1
|
Abelin JG, Cox AL. Innovations Toward Immunopeptidomics. Mol Cell Proteomics 2024; 23:100823. [PMID: 39095021 PMCID: PMC11419911 DOI: 10.1016/j.mcpro.2024.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Over the past 30 years, immunopeptidomics has grown alongside improvements in mass spectrometry technology, genomics, transcriptomics, T cell receptor sequencing, and immunological assays to identify and characterize the targets of activated T cells. Together, multiple research groups with expertise in immunology, biochemistry, chemistry, and peptide mass spectrometry have come together to enable the isolation and sequence identification of endogenous major histocompatibility complex (MHC)-bound peptides. The idea to apply highly sensitive mass spectrometry techniques to study the landscape of peptide antigens presented by cell surface MHCs was innovative and continues to be successfully used and improved upon to deepen our understanding of how peptide antigens are processed and presented to T cells. Multiple research groups were involved in this bringing immunopeptidomics to the forefront of translational research, and we will highlight the contributions of one of the earliest developers, Professor Donald F. Hunt, and his research group at the University of Virginia. The Hunt laboratory applied cutting edge mass spectroscopy-based immunopeptidomics to study cancer, autoimmunity, transplant rejection, and infectious diseases. Across these diverse research areas, the Hunt laboratory and collaborators would characterize previously unknown MHC peptide-binding motifs and identify immunologically active antigens using ultra sensitive mass spectrometry techniques. Amazingly, many of the MHC-bound peptide antigens discovered in collaborations with the Hunt laboratory were sequenced by mass spectrometry before the completion of the human genome using manual de novo sequencing. In this perspective article, we will chronicle the work of the Hunt laboratory and their many collaborators that would be a major part of the foundation for mass spectrometry-based immunopeptidomics and its application to immunology research.
Collapse
Affiliation(s)
| | - Andrea L Cox
- Johns Hopkins Bloomberg School of Public Health, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA; Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Mani N, Andrews D, Obeng RC. Modulation of T cell function and survival by the tumor microenvironment. Front Cell Dev Biol 2023; 11:1191774. [PMID: 37274739 PMCID: PMC10232912 DOI: 10.3389/fcell.2023.1191774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Cancer immunotherapy is shifting paradigms in cancer care. T cells are an indispensable component of an effective antitumor immunity and durable clinical responses. However, the complexity of the tumor microenvironment (TME), which consists of a wide range of cells that exert positive and negative effects on T cell function and survival, makes achieving robust and durable T cell responses difficult. Additionally, tumor biology, structural and architectural features, intratumoral nutrients and soluble factors, and metabolism impact the quality of the T cell response. We discuss the factors and interactions that modulate T cell function and survive in the TME that affect the overall quality of the antitumor immune response.
Collapse
Affiliation(s)
- Nikita Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dathan Andrews
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Rebecca C. Obeng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
3
|
Forsberg EMV, Riise R, Saellström S, Karlsson J, Alsén S, Bucher V, Hemminki AE, Olofsson Bagge R, Ny L, Nilsson LM, Rönnberg H, Nilsson JA. Treatment with Anti-HER2 Chimeric Antigen Receptor Tumor-Infiltrating Lymphocytes (CAR-TILs) Is Safe and Associated with Antitumor Efficacy in Mice and Companion Dogs. Cancers (Basel) 2023; 15:cancers15030648. [PMID: 36765608 PMCID: PMC9913266 DOI: 10.3390/cancers15030648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Patients with metastatic melanoma have a historically poor prognosis, but recent advances in treatment options, including targeted therapy and immunotherapy, have drastically improved the outcomes for some of these patients. However, not all patients respond to available treatments, and around 50% of patients with metastatic cutaneous melanoma and almost all patients with metastases of uveal melanoma die of their disease. Thus, there is a need for novel treatment strategies for patients with melanoma that do not benefit from the available therapies. Chimeric antigen receptor-expressing T (CAR-T) cells are largely unexplored in melanoma. Traditionally, CAR-T cells have been produced by transducing blood-derived T cells with a virus expressing CAR. However, tumor-infiltrating lymphocytes (TILs) can also be engineered to express CAR, and such CAR-TILs could be dual-targeting. To this end, tumor samples and autologous TILs from metastasized human uveal and cutaneous melanoma were expanded in vitro and transduced with a lentiviral vector encoding an anti-HER2 CAR construct. When infused into patient-derived xenograft (PDX) mouse models carrying autologous tumors, CAR-TILs were able to eradicate melanoma, even in the absence of antigen presentation by HLA. To advance this concept to the clinic and assess its safety in an immune-competent and human-patient-like setting, we treated four companion dogs with autologous anti-HER2 CAR-TILs. We found that these cells were tolerable and showed signs of anti-tumor activity. Taken together, CAR-TIL therapy is a promising avenue for broadening the tumor-targeting capacity of TILs in patients with checkpoint immunotherapy-resistant melanoma.
Collapse
Affiliation(s)
- Elin M. V. Forsberg
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
| | - Rebecca Riise
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
| | - Sara Saellström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Joakim Karlsson
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA 6009, Australia
| | - Samuel Alsén
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
| | - Valentina Bucher
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
| | - Akseli E. Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Oncology, Comprehensive Cancer Centre, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Roger Olofsson Bagge
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
| | - Lars Ny
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
| | - Lisa M. Nilsson
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA 6009, Australia
| | - Henrik Rönnberg
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Jonas A. Nilsson
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: or ; Tel.: +61-08-6151-0979
| |
Collapse
|
4
|
Zhu J, Yan M, Yan H, Xu L, Jiang Z, Liao G, Zhou Y, Liu W, Liang X, Li X, Xiao Y, Zhang Y. Single-Cell Transcriptomic Analysis Reveals the Crosstalk Propensity Between the Tumor Intermediate State and the CD8+ T Exhausted State to be Associated with Clinical Benefits in Melanoma. Front Immunol 2022; 13:766852. [PMID: 35903095 PMCID: PMC9314667 DOI: 10.3389/fimmu.2022.766852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 06/20/2022] [Indexed: 11/14/2022] Open
Abstract
Heterogeneous crosstalk between tumor cells and CD8+ T cells leads to substantial variation in clinical benefits from immunotherapy in melanoma. Due to spatial distribution and functional state heterogeneity, it is still unknown whether there is a crosstalk propensity between tumor cells and CD8+ T cells in melanoma, and how this crosstalk propensity affects the clinical outcome of patients. Using public single-cell transcriptome data, extensive heterogeneous functional states and ligand–receptor interactions of tumor cells and CD8+ T cells were revealed in melanoma. Furthermore, based on the association between cell–cell communication intensity and cell state activity in a single cell, we identified a crosstalk propensity between the tumor intermediate state and the CD8+ T exhausted state. This crosstalk propensity was further verified by pseudo-spatial proximity, spatial co-location, and the intra/intercellular signal transduction network. At the sample level, the tumor intermediate state and the CD8+ T exhausted state synergistically indicated better prognosis and both reduced in immunotherapy-resistant samples. The risk groups defined based on these two cell states could comprehensively reflect tumor genomic mutations and anti-tumor immunity information. The low-risk group had a higher BRAF mutation fraction as well as stronger antitumor immune response. Our findings highlighted the crosstalk propensity between the tumor intermediate state and the CD8+ T exhausted state, which may serve as a reference to guide the development of diagnostic biomarkers for risk stratification and therapeutic targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Jiali Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Min Yan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Haoteng Yan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liwen Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zedong Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Gaoming Liao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yao Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wei Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xin Liang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Key Laboratory of High Throughput Omics Big Data for Cold Region’s Major Diseases in Heilongjiang Province, Harbin Medical University, Harbin, China
- *Correspondence: Yunpeng Zhang, ; Yun Xiao, ; Xia Li,
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Key Laboratory of High Throughput Omics Big Data for Cold Region’s Major Diseases in Heilongjiang Province, Harbin Medical University, Harbin, China
- *Correspondence: Yunpeng Zhang, ; Yun Xiao, ; Xia Li,
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Key Laboratory of High Throughput Omics Big Data for Cold Region’s Major Diseases in Heilongjiang Province, Harbin Medical University, Harbin, China
- *Correspondence: Yunpeng Zhang, ; Yun Xiao, ; Xia Li,
| |
Collapse
|
5
|
Benboubker V, Boivin F, Dalle S, Caramel J. Cancer Cell Phenotype Plasticity as a Driver of Immune Escape in Melanoma. Front Immunol 2022; 13:873116. [PMID: 35432344 PMCID: PMC9012258 DOI: 10.3389/fimmu.2022.873116] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
Immunotherapies blocking negative immune checkpoints are now approved for the treatment of a growing number of cancers. However, even in metastatic melanoma, where sustained responses are observed, a significant number of patients still do not respond or display resistance. Increasing evidence indicates that non-genetic cancer cell-intrinsic alterations play a key role in resistance to therapies and immune evasion. Cancer cell plasticity, mainly associated with the epithelial-to-mesenchymal transition in carcinoma, relies on transcriptional, epigenetic or translational reprogramming. In melanoma, an EMT-like dedifferentiation process is characterized by the acquisition of invasive or neural crest stem cell-like features. Herein, we discuss recent findings on the specific roles of phenotypic reprogramming of melanoma cells in driving immune evasion and resistance to immunotherapies. The mechanisms by which dedifferentiated melanoma cells escape T cell lysis, mediate T cell exclusion or remodel the immune microenvironment will be detailed. The expanded knowledge on tumor cell plasticity in melanoma should contribute to the development of novel therapeutic combination strategies to further improve outcomes in this deadly metastatic cancer.
Collapse
Affiliation(s)
- Valentin Benboubker
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, CNRS, Centre Léon Bérard, “Cancer cell Plasticity in Melanoma” team, Lyon, France
| | - Félix Boivin
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, CNRS, Centre Léon Bérard, “Cancer cell Plasticity in Melanoma” team, Lyon, France
| | - Stéphane Dalle
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, CNRS, Centre Léon Bérard, “Cancer cell Plasticity in Melanoma” team, Lyon, France
- Dermatology Unit, Hospices Civils de Lyon, CH Lyon Sud, Pierre Bénite Cedex, France
| | - Julie Caramel
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, CNRS, Centre Léon Bérard, “Cancer cell Plasticity in Melanoma” team, Lyon, France
| |
Collapse
|
6
|
Maintenance of WT1 expression in tumor cells is associated with a good prognosis in malignant glioma patients treated with WT1 peptide vaccine immunotherapy. Cancer Immunol Immunother 2021; 71:189-201. [PMID: 34089373 DOI: 10.1007/s00262-021-02954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
We have previously revealed the overexpression of Wilms' tumor gene 1 (WT1) in malignant glioma and developed WT1 peptide vaccine cancer immunotherapy. A phase II clinical trial indicated the clinical efficacy of the WT1 peptide vaccine for recurrent malignant glioma. Here, we aimed to investigate the immunological microenvironment in glioma tissues before and after WT1 peptide vaccine treatment. Paired tissue samples were obtained from 20 malignant glioma patients who had received the WT1 peptide vaccine for > 3 months and experienced tumor progression, confirmed radiographically and/or clinically, during vaccination. We discovered that the expression of WT1 and HLA class I antigens in the tumor cells significantly decreased after vaccination. Maintenance of WT1 expression, which is the target molecule of immunotherapy, in tumor cells during the vaccination period was significantly associated with a longer progression-free and overall survival. A high expression of HLA class I antigens and low CD4+/CD8+ tumor-infiltrating lymphocytes (TIL) ratio in pre-vaccination specimens, were also associated with a good prognosis. No statistically significant difference existed in the number of infiltrating CD3+ or CD8+ T cells between the pre- and post-vaccination specimens, whereas the number of infiltrating CD4+ T cells significantly decreased in the post-vaccination specimens. This study provides insight into the mechanisms of intra-tumoral immune reaction/escape during WT1 peptide vaccine treatment and suggests potential clinical strategies for cancer immunotherapy.
Collapse
|
7
|
Immunological evaluation of a novel HLA-A2 restricted phosphopeptide of tumor associated Antigen, TRAP1, on cancer therapy. Vaccine X 2019; 1:100017. [PMID: 31384738 PMCID: PMC6668235 DOI: 10.1016/j.jvacx.2019.100017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/22/2022] Open
Abstract
The tumor necrosis factor receptor associated protein 1 (TRAP1) is a mitochondria chaperon protein that has been previously implicated as a target for cancer therapy due to its expression level is linked to tumor progression. In this study, an immunodominant phosphopeptide of TRAP1 was identified from an HLA-A2 gene transfected mouse cancer cell line using mass spectrometry, and a synthetic phosphopeptide was generated to evaluate the potency on cancer immunotherapy. In the transporter associated with antigen processing (TAP) deficient cell, the conjugated phosphate group plays a critical role to enhance the binding affinity of phosphopeptide with HLA-A2 molecule. On the basis of immunological assay, immunization of synthetic phosphopeptide could induce a high frequency of IFN-γ-secreting CD8+ T cells in HLA-A2 transgenic mice, and the stimulated cytotoxic T lymphocytes showed a high target specificity to lysis the epitope-pulsed splenocytes in vivo and the human lung cancer cell in vitro. In a tumor challenge assay, vaccination of the HLA-A2 restricted phosphopeptide appeared to suppress the tumor growth and prolong the survival period of tumor-bearing mice. These results suggest that novel phosphopeptide is naturally presented as a HLA-A2-restricted CTL epitope and capable of being a potential candidate for the development of therapeutic vaccine against high TRAP1-expressing cancers.
Collapse
|
8
|
Chai SJ, Fong SCY, Gan CP, Pua KC, Lim PVH, Lau SH, Zain RB, Abraham T, Ismail SM, Abdul Rahman ZA, Ponniah S, Patel V, Cheong SC, Lim KP. In vitro evaluation of dual-antigenic PV1 peptide vaccine in head and neck cancer patients. Hum Vaccin Immunother 2018; 15:167-178. [PMID: 30193086 DOI: 10.1080/21645515.2018.1520584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Peptide vaccines derived from tumour-associated antigens have been used as an immunotherapeutic approach to induce specific cytotoxic immune response against tumour. We previously identified that MAGED4B and FJX1 proteins are overexpressed in HNSCC patients; and further demonstrated that two HLA-A2-restricted 9-11 amino acid peptides derived from these proteins were able to induce anti-tumour immune responses in vitro independently using PBMCs isolated from these patients. In this study, we evaluated the immunogenicity and efficacy of a dual-antigenic peptide vaccine (PV1), comprised of MAGED4B and FJX1 peptides in HNSCC patients. We first demonstrated that 94.8% of HNSCC patients expressed MAGED4B and/or FJX1 by immunohistochemistry, suggesting that PV1 could benefit the majority of HNSCC patients. The presence of pre-existing MAGED4B and FJX1-specific T-cells was detected using a HLA-A2 dimer assay and efficacy of PV1 to induce T-cell to secrete cytotoxic cytokine was evaluated using ELISPOT assay. Pre-existing PV1-specific T-cells were detected in all patients. Notably, we demonstrated that patients' T-cells were able to secrete cytotoxic cytokines upon exposure to target cells expressing the respective antigen post PV1 stimulation. Furthermore, patients with high expression of MAGED4B and FJX1 in their tumours were more responsive to PV1 stimulation, demonstrating the specificity of the PV1 peptide vaccine. Additionally, we also demonstrated the expression of MAGED4B and FJX1 in breast, lung, colon, prostate and rectal cancer suggesting the potential use of PV1 in these cancers. In summary, PV1 could be a good vaccine candidate for the treatment of HNSCC patients and other cancers expressing these antigens.
Collapse
Affiliation(s)
- San Jiun Chai
- a Cancer Research Malaysia , Subang Jaya , Selangor , Malaysia
| | | | - Chai Phei Gan
- a Cancer Research Malaysia , Subang Jaya , Selangor , Malaysia
| | - Kin Choo Pua
- b Department of Otorhinolaryngology , Hospital Pulau Pinang , Penang , Malaysia
| | - Paul Vey Hong Lim
- c Ear, Nose and Throat Department , Tung Shin Hospital , Kuala Lumpur , Malaysia
| | - Shin Hin Lau
- d Stomatology Unit , Cancer Research Centre, Institute for Medical Research , Kuala Lumpur , Malaysia
| | - Rosnah Binti Zain
- e Faculty of Dentistry , MAHSA University , Selangor , Malaysia.,f Oral Cancer Research and Coordinating Centre, Faculty of Dentistry , University of Malaya , Kuala Lumpur , Malaysia
| | - Thomas Abraham
- g Department of Oral & Maxillofacial Surgery , Tengku Ampuan Rahimah Hospital , Klang , Malaysia
| | - Siti Mazlipah Ismail
- h Department of Oro-Maxillofacial Surgery and Medical Sciences, Faculty of Dentistry , University of Malaya , Kuala Lumpur , Malaysia
| | - Zainal Ariff Abdul Rahman
- h Department of Oro-Maxillofacial Surgery and Medical Sciences, Faculty of Dentistry , University of Malaya , Kuala Lumpur , Malaysia
| | - Sathibalan Ponniah
- i Cancer Vaccine Development Program, Department of Surgery , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Vyomesh Patel
- a Cancer Research Malaysia , Subang Jaya , Selangor , Malaysia
| | - Sok Ching Cheong
- a Cancer Research Malaysia , Subang Jaya , Selangor , Malaysia.,h Department of Oro-Maxillofacial Surgery and Medical Sciences, Faculty of Dentistry , University of Malaya , Kuala Lumpur , Malaysia
| | - Kue Peng Lim
- a Cancer Research Malaysia , Subang Jaya , Selangor , Malaysia
| |
Collapse
|
9
|
Pérez L, Sinn AL, Sandusky GE, Pollok KE, Blum JS. Melanoma LAMP-2C Modulates Tumor Growth and Autophagy. Front Cell Dev Biol 2018; 6:101. [PMID: 30211163 PMCID: PMC6123356 DOI: 10.3389/fcell.2018.00101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022] Open
Abstract
Autophagy plays critical but diverse roles in cellular quality control and homeostasis potentially checking tumor development by removing mutated or damaged macromolecules, while conversely fostering tumor survival by supplying essential nutrients during cancer progression. This report documents a novel inhibitory role for a lysosome-associated membrane protein, LAMP-2C in modulating autophagy and melanoma cell growth in vitro and in vivo. Solid tumors such as melanomas encounter a variety of stresses in vivo including inflammatory cytokines produced by infiltrating lymphocytes directed at limiting tumor growth and spread. Here, we report that in response to the anti-tumor, pro-inflammatory cytokine interferon-gamma, melanoma cell expression of LAMP2C mRNA significantly increased. These results prompted an investigation of whether increased melanoma cell expression of LAMP-2C might represent a mechanism to control or limit human melanoma growth and survival. In this study, enhanced expression of human LAMP-2C in melanoma cells perturbed macroautophagy and chaperone-mediated autophagy in several human melanoma lines. In vitro analysis showed increasing LAMP-2C expression in a melanoma cell line, triggered reduced cellular LAMP-2A and LAMP-2B protein expression. Melanoma cells with enhanced LAMP-2C expression displayed increased cell cycle arrest, increased expression of the cell cycle regulators Chk1 and p21, and greater apoptosis and necrosis in several cell lines tested. The increased abundance of Chk1 protein in melanoma cells with increased LAMP-2C expression was not due to higher CHEK1 mRNA levels, but rather an increase in Chk1 protein abundance including Chk1 molecules phosphorylated at Ser345. Human melanoma cell xenografts with increased LAMP-2C expression, displayed reduced growth in immune compromised murine hosts. Melanomas with high LAMP-2C expression showed increased necrosis and reduced cell density upon histological analysis. These results reveal a novel role for LAMP-2C in negatively regulating melanoma growth and survival.
Collapse
Affiliation(s)
- Liliana Pérez
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Anthony L. Sinn
- In Vivo Therapeutics Core, Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - George E. Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Karen E. Pollok
- In Vivo Therapeutics Core, Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Janice S. Blum
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
10
|
Marconi A, Quadri M, Saltari A, Pincelli C. Progress in melanoma modelling in vitro. Exp Dermatol 2018; 27:578-586. [DOI: 10.1111/exd.13670] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Alessandra Marconi
- Laboratory of Cutaneous Biology; Department of Surgical; Medical, Dental and Morphological Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Marika Quadri
- Laboratory of Cutaneous Biology; Department of Surgical; Medical, Dental and Morphological Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Annalisa Saltari
- Laboratory of Cutaneous Biology; Department of Surgical; Medical, Dental and Morphological Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology; Department of Surgical; Medical, Dental and Morphological Sciences; University of Modena and Reggio Emilia; Modena Italy
| |
Collapse
|
11
|
Hammerlindl H, Schaider H. Tumor cell-intrinsic phenotypic plasticity facilitates adaptive cellular reprogramming driving acquired drug resistance. J Cell Commun Signal 2017; 12:133-141. [PMID: 29192388 PMCID: PMC5842196 DOI: 10.1007/s12079-017-0435-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/16/2017] [Indexed: 01/10/2023] Open
Abstract
The enthusiasm about successful novel therapeutic strategies in cancer is often quickly dampened by the development of drug resistance. This is true for targeted therapies using tyrosine kinase inhibitors for EGFR or BRAF mutant cancers, but is also an increasingly recognized problem for immunotherapies. One of the major obstacles of successful cancer therapy is tumor heterogeneity of genotypic and phenotypic features. Historically, drivers for drug resistance have been suspected and found on the genetic level, with mutations either being pre-existing in a subset of cancer cells or emerging de novo to mediate drug resistance. In contrast to that, our group and others identified a non-mutational adaptive response, resulting in a reversible, drug tolerant, slow cycling phenotype that precedes the emergence of permanent drug resistance and is triggered by prolonged drug exposure. More recently, studies described the importance of initially reversible transcriptional reprogramming for the development of acquired drug resistance, identified factors important for the survival of the slow cycling phenotype and investigated the relationship of mutational and non-mutational resistance mechanisms. However, the connection and relative importance of mutational and adaptive drug resistance in relation to the in vitro models at hand and the clinically observed response patterns remains poorly defined. In this review we focus on adaptive intrinsic phenotypic plasticity in cancer cells that leads to the drug tolerant slow cycling state, which eventually transitions to permanent resistance, and propose a general model based on current literature, to describe the development of acquired drug resistance.
Collapse
Affiliation(s)
- Heinz Hammerlindl
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Brisbane, QLD, 4102, Australia
| | - Helmut Schaider
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
12
|
Abstract
Melanoma is among the most aggressive and therapy-resistant human cancers. While great strides in therapy have generated enthusiasm, many challenges remain. Heterogeneity is the most pressing issue for all types of therapy. This chapter summarizes the clinical classification of melanoma, of which the research community now adds additional layers of classifications for better diagnosis and prediction of therapy response. As the search for new biomarkers increases, we expect that biomarker analyses will be essential for all clinical trials to better select patient populations for optimal therapy. While individualized therapy that is based on extensive biomarker analyses is an option, we expect in the future genetic and biologic biomarkers will allow grouping of melanomas in such a way that we can predict therapy outcome. At this time, tumor heterogeneity continues to be the major challenge leading inevitably to relapse. To address heterogeneity therapeutically, we need to develop complex therapies that eliminate the bulk of the tumor and, at the same time, the critical subpopulations.
Collapse
Affiliation(s)
- Batool Shannan
- Molecular and Cellular Oncogenesis Program, Melanoma Research Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Michela Perego
- Molecular and Cellular Oncogenesis Program, Melanoma Research Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Rajasekharan Somasundaram
- Molecular and Cellular Oncogenesis Program, Melanoma Research Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, Melanoma Research Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Capaldo BJ, Roller D, Axelrod MJ, Koeppel AF, Petricoin EF, Slingluff CL, Weber MJ, Mackey AJ, Gioeli D, Bekiranov S. Systems Analysis of Adaptive Responses to MAP Kinase Pathway Blockade in BRAF Mutant Melanoma. PLoS One 2015; 10:e0138210. [PMID: 26405815 PMCID: PMC4583389 DOI: 10.1371/journal.pone.0138210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/27/2015] [Indexed: 12/31/2022] Open
Abstract
Fifty percent of cutaneous melanomas are driven by activated BRAFV600E, but tumors treated with RAF inhibitors, even when they respond dramatically, rapidly adapt and develop resistance. Thus, there is a pressing need to identify the major mechanisms of intrinsic and adaptive resistance and develop drug combinations that target these resistance mechanisms. In a combinatorial drug screen on a panel of 12 treatment-naïve BRAFV600E mutant melanoma cell lines of varying levels of resistance to mitogen-activated protein kinase (MAPK) pathway inhibition, we identified the combination of PLX4720, a targeted inhibitor of mutated BRaf, and lapatinib, an inhibitor of the ErbB family of receptor tyrosine kinases, as synergistically cytotoxic in the subset of cell lines that displayed the most resistance to PLX4720. To identify potential mechanisms of resistance to PLX4720 treatment and synergy with lapatinib treatment, we performed a multi-platform functional genomics analysis to profile the genome as well as the transcriptional and proteomic responses of these cell lines to treatment with PLX4720. We found modest levels of resistance correlated with the zygosity of the BRAF V600E allele and receptor tyrosine kinase (RTK) mutational status. Layered over base-line resistance was substantial upregulation of many ErbB pathway genes in response to BRaf inhibition, thus generating the vulnerability to combination with lapatinib. The transcriptional responses of ErbB pathway genes are associated with a number of transcription factors, including ETS2 and its associated cofactors that represent a convergent regulatory mechanism conferring synergistic drug susceptibility in the context of diverse mutational landscapes.
Collapse
Affiliation(s)
- Brian J. Capaldo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Devin Roller
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, Virginia, United States of America
| | - Mark J. Axelrod
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alex F. Koeppel
- Bioinfomatics Core Facility, University of Virginia, Charlottesville, Virginia, United States of America
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, College of Science, George Mason University, Manassas, Virginia, United States of America
| | - Craig L. Slingluff
- Department of Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael J. Weber
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, Virginia, United States of America
| | - Aaron J. Mackey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Daniel Gioeli
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, Virginia, United States of America
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
14
|
Höfflin S, Prommersberger S, Uslu U, Schuler G, Schmidt CW, Lennerz V, Dörrie J, Schaft N. Generation of CD8(+) T cells expressing two additional T-cell receptors (TETARs) for personalised melanoma therapy. Cancer Biol Ther 2015; 16:1323-31. [PMID: 26178065 DOI: 10.1080/15384047.2015.1070981] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adoptive T-cell therapy of cancer often fails due to the tumor cells' immune escape mechanisms, like antigen loss or down-regulation. To anticipate immune escape by loss of a single antigen, it would be advantageous to equip T cells with multiple specificities. To study the possible interference of 2 T-cell receptors (TCRs) in one cell, and to examine how to counteract competing effects, we generated TETARs, CD8(+) T cells expressing two additional T-cell receptors by simultaneous transient transfection with 2 TCRs using RNA electroporation. The TETARs were equipped with one TCR specific for the common melanoma antigen gp100 and one TCR recognizing a patient-specific, individual mutation of CCT6A (chaperonin containing TCP1, subunit 6A) termed "CCT6A(m) TCR." These CD8(+) T cells proved functional in cytokine secretion and lytic activity upon stimulation with each of their cognate antigens, although some reciprocal inhibition was observed. Murinisation of the CCT6A(m) TCR increased and prolonged its expression and increased the lytic capacity of the dual-specific T cells. Taken together, we generated functional, dual-specific CD8(+) T cells directed against a common melanoma-antigen and an individually mutated antigen for the use in personalised adoptive T-cell therapy of melanoma. The intended therapy would involve repetitive injections of the RNA-transfected cells to overcome the transiency of TCR expression. In case of autoimmunity-related side effects, a cessation of treatment would result in a disappearance of the introduced receptors, which increases the safety of this approach.
Collapse
Affiliation(s)
- Sandra Höfflin
- a Department of Dermatology ; Universitätsklinikum Erlangen ; Erlangen , Germany.,b Department of Genetics ; Friedrich-Alexander-Universität Erlangen-Nürnberg ; Erlangen , Germany.,e SH and SP share first authorship
| | - Sabrina Prommersberger
- a Department of Dermatology ; Universitätsklinikum Erlangen ; Erlangen , Germany.,b Department of Genetics ; Friedrich-Alexander-Universität Erlangen-Nürnberg ; Erlangen , Germany.,e SH and SP share first authorship
| | - Ugur Uslu
- a Department of Dermatology ; Universitätsklinikum Erlangen ; Erlangen , Germany
| | - Gerold Schuler
- a Department of Dermatology ; Universitätsklinikum Erlangen ; Erlangen , Germany
| | - Christopher W Schmidt
- c Cancer Immunotherapy Laboratory; QIMR Berghofer Medical Research Institute ; Brisbane , Queensland , Australia
| | - Volker Lennerz
- d Dept. Internal Medicine III ; Universitätsmedizin der Johannes Gutenberg-Universität Mainz ; Mainz , Germany
| | - Jan Dörrie
- a Department of Dermatology ; Universitätsklinikum Erlangen ; Erlangen , Germany.,f JD and NS share senior authorship
| | - Niels Schaft
- a Department of Dermatology ; Universitätsklinikum Erlangen ; Erlangen , Germany.,f JD and NS share senior authorship
| |
Collapse
|
15
|
Rahma OE, Myint ZW, Estfan B. Dendritic Cell Cancer Vaccines for Treatment of Colon Cancer. CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-014-0243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Wagenseller AG, Shada A, D'Auria KM, Murphy C, Sun D, Molhoek KR, Papin JA, Dutta A, Slingluff CL. MicroRNAs induced in melanoma treated with combination targeted therapy of Temsirolimus and Bevacizumab. J Transl Med 2013; 11:218. [PMID: 24047116 PMCID: PMC3853033 DOI: 10.1186/1479-5876-11-218] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 09/04/2013] [Indexed: 11/30/2022] Open
Abstract
Background Targeted therapies directed at commonly overexpressed pathways in melanoma have clinical activity in numerous trials. Little is known about how these therapies influence microRNA (miRNA) expression, particularly with combination regimens. Knowledge of miRNAs altered with treatment may contribute to understanding mechanisms of therapeutic effects, as well as mechanisms of tumor escape from therapy. We analyzed miRNA expression in metastatic melanoma tissue samples treated with a novel combination regimen of Temsirolimus and Bevacizumab. Given the preliminary clinical activity observed with this combination regimen, we hypothesized that we would see significant changes in miRNA expression with combination treatment. Methods Using microarray analysis we analyzed miRNA expression levels in melanoma samples from a Cancer Therapy Evaluation Program-sponsored phase II trial of combination Temsirolimus and Bevacizumab in advanced melanoma, which elicited clinical benefit in a subset of patients. Pre-treatment and post-treatment miRNA levels were compared using paired t-tests between sample groups (patients), using a p-value < 0.01 for significance. Results microRNA expression remained unchanged with Temsirolimus alone; however, expression of 15 microRNAs was significantly upregulated (1.4 to 2.5-fold) with combination treatment, compared to pre-treatment levels. Interestingly, twelve of these fifteen miRNAs possess tumor suppressor capabilities. We identified 15 putative oncogenes as potential targets of the 12 tumor suppressor miRNAs, based on published experimental evidence. For 15 of 25 miRNA-target mRNA pairings, changes in gene expression from pre-treatment to post-combination treatment samples were inversely correlated with changes in miRNA expression, supporting a functional effect of those miRNA changes. Clustering analyses based on selected miRNAs suggest preliminary signatures characteristic of clinical response to combination treatment and of tumor BRAF mutational status. Conclusions To our knowledge, this is the first study analyzing miRNA expression in pre-treatment and post-treatment human metastatic melanoma tissue samples. This preliminary investigation suggests miRNAs that may be involved in the mechanism of action of combination Temsirolimus and Bevacizumab in metastatic melanoma, possibly through inhibition of oncogenic pathways, and provides the preliminary basis for further functional studies of these miRNAs.
Collapse
Affiliation(s)
- Aubrey G Wagenseller
- Department of Surgery, Division of Surgical Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Slingluff CL, Lee S, Zhao F, Chianese-Bullock KA, Olson WC, Butterfield LH, Whiteside TL, Leming PD, Kirkwood JM. A randomized phase II trial of multiepitope vaccination with melanoma peptides for cytotoxic T cells and helper T cells for patients with metastatic melanoma (E1602). Clin Cancer Res 2013; 19:4228-38. [PMID: 23653149 DOI: 10.1158/1078-0432.ccr-13-0002] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE This multicenter randomized trial was designed to evaluate whether melanoma helper peptides augment cytotoxic T lymphocyte (CTL) responses to a melanoma vaccine and improve clinical outcome in patients with advanced melanoma. EXPERIMENTAL DESIGN One hundred seventy-five patients with measurable stage IV melanoma were enrolled into 4 treatment groups, vaccinated with 12 MHC class I-restricted melanoma peptides to stimulate CTL (12 MP, group A), plus a tetanus peptide (group B), or a mixture of 6 melanoma helper peptides (6 MHP, group C) to stimulate helper T lymphocytes (HTL), or with 6 melanoma helper peptide (6 MHP) alone (group D), in incomplete Freund's adjuvant plus granulocyte macrophage colony-stimulating factor. CTL responses were assessed using an in vitro-stimulated IFN-γ ELIspot assay, and HTL responses were assessed using a proliferation assay. RESULTS In groups A to D, respectively, CTL response rates to 12 melanoma peptides were 43%, 47%, 28%, and 5%, and HTL response rates to 6 MHP were in 3%, 0%, 40%, and 41%. Best clinical response was partial response in 7 of 148 evaluable patients (4.7%) without significant difference among study arms. Median overall survival (OS) was 11.8 months. Immune response to 6 MHP was significantly associated with both clinical response (P = 0.036) and OS (P = 0.004). CONCLUSION Each vaccine regimen was immunogenic, but MHPs did not augment CTL responses to 12 melanoma peptides. The association of survival and immune response to 6 MHP supports further investigation of helper peptide vaccines. For patients with advanced melanoma, multipeptide vaccines should be studied in combination with other potentially synergistic active therapies.
Collapse
Affiliation(s)
- Craig L Slingluff
- Department of Surgery, Human Immune Therapy Center, University of Virginia, Charlottesville, Virginia, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang P, Li Y, Hong W, Zhen J, Ren J, Li Z, Xu A. The changes of microRNA expression profiles and tyrosinase related proteins in MITF knocked down melanocytes. MOLECULAR BIOSYSTEMS 2012; 8:2924-31. [DOI: 10.1039/c2mb25228g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Comprehensive analysis of receptor tyrosine kinase activation in human melanomas reveals autocrine signaling through IGF-1R. Melanoma Res 2011; 21:274-84. [PMID: 21654344 DOI: 10.1097/cmr.0b013e328343a1d6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melanomas depend on autocrine signals for proliferation and survival; however, no systematic screen of known receptor tyrosine kinases (RTKs) has been performed to identify which autocrine signaling pathways are activated in melanoma. Here, we performed a comprehensive analysis of 42 RTKs in six individual human melanoma tumor specimens as well as 17 melanoma cell lines, some of which were derived from the tumor specimens. We identified five RTKs that were active in almost every one of the melanoma tissue specimens and cell lines, including two previously unreported receptors, insulin-like growth factor receptor 1 (IGF-1R) and macrophage-stimulating protein receptor (MSPR), in addition to three receptors (vascular endothelial growth factor receptor, fibroblast growth factor receptor, and hepatocyte growth factor receptor) known to be autocrine activated in melanoma. We show, by quantitative real time PCR, that all melanoma cell lines expressed genes for the RTK ligands such as HGF, IGF-1, and MSP. Addition of antibodies to either IGF-1 or HGF, but not to MSP, to the culture medium blocked melanoma cell proliferation, and even caused net loss of melanoma cells. Antibody addition deactivated IGF-1R and hepatocyte growth factor receptors, as well as mitogen-activated protein kinase signaling. Thus, IGF-1 is a new growth factor for autocrine driven proliferation of human melanoma in vitro. Our results suggest that IGF-1-IGF-1R autocrine pathway in melanoma is a possible target for therapy in human melanomas.
Collapse
|
20
|
Derouazi M, Wang Y, Marlu R, Epaulard O, Mayol JF, Pasqual N, Le Gouellec A, Polack B, Toussaint B. Optimal epitope composition after antigen screening using a live bacterial delivery vector: application to TRP-2. Bioeng Bugs 2011; 1:51-60. [PMID: 21327126 DOI: 10.4161/bbug.1.1.9482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/09/2009] [Accepted: 07/09/2009] [Indexed: 01/03/2023] Open
Abstract
Immunotherapeutic approaches, based on the generation of tumor-specific cytotoxic T-lymphocytes (CTL), are currently emerging as promising strategies of anti-tumor therapy. The potential use of attenuated bacteria as engineered vectors for vaccine development offers several advantages, including the stimulation of innate immunity. We developed an attenuated live bacterial vector using the type III secretion system (TTSS) of Pseudomonas aeruginosa to deliver in vivo tumor antigens. Using an inducible and rapid expression plasmid, vaccination with several antigens of different length and epitope composition, including TRp-2, gp100 and MUC18, was evaluated against glioma tumor cells. We observed similar CTL immunity and T-cell receptor (TCR) repertoire diversity with the vaccines, TRP2(125-243), TRP2L(125-376) and TRP2S(291-376). However, only immunization with TRP2L(125-376) induced significant anti-tumor immunity. Taken together, our data indicate the importance of the epitopes composition and/or peptide length of these peptides for inducing cytotoxic T-lymphocyte (CTL) mediated immunity. Characteristics that consistently improved anti-tumor immunity include: long peptides with immunodominant and cryptic CD8(+) epitopes, and strong CD4(+) Th epitopes. Our bacterial vector is versatile, easy-to-use and quick to produce. This vector is suitable for rapid screening and evaluation of antigens of varying length and epitope composition.
Collapse
Affiliation(s)
- Madiha Derouazi
- Therex, TIMC-IMAG, CNRS Université Joseph Fourier; La Tronche, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Slingluff CL. The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? Cancer J 2011; 17:343-50. [PMID: 21952285 PMCID: PMC3204371 DOI: 10.1097/ppo.0b013e318233e5b2] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Peptide vaccines incorporate one or more short or long amino acid sequences as tumor antigens, combined with a vaccine adjuvant. Thus, they fall broadly into the category of defined antigen vaccines, along with vaccines using protein, protein subunits, DNA, or RNA. They remain one of the most immunogenic approaches, based on measures of T-cell response in the blood or in draining lymph nodes. However, existing peptide vaccines have had limited success at inducing clinical tumor regressions, despite reliable induction of T-cell responses. Several new developments offer promise for improving peptide vaccines, including use of long peptides, optimization of adjuvants including toll-like receptor agonists, and combination with systemic therapies that may reduce tumor-associated immune dysfunction, such as blockade of PD-1/PD-L1 interactions. To apply these new approaches optimally, it will be critical to study their effects in the context of defined antigens, for which peptide vaccines are optimal.
Collapse
Affiliation(s)
- Craig L Slingluff
- Human Immune Therapy Center, University of Virginia, Charlottesville, USA.
| |
Collapse
|
22
|
Zabierowski SE, Fukunaga-Kalabis M, Li L, Herlyn M. Dermis-derived stem cells: a source of epidermal melanocytes and melanoma? Pigment Cell Melanoma Res 2011; 24:422-9. [PMID: 21410654 DOI: 10.1111/j.1755-148x.2011.00847.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Human multipotent dermal stem cells (DSCs) have been isolated and propagated from the dermal region of neonatal foreskin. DSCs can self-renew, express the neural crest stem cell markers NGFRp75 and nestin, and are capable of differentiating into a wide variety of cell types including mesenchymal and neuronal lineages and melanocytes, indicative of their neural crest origin. When placed in the context of reconstructed skin, DSCs migrate to the basement membrane zone and differentiate into melanocytes. These findings, combined with the identification of NGFRp75-positive cells in the dermis of human foreskin, which are devoid of hair, suggest that DSCs may be a self-renewing source of extrafollicular epidermal melanocytes. In this review, we discuss the properties of DSCs, the pathways required for melanocyte differentiation, and the value of 3D reconstructed skin to assess the behavior and contribution of DSCs in the naturalized environment of human skin. Potentially, DSCs provide a link to malignant melanoma by being a target of UVA-induced transformation.
Collapse
Affiliation(s)
- Susan E Zabierowski
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
23
|
CD8+ T cells specific for the androgen receptor are common in patients with prostate cancer and are able to lyse prostate tumor cells. Cancer Immunol Immunother 2011; 60:781-92. [PMID: 21350948 DOI: 10.1007/s00262-011-0987-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 02/06/2011] [Indexed: 12/29/2022]
Abstract
The androgen receptor (AR) is a hormone receptor that plays a critical role in prostate cancer, and depletion of its ligand has long been the cornerstone of treatment for metastatic disease. Here, we evaluate the AR ligand-binding domain (LBD) as an immunological target, seeking to identify HLA-A2-restricted epitopes recognized by T cells in prostate cancer patients. Ten AR LBD-derived, HLA-A2-binding peptides were identified and ranked with respect to HLA-A2 affinity and were used to culture peptide-specific T cells from HLA-A2+ prostate cancer patients. These T-cell cultures identified peptide-specific T cells specific for all ten peptides in at least one patient, and T cells specific for peptides AR805 and AR811 were detected in over half of patients. Peptide-specific CD8+ T-cell clones were then isolated and characterized for prostate cancer cytotoxicity and cytokine expression, identifying that AR805 and AR811 CD8+ T-cell clones could lyse prostate cancer cells in an HLA-A2-restricted fashion, but only AR811 CTL had polyfunctional cytokine expression. Epitopes were confirmed using immunization studies in HLA-A2 transgenic mice, in which the AR LBD is an autologous antigen with an identical protein sequence, which showed that mice immunized with AR811 developed peptide-specific CTL that lyse HLA-A2+ prostate cancer cells. These data show that AR805 and AR811 are HLA-A2-restricted epitopes for which CTL can be commonly detected in prostate cancer patients. Moreover, CTL responses specific for AR811 can be elicited by direct immunization of A2/DR1 mice. These findings suggest that it may be possible to elicit an anti-prostate tumor immune response by augmenting CTL populations using AR LBD-based vaccines.
Collapse
|
24
|
Chi N, Maranchie JK, Appleman LJ, Storkus WJ. Update on vaccine development for renal cell cancer. Res Rep Urol 2010; 2:125-41. [PMID: 24198621 PMCID: PMC3703676 DOI: 10.2147/rru.s7242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) remains a significant health concern that frequently presents as metastatic disease at the time of initial diagnosis. Current first-line therapeutics for the advanced-stage RCC include antiangiogenic drugs that have yielded high rates of objective clinical response; however, these tend to be transient in nature, with many patients becoming refractory to chronic treatment with these agents. Adjuvant immunotherapies remain viable candidates to sustain disease-free and overall patient survival. In particular, vaccines designed to optimize the activation, maintenance, and recruitment of specific immunity within or into the tumor site continue to evolve. Based on the integration of increasingly refined immunomonitoring systems in both translational models and clinical trials, allowing for the improved understanding of treatment mechanism(s) of action, further refined (combinational) vaccine protocols are currently being developed and evaluated. This review provides a brief history of RCC vaccine development, discusses the successes and limitations in such approaches, and provides a rationale for developing combinational vaccine approaches that may provide improved clinical benefits to patients with RCC.
Collapse
Affiliation(s)
- Nina Chi
- Department of immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | | | | | | |
Collapse
|
25
|
Ueda R, Ohkusu-Tsukada K, Fusaki N, Soeda A, Kawase T, Kawakami Y, Toda M. Identification of HLA-A2- and A24-restricted T-cell epitopes derived from SOX6 expressed in glioma stem cells for immunotherapy. Int J Cancer 2010; 126:919-29. [PMID: 19728337 DOI: 10.1002/ijc.24851] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Malignant gliomas are the most aggressive human primary brain tumors and are currently incurable. Immunotherapies have the potential to target glioma and glioma stem cells (GSCs) that are resistant to conventional therapies. We previously identified SOX6 as a human glioma antigen and demonstrated that vaccination with SOX6 DNA induced cytotoxic T lymphocytes (CTLs) specific for glioma, thereby exerting therapeutic antitumor responses in glioma-bearing mice. In this study, we attempted to identify SOX6-derived peptides as specific targets for effective and safe T-cell-mediated immunotherapy targeting SOX6-positive glioma and GSCs. In vitro stimulation with human leukocyte antigen (HLA)-A*2402 (A24)-restricted peptides, RFENLGPQL (SOX6(504)) and PYYEEQARL (SOX6(628)) or the HLA-A*0201 (A2)-restricted peptide, ALFGDQDTV (SOX6(447)) was capable of inducing SOX6 peptide-specific CTLs in peripheral blood mononuclear cells derived from healthy donors and glioma patients. These CTLs were able to lyse a majority of glioma cell lines and a GSC line derived from human glioblastoma in an HLA Class I-restricted and an antigen-dependent manner. Furthermore, peptide vaccines of SOX6(628), which was conserved in the murine SOX6 protein and expected to bind to major histocompatibility complex (MHC) H-2(d), induced CTLs specific for SOX6(628) in H-2(d) mice. Normal autologous cells from mice, in which SOX6-specific immune responses were generated, were not destroyed. These results suggest that these SOX6 peptides are potnetially immunogenic in HLA-A24 or -A2 positive glioma patients and should be considered as a promising strategy for safe and effective T-cell-based immunotherapy of patients with gliomas.
Collapse
Affiliation(s)
- Ryo Ueda
- Neuroimmunology Research Group, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Mutation or loss of Wilms' tumor gene 1 (WT1) are not major reasons for immune escape in patients with AML receiving WT1 peptide vaccination. J Transl Med 2010; 8:5. [PMID: 20092642 PMCID: PMC2844374 DOI: 10.1186/1479-5876-8-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 01/21/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Efficacy of cancer vaccines may be limited due to immune escape mechanisms like loss or mutation of target antigens. Here, we analyzed 10 HLA-A2 positive patients with acute myeloid leukemia (AML) for loss or mutations of the WT1 epitope or epitope flanking sequences that may abolish proper T cell recognition or epitope presentation. METHODS All patients had been enrolled in a WT1 peptide phase II vaccination trial (NCT00153582) and ultimately progressed despite induction of a WT1 specific T cell response. Blood and bone marrow samples prior to vaccination and during progression were analyzed for mRNA expression level of WT1. Base exchanges within the epitope sequence or flanking regions (10 amino acids N- and C-terminal of the epitope) were assessed with melting point analysis and sequencing. HLA class I expression and WT1 protein expression was analyzed by flow cytometry. RESULTS Only in one patient, downregulation of WT1 mRNA by 1 log and loss of WT1 detection on protein level at time of disease progression was observed. No mutation leading to a base exchange within the epitope sequence or epitope flanking sequences could be detected in any patient. Further, no loss of HLA class I expression on leukemic blasts was observed. CONCLUSION Defects in antigen presentation caused by loss or mutation of WT1 or downregulation of HLA molecules are not the major basis for escape from the immune response induced by WT1 peptide vaccination.
Collapse
|
27
|
Wang K, Zhou Q, Guo AL, Xu CR, An SJ, Wu YL. An autologous therapeutic dendritic cell vaccine transfected with total lung carcinoma RNA stimulates cytotoxic T lymphocyte responses against non-small cell lung cancer. Immunol Invest 2010; 38:665-80. [PMID: 19811429 DOI: 10.1080/08820130903070528] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The development of immunotherapy for malignancy is greatly limited by the characteristic weak antigenicity of tumors. The primary goal of this study was to circumvent the isolation and purification of tumor-specific antigen determinants by producing a vaccine using lung tumor RNA-loaded dendritic cells (DCs), and to test the response against lung cancer. METHODS Total RNA was isolated from 18 lung carcinomas with positive carcinoembryonic antigen (CEA) and mucin-1 (MUC1) staining, as identified by immunohistochemistry. DCs and T-cells from peripheral blood mononuclear cells were generated in vitro, and then DCs in different stages were transfected with RNA using several different methods. The expression of CEA and MUC1 in RNA-transfected DCs was measured using flow cytometry. T-cells stimulated by DCs were harvested as effectors, and primary tumor cells cultured in vitro were used as targets. Cytotoxicity was determined by lactic dehydrogenase detection assay. RESULTS Immature RNA-transfected DCs significantly increased the expression of CEA and MUC1, compared to mature transfected DCs. RNA transfection via electroporation resulted in significantly greater CEA and MUC1 expression than did transfection via lipofection or passive pulsing. Lymphocytes stimulated by DCs transfected with lung tumor RNA initiated a cytotoxic T lymphocyte (CTL) tumor-specific response. CONCLUSION Immature DCs transfected with total lung carcinoma RNA by electroporation in vitro effectively stimulate antigen-specific CTL responses against tumor cells.
Collapse
Affiliation(s)
- Kun Wang
- Guangdong Lung Cancer Institute, Guangdong General Hospital, Guangdong Academic of Medical Sciences, Guangzhou, 510080, PR China.
| | | | | | | | | | | |
Collapse
|
28
|
Jacobs JFM, Aarntzen EHJG, Sibelt LAG, Blokx WA, Boullart ACI, Gerritsen MJ, Hoogerbrugge PM, Figdor CG, Adema GJ, Punt CJA, de Vries IJM. Vaccine-specific local T cell reactivity in immunotherapy-associated vitiligo in melanoma patients. Cancer Immunol Immunother 2009; 58:145-51. [PMID: 18392619 PMCID: PMC11029900 DOI: 10.1007/s00262-008-0506-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Accepted: 03/19/2008] [Indexed: 02/07/2023]
Abstract
The occurrence of vitiligo in patients with melanoma is especially reported for patients undergoing immunotherapy. While vitiligo in these patients is thought to be related to an immune response directed against melanoma cells, solid evidence is lacking. Here we report local cytotoxic T cell reactivity in three melanoma patients who developed vitiligo, after experimental immunotherapy using dendritic cell vaccinations. Tetramer analysis showed that vaccine-induced T cells recognizing gp100 and tyrosinase are present at the vitiligo lesions. These T cells secrete IFN-gamma and IL-2 upon peptide specific stimulation as well as upon recognition of the autologous tumor. We show that functional CD8(+) T cells specific for melanoma differentiation antigens used in a melanoma immunotherapy trial, do not only invade the tumor, but also the vitiligo lesions. This directly links vitiligo to the immuno-therapeutic intervention and supports the hypothesis that vitiligo is a marker of immunity against melanoma cells.
Collapse
Affiliation(s)
- Joannes F. M. Jacobs
- Department of Pediatric Hemato-oncology, Radboud University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | - Erik H. J. G. Aarntzen
- Department of Medical Oncology, Radboud University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | - Lenny A. G. Sibelt
- Department of Dermatology, Radboud University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | - Willeke A. Blokx
- Department of Pathology, Radboud University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | - Anna C. I. Boullart
- Department of Medical Oncology, Radboud University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | - Marie-Jeanne Gerritsen
- Department of Dermatology, Radboud University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | - Peter M. Hoogerbrugge
- Department of Pediatric Hemato-oncology, Radboud University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | - Carl G. Figdor
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gosse J. Adema
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Cornelis J. A. Punt
- Department of Medical Oncology, Radboud University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | - I. Jolanda M. de Vries
- Department of Pediatric Hemato-oncology, Radboud University Medical Centre Nijmegen, Nijmegen, The Netherlands
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Deacon DH, Hogan KT, Swanson EM, Chianese-Bullock KA, Denlinger CE, Czarkowski AR, Schrecengost RS, Patterson JW, Teague MW, Slingluff CL. The use of gamma-irradiation and ultraviolet-irradiation in the preparation of human melanoma cells for use in autologous whole-cell vaccines. BMC Cancer 2008; 8:360. [PMID: 19055839 PMCID: PMC2612687 DOI: 10.1186/1471-2407-8-360] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 12/04/2008] [Indexed: 11/10/2022] Open
Abstract
Background Human cancer vaccines incorporating autologous tumor cells carry a risk of implantation and subsequent metastasis of viable tumor cells into the patient who is being treated. Despite the fact that the melanoma cell preparations used in a recent vaccine trial (Mel37) were gamma-irradiated (200 Gy), approximately 25% of the preparations failed quality control release criteria which required that the irradiated cells incorporate 3H-thymidine at no more than 5% the level seen in the non-irradiated cells. We have, therefore, investigated ultraviolet (UV)-irradiation as a possible adjunct to, or replacement for gamma-irradiation. Methods Melanoma cells were gamma- and/or UV-irradiated. 3H-thymidine uptake was used to assess proliferation of the treated and untreated cells. Caspase-3 activity and DNA fragmentation were measured as indicators of apoptosis. Immunohistochemistry and Western blot analysis was used to assess antigen expression. Results UV-irradiation, either alone or in combination with gamma-irradiation, proved to be extremely effective in controlling the proliferation of melanoma cells. In contrast to gamma-irradiation, UV-irradiation was also capable of inducing significant levels of apoptosis. UV-irradiation, but not gamma-irradiation, was associated with the loss of tyrosinase expression. Neither form of radiation affected the expression of gp100, MART-1/MelanA, or S100. Conclusion These results indicate that UV-irradiation may increase the safety of autologous melanoma vaccines, although it may do so at the expense of altering the antigenic profile of the irradiated tumor cells.
Collapse
Affiliation(s)
- Donna H Deacon
- Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Robila V, Ostankovitch M, Altrich-VanLith ML, Theos AC, Drover S, Marks MS, Restifo N, Engelhard VH. MHC class II presentation of gp100 epitopes in melanoma cells requires the function of conventional endosomes and is influenced by melanosomes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:7843-52. [PMID: 19017974 PMCID: PMC2659719 DOI: 10.4049/jimmunol.181.11.7843] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many human solid tumors express MHC class II (MHC-II) molecules, and proteins normally localized to melanosomes give rise to MHC-II-restricted epitopes in melanoma. However, the pathways by which this response occurs have not been defined. We analyzed the processing of one such epitope, gp100(44-59), derived from gp100/Pmel17. In melanomas that have down-regulated components of the melanosomal pathway, but constitutively express HLA-DR*0401, the majority of gp100 is sorted to LAMP-1(high)/MHC-II(+) late endosomes. Using mutant gp100 molecules with altered intracellular trafficking, we demonstrate that endosomal localization is necessary for gp100(44-59) presentation. By depletion of the AP-2 adaptor protein using small interfering RNA, we demonstrate that gp100 protein internalized from the plasma membrane to such endosomes is a major source for gp100(44-59) epitope production. The gp100 trapped in early endosomes gives rise to epitopes that are indistinguishable from those produced in late endosomes but their production is less sensitive to inhibition of lysosomal proteases. In melanomas containing melanosomes, gp100 is underrepresented in late endosomes, and accumulates in stage II melanosomes devoid of MHC-II molecules. The gp100(44-59) presentation is dramatically reduced, and processing occurs entirely in early endosomes or stage I melanosomes. This occurrence suggests that melanosomes are inefficient Ag-processing compartments. Thus, melanoma de-differentiation may be accompanied by increased presentation of MHC-II restricted epitopes from gp100 and other melanosome-localized proteins, leading to enhanced immune recognition.
Collapse
Affiliation(s)
- Valentina Robila
- Department of Microbiology and Carter Immunology Center, University of Virginia School of Medicine, Charlottesville VA 22908
| | - Marina Ostankovitch
- Department of Microbiology and Carter Immunology Center, University of Virginia School of Medicine, Charlottesville VA 22908
| | - Michelle L. Altrich-VanLith
- Department of Microbiology and Carter Immunology Center, University of Virginia School of Medicine, Charlottesville VA 22908
| | - Alexander C. Theos
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia PA 19104
| | - Sheila Drover
- Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NF Canada A1B3V6
| | - Michael S. Marks
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia PA 19104
| | - Nicholas Restifo
- National Cancer Institute, National Institutes of Health Bethesda, MD 20892
| | - Victor H. Engelhard
- Department of Microbiology and Carter Immunology Center, University of Virginia School of Medicine, Charlottesville VA 22908
| |
Collapse
|
31
|
Molhoek KR, Griesemann H, Shu J, Gershenwald JE, Brautigan DL, Slingluff CL. Human melanoma cytolysis by combined inhibition of mammalian target of rapamycin and vascular endothelial growth factor/vascular endothelial growth factor receptor-2. Cancer Res 2008; 68:4392-7. [PMID: 18519701 PMCID: PMC2727753 DOI: 10.1158/0008-5472.can-07-5844] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular endothelial growth factor (VEGF) plays a vital role in tumor angiogenesis. VEGF is produced by human melanomas, and the VEGF receptor 2 (VEGFR-2) is expressed by most advanced stage melanomas, suggesting the possibility of an autocrine loop. Here, we show that bevacizumab, an anti-VEGF antibody, inhibits proliferation of VEGFR-2(+) melanoma cell lines by an average of 41%; however, it failed to inhibit proliferation of VEGFR-2(neg) melanoma cell lines. The growth inhibitory effect of bevacizumab was eliminated by VEGFR-2 knockdown with small interfering RNA, showing that VEGF autocrine growth in melanoma is mediated through VEGFR-2. However, bevacizumab inhibition of autocrine signals did not completely inhibit cell proliferation nor cause cell death. Cell survival is mediated partially through mammalian target of rapamycin (mTOR), which is inhibited by rapamycin. Combination of bevacizumab with rapamycin caused loss of half of the VEGFR-2(+) melanoma cells, but no reduction in the number of VEGFR-2(neg) melanoma cells. The results show (a) an autocrine growth loop active in VEGFR-2(+) melanoma, (b) a nonangiogenic mechanism for inhibition of melanoma by blocking autocrine VEGFR-2 activation, and (c) a possible therapeutic role for combination of inhibitors of mTOR plus VEGF in selected melanomas.
Collapse
Affiliation(s)
- Kerrington R. Molhoek
- Department of Surgery, Division of Surgical Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Heinrich Griesemann
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University Tuebingen, Germany
| | - Jianfen Shu
- Department of Public Health Sciences, Division of Biostatistics and Epidemiology, University of Virginia, Charlottesville, VA, USA
| | - Jeffrey E. Gershenwald
- Departments of Surgical Oncology and Cancer Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - David L. Brautigan
- Center for Cell Signaling, University of Virginia Health System, Charlottesville, VA, USA
| | - Craig L. Slingluff
- Department of Surgery, Division of Surgical Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
32
|
The TAG family of cancer/testis antigens is widely expressed in a variety of malignancies and gives rise to HLA-A2-restricted epitopes. J Immunother 2008; 31:7-17. [PMID: 18157007 DOI: 10.1097/cji.0b013e318159f797] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The TAG-1, TAG-2a, TAG-2b, and TAG-2c cancer/testis genes, known to be expressed in an unusually high percentage of melanoma cell lines, are shown here to be expressed in a variety of tumor lines of diverse histologic type, including cancers of the brain, breast, colon, lung, ovary, pharynx, and tongue. The genes are also expressed in fresh, uncultured melanoma, and ovarian cancer cells. Epitope prediction algorithms were used to identify potential HLA-A1, HLA-A2, HLA-A3, HLA-B7, and HLA-B8 epitopes, and these potential epitopes were tested for their ability to stimulate a peptide-specific cytotoxic T lymphocyte response using lymphocytes from healthy donors. Two HLA-A2-restricted epitopes (SLGWLFLLL and LLLRLECNV) were identified using this approach. Cytotoxic T lymphocytes specific for each of these peptides were capable of recognizing tumor cells expressing both the corresponding class I major histocompatibility complex encoded molecule and the TAG genes. These results indicate that TAG-derived peptides may be good components of a therapeutic vaccine designed to target melanoma and a variety of epithelial cell-derived malignancies.
Collapse
|
33
|
Dunn IS, Haggerty TJ, Kono M, Durda PJ, Butera D, Macdonald DB, Benson EM, Rose LB, Kurnick JT. Enhancement of Human Melanoma Antigen Expression by IFN-β. THE JOURNAL OF IMMUNOLOGY 2007; 179:2134-42. [PMID: 17675472 DOI: 10.4049/jimmunol.179.4.2134] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although many immunotherapeutic investigations have focused on improving the effector limb of the antitumor response, few studies have addressed preventing the loss of tumor-associated Ag (TAA) expression, associated with immune escape by tumors. We found that TAA loss from human melanomas usually results from reversible gene down-regulation, rather than gene deletion or mutation. Previously, we showed that inhibitors of MAPK-signaling pathways up-regulate TAA expression in melanoma cell lines. We have now identified IFN-beta as an additional stimulus to TAA expression, including Melan-A/MART-1, gp100, and MAGE-A1. IFN-beta (but neither IFN-alpha nor IFN-gamma) augmented both protein and mRNA expression of melanocytic TAA in 15 melanoma lines (irrespective of initial Ag-expression levels). Treatment of low Ag melanoma lines with IFN-beta increased expression of melanocyte-lineage Ags, inducing susceptibility to lysis by specific CTLs. Treatment with IFN-beta also enhances expression of class I HLA molecules, thereby inducing both nominal TAA and the presenting HLA molecule. Data from fluorescent cellular reporter systems demonstrated that IFN-beta triggers promoter activation, resulting in augmentation of Ag expression. In addition to enhancing TAA expression in melanomas, IFN-beta also stimulated expression of the melanocytic Ag gp100 in cells of other neural crest-derived tumor lines (gliomas) and certain unrelated tumors. Because IFN-beta is already approved for human clinical use in other contexts, it may prove useful as a cotreatment for augmenting tumor Ag expression during immunotherapy.
Collapse
|
34
|
Abstract
The effectiveness of T-cell-mediated immunotherapy of cancer depends on both an optimal immunostimulatory context of the therapy and the proper selection with respect to quality and quantity of the targeted tumor-associated antigens (TAA), and, more precisely, the T-cell epitopes contained in these tumor proteins. Our progressing insight in human leukocyte antigen (HLA) class I and class II antigen processing and presentation mechanisms has improved the prediction by reverse immunology of novel cytotoxic T lymphocyte and T-helper cell epitopes within known antigens. Computer algorithms that in silico predict HLA class I and class II binding, proteasome cleavage patterns and transporter associated with antigen processing translocation are now available to expedite epitope identification. The advent of genomics allows a high-throughput screening for tumor-specific transcripts and mutations, with that identifying novel shared and unique TAA. The increasing power of mass spectrometry and proteomics will lead to the direct identification from the tumor cell surface of numerous novel tumor-specific HLA class I and class II presented ligands. Together, the expanded repertoire of tumor-specific T-cell epitopes will enable more precise immunomonitoring and the development of effective epitope-defined adoptive T-cell transfer and multi-epitope-based vaccination strategies targeting epitopes derived from a wider diversity of TAA presented in a broader array of HLA molecules.
Collapse
Affiliation(s)
- J H Kessler
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | | |
Collapse
|
35
|
Gomez GG, Kruse CA. Cellular and functional characterization of immunoresistant human glioma cell clones selected with alloreactive cytotoxic T lymphocytes reveals their up-regulated synthesis of biologically active TGF-beta. J Immunother 2007; 30:261-73. [PMID: 17414317 PMCID: PMC1894900 DOI: 10.1097/01.cji.0000211339.81211.25] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two immunoresistant (IR) glioma cell variants, 13-06-IR29 and 13-06-IR30, were cloned from 13-06-MG glioma cell populations after receiving continuous immunoselective pressure from multiple alloreactive cytotoxic T lymphocyte (aCTL) preparations. Reapplication of aCTL immunoselective pressure to the IR clones, displaying a partial regain in sensitivity to aCTL after removal of the selective pressure, restored the resistance. The IR variants exhibited cross-resistance to non-human leukocyte antigen (HLA)-restricted effector cells and gamma-irradiation, but not to carmustine. The IR clones were characterized for factors that might contribute to the immunoresistance. The aCTL adhesion to extracellular matrix extracts derived from either the IR clones or the parental cells was similar and not impaired. Furthermore, aCTL binding to parental cells and IR clones was equal. Down-regulation of the cell recognition molecules, class I HLA or intercellular adhesion molecule-1 (ICAM-1), that would inhibit their recognition by aCTL was not observed on the IR clones. The down-regulation of Fas by the IR clones correlated with their resistance to FasL-induced apoptosis. HLA-G or FasL that might provide an immunotolerant environment or provide a means of counterattack to aCTL, respectively, were not associated with the IR phenotype. The aCTL, coincubated with the IR clones and parental cells, displayed up-regulation of multiple secreted cytokines. A significant up-regulation of bioactive transforming growth factor (TGF)-beta was observed in the IR clones compared with the parental cells. These data suggest that increased secretion of bioactive TGF-beta may inhibit aCTL lysis of the IR clones. Disruption of the TGF-beta signaling pathway may circumvent the resistance.
Collapse
Affiliation(s)
- German G. Gomez
- Department of Pathology, University of Colorado Health Sciences Center, Denver, CO
| | - Carol A. Kruse
- Division of Cancer Biology and Brain Tumor Research Program, The La Jolla Institute for Molecular Medicine, San Diego, CA
| |
Collapse
|
36
|
Abstract
The most commonly used melanocytic markers are S100, HMB45, Melan-A, or MART-1 and tyrosinase. Melanoma with complete, concordant loss of these markers has not been reported. We report a case of metastatic melanoma with complete loss of staining for S100, HMB45, Melan-A, and tyrosinase. Interestingly, both the primary melanoma and its metastasis were strongly positive for CD99.
Collapse
Affiliation(s)
- Zhenqiang Gao
- Department of Pathology, Albert Einstein College of Medicine North Shore Long Island Jewish Health System, New Hyde Park, NY 11040, USA
| | | | | |
Collapse
|
37
|
Laust AK, Sur BW, Wang K, Hubby B, Smith JF, Nelson EL. VRP immunotherapy targeting neu: treatment efficacy and evidence for immunoediting in a stringent rat mammary tumor model. Breast Cancer Res Treat 2007; 106:371-82. [PMID: 17351745 DOI: 10.1007/s10549-007-9517-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 01/07/2007] [Indexed: 10/23/2022]
Abstract
The ability to overcome intrinsic tolerance to a strict "self" tumor-associated antigen (TAA) and successfully treat pre-existing tumor is the most stringent test for anti-tumor immunotherapeutic strategies. Although this capacity has been demonstrated in various models using complicated strategies that may not be readily translated into the clinical arena, straightforward antigen-specific immunotherapeutic strategies in the most stringent models of common epithelial cancers have largely failed to meet this standard. We employed an immunotherapeutic strategy using an alphavirus-based, virus-like replicon particle (VRP), which has in vivo tropism for dendritic cells, to elicit immune responses to the non-mutated TAA rat neu in an aggressive rat mammary tumor model. Using this VRP-based immunotherapeutic strategy targeting a single TAA, we generated effective anti-tumor immunity in the setting of pre-existing tumor resulting in the cure of 36% of rats over multiple experiments, P = 0.002. We also observed down-regulation of rat neu expression in tumors that showed initial responses followed by tumor escape with resumption of rapid tumor growth. These responses were accompanied by significant anti-tumor proliferative responses and CD8+ cellular tumor infiltrates, all of which were restricted to animals receiving the anti-neu immunotherapy. Together these data, obtained in a stringent "self" TAA model, indicate that the VRP-based antigen-specific immunotherapy elicits sufficiently potent immune responses to exert immunologic pressure, selection, and editing of the growing tumors, thus supporting the activity of this straightforward immunotherapy and suggesting that it is a promising platform upon which to build even more potent strategies.
Collapse
Affiliation(s)
- Amanda K Laust
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
38
|
Ohashi N, Yaar M, Eller MS, Truzzi F, Gilchrest BA. Features that determine telomere homolog oligonucleotide-induced therapeutic DNA damage-like responses in cancer cells. J Cell Physiol 2007; 210:582-95. [PMID: 17133364 DOI: 10.1002/jcp.20848] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is the second leading cause of death in the USA, with metastatic disease proving a particular management challenge. Treatment modalities for patients with metastatic disease are limited, and survival beyond 5 years is uncommon. We have reported that an 11-base DNA oligonucleotide 100% homologous to the telomere 3' overhang can induce apoptosis, senescence and/or differentiation of several types of malignant cells in vitro and in vivo, while having minimal effect on normal cells. We now report that 22 oligonucleotides, 9-20 bases in length, with or without a 5' phosphate group and with varying homology (40-100%) to the 3' overhang, inhibit growth and induce apoptosis of human cell lines derived from breast cancers, pancreatic and ovarian carcinomas, and malignant melanoma, lines that lack p53 and/or p16 and harbor a variety of other abnormalities in key regulatory signaling pathways. Cytosine (C) content adversely affected oligonucleotide efficacy, decreasing their effect on cellular apoptosis by > or =80%. These data confirm and expand our earlier work suggesting that such telomere homolog oligonucleotides (T-oligos) target an innate anti-cancer defense system in human cells and may provide an effective treatment for cancers of multiple different cellular origins and genetic profile.
Collapse
Affiliation(s)
- Norio Ohashi
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118-2394, USA
| | | | | | | | | |
Collapse
|
39
|
Morandi F, Chiesa S, Bocca P, Millo E, Salis A, Solari M, Pistoia V, Prigione I. Tumor mRNA-transfected dendritic cells stimulate the generation of CTL that recognize neuroblastoma-associated antigens and kill tumor cells: immunotherapeutic implications. Neoplasia 2006; 8:833-42. [PMID: 17032500 PMCID: PMC1715922 DOI: 10.1593/neo.06415] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several observations suggest a potential role of T-cell-mediated immunity in the control of neuroblastoma (NB). However, the generation of NB-specific cytotoxic T lymphocytes (CTL) on T-cell priming with tumor mRNA-transfected dendritic cells (DC) has never been investigated before. In the present study, the feasibility of this strategy has been analyzed, both in healthy donors and in NB patients. Monocyte-derived DC were raised from three human leukocyte antigen (HLA) A2+ NB patients and seven HLA-A1+ or HLA-A2+ healthy donors transfected with mRNA from four NB cell lines and cocultured with autologous CD8+ lymphocytes. Expanded CTL expressed an effector/memory phenotype and a T cytotoxic 1-like profile of cytokine secretion. CTL specificity was demonstrated by interferon-gamma release on incubation with HLA-matched NB cell lines. The latter cell lines, but not autologous T-cell blasts, were lysed by CTL in an HLA-restricted manner. Cytotoxicity was found to involve the release of granzyme B. When tested for reactivity against NB-associated antigens, CTL from normal individuals recognized anaplastic lymphoma-associated kinase (ALK) and preferentially expressed antigen of melanoma (PRAME) peptides only, whereas patients' CTL reacted also to survivin, telomerase, and tyrosine hydroxylase peptides. This study demonstrates that DC transfected with NB mRNA induce the generation of patients' CTL specific for different NB-associated antigens, supporting the feasibility of NB T-cell immunotherapy.
Collapse
Affiliation(s)
- Fabio Morandi
- Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kono M, Dunn IS, Durda PJ, Butera D, Rose LB, Haggerty TJ, Benson EM, Kurnick JT. Role of the Mitogen-Activated Protein Kinase Signaling Pathway in the Regulation of Human Melanocytic Antigen Expression. Mol Cancer Res 2006; 4:779-92. [PMID: 17050671 DOI: 10.1158/1541-7786.mcr-06-0077] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heterogeneous expression of melanocytic antigens occurs frequently in melanomas and represents a potent barrier to immunotherapy. We previously showed that coordinated losses of several melanocytic antigens are generally attributable to down-regulation of antigen gene expression rather than irreversible mutation. Treatment of melanoma cells with mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitors blocks ERK activation and increases steady-state levels of mRNAs and corresponding protein expression for the melanocytic antigens Melan-A/MART-1, gp100, and tyrosinase. Although the degree of MEK inhibitor enhancement of antigen expression varied among different cell lines irrespective of their antigen expression status, all showed detectable responses. Notably, the antigen-enhancing effects of the MEK inhibitors could not be attributed to the master melanocytic regulator MITF-M. Because MAPK pathway activation via constitutively active mutant forms of BRAF is common in melanomas, correlation between BRAF function and antigen expression was investigated. No simple correlation of endogenous BRAF mutational status and antigen levels was observed, but transient overexpression of V600E BRAF increased ERK activation and reduced Melan-A/MART-1 levels in antigen-positive cell lines. These data indicate that whereas multiple factors may regulate antigen expression in melanomas, enhancement of MAPK signaling can act as a negative influence. Blocking such signaling with MEK inhibitors accordingly augments antigen levels, thereby enhancing Melan-A/MART-1-specific cytotoxic T-cell responses to antigen-negative cells following MEK inhibition treatment. Consequently, MAPK inhibition may assist targeting of melanomas for immunotherapy.
Collapse
Affiliation(s)
- Michihiro Kono
- Department of Pathology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Altrich-VanLith ML, Ostankovitch M, Polefrone JM, Mosse CA, Shabanowitz J, Hunt DF, Engelhard VH. Processing of a Class I-Restricted Epitope from Tyrosinase Requires Peptide N-Glycanase and the Cooperative Action of Endoplasmic Reticulum Aminopeptidase 1 and Cytosolic Proteases. THE JOURNAL OF IMMUNOLOGY 2006; 177:5440-50. [PMID: 17015730 DOI: 10.4049/jimmunol.177.8.5440] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although multiple components of the class I MHC processing pathway have been elucidated, the participation of nonproteasomal cytosolic enzymes has been largely unexplored. In this study, we provide evidence for multiple cytosolic mechanisms in the generation of an HLA-A*0201-associated epitope from tyrosinase. This epitope is presented in two isoforms containing either Asn or Asp, depending on the structure of the tyrosinase precursor. We show that deamidation of Asn to Asp is dependent on glycosylation in the endoplasmic reticulum (ER), and subsequent deglycosylation by peptide-N-glycanase in the cytosol. Epitope precursors with N-terminal extensions undergo a similar process. This is linked to an inability of ER aminopeptidase 1 to efficiently remove N-terminal residues, necessitating processing by nonproteasomal peptidases in the cytosol. Our work demonstrates that processing of this tyrosinase epitope involves recycling between the ER and cytosol, and an obligatory interplay between enzymes involved in proteolysis and glycosylation/deglycosylation located in both compartments.
Collapse
Affiliation(s)
- Michelle L Altrich-VanLith
- Carter Immunology Center and Department of Microbiology, University of Virginia, Charlottesville, VA 22908-1386, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Choudhury A, Mosolits S, Kokhaei P, Hansson L, Palma M, Mellstedt H. Clinical results of vaccine therapy for cancer: learning from history for improving the future. Adv Cancer Res 2006; 95:147-202. [PMID: 16860658 DOI: 10.1016/s0065-230x(06)95005-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Active, specific immunotherapy for cancer holds the potential of providing an approach for treating cancers, which have not been controlled by conventional therapy, with very little or no associated toxicity. Despite advances in the understanding of the immunological basis of cancer vaccine therapy as well as technological progress, clinical effectiveness of this therapy has often been frustratingly unpredictable. Hundreds of preclinical and clinical studies have been performed addressing issues related to the generation of a therapeutic immune response against tumors and exploring a diverse array of antigens, immunological adjuvants, and delivery systems for vaccinating patients against cancer. In this chapter, we have summarized a number of clinical trials performed in various cancers with focus on the clinical outcome of vaccination therapy. We have also attempted to draw objective inferences from the published data that may influence the clinical effectiveness of vaccination approaches against cancer. Collectively the data indicate that vaccine therapy is safe, and no significant autoimmune reactions are observed even on long term follow-up. The design of clinical trials have not yet been optimized, but meaningful clinical effects have been seen in B-cell malignancies, lung, prostate, colorectal cancer, and melanoma. It is also obvious that patients with limited disease or in the adjuvant settings have benefited most from this targeted therapy approach. It is imperative that future studies focus on exploring the relationship between immune and clinical responses to establish whether immune monitoring could be a reliable surrogate marker for evaluating the clinical efficacy of cancer vaccines.
Collapse
Affiliation(s)
- Aniruddha Choudhury
- Department of Oncology, Cancer Centre Karolinska, Karolinska University, Hospital Solna, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
43
|
Zarling AL, Polefrone JM, Evans AM, Mikesh LM, Shabanowitz J, Lewis ST, Engelhard VH, Hunt DF. Identification of class I MHC-associated phosphopeptides as targets for cancer immunotherapy. Proc Natl Acad Sci U S A 2006; 103:14889-94. [PMID: 17001009 PMCID: PMC1595446 DOI: 10.1073/pnas.0604045103] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alterations in phosphorylation of cellular proteins are a hallmark of malignant transformation. Degradation of these phosphoproteins could generate cancer-specific class I MHC-associated phosphopeptides recognizable by CD8+ T lymphocytes. In a comparative analysis of phosphopeptides presented on the surface of melanoma, ovarian carcinoma, and B lymphoblastoid cells, we find 5 of 36 that are restricted to the solid tumors and common to both cancers. Differential presentation of these peptides can result from differential phosphorylation of the source proteins. Recognition of the peptides on cancer cells by phosphopeptide-specific CD8+ T lymphocytes validates the potential of these phosphopeptides as immunotherapeutic targets.
Collapse
Affiliation(s)
- Angela L. Zarling
- Beirne B. Carter Immunology Center and Department of Microbiology and
| | - Joy M. Polefrone
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901
| | - Anne M. Evans
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901
| | - Leann M. Mikesh
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901
| | | | - Sarah T. Lewis
- Beirne B. Carter Immunology Center and Department of Microbiology and
| | | | - Donald F. Hunt
- Department of Pathology, University of Virginia, Charlottesville, VA 22908; and
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Trefzer U, Hofmann M, Reinke S, Guo YJ, Audring H, Spagnoli G, Sterry W. Concordant loss of melanoma differentiation antigens in synchronous and asynchronous melanoma metastases: implications for immunotherapy. Melanoma Res 2006; 16:137-45. [PMID: 16567969 DOI: 10.1097/01.cmr.0000200489.55099.20] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Because of its known heterogeneity, the analysis of antigen expression is crucial prior to the initiation of antigen-specific immunotherapy for melanoma. The melanoma differentiation antigens gp100, MART-1 and tyrosinase are involved in a common pathway of melanin synthesis. Peptides derived from these melanoma differentiation antigens are used in the immunotherapy of melanoma and antibodies recognizing these antigens are commonly applied to detect melanocytic lesions. One hundred and ninety-one paraffin-embedded melanoma metastases from 28 patients with 2-19 lesions (mean, 6.8) developing synchronously (n = 67) or asynchronously (n = 124) were analysed by immunohistochemistry for the expression of the melanoma differentiation antigens, as well as cancer/testis antigens of the melanoma antigen-A (MAGE-A) family (monoclonal antibodies 77B and 57B), anti-S100 and SM5-1. The overall reactivities were 81.6% (gp100), 79.5% (MART-1), 59.6% (tyrosinase), 59.1% (77B), 60.7% (57B), 93.2% (S100) and 91.6% (SM5-1). Twenty-seven lesions (14.1%) were positive for all tumour-associated antigens, 75 lesions (39.2%) were negative for one antigen and 87 lesions (45.5%) were negative for several tumour-associated antigens. Co-ordinated loss was found for lesions negative for gp100 and MART-1 (9.4%, P < 0.0005), gp100 and tyrosinase (11.0%, P = 0.009), MART-1 and tyrosinase (15.2%, P < 0.0005) and gp100, MART-1 and tyrosinase (8.9%, P < 0.0005), which is up to six times higher than the expected calculated loss. This co-ordinated loss of melanoma differentiation antigens in melanoma did not include cancer testis antigens and S100 or SM5-1. On average, the melanoma differentiation antigens stained 50-65% of cells within a lesion, and 10-39% of synchronous clusters were heterogeneous for melanoma differentiation antigen expression. In conclusion, broader polypeptide vaccines should be used for melanoma immunotherapy.
Collapse
Affiliation(s)
- Uwe Trefzer
- Department of Dermatology and Allergy, Skin Cancer Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Gomez GG, Varella-Garcia M, Kruse CA. Isolation of immunoresistant human glioma cell clones after selection with alloreactive cytotoxic T lymphocytes: cytogenetic and molecular cytogenetic characterization. ACTA ACUST UNITED AC 2006; 165:121-34. [PMID: 16527606 PMCID: PMC1447520 DOI: 10.1016/j.cancergencyto.2005.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 07/26/2005] [Accepted: 08/01/2005] [Indexed: 01/01/2023]
Abstract
Intratumoral heterogeneity and genetic instability within gliomas may allow intrinsically immunoresistant (IR) cells to escape alloreactive cytotoxic T lymphocyte (aCTL) cellular immunotherapy. The potential existence of aCTL-resistant variants prompted us to investigate whether cellular immunotherapy resistant glioma models could be isolated. To generate the models, repeated intermittent or continuous selective pressure (ISP or CSP) with multiple aCTL populations was applied to a low-passage glioblastoma cell explant, 13-06-MG, obtained from a patient at initial diagnosis. IL-6 and IL-8 secretion was greater in coincubates of aCTL cells with 13-06-ISP and 13-06-CSP immunoselected cells than those with 13-06-MG parental cells. Initially, the immunoselected cells were less sensitive to aCTL lysis; however, the reduced aCTL-sensitivity was not maintained upon further selection. We therefore isolated IR clones from continuously immunoselected cells (13-06-CSP). The frequency of IR clones was 1-6 cells per 10,000 immunoselected cells. Two clones selected for further study, 13-06-IR29 and 13-06-IR30, resisted aCTL lysis in the absence of immunoselective pressure. Cytogenetic analyses revealed structural anomalies and genomic imbalances unique to the IR clones. Based on these findings, a hypothetical model is proposed that traces the origin of the IR clones to a clonal variant within the 13-06-CSP and 13-06-MG populations.
Collapse
Affiliation(s)
- German G. Gomez
- Department of Pathology, University of Colorado Health Sciences Center, Denver, CO 80262
| | | | - Carol A. Kruse
- Division of Cancer Biology and Brain Tumor Research Program, La Jolla Institute for Molecular Medicine, 4570 Executive Boulevard, Suite 100, San Diego, CA 92121
- * Corresponding author. Tel.: (858) 587-8788 ext. 142; fax: (858) 587-6742. E-mail address: (C.A. Kruse)
| |
Collapse
|
46
|
Reinke S, Königer P, Herberth G, Audring H, Wang H, Ma J, Guo Y, Sterry W, Trefzer U. Differential expression of MART-1, tyrosinase, and SM5-1 in primary and metastatic melanoma. Am J Dermatopathol 2005; 27:401-6. [PMID: 16148409 DOI: 10.1097/01.dad.0000180076.17932.ee] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The new monoclonal antibody SM5-1 has been shown to have significant advantages in immunohistochemistry of melanoma over currently used antibodies such as HMB-45 or anti-S100. In this study we compared the immunohistological staining pattern of SM5-1 with that of the more recently described antibodies A103 (anti-MART-1) and T311 (anti-Tyrosinase) in 344 paraffin-embedded melanoma specimens, consisting of 101 primary melanomas (77 SSM, 16 NM, 6 ALM, 2 LMM) and 243 melanoma metastases. The overall reactivity of SM5-1 for all the specimens was 92% (318/344) compared with 83% (285/344) for MART-1 and 71% (245/344) for Tyrosinase. Staining of melanoma metastases with SM5-1 was found in 91% (222/243), but only in 77% (187/243) with A103 and 63% (154/243) with T311, respectively. Staining with SM5-1 was more homogenous with 196 of 243 (80%) of metastatic lesions showing 50% or more positively stained cells within the lesions, whereas A103 and T311 did so in 141 of 243 (58%) or 117 of 243 (48%) of the lesions. With regard to staining intensity of SM5-1, 157 of 243 (64%) showed a strong or very strong staining intensity, whereas A103 and T311 did so in 85 of 243 (35%) or 70 of 243 (29%) of the lesions. Staining intensity and percentage positivity correlated well for SM5-1, because from the 58 very strong positive metastases 55 showed staining in more than 75% of the cells within a lesion. Importantly, 52 of 56 MART-1-negative metastases and 81 of 89 Tyrosinase-negative metastases were positive for SM5-1. Thirty-eight metastases (15.6%) were negative for both A103 and T311. Of those, 35 (92.1%) were positive for SM5-1, demonstrating the value of SM5-1 in identifying melanoma-associated antigen-negative lesions. We conclude that SM5-1 could be of value in immunohistochemistry of melanoma.
Collapse
Affiliation(s)
- Susanne Reinke
- Department of Dermatology and Allergy, Skin Cancer Centre, Charité-Universitaetsmedizin Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Carralot JP, Weide B, Schoor O, Probst J, Scheel B, Teufel R, Hoerr I, Garbe C, Rammensee HG, Pascolo S. Production and characterization of amplified tumor-derived cRNA libraries to be used as vaccines against metastatic melanomas. GENETIC VACCINES AND THERAPY 2005; 3:6. [PMID: 16115316 PMCID: PMC1215502 DOI: 10.1186/1479-0556-3-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 08/22/2005] [Indexed: 01/11/2023]
Abstract
Background Anti-tumor vaccines targeting the entire tumor antigen repertoire represent an attractive immunotherapeutic approach. In the context of a phase I/II clinical trial, we vaccinated metastatic melanoma patients with autologous amplified tumor mRNA. In order to provide the large quantities of mRNA needed for each patient, the Stratagene Creator™ SMART™ cDNA library construction method was modified and applied to produce libraries derived from the tumors of 15 patients. The quality of those mRNA library vaccines was evaluated through sequencing and microarray analysis. Results Random analysis of bacterial clones of the library showed a rate of 95% of recombinant plasmids among which a minimum of 51% of the clones contained a full-Open Reading Frame. In addition, despite a biased amplification toward small abundant transcripts compared to large rare fragments, we could document a relatively conserved gene expression profile between the total RNA of the tumor of origin and the corresponding in vitro transcribed complementary RNA (cRNA). Finally, listing the 30 most abundant transcripts of patient MEL02's library, a large number of tumor associated antigens (TAAs) either patient specific or shared by several melanomas were found. Conclusion Our results show that unlimited amounts of cRNA representing tumor's transcriptome could be obtained and that this cRNA was a reliable source of a large variety of tumor antigens.
Collapse
Affiliation(s)
- Jean-Philippe Carralot
- CureVac, Paul Ehrlich Strasse 15, 72076 Tübingen, Germany
- University of Tübingen, Institute for Cell Biology, Department of Immunology; Auf der Morgenstelle 15; 72076 Tübingen, Germany
| | - Benjamin Weide
- Section for Dermatological Oncology, Tübingen University Hospital, Liebermeisterstraße 25, 72076 Tübingen, Germany
| | - Oliver Schoor
- University of Tübingen, Institute for Cell Biology, Department of Immunology; Auf der Morgenstelle 15; 72076 Tübingen, Germany
| | - Jochen Probst
- CureVac, Paul Ehrlich Strasse 15, 72076 Tübingen, Germany
- University of Tübingen, Institute for Cell Biology, Department of Immunology; Auf der Morgenstelle 15; 72076 Tübingen, Germany
| | - Birgit Scheel
- CureVac, Paul Ehrlich Strasse 15, 72076 Tübingen, Germany
| | - Regina Teufel
- CureVac, Paul Ehrlich Strasse 15, 72076 Tübingen, Germany
| | - Ingmar Hoerr
- CureVac, Paul Ehrlich Strasse 15, 72076 Tübingen, Germany
| | - Claus Garbe
- Section for Dermatological Oncology, Tübingen University Hospital, Liebermeisterstraße 25, 72076 Tübingen, Germany
| | - Hans-Georg Rammensee
- University of Tübingen, Institute for Cell Biology, Department of Immunology; Auf der Morgenstelle 15; 72076 Tübingen, Germany
| | - Steve Pascolo
- CureVac, Paul Ehrlich Strasse 15, 72076 Tübingen, Germany
- University of Tübingen, Institute for Cell Biology, Department of Immunology; Auf der Morgenstelle 15; 72076 Tübingen, Germany
| |
Collapse
|
48
|
Yamshchikov GV, Mullins DW, Chang CC, Ogino T, Thompson L, Presley J, Galavotti H, Aquila W, Deacon D, Ross W, Patterson JW, Engelhard VH, Ferrone S, Slingluff CL. Sequential Immune Escape and Shifting of T Cell Responses in a Long-Term Survivor of Melanoma. THE JOURNAL OF IMMUNOLOGY 2005; 174:6863-71. [PMID: 15905528 DOI: 10.4049/jimmunol.174.11.6863] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immune-mediated control of tumors may occur, in part, through lysis of malignant cells by CD8(+) T cells that recognize specific Ag-HLA class I complexes. However, tumor cell populations may escape T cell responses by immune editing, by preventing formation of those Ag-HLA complexes. It remains unclear whether the human immune system can respond to immune editing and recognize newly arising escape variants. We report an example of shifting immune responses to escape variants in a patient with sequential metastases of melanoma and long-term survival after surgery alone. Tumor cells in the first metastasis escaped immune recognition via selective loss of an HLA haplotype (HLA-A11, -B44, and -Cw17), but maintained expression of HLA-A2. In the second metastasis, immune escape from an immunodominant MART-1-specific T cell response was mediated by HLA class I down-regulation, resulting in a failure to present this epitope, but persistent presentation of a tyrosinase-derived epitope. Consequent to this modification in tumor Ag presentation, the dominant CTL response shifted principally toward a tyrosinase-targeted response, even though tyrosinase-specific CTL had been undetectable during the initial metastatic event. Thus, in response to immune editing of tumor cells, a patient's spontaneous T cell response adapted, gaining the ability to recognize and to lyse "edited" tumor targets. The observation of both immune editing and immune adaptation in a patient with long-term survival after surgery alone demonstrates an example of immune system reactivity to counteract the escape mechanism(s) developed by tumor cells, which may contribute to the clinical outcome of malignant disease.
Collapse
|
49
|
Chianese-Bullock KA, Pressley J, Garbee C, Hibbitts S, Murphy C, Yamshchikov G, Petroni GR, Bissonette EA, Neese PY, Grosh WW, Merrill P, Fink R, Woodson EMH, Wiernasz CJ, Patterson JW, Slingluff CL. MAGE-A1-, MAGE-A10-, and gp100-derived peptides are immunogenic when combined with granulocyte-macrophage colony-stimulating factor and montanide ISA-51 adjuvant and administered as part of a multipeptide vaccine for melanoma. THE JOURNAL OF IMMUNOLOGY 2005; 174:3080-6. [PMID: 15728523 DOI: 10.4049/jimmunol.174.5.3080] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Twelve peptides derived from melanocyte differentiation proteins and cancer-testis Ags were combined and administered in a single mixture to patients with resected stage IIB, III, or IV melanoma. Five of the 12 peptides included in this mixture had not previously been evaluated for their immunogenicity in vivo following vaccination. We report in this study that at least three of these five peptides (MAGE-A1(96-104), MAGE-A10(254-262), and gp100(614-622)) are immunogenic when administered with GM-CSF in Montanide ISA-51 adjuvant. T cells secreting IFN-gamma in response to peptide-pulsed target cells were detected in peripheral blood and in the sentinel immunized node, the node draining a vaccine site, after three weekly injections. The magnitude of response typically reached a maximum after two vaccines, and though sometimes diminished thereafter, those responses typically were still detectable 6 wks after the last vaccines. Most importantly, tumor cell lines expressing the appropriate HLA-A restriction element and MAGE-A1, MAGE-A10, or gp100 proteins were lysed by corresponding CTL. This report supports the continued use of the MAGE-A1(96-104), MAGE-A10(254-262), and gp100(614-622) epitopes in peptide-based melanoma vaccines and thus expands the list of immunogenic peptide Ags available for human use. Cancer-testis Ags are expressed in multiple types of cancer; thus the MAGE-A1(96-104) and MAGE-A10(254-262) peptides may be considered for inclusion in vaccines against cancers of other histologic types, in addition to melanoma.
Collapse
Affiliation(s)
- Kimberly A Chianese-Bullock
- Department of Surgery/Division of Surgical Oncology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ostankovitch M, Robila V, Engelhard VH. Regulated folding of tyrosinase in the endoplasmic reticulum demonstrates that misfolded full-length proteins are efficient substrates for class I processing and presentation. THE JOURNAL OF IMMUNOLOGY 2005; 174:2544-51. [PMID: 15728460 DOI: 10.4049/jimmunol.174.5.2544] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Short-lived protein translation products have been proposed to be the principal substrates that enter the class I MHC processing and presentation pathway. However, the biochemical nature of these substrates is poorly defined. Whether the major processing substrates are misfolded full-length proteins, or alternatively, aberrantly initiated or truncated polypeptides still remains to be addressed. To examine this, we used melanoma in which one-third of wild-type tyrosinase molecules were correctly folded and localized beyond the Golgi, while the remainder were present in the endoplasmic reticulum in an unfolded/misfolded state. Increasing the efficiency of tyrosinase folding using chemical chaperones led to a reduction in the level of substrate available to the proteasome and decreased the expression of a tyrosinase-derived epitope. Conversely, in transfectants expressing tyrosinase mutants that are completely misfolded, both proteasome substrate and epitope presentation were significantly enhanced. Proteasome substrate availability was a consequence of misfolding and not simply due to retention in the endoplasmic reticulum. Thus, the extent of folding/misfolding of a full-length protein is an important determinant of the level of epitope presentation.
Collapse
Affiliation(s)
- Marina Ostankovitch
- Carter Immunology Center and Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|