Outcomes after Immunotherapy in Patients with Non-Small Cell Lung Cancer. Cancer Immunol Res 2019; 8:146-154. [PMID: 31719056 DOI: 10.1158/2326-6066.cir-19-0398] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/20/2019] [Accepted: 11/08/2019] [Indexed: 11/16/2022]
Abstract
T-cell receptor (TCR)-based biomarkers might predict patient response to immune checkpoint blockade (ICB) but need further exploration and validation for that use. We sequenced complementarity-determining region 3 of TCRβ chains isolated from PD-1+ CD8+ T cells to investigate its value for predicting the response to anti-programmed cell death 1 (PD-1)/PD-ligand 1 (PD-L1) therapy in patients with non-small cell lung cancer (NSCLC). Two independent patient cohorts (cohort A, n = 25; cohort B, n = 15) were used as discovery and validation sets, respectively. Pre- and post-ICB peripheral blood samples were collected. In cohort A, patients with high PD-1+ CD8+ TCR diversity before ICB treatment showed better response to ICB and progression-free survival (PFS) compared with patients with low diversity [6.4 months vs. 2.5 months, HR, 0.39; 95% confidence interval (CI), 0.17-0.94; P = 0.021]. The results were validated in cohort B. Pre-ICB PD-1+ CD8+ TCR diversity achieved an optimal Youden's index of 0.81 (sensitivity = 0.87 and specificity = 0.94) for differentiating the ICB response in the merged dataset (cohort A plus cohort B). Patients with increased PD-1+ CD8+ TCR clonality after ICB treatment had longer PFS (7.3 months vs. 2.6 months, HR, 0.26; 95% CI, 0.08-0.86; P = 0.002) than those with decreased clonality. Thus, TCR diversity and clonality in peripheral blood PD-1+ CD8+ T cells may serve as noninvasive predictors of patient response to ICB and survival outcomes in NSCLC.
Collapse
Affiliation(s)
- Jiefei Han
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuqi Wang
- Geneplus-Beijing Institute, Beijing, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Si Chen
- Geneplus-Beijing Institute, Beijing, China
| | - Yanhua Tian
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kailun Fei
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuoran Yao
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuhang Wang
- GCP Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhimin Lu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
46
|
Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 2019; 18:197-218. [PMID: 30610226 DOI: 10.1038/s41573-018-0007-y] [Citation(s) in RCA: 1936] [Impact Index Per Article: 387.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapies are the most rapidly growing drug class and have a major impact in oncology and on human health. It is increasingly clear that the effectiveness of immunomodulatory strategies depends on the presence of a baseline immune response and on unleashing of pre-existing immunity. Therefore, a general consensus emerged on the central part played by effector T cells in the antitumour responses. Recent technological, analytical and mechanistic advances in immunology have enabled the identification of patients who are more likely to respond to immunotherapy. In this Review, we focus on defining hot, altered and cold tumours, the complexity of the tumour microenvironment, the Immunoscore and immune contexture of tumours, and we describe approaches to treat such tumours with combination immunotherapies, including checkpoint inhibitors. In the upcoming era of combination immunotherapy, it is becoming critical to understand the mechanisms responsible for hot, altered or cold immune tumours in order to boost a weak antitumour immunity. The impact of combination therapy on the immune response to convert an immune cold into a hot tumour will be discussed.
Collapse
|
47
|
Brenneman RJ, Sharifai N, Fischer-Valuck B, Hassanzadeh C, Guzelian J, Chrisinger JSA, Michalski JM, Oppelt P, Baumann BC. Abscopal Effect Following Proton Beam Radiotherapy in a Patient With Inoperable Metastatic Retroperitoneal Sarcoma. Front Oncol 2019; 9:922. [PMID: 31616634 PMCID: PMC6775241 DOI: 10.3389/fonc.2019.00922] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Retroperitoneal sarcomas (RPS) are rare and primarily managed with surgery, which improves local recurrence-free and overall survival. Radiation can improve local control or provide palliation for inoperable or metastatic RPS by eliciting tumor cell death via irreparable DNA damage. In extraordinary circumstances radiation-induced cell death promotes immune-mediated regression of non-irradiated lesions in a process termed the abscopal effect. Abscopal effects are rare and incompletely understood, involving a balance of radiation's immunogenic and immunosuppressive effects. There are currently no methods to predict abscopal responses following radiotherapy. Case reports documenting post-radiotherapy abscopal effects provide additional information to better characterize these responses and to inform ongoing and future clinical trials attempting to harness radiation-induced immune responses to improve outcomes with systemic therapy, such as SARC-032, a cooperative group trial of pre-operative radiation ± pembrolizumab. We present a case of inoperable metastatic RPS treated with proton radiotherapy with complete responses of un-irradiated metastases. Case Presentation: A 67 year-old female with inoperable metastatic unclassified round cell RPS was treated with palliative proton radiotherapy only to the primary tumor. Following completion of radiotherapy, the patient demonstrated complete regression of all un-irradiated metastases, and near complete response of the primary lesion without additional therapy. Conclusions: Metastatic RPS is typically managed with first-line chemotherapy, with objective response rates <50%. We present a case of inoperable metastatic RPS treated with palliative proton radiotherapy for rapidly progressive disease who had complete regression of non-irradiated metastases consistent with the abscopal effect. To our knowledge this is the first case report describing abscopal effects in inoperable metastatic RPS treated with proton radiation and is among the first case reports of an abscopal effect in a patient treated with proton therapy regardless of disease site. Further investigation is warranted regarding the benefit of proton radiation to primary tumors for inoperable metastatic RPS.
Collapse
Affiliation(s)
- Randall J Brenneman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Nima Sharifai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Benjamin Fischer-Valuck
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Comron Hassanzadeh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jeffrey Guzelian
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - John S A Chrisinger
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jeff M Michalski
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Peter Oppelt
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian C Baumann
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
48
|
Ren F, Zhao T, Liu B, Pan L. Neutrophil-lymphocyte ratio (NLR) predicted prognosis for advanced non-small-cell lung cancer (NSCLC) patients who received immune checkpoint blockade (ICB). Onco Targets Ther 2019; 12:4235-4244. [PMID: 31239702 PMCID: PMC6554525 DOI: 10.2147/ott.s199176] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose: The aim of this study was to identify the prognostic value of blood neutrophil–lymphocyte ratio (NLR) in patients with advanced non-small-cell lung cancer (NSCLC) who received immune checkpoint blockade (ICB) therapy. Materials and methods: 147 advanced NSCLC patients were enrolled in this study from June 30, 2013, to August 30, 2017. Survival analysis used the Kaplan and Meier methodology. The mean follow-up time was 2.6 years. The phenotypic T cells subtypes were evaluated by flow cytometry. Results: Of these patients, receiver operating characteristic (ROC) curves analysis were used to confirm the cut-off value, and patients were stratified into NLR>2.5 (n=88) and NLR≤2.5 (n=59) groups. Survival analysis showed that patients with NLR≤2.5 had significantly favorable overall survival (OS) and progression-free survival (PFS) compared with patients with NLR>2.5. After stratified with the tumor mutational burden (TMB), we further found that patients with NLR≤2.5 had significantly favorable OS and PFS compared with patients with NLR>2.5 in the group of patients with TMB>10, while in group patients with TMB≤10, patients with NLR≤2.5 had no significantly favorable OS and PFS compared with patients with NLR>2.5. The CD3+ and CD8+/CD28+ T cell subsets were significantly increased in patients with NLR≤2.5 (P<0.05), while the CD8+/CD28− and CD4+/CD25+ cell subsets were significantly decreased in patients with NLR≤2.5 (P<0.05). Conclusion: High NLR value independently predicted poorer survival in advanced NSCLC patients received ICB therapy. The NLR may help oncologists to predict outcomes of patients received ICB and choose alternative therapies for patients with high NLR value.
Collapse
Affiliation(s)
- Fangping Ren
- Department of Respiratory, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Tian Zhao
- Department of Clinical Laboratory, The 161st Hospital of PLA, Wuhan, 430010, People's Republic of China
| | - Bing Liu
- Department of Disease Control and Prevention, PLA Rocket Force Characteristic Medical Center, Beijing, People's Republic of China
| | - Lei Pan
- Department of Respiratory, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| |
Collapse
|
49
|
Roca AM, Chobrutskiy BI, Callahan BM, Blanck G. T-cell receptor V and J usage paired with specific HLA alleles associates with distinct cervical cancer survival rates. Hum Immunol 2019; 80:237-242. [DOI: 10.1016/j.humimm.2019.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 11/29/2022]
|
50
|
PD-1-siRNA delivered by attenuated Salmonella enhances the antimelanoma effect of pimozide. Cell Death Dis 2019; 10:164. [PMID: 30778049 PMCID: PMC6379487 DOI: 10.1038/s41419-019-1418-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Melanoma is one of the most aggressive skin cancers worldwide. Although there has been much effort toward improving treatment options over the past few years, there remains an urgent need for effective therapy. Immunotherapy combined with chemotherapy has shown great promise in clinical trials. Here, we studied the cooperative effects of the small molecule drug pimozide, which has a therapeutic effect in melanoma, and RNA interference (RNAi) targeting PD-1, an important immune checkpoint molecule involved in tumor immune escape. PD-1 siRNA was delivered by attenuated Salmonella to melanoma-bearing mice in combination with pimozide. Our results demonstrated that the combination therapy had the optimal therapeutic effect on melanoma. The mechanisms underlying the efficacy involved the induction of apoptosis and an enhanced immune response. This study suggests that immunotherapy based on PD-1 inhibition combined with anticancer drugs could be a promising clinical strategy for the treatment of melanoma.
Collapse
|