1
|
Higashi Y, Dashek R, Delafontaine P, Rector RS, Chandrasekar B. EF24, a Curcumin Analog, Reverses Interleukin-18-Induced miR-30a or miR-342-Dependent TRAF3IP2 Expression, RECK Suppression, and the Proinflammatory Phenotype of Human Aortic Smooth Muscle Cells. Cells 2024; 13:1673. [PMID: 39451191 PMCID: PMC11505909 DOI: 10.3390/cells13201673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Curcumin, a polyphenolic compound derived from the widely used spice Curcuma longa, has shown anti-atherosclerotic effects in animal models and cultured vascular cells. Inflammation is a major contributor to atherosclerosis development and progression. We previously reported that the induction of the proinflammatory molecule TRAF3IP2 (TRAF3 Interacting Protein 2) or inhibition of the matrix metallopeptidase (MMP) regulator RECK (REversion Inducing Cysteine Rich Protein with Kazal Motifs) contributes to pro-oxidant, proinflammatory, pro-mitogenic and pro-migratory effects in response to external stimuli in vascular smooth muscle cells. Here we hypothesized that EF24, a curcumin analog with a better bioavailability and bioactivity profile, reverses interleukin (IL)-18-induced TRAF3IP2 induction, RECK suppression and the proinflammatory phenotype of primary human aortic smooth muscle cells (ASMC). The exposure of ASMC to functionally active recombinant human IL-18 (10 ng/mL) upregulated TRAF3IP2 mRNA and protein expression, but markedly suppressed RECK in a time-dependent manner. Further investigations revealed that IL-18 inhibited both miR-30a and miR-342 in a p38 MAPK- and JNK-dependent manner, and while miR-30a mimic blunted IL-18-induced TRAF3IP2 expression, miR-342 mimic restored RECK expression. Further, IL-18 induced ASMC migration, proliferation and proinflammatory phenotype switching, and these effects were attenuated by TRAF3IP2 silencing, and the forced expression of RECK or EF24. Together, these results suggest that the curcumin analog EF24, either alone or as an adjunctive therapy, has the potential to delay the development and progression of atherosclerosis and other vascular inflammatory and proliferative diseases by differentially regulating TRAF3IP2 and RECK expression in ASMC.
Collapse
Affiliation(s)
- Yusuke Higashi
- Medicine/Cardiology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Ryan Dashek
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA; (R.D.); (R.S.R.)
- Comparative Medicine Program, University of Missouri, Columbia, MO 65211, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65201, USA
| | - Patrice Delafontaine
- Medicine/Cardiology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Randy Scott Rector
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA; (R.D.); (R.S.R.)
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65201, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65201, USA
| | - Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA
- Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65201, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65201, USA
- Dalton Cardiovascular Center, University of Missouri, Columbia, MO 65203, USA
| |
Collapse
|
2
|
Zhang Y, Liu J, Zheng R, Hou K, Zhang Y, Jia T, Lu X, Samarawickrama PN, Jia S, He Y, Liu J. Curcumin analogue EF24 prevents alveolar epithelial cell senescence to ameliorate idiopathic pulmonary fibrosis via activation of PTEN. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155882. [PMID: 39096545 DOI: 10.1016/j.phymed.2024.155882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/16/2024] [Accepted: 07/13/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Treating Idiopathic pulmonary fibrosis (IPF) remains challenging owing to its relentless progression, grim prognosis, and the scarcity of effective treatment options. Emerging evidence strongly supports the critical role of accelerated senescence in alveolar epithelial cells (AECs) in driving the progression of IPF. Consequently, targeting senescent AECs emerges as a promising therapeutic strategy for IPF. PURPOSE Curcumin analogue EF24 is a derivative of curcumin and shows heightened bioactivity encompassing anti-inflammatory, anti-tumor and anti-aging properties. The objective of this study was to elucidate the therapeutic potential and underlying molecular mechanisms of EF24 in the treatment of IPF. METHODS A549 and ATII cells were induced to become senescent using bleomycin. Senescence markers were examined using different methods including senescence-associated β-galactosidase (SA-β-gal) staining, western blotting, and q-PCR. Mice were intratracheally administrated with bleomycin to induce pulmonary fibrosis. This was validated by micro-computed tomography (CT), masson trichrome staining, and transmission electron microscope (TEM). The role and underlying mechanisms of EF24 in IPF were determined in vitro and in vivo by evaluating the expressions of PTEN, AKT/mTOR/NF-κB signaling pathway, and mitophagy using western blotting or flow cytometry. RESULTS We identified that the curcumin analogue EF24 was the most promising candidate among 12 compounds against IPF. EF24 treatment significantly reduced senescence biomarkers in bleomycin-induced senescent AECs, including SA-β-Gal, PAI-1, P21, and the senescence-associated secretory phenotype (SASP). EF24 also effectively inhibited fibroblast activation which was induced by senescent AECs or TGF-β. We revealed that PTEN activation was integral for EF24 to inhibit AECs senescence by suppressing the AKT/mTOR/NF-κB signaling pathway. Additionally, EF24 improved mitochondrial dysfunction through induction of mitophagy. Furthermore, EF24 administration significantly reduced the senescent phenotype induced by bleomycin in the lung tissues of mice. Notably, EF24 mitigates fibrosis and promotes overall health benefits in both the acute and chronic phases of IPF, suggesting its therapeutic potential in IPF treatment. CONCLUSION These findings collectively highlight EF24 as a new and effective therapeutic agent against IPF by inhibiting senescence in AECs.
Collapse
Affiliation(s)
- Yanghuan Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jiahua Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Runzi Zheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Kailong Hou
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yanduo Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Tongxin Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xiyi Lu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, PR China; Key Laboratory of Genetic Evolution & Animal Models,Chinese Academy of Sciences, Kunming 650201, PR China; University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Shuting Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Yonghan He
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, PR China; Key Laboratory of Genetic Evolution & Animal Models,Chinese Academy of Sciences, Kunming 650201, PR China.
| | - Jing Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
3
|
Sazdova I, Keremidarska-Markova M, Dimitrova D, Mitrokhin V, Kamkin A, Hadzi-Petrushev N, Bogdanov J, Schubert R, Gagov H, Avtanski D, Mladenov M. Anticarcinogenic Potency of EF24: An Overview of Its Pharmacokinetics, Efficacy, Mechanism of Action, and Nanoformulation for Drug Delivery. Cancers (Basel) 2023; 15:5478. [PMID: 38001739 PMCID: PMC10670065 DOI: 10.3390/cancers15225478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
EF24, a synthetic monocarbonyl analog of curcumin, shows significant potential as an anticancer agent with both chemopreventive and chemotherapeutic properties. It exhibits rapid absorption, extensive tissue distribution, and efficient metabolism, ensuring optimal bioavailability and sustained exposure of the target tissues. The ability of EF24 to penetrate biological barriers and accumulate at tumor sites makes it advantageous for effective cancer treatment. Studies have demonstrated EF24's remarkable efficacy against various cancers, including breast, lung, prostate, colon, and pancreatic cancer. The unique mechanism of action of EF24 involves modulation of the nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways, disrupting cancer-promoting inflammation and oxidative stress. EF24 inhibits tumor growth by inducing cell cycle arrest and apoptosis, mainly through inhibiting the NF-κB pathway and by regulating key genes by modulating microRNA (miRNA) expression or the proteasomal pathway. In summary, EF24 is a promising anticancer compound with a unique mechanism of action that makes it effective against various cancers. Its ability to enhance the effects of conventional therapies, coupled with improvements in drug delivery systems, could make it a valuable asset in cancer treatment. However, addressing its solubility and stability challenges will be crucial for its successful clinical application.
Collapse
Affiliation(s)
- Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1504 Sofia, Bulgaria; (I.S.); (M.K.-M.); (H.G.)
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1504 Sofia, Bulgaria; (I.S.); (M.K.-M.); (H.G.)
| | - Daniela Dimitrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia; (V.M.); (A.K.)
| | - Andre Kamkin
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia; (V.M.); (A.K.)
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| | - Jane Bogdanov
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| | - Rudolf Schubert
- Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätsstrasse 2, 86159 Augsburg, Germany;
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1504 Sofia, Bulgaria; (I.S.); (M.K.-M.); (H.G.)
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Mitko Mladenov
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia; (V.M.); (A.K.)
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| |
Collapse
|
4
|
Zhang Y, Li Z, Huang Y, Xu Y, Zou B. Nanotechnology and curcumin: a novel and promising approach in digestive cancer therapy. Nanomedicine (Lond) 2023; 18:2081-2099. [PMID: 38078442 DOI: 10.2217/nnm-2023-0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
This study reviews the application of nanotechnology and curcumin, a polyphenol extracted from turmeric, in treating digestive cancers, one of the most common types of malignancies worldwide. Despite curcumin's potential for inhibiting tumor growth, its clinical application is hindered by issues such as poor solubility and bioavailability. Nanomedicine, with its unique ability to enhance drug delivery and reduce toxicity, offers a solution to these limitations. The paper focuses on the development of nanoformulations of curcumin, such as nanoparticles and liposomes, that improve its bioavailability and efficacy in treating digestive cancers, including liver and colorectal cancers. The study serves as a valuable reference for future research and development in this promising therapeutic approach.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Zheng Li
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yong Xu
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Bingwen Zou
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
5
|
Mukherjee D, Krishnan A. Therapeutic potential of curcumin and its nanoformulations for treating oral cancer. World J Methodol 2023; 13:29-45. [PMID: 37456978 PMCID: PMC10348080 DOI: 10.5662/wjm.v13.i3.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/14/2023] [Accepted: 04/14/2023] [Indexed: 06/14/2023] Open
Abstract
The global incidence of oral cancer has steadily increased in recent years and is associated with high morbidity and mortality. Oral cancer is the most common cancer in the head and neck region, and is predominantly of epithelial origin (i.e. squamous cell carcinoma). Oral cancer treatment modalities mainly include surgery with or without radiotherapy and chemotherapy. Though proven effective, chemotherapy has significant adverse effects with possibilities of tumor resistance to anticancer drugs and recurrence. Thus, there is an imperative need to identify suitable anticancer therapies that are highly precise with minimal side effects and to make oral cancer treatment effective and safer. Among the available adjuvant therapies is curcumin, a plant polyphenol isolated from the rhizome of the turmeric plant Curcuma longa. Curcumin has been demonstrated to have anti-infectious, antioxidant, anti-inflammatory, and anticarcinogenic properties. Curcumin has poor bioavailability, which has been overcome by its various analogues and nanoformulations, such as nanoparticles, liposome complexes, micelles, and phospholipid complexes. Studies have shown that the anticancer effects of curcumin are mediated by its action on multiple molecular targets, including activator protein 1, protein kinase B (Akt), nuclear factor κ-light-chain-enhancer of activated B cells, mitogen-activated protein kinase, epidermal growth factor receptor (EGFR) expression, and EGFR downstream signaling pathways. These targets play important roles in oral cancer pathogenesis, thereby making curcumin a promising adjuvant treatment modality. This review aims to summarize the different novel formulations of curcumin and their role in the treatment of oral cancer.
Collapse
Affiliation(s)
- Diptasree Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
- Department of Medicine, Apex Institute of Medical Science, Kolkata 700075, West Bengal, India
| | - Arunkumar Krishnan
- Department of Medicine Section of Gastroenterology and Hepatology, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| |
Collapse
|
6
|
Malik M, Britten JL, DeAngelis A, Sitler C, Moran S, Roura-Monllor JA, Driggers P, Catherino WH. Curcumin inhibits human leiomyoma xenograft tumor growth and induces dissolution of the extracellular matrix. F&S SCIENCE 2023; 4:74-89. [PMID: 36273722 DOI: 10.1016/j.xfss.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To determine whether a curcumin-supplemented diet would prevent and/or treat uterine leiomyoma growth in our mouse xenograft model. DESIGN Animal study. SETTING Laboratory study. PATIENT(S) N/A. INTERVENTION(S) Curcumin-supplemented diet. MAIN OUTCOME MEASURE(S) Dietary intake, blood concentrations, tumor size, extracellular matrix protein concentrations, apoptosis markers. RESULT(S) We found that curcumin was well tolerated as a dietary supplement, free curcumin and its metabolites were detected in the serum, and exposure resulted in approximately 60% less leiomyoma xenograft growth as well as dissolution of the peripheral extracellular matrix architecture of the xenografts. The production of matrix proteins, including collagens, decreased, whereas the number of apoptotic cells in the xenografts increased. Additionally, when xenografts were placed in a uterine intramural location, we found a significantly increased apoptotic response to curcumin in the diet. CONCLUSION(S) Mice on a diet supplemented with curcumin could achieve serum concentrations sufficient to regulate human leiomyoma xenograft growth, and curcumin could play both preventive and curative roles in the treatment of uterine leiomyoma as an oral nutritional supplement.
Collapse
Affiliation(s)
- Minnie Malik
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joy L Britten
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Anthony DeAngelis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Collin Sitler
- Department of Gynecologic Surgery and Obstetrics, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Sean Moran
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Jaime A Roura-Monllor
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Paul Driggers
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - William H Catherino
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland; National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
7
|
Ibáñez Gaspar V, McMorrow T. The Curcuminoid EF24 in Combination with TRAIL Reduces Human Renal Cancer Cell Migration by Decreasing MMP-2/MMP-9 Activity through a Reduction in H 2O 2. Int J Mol Sci 2023; 24:ijms24021043. [PMID: 36674555 PMCID: PMC9863498 DOI: 10.3390/ijms24021043] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Cancer cells present high levels of oxidative stress, and although an increase in reactive oxygen species (ROS), such as H2O2, can lead to apoptosis, it can also induce cell invasion and metastasis. As the increase in ROS can lead to an increase in the expression of MMP-2 and MMP-9, thus causing the degradation of the extracellular matrix, an increase in the ROS H2O2 might have an impact on MMP-2/MMP-9 activity. The natural compound curcumin has shown some anticancer effects, although its bioavailability hinders its therapeutic potential. However, curcumin and its analogues were shown to resensitize kidney cancer cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. This study shows that the curcuminoid EF24 in combination with TRAIL increases peroxidase activity in the renal adenocarcinoma cell line ACHN, reducing the level of intracellular H2O2 and MMP-2/MMP-9 activity, a mechanism that is also observed after treatment with curcumin and TRAIL.
Collapse
|
8
|
Lu KH, Lu PWA, Lu EWH, Lin CW, Yang SF. Curcumin and its Analogs and Carriers: Potential Therapeutic Strategies for Human Osteosarcoma. Int J Biol Sci 2023; 19:1241-1265. [PMID: 36923933 PMCID: PMC10008701 DOI: 10.7150/ijbs.80590] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 03/13/2023] Open
Abstract
Curcumin is a natural polyphenol phytochemical derived from turmeric with antioxidant, anti-inflammatory, and anticancer properties but is concerned about poor solubility in water, absorption, and metabolic stability. Potent metastatic osteosarcoma is the most common primary bone cancer in children, adolescents, and young adults. It is responsible for low survival rates because of its high rate of metastasis to the lungs. To improve poor bioavailability, numerous curcumin analogs were developed to possess anticancer characteristics through a variety of biological pathways involved in cytotoxicity, proliferation, autophagy, sensitizing chemotherapy, and metastases. This review provides an overview of their various pharmacological functions, molecular mechanisms, and therapeutic potential as a remedy for human osteosarcoma. To enhance therapeutic efficacy, several liposomal nanoparticles, nanocarriers, multifunctional micelles, and three-dimensional printed scaffolds have also been developed for the controlled delivery of curcumin targeting human osteosarcoma cells. Consequently, curcumin and several potential analogs and delivery formulations are optimistic candidates to improve the currently available strategy for human osteosarcoma. However, further insight into the mechanism of action of promising curcumin analogs and the development of carriers in clinical trials of osteosarcoma needs to be investigated to improve their overall potency and clinical utility, in particular the anti-metastatic effect.
Collapse
Affiliation(s)
- Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | - Eric Wun-Hao Lu
- Department of Mechanical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
9
|
EF24, a schistosomicidal curcumin analog: Insights from its synthesis and phenotypic, biochemical and cytotoxic activities. Chem Biol Interact 2022; 368:110191. [DOI: 10.1016/j.cbi.2022.110191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/22/2022]
|
10
|
Almeida TC, Seibert JB, Amparo TR, de Souza GHB, da Silva GN, Dos Santos DH. Modulation of Long Non-Coding RNAs by Different Classes of Secondary Metabolites from Plants: A Mini-Review on Antitumor Effects. Mini Rev Med Chem 2021; 22:1232-1255. [PMID: 34720079 DOI: 10.2174/1389557521666211101161548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
The broad pharmacological spectrum of plants is related to their secondary metabolism, which is responsible for the synthesis of different compounds that have multiple effects on cellular physiology. Among the biological effects presented by phytochemicals, their use for the prevention and treatment of cancer can be highlighted. This occurs due to several mechanisms of antitumor action demonstrated by these compounds, including regulation of the cell signaling pathways and inhibition of tumor growth. In this way, long non-coding RNAs (lncRNAs) appear to be promising targets for the treatment of cancer. Their deregulation has already been related to a variety of clinical-pathological parameters. However, the effects of secondary metabolites on lncRNAs are still restricted. For this reason, the present review aimed to gather data on phytochemicals with action on lncRNAs in order to confirm their possible antitumor potential. According to the literature, terpenoid and flavonoid are the main examples of secondary metabolites involved with lncRNAs activity. In addition, the lncRNAs H19, CASC2, HOTAIR, NKILA, CCAT1, MALAT1, AFAP1-AS1, MEG3, and CDKN2B-AS1 can be highlighted as important targets in the search for new anti-tumor agents since they act as modulating pathways related to cell proliferation, cell cycle, apoptosis, cell migration and invasion. Finally, challenges for the use of natural products as a commercial drug were also discussed. The low yield, selectivity index and undesirable pharmacokinetic parameters were emphasized as a difficulty for obtaining these compounds on a large scale and for improving the potency of its biological effect. However, the synthesis and/or development of formulations were suggested as a possible approach to solve these problems. All of these data together confirm the potential of secondary metabolites as a source of new anti-tumor agents acting on lncRNAs.
Collapse
Affiliation(s)
- Tamires Cunha Almeida
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | | - Tatiane Roquete Amparo
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | | - Glenda Nicioli da Silva
- Department of Clinical Analysis, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | |
Collapse
|
11
|
Su CW, Chuang CY, Chen YT, Yang WE, Pan YP, Lin CW, Yang SF. FLLL32 Triggers Caspase-Mediated Apoptotic Cell Death in Human Oral Cancer Cells by Regulating the p38 Pathway. Int J Mol Sci 2021; 22:11860. [PMID: 34769290 PMCID: PMC8584525 DOI: 10.3390/ijms222111860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Oral cancer is the most common oral malignant tumor in Taiwan. Although there exist several methods for treatment, oral cancer still has a poor prognosis and high recurrence. FLLL32, a synthetic analog of curcumin with antitumor activity, is currently known to induce melanoma apoptosis and inhibit tumor growth in various cancers. However, few studies have examined the mechanisms of FLLL32 in oral cancer. In this study, we explore whether FLLL32 induces apoptosis in oral cancer. We determined that FLLL32 can inhibit the cell viability of oral cancer. Next, we analyzed the effect of FLLL32 on the cell cycle of oral cancer cells and observed that the proportion of cells in the G2/M phase was increased. Additionally, annexin-V/PI double staining revealed that FLLL32 induced apoptosis in oral cancer cells. Data from the Human Apoptosis Array revealed that FLLL32 increases the expression of cleaved caspase-3 and heme oxygenase-1 (HO-1). FLLL32 activates proteins such as caspase-8, caspase-9, caspase-3, PARP, and mitogen-activated protein kinases (MAPKs) in apoptosis-related molecular mechanisms. Moreover, by using MAPK inhibitors, we suggest that FLLL32 induces the apoptosis of oral cancer cells through the p38 MAPK signaling pathway. In conclusion, our findings suggest that FLLL32 is a potential therapeutic agent for oral cancer by inducing caspase-dependent apoptosis and HO-1 activation through the p38 pathway. We believe that the activation of HO-1 and the p38 pathway by FLLL32 represent potential targets for further research in oral cancer.
Collapse
Affiliation(s)
- Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-W.S.); (W.-E.Y.); (Y.-P.P.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chun-Yi Chuang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yi-Tzu Chen
- School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan;
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-W.S.); (W.-E.Y.); (Y.-P.P.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yi-Ping Pan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-W.S.); (W.-E.Y.); (Y.-P.P.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-W.S.); (W.-E.Y.); (Y.-P.P.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
12
|
Ibáñez Gaspar V, McCaul J, Cassidy H, Slattery C, McMorrow T. Effects of Curcumin Analogues DMC and EF24 in Combination with the Cytokine TRAIL against Kidney Cancer. Molecules 2021; 26:6302. [PMID: 34684883 PMCID: PMC8539519 DOI: 10.3390/molecules26206302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 01/20/2023] Open
Abstract
The natural compound curcumin has been shown to have therapeutic potential against a wide range of diseases such as cancer. Curcumin reduces cell viability of renal cell carcinoma (RCC) cells when combined with TNF-related apoptosis-inducing ligand (TRAIL), a cytokine that specifically targets cancer cells, by helping overcome TRAIL resistance. However, the therapeutic effects of curcumin are limited by its low bioavailability. Similar compounds to curcumin with higher bioavailability, such as demethoxycurcumin (DMC) and 3,5-bis(2-fluorobenzylidene)-4-piperidone (EF24), can potentially have similar anticancer effects and show a similar synergy with TRAIL, thus reducing RCC viability. This study aims to show the effects of DMC and EF24 in combination with TRAIL at reducing ACHN cell viability and ACHN cell migration. It also shows the changes in death receptor 4 (DR4) expression after treatment with these compounds individually and in combination with TRAIL, which can play a role in their mechanism of action.
Collapse
Affiliation(s)
- Verónica Ibáñez Gaspar
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Dublin, Ireland; (V.I.G.); (J.M.); (H.C.); (C.S.)
| | - Jasmin McCaul
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Dublin, Ireland; (V.I.G.); (J.M.); (H.C.); (C.S.)
| | - Hilary Cassidy
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Dublin, Ireland; (V.I.G.); (J.M.); (H.C.); (C.S.)
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Craig Slattery
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Dublin, Ireland; (V.I.G.); (J.M.); (H.C.); (C.S.)
| | - Tara McMorrow
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Dublin, Ireland; (V.I.G.); (J.M.); (H.C.); (C.S.)
| |
Collapse
|
13
|
Antitumoral Activities of Curcumin and Recent Advances to ImProve Its Oral Bioavailability. Biomedicines 2021; 9:biomedicines9101476. [PMID: 34680593 PMCID: PMC8533288 DOI: 10.3390/biomedicines9101476] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Curcumin, a main bioactive component of the Curcuma longa L. rhizome, is a phenolic compound that exerts a wide range of beneficial effects, acting as an antimicrobial, antioxidant, anti-inflammatory and anticancer agent. This review summarizes recent data on curcumin's ability to interfere with the multiple cell signaling pathways involved in cell cycle regulation, apoptosis and the migration of several cancer cell types. However, although curcumin displays anticancer potential, its clinical application is limited by its low absorption, rapid metabolism and poor bioavailability. To overcome these limitations, several curcumin-based derivatives/analogues and different drug delivery approaches have been developed. Here, we also report the anticancer mechanisms and pharmacokinetic characteristics of some derivatives/analogues and the delivery systems used. These strategies, although encouraging, require additional in vivo studies to support curcumin clinical applications.
Collapse
|
14
|
Linder B, Köhler LHF, Reisbeck L, Menger D, Subramaniam D, Herold-Mende C, Anant S, Schobert R, Biersack B, Kögel D. A New Pentafluorothio-Substituted Curcuminoid with Superior Antitumor Activity. Biomolecules 2021; 11:biom11070947. [PMID: 34202286 PMCID: PMC8301868 DOI: 10.3390/biom11070947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
A new and readily available pentafluorothiophenyl-substituted N-methyl-piperidone curcuminoid 1a was prepared and investigated for its anti-proliferative, pro-apoptotic and cancer stem cell-differentiating activities against a panel of human tumor cell lines derived from various tumor entities. The compound 1a was highly anti-proliferative and reached IC50 values in the nanomolar concentration range. 1a was superior to the known anti-tumorally active curcuminoid EF24 (2) and its known N-ethyl-piperidone analog 1b in all tested tumor cell lines. Furthermore, 1a induced a noticeable increase of intracellular reactive oxygen species in HT-29 colon adenocarcinoma cells, which possibly leads to a distinct increase in sub-G1 cells, as assessed by cell cycle analysis. A considerable activation of the executioner-caspases 3 and 7 as well as nuclei fragmentation, cell rounding, and membrane protrusions suggest the triggering of an apoptotic mechanism. Yet another effect was the re-organization of the actin cytoskeleton shown by the formation of stress fibers and actin aggregation. 1a also caused cell death in the adherently cultured glioblastoma cell lines U251 and Mz54. We furthermore observed that 1a strongly suppressed the stem cell properties of glioma stem-like cell lines including one primary line, highlighting the potential therapeutic relevance of this new compound.
Collapse
Affiliation(s)
- Benedikt Linder
- Experimental Neurosurgery, Frankfurt University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (L.R.); (D.M.); (D.K.)
- Correspondence: (B.L.); (B.B.)
| | - Leonhard H. F. Köhler
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany; (L.H.F.K.); (R.S.)
| | - Lisa Reisbeck
- Experimental Neurosurgery, Frankfurt University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (L.R.); (D.M.); (D.K.)
| | - Dominic Menger
- Experimental Neurosurgery, Frankfurt University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (L.R.); (D.M.); (D.K.)
| | - Dharmalingam Subramaniam
- Cancer Biology Department, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, MO 66160, USA; (D.S.); (S.A.)
| | - Christel Herold-Mende
- Department of Neurosurgery, Division of Experimental Neurosurgery, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany;
| | - Shrikant Anant
- Cancer Biology Department, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, MO 66160, USA; (D.S.); (S.A.)
| | - Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany; (L.H.F.K.); (R.S.)
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany; (L.H.F.K.); (R.S.)
- Correspondence: (B.L.); (B.B.)
| | - Donat Kögel
- Experimental Neurosurgery, Frankfurt University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (L.R.); (D.M.); (D.K.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Al Nasr IS, Hanachi R, Said RB, Rahali S, Tangour B, Abdelwahab SI, Farasani A, M E Taha M, Bidwai A, Koko WS, Khan TA, Schobert R, Biersack B. p-Trifluoromethyl- and p-pentafluorothio-substituted curcuminoids of the 2,6-di[(E)-benzylidene)]cycloalkanone type: Syntheses and activities against Leishmania major and Toxoplasma gondii parasites. Bioorg Chem 2021; 114:105099. [PMID: 34174635 DOI: 10.1016/j.bioorg.2021.105099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/21/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022]
Abstract
A series of the title curcuminoids with structural variance in the heteroatom of the cycloalkanone and the p-substituents of the phenyl rings were tested for their activities against Leishmania major and Toxoplasma gondii parasites. The majority of them showed high activities against both parasite forms with EC50 values in the sub-micromolar concentration range. Bis(p-pentafluorothio)-substituted 3,5-di[(E)-benzylidene]piperidin-4-one 1b was not just noticeable antiparasitic, but also exhibited a considerable selectivity for L. major promastigotes over normal Vero cells. While derivatives differing only in the p-phenyl substituents being CF3 or SF5 showed similar antiparasitic activities, the cyclic ketone hub was more decisive both for the anti-parasitic activities and the selectivities for the parasites vs. normal cells. QSAR calculations confirmed the observed structure-activity relations and suggested structural variations for a further improvement of the antiparasitic activity. Docking studies based on DFT calculations revealed L. major pteridine reductase 1 as a likely molecular target protein of the title compounds.
Collapse
Affiliation(s)
- Ibrahim S Al Nasr
- Department of Biology, College of Science and Arts, Qassim University, Unaizah 51911, Saudi Arabia; Department of Science Laboratories, College of Science and Arts, Qassim University, King Abdelaziz Road, Ar Rass 51921, Saudi Arabia
| | - Riadh Hanachi
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia
| | - Ridha B Said
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia; Department of Chemistry, College of Science and Arts in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Seyfeddine Rahali
- Department of Chemistry, College of Science and Arts in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia; IPEIEM, Research Unit on Fundamental Sciences and Didactics, Université de Tunis El Manar, Tunis 2092, Tunisia
| | - Bahoueddine Tangour
- IPEIEM, Research Unit on Fundamental Sciences and Didactics, Université de Tunis El Manar, Tunis 2092, Tunisia
| | | | - Abdullah Farasani
- Medical Research Center, Jazan University, Jazan 45142, Saudi Arabia; College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Manal M E Taha
- Substance Abuse Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Anil Bidwai
- College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Waleed S Koko
- Department of Science Laboratories, College of Science and Arts, Qassim University, King Abdelaziz Road, Ar Rass 51921, Saudi Arabia
| | - Tariq A Khan
- Department of Clinical Nutrition, College of Applied Health Sciences, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.
| |
Collapse
|
16
|
Adeluola A, Zulfiker AHM, Brazeau D, Amin ARMR. Perspectives for synthetic curcumins in chemoprevention and treatment of cancer: An update with promising analogues. Eur J Pharmacol 2021; 906:174266. [PMID: 34146588 DOI: 10.1016/j.ejphar.2021.174266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
Curcumin, a pure compound extracted from the flowering plant, turmeric (Curcuma longa. Zingiberaceae), is a common dietary ingredient found in curry powder. It has been studied extensively for its anti-inflammatory, antioxidant, antimicrobial and anti-tumour activities. Evidence is accumulating demonstrating its potential in chemoprevention and as an anti-tumour agent for the treatment of cancer. Despite demonstrated safety and tolerability, the clinical application of curcumin is frustrated by its poor solubility, metabolic instability and low oral bioavailability. Consequently researchers have tried novel techniques of formulation and delivery as well as synthesis of analogues with enhanced properties to overcome these barriers. This review presents the synthetic analogues of curcumin that have proven their anticancer potential from different studies. It also highlights studies that combined these analogues with approved chemotherapies and delivered them via novel techniques. Currently, there are no reports of clinical studies on any of the synthetic congeners of curcumin and this presents an opportunity for future research. This review presents the synthetic analogues of curcumin and makes a compelling argument for their potential application in the management of cancerous disease.
Collapse
Affiliation(s)
- Adeoluwa Adeluola
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA.
| | - Abu Hasanat Md Zulfiker
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA
| | - Daniel Brazeau
- Department of Pharmacy Practice, Administration and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA
| | - A R M Ruhul Amin
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
17
|
Hsiao PC, Chang JH, Lee WJ, Ku CC, Tsai MY, Yang SF, Chien MH. The Curcumin Analogue, EF-24, Triggers p38 MAPK-Mediated Apoptotic Cell Death via Inducing PP2A-Modulated ERK Deactivation in Human Acute Myeloid Leukemia Cells. Cancers (Basel) 2020; 12:cancers12082163. [PMID: 32759757 PMCID: PMC7464750 DOI: 10.3390/cancers12082163] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Curcumin (CUR) has a range of therapeutic benefits against cancers, but its poor solubility and low bioavailability limit its clinical use. Demethoxycurcumin (DMC) and diphenyl difluoroketone (EF-24) are natural and synthetic curcumin analogues, respectively, with better solubilities and higher anti-carcinogenic activities in various solid tumors than CUR. However, the efficacy of these analogues against non-solid tumors, particularly in acute myeloid leukemia (AML), has not been fully investigated. Herein, we observed that both DMC and EF-24 significantly decrease the proportion of viable AML cells including HL-60, U937, and MV4-11, harboring different NRAS and Fms-like tyrosine kinase 3 (FLT3) statuses, and that EF-24 has a lower half maximal inhibitory concentration (IC50) than DMC. We found that EF-24 treatment induces several features of apoptosis, including an increase in the sub-G1 population, phosphatidylserine (PS) externalization, and significant activation of extrinsic proapoptotic signaling such as caspase-8 and -3 activation. Mechanistically, p38 mitogen-activated protein kinase (MAPK) activation is critical for EF-24-triggered apoptosis via activating protein phosphatase 2A (PP2A) to attenuate extracellular-regulated protein kinase (ERK) activities in HL-60 AML cells. In the clinic, patients with AML expressing high level of PP2A have the most favorable prognoses compared to various solid tumors. Taken together, our results indicate that EF-24 is a potential therapeutic agent for treating AML, especially for cancer types that lose the function of the PP2A tumor suppressor.
Collapse
Affiliation(s)
- Pei-Ching Hsiao
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Chia-Chi Ku
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Meng-Ying Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (S.-F.Y.); (M.-H.C.); Tel.: +886-2-2736-1661 (ext. 3237) (M.-H.C.); +886-4-2473-9595 (ext. 34253) (S.-F.Y.); Fax: +886-2-2739-0500 (M.-H.C.); +886-4-2472-3229 (S.-F.Y.)
| | - Ming-Hsien Chien
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: (S.-F.Y.); (M.-H.C.); Tel.: +886-2-2736-1661 (ext. 3237) (M.-H.C.); +886-4-2473-9595 (ext. 34253) (S.-F.Y.); Fax: +886-2-2739-0500 (M.-H.C.); +886-4-2472-3229 (S.-F.Y.)
| |
Collapse
|
18
|
Zangui M, Atkin SL, Majeed M, Sahebkar A. Current evidence and future perspectives for curcumin and its analogues as promising adjuncts to oxaliplatin: state-of-the-art. Pharmacol Res 2019; 141:343-356. [DOI: 10.1016/j.phrs.2019.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023]
|
19
|
He Y, Li W, Hu G, Sun H, Kong Q. Bioactivities of EF24, a Novel Curcumin Analog: A Review. Front Oncol 2018; 8:614. [PMID: 30619754 PMCID: PMC6297553 DOI: 10.3389/fonc.2018.00614] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023] Open
Abstract
Curcumin is an attractive agent due to its multiple bioactivities. However, the low oral bioavailability and efficacy profile hinders its clinical application. To improve the bioavailability, many analogs of curcumin have been developed, among which EF24 is an excellent representative. EF24 has enhanced bioavailability over curcumin and shows more potent bioactivity, including anti-cancer, anti-inflammatory, and anti-bacterial. EF24 inhibits tumor growth by inducing cell cycle arrest and apoptosis, mainly through its inhibitory effect on the nuclear factor kappa B (NF-κB) pathway and by regulating key genes through microRNA (miRNA) or the proteosomal pathway. Based on the current structure, more potent EF24 analogs have been designed and synthesized. However, some roles of EF24 remain unclear, such as whether it induces or inhibits reactive oxygen species (ROS) production and whether it stimulates or inhibits the mitogen activated kinase-like protein (MAPK) pathway. This review summarizes the known biological and pharmacological activities and mechanisms of action of EF24.
Collapse
Affiliation(s)
- Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Wen Li
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Guangrong Hu
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Sun
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingpeng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
20
|
Nagaraju GP, Benton L, Bethi SR, Shoji M, El-Rayes BF. Curcumin analogs: Their roles in pancreatic cancer growth and metastasis. Int J Cancer 2018; 145:10-19. [PMID: 30226272 DOI: 10.1002/ijc.31867] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 01/09/2023]
Abstract
Curcumin is a polyphenolic constituent of turmeric that is known to have various molecular effects in preclinical models, leading to prevention and anticancer properties. In clinical trials, curcumin has failed to demonstrate activity against pancreatic cancer possibly due to its low bioavailability and potency. Using the curcumin molecular model, our group and others have synthesized several analogs with better bioavailability and higher potency in pancreatic cancer in vitro and xenograft models. This mini review summarizes some of the known molecular effects of curcumin analogs and their potential role as novel therapeutics for pancreatic cancer.
Collapse
Affiliation(s)
| | - Leah Benton
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Shipra Reddy Bethi
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Mamoru Shoji
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
21
|
Shoji M, Qian WP, Nagaraju GP, Brat DJ, Pessolano D, Luzietti R, Chennamadhavuni S, Yamaguchi M, Yang L, Liotta DC. Inhibition of breast cancer metastasis to the lungs with UBS109. Oncotarget 2018; 9:36102-36109. [PMID: 30546830 PMCID: PMC6281413 DOI: 10.18632/oncotarget.26302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/21/2018] [Indexed: 11/25/2022] Open
Abstract
Synthetic monocarbonyl analogs of curcumin (MACs) are cytotoxic against several cancers including head and neck cancer, pancreatic cancer, colon cancer, and breast cancer. Mechanisms of action include depolarization of the mitochondrial membrane potential and inhibition of NF-κB, leading to apoptosis. We previously demonstrated that UBS109 (MAC), has preventive effects on bone loss induced by breast cancer cell lines. We determined whether UBS109 could inhibit and prevent lung metastasis, since lung metastasis of breast cancer is a major problem in addition to bone metastasis. A breast cancer lung metastasis (colonization) model was created by injection of breast cancer cells MDA-MB-231 into the tail vein of athymic nude mice, nu/nu. Animals were treated with vehicle or UBS109 at 5 or 15 mg/kg body weight by intraperitoneal injection once daily 5 days a week for 5 weeks. UBS109 at 15 mg/kg significantly inhibited lung metastasis/colonization as demonstrated by reduced lung weight consisting of tumor nodules. The body weight of animals treated with UBS109 15 mg/kg remained the same as in the other groups. UBS109 killed completely (100%) MDA-MB-231 breast cancer cells at 1.25 μM in a cytotoxicity assay in vitro. UBS109 15 mg/kg i.p. showed a maximal blood concentration (Cmax) of 432 ± 387 ng/mL at 15 min post injection. This is approximately 1.5 ng/ml in the blood of mice and equals 1.5 μM of UBS109. These in vitro and in vivo results are consistent with each other.
Collapse
Affiliation(s)
- Mamoru Shoji
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Wei Ping Qian
- Department of Surgery, Emory University, Atlanta, GA 30322, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Daniel J Brat
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.,Department of Pathology, Northwestern University Feinberg School of Medicine and Northwestern Memorial Healthcare, Chicago, IL 60611, USA
| | - Danielle Pessolano
- Agilux Laboratories, Inc./Charles River Laboratories, Inc., Worcester, MA 01608, USA
| | - Rick Luzietti
- Agilux Laboratories, Inc./Charles River Laboratories, Inc., Worcester, MA 01608, USA
| | - Spandan Chennamadhavuni
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA.,Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Masayoshi Yamaguchi
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Lily Yang
- Department of Surgery, Emory University, Atlanta, GA 30322, USA
| | - Dennis C Liotta
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA.,Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
22
|
Schmitt F, Subramaniam D, Anant S, Padhye S, Begemann G, Schobert R, Biersack B. Halogenated Bis(methoxybenzylidene)-4-piperidone Curcuminoids with Improved Anticancer Activity. ChemMedChem 2018; 13:1115-1123. [DOI: 10.1002/cmdc.201800135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Florian Schmitt
- Department of Chemistry; University of Bayreuth; Universitätsstraße 30 95440 Bayreuth Germany
| | | | - Shrikant Anant
- University of Kansas Medical Center; 3901 Rainbow Boulevard Kansas City KS 66160 USA
| | - Subhash Padhye
- University of Kansas Medical Center; 3901 Rainbow Boulevard Kansas City KS 66160 USA
| | - Gerrit Begemann
- Developmental Biology; University of Bayreuth; Universitätsstraße 30 95440 Bayreuth Germany
| | - Rainer Schobert
- Department of Chemistry; University of Bayreuth; Universitätsstraße 30 95440 Bayreuth Germany
| | - Bernhard Biersack
- Department of Chemistry; University of Bayreuth; Universitätsstraße 30 95440 Bayreuth Germany
| |
Collapse
|
23
|
Ratnatilaka Na Bhuket P, El-Magboub A, Haworth IS, Rojsitthisak P. Enhancement of Curcumin Bioavailability Via the Prodrug Approach: Challenges and Prospects. Eur J Drug Metab Pharmacokinet 2018; 42:341-353. [PMID: 27683187 DOI: 10.1007/s13318-016-0377-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Curcumin is a natural product with many interesting pharmacological properties. However, these are offset by the particularly poor biopharmaceutical properties. The oral bioavailability of curcumin in humans is very low, mainly due to low solubility, poor stability, and extensive metabolism. This has led to multiple approaches to improve bioavailability, including administration of curcumin with metabolism inhibitors, formulation into nanoparticles, modification of the curcumin structure, and development of curcumin prodrugs. In this paper, we focus on the pharmacokinetic outcomes of these approaches. Pharmacokinetic parameters of curcumin after release from prodrugs are dependent on the linker between curcumin and the promoiety, and the release itself may depend on the physiological and enzymatic environment at the site of cleavage. This is an area in which more data are required for rational design of improved linkers. Cytotoxicity of curcumin prodrugs seems to correlate well with cellular uptake in vitro, but the in vivo relevance is uncertain. We conclude that improved experimental and theoretical models of absorption of curcumin prodrugs, development of accurate analytical methods for simultaneous measurement of plasma levels of prodrug and released curcumin, and acquisition of more pharmacokinetic data in animal models for dose prediction in humans are required to facilitate movement of curcumin prodrugs into clinical trials.
Collapse
Affiliation(s)
- Pahweenvaj Ratnatilaka Na Bhuket
- Biomedicinal Chemistry Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Asma El-Magboub
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ian S Haworth
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
24
|
Ye M, Huang W, Wu WW, Liu Y, Ye SN, Xu JH. FM807, a curcumin analogue, shows potent antitumor effects in nasopharyngeal carcinoma cells by heat shock protein 90 inhibition. Oncotarget 2017; 8:15364-15376. [PMID: 28157708 PMCID: PMC5362491 DOI: 10.18632/oncotarget.14970] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/16/2017] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy usually associated with overexpression of both epidermal growth factor receptor (EGFR) and β-catenin. FM807 is a novel curcumin analogue with antitumor activity against both poorly and well-differentiated NPC cell lines as well as good selectivity for tumor cells. FM807 actions were shown to include inhibition of cell growth, induction of necrotic/late apoptotic cell death, and G1 arrest in NPC cells. Crucially, it exhibited potent antitumor effects both in vitro and in vivo. Binding of FM807 to the N-terminus of Hsp90 disrupted Hsp90/client complexes, resulting in degradation of the Hsp90 client protein EGFR and inhibition of the downstream Raf/MEK/ERK and PI3K/AKT pathway. FM807 also depleted levels of the intranuclear transcription factors β-catenin, Cyclin D1 and c-Myc levels by inhibiting Hsp90 chaperoned nuclear transport. In conjunction with its low toxicity in NPC xenograft mice, these results provide a sound preclinical basis for further development of FM807 as a novel therapeutic agent in the treatment of NPC.
Collapse
Affiliation(s)
- Min Ye
- School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.,Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fuzhou 350004, China
| | - Wei Huang
- School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Wen-Wei Wu
- School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Yang Liu
- School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Sheng-Nan Ye
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Jian-Hua Xu
- School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.,Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fuzhou 350004, China
| |
Collapse
|
25
|
ErbB Proteins as Molecular Target of Dietary Phytochemicals in Malignant Diseases. JOURNAL OF ONCOLOGY 2017; 2017:1532534. [PMID: 28286519 PMCID: PMC5327764 DOI: 10.1155/2017/1532534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/30/2016] [Accepted: 01/17/2017] [Indexed: 12/16/2022]
Abstract
ErbB proteins overexpression, in both normal and mutated forms, is associated with invasive forms of cancer prone to metastasis and with stronger antiapoptotic mechanisms and therefore more challenging to treat. Downstream effectors of ErbB receptors mediating these phenotypic traits include MAPK, STAT, and PI3K/AKT/mTOR pathways. Various phytochemical compounds were studied for their large number of biological effects including anticancer activity. Among these compounds, epigallocatechin-3-gallate (EGCG), the main catechin from green tea leaves, and curcumin, component of the curry powder, constituted the object of numerous studies. Both compounds were shown to act directly either on ErbB expression, or on their downstream signaling molecules. In this paper we aim to review the involvement of ErbB proteins in cancer as well as the biologic activity of EGCG and curcumin in ErbB expressing and overexpressing malignancies. The problems arising in the administration of the two compounds due to their reduced bioavailability when orally administered, as well as the progress made in this field, from using novel formulations to improved dosing regimens or improved synthetic analogs, are also discussed.
Collapse
|
26
|
EF24 Suppresses Invasion and Migration of Hepatocellular Carcinoma Cells In Vitro via Inhibiting the Phosphorylation of Src. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8569684. [PMID: 27999817 PMCID: PMC5141541 DOI: 10.1155/2016/8569684] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/18/2016] [Accepted: 10/05/2016] [Indexed: 02/06/2023]
Abstract
Diphenyl difluoroketone (EF24), a curcumin analog, is a promising anticancer compound that exerts its effects by inhibiting cell proliferation and inducing apoptosis. However, the efficacy of EF24 against cancer metastasis, particularly in hepatocellular carcinoma (HCC), remains elusive. In this study, the effect of EF24 on HCCLM-3 and HepG2 cell migration and invasion was detected by wound healing and transwell assay, respectively. The results revealed that EF24 suppressed the migration and invasion of both HCCLM-3 and HepG2 cells. Furthermore, EF24 treatment decreased the formation of filopodia on the cell surface and inhibited the phosphorylation of Src in both cell lines, which may help contribute towards understanding the mechanism underlying the suppressive effect of EF24 on HCC migration and invasion. Additionally, the expression of total- and phosphorylated-Src in primary HCC tissues and their paired lymph node metastatic tissues was detected, and phosphorylated-Src was found to be associated with HCC lymph node metastasis. The results of this study suggest that Src is a novel and promising therapeutic target in HCC and provide evidence to support the hypothesis that EF24 may be a useful therapeutic agent for the treatment of HCC.
Collapse
|
27
|
Momtazi AA, Shahabipour F, Khatibi S, Johnston TP, Pirro M, Sahebkar A. Curcumin as a MicroRNA Regulator in Cancer: A Review. Rev Physiol Biochem Pharmacol 2016; 171:1-38. [DOI: 10.1007/112_2016_3] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Adams B, Herold M, Ferstl E, Choi J, Zhu S. Anticancer effects of monocarbonyl analogs of curcumin: oxidative stress, nuclear translocation and modulation of AP-1 and NF-κB. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2015. [DOI: 10.14319/ijcto.32.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
29
|
Baldwin PR, Reeves AZ, Powell KR, Napier RJ, Swimm AI, Sun A, Giesler K, Bommarius B, Shinnick TM, Snyder JP, Liotta DC, Kalman D. Monocarbonyl analogs of curcumin inhibit growth of antibiotic sensitive and resistant strains of Mycobacterium tuberculosis. Eur J Med Chem 2015; 92:693-9. [PMID: 25618016 PMCID: PMC4794995 DOI: 10.1016/j.ejmech.2015.01.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/05/2015] [Accepted: 01/10/2015] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is a major public health concern worldwide with over 2 billion people currently infected. The rise of strains of Mycobacterium tuberculosis (Mtb) that are resistant to some or all first and second line antibiotics, including multidrug-resistant (MDR), extensively drug resistant (XDR) and totally drug resistant (TDR) strains, is of particular concern and new anti-TB drugs are urgently needed. Curcumin, a natural product used in traditional medicine in India, exhibits anti-microbial activity that includes Mtb, however it is relatively unstable and suffers from poor bioavailability. To improve activity and bioavailability, mono-carbonyl analogs of curcumin were synthesized and screened for their capacity to inhibit the growth of Mtb and the related Mycobacterium marinum (Mm). Using disk diffusion and liquid culture assays, we found several analogs that inhibit in vitro growth of Mm and Mtb, including rifampicin-resistant strains. Structure activity analysis of the analogs indicated that Michael acceptor properties are critical for inhibitory activity. However, no synergistic effects were evident between the monocarbonyl analogs and rifampicin on inhibiting growth. Together, these data provide a structural basis for the development of analogs of curcumin with pronounced anti-mycobacterial activity and provide a roadmap to develop additional structural analogs that exhibit more favorable interactions with other anti-TB drugs.
Collapse
Affiliation(s)
| | - Analise Z Reeves
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta GA 30333, USA; Microbiology and Molecular Genetics Graduate Program, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Kimberly R Powell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Ruth J Napier
- Microbiology and Molecular Genetics Graduate Program, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Alyson I Swimm
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Aiming Sun
- Department of Chemistry, Emory University, Atlanta GA 30322, USA
| | - Kyle Giesler
- Department of Chemistry, Emory University, Atlanta GA 30322, USA
| | - Bettina Bommarius
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Thomas M Shinnick
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta GA 30333, USA
| | - James P Snyder
- Department of Chemistry, Emory University, Atlanta GA 30322, USA
| | - Dennis C Liotta
- Department of Chemistry, Emory University, Atlanta GA 30322, USA
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta GA 30322, USA.
| |
Collapse
|
30
|
Zhang P, Bai H, Liu G, Wang H, Chen F, Zhang B, Zeng P, Wu C, Peng C, Huang C, Song Y, Song E. MicroRNA-33b, upregulated by EF24, a curcumin analog, suppresses the epithelial-to-mesenchymal transition (EMT) and migratory potential of melanoma cells by targeting HMGA2. Toxicol Lett 2015; 234:151-61. [PMID: 25725129 DOI: 10.1016/j.toxlet.2015.02.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/16/2015] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
Diphenyl difluoroketone (EF24), a curcumin analog, exhibits potent anti-tumor activities by arresting cell cycle and inducing apoptosis. However, the efficacy and modes of action of EF24 on melanoma metastasis remain elusive. In this study, we found that at non-cytotoxic concentrations, EF24 suppressed cell motility and epithelial-to-mesenchymal Transition (EMT) of melanoma cell lines, Lu1205 and A375. EF24 also suppressed HMGA2 expression at mRNA and protein levels. miR-33b directly bound to HMGA2 3' untranslated region (3'-UTR) to suppress its expression as measured by dual-luciferase assay. EF24 increased expression of E-cadherin and decreased STAT3 phosphorylation and expression of the mesenchymal markers, vimentin and N-cadherin. miR-33b inhibition or HMGA2 overexpression reverted EF24-mediated suppression of EMT phenotypes. In addition, EF24 modulated the HMGA2-dependent actin stress fiber formation, focal adhesion assembly and FAK, Src and RhoA activation by targeting miR-33b. Thus, the results suggest that EF24 suppresses melanoma metastasis via upregulating miR-33b and concomitantly reducing HMGA2 expression. The observed activities of EF24 support its further evaluation as an anti-metastatic agent in melanoma therapy.
Collapse
Affiliation(s)
- Pu Zhang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University),Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China; Department of Bioengineering, Pennsylvania State University, University Park, PA 16801, United States.
| | - Huiyuan Bai
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University),Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Gentao Liu
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai 200433, People's Republic of China
| | - Heyong Wang
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai 200433, People's Republic of China
| | - Feng Chen
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University),Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Baoshun Zhang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University),Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Panying Zeng
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University),Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Chengxiang Wu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University),Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Cong Peng
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University),Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Changjin Huang
- Institute of Pathology, Third Military Medical University, Chongqing 400038, People's Republic of China; Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University),Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University),Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
31
|
Shetty D, Kim YJ, Shim H, Snyder JP. Eliminating the heart from the curcumin molecule: monocarbonyl curcumin mimics (MACs). Molecules 2014; 20:249-92. [PMID: 25547726 PMCID: PMC4312668 DOI: 10.3390/molecules20010249] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022] Open
Abstract
Curcumin is a natural product with several thousand years of heritage. Its traditional Asian application to human ailments has been subjected in recent decades to worldwide pharmacological, biochemical and clinical investigations. Curcumin’s Achilles heel lies in its poor aqueous solubility and rapid degradation at pH ~ 7.4. Researchers have sought to unlock curcumin’s assets by chemical manipulation. One class of molecules under scrutiny are the monocarbonyl analogs of curcumin (MACs). A thousand plus such agents have been created and tested primarily against cancer and inflammation. The outcome is clear. In vitro, MACs furnish a 10–20 fold potency gain vs. curcumin for numerous cancer cell lines and cellular proteins. Similarly, MACs have successfully demonstrated better pharmacokinetic (PK) profiles in mice and greater tumor regression in cancer xenografts in vivo than curcumin. The compounds reveal limited toxicity as measured by murine weight gain and histopathological assessment. To our knowledge, MAC members have not yet been monitored in larger animals or humans. However, Phase 1 clinical trials are certainly on the horizon. The present review focuses on the large and evolving body of work in cancer and inflammation, but also covers MAC structural diversity and early discovery for treatment of bacteria, tuberculosis, Alzheimer’s disease and malaria.
Collapse
Affiliation(s)
- Dinesh Shetty
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 790-784, Korea.
| | - Yong Joon Kim
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA.
| | - Hyunsuk Shim
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA.
| | - James P Snyder
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
32
|
Afshariani R, Farhadi P, Ghaffarpasand F, Roozbeh J. Effectiveness of topical curcumin for treatment of mastitis in breastfeeding women: a randomized, double-blind, placebo-controlled clinical trial. Oman Med J 2014; 29:330-4. [PMID: 25337308 DOI: 10.5001/omj.2014.89] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/05/2014] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE To determine the efficacy of topical curcumin in reducing breast inflammation in women suffering from lactational mastitis. METHODS A randomized double-blind, placebo-controlled study including 63 breastfeeding women with lactational mastitis were randomly assigned to receive curcumin topical cream, one pump every 8 hours for 3 days (n=32) or topical moisturizer as placebo (n=31). Using an index for severity of breast inflammation, all of the patients had moderate breast inflammation before entering the study. The outcome of treatment was evaluated using the same index at 24, 48 and 72 hours of starting the treatment. RESULTS There was no significant difference between two study groups regarding the baseline characteristics such as age (p=0.361) and duration of lactation (p=0.551). After 72-hour of therapy, patients in curcumin groups had significantly lower rate of moderate (p=0.019) and mild (p=0.002) mastitis. Patients in curcumin group had significantly lower scores for tension (p<0.001), erythema (p<0.001) and pain (p<0.001), after 72-hour of treatment. CONCLUSION The results of the current study indicate that topical preparation of curcumin successfully decrease the markers of lactational mastitis such as pain, breast tension and erythema within 72 hours of administration without side effects. Thus, topical preparation of curcumin could be safely administered for those suffering from lactational mastitis after excluding infectious etiologies.
Collapse
Affiliation(s)
- Raha Afshariani
- Assistant Professor of Neonatology, Department of Public Health, School of Health and Nutrition, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooya Farhadi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fariborz Ghaffarpasand
- Resident of Neurosurgery, Shiraz University of Medical Sciences; Neuroscience Research Center, Chamran Hospital, Chamran Avenue, Shiraz, Iran. Postal Code: 7194815644
| | - Jamshid Roozbeh
- Professor of Nephrology, Nephrology-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
33
|
Moore TW, Zhu S, Randolph R, Shoji M, Snyder JP. Liver S9 Fraction-Derived Metabolites of Curcumin Analogue UBS109. ACS Med Chem Lett 2014; 5:288-92. [PMID: 24900828 DOI: 10.1021/ml4002453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 01/10/2014] [Indexed: 11/29/2022] Open
Abstract
To address the shortcomings of the natural product curcumin, many groups have created analogues that share similar structural features while displaying superior properties, particularly in anticancer drug discovery. Relatively unexplored have been the mechanisms by which such compounds are metabolized. A comprehensive in vitro study of a curcumin analogue (UBS109) in liver S9 fractions from five different species is presented. Further, we examine the cell-based bioactivity of the major metabolites. In spite of the fact that UBS109 reduces tumor growth in mice, it is quickly metabolized in vitro and 94% protein bound in mouse plasma. The primary monounsaturated metabolite is only modestly bioactive against MDA-MB-231 breast cancer cells. These observations suggest that while the α,β-unsaturated ketone common to curcumin analogues is important for bioactivity, protein binding and tissue distribution may serve to protect UBS109 from full metabolism in vivo while allowing it to exert a pharmacological effect by means of slow drug release.
Collapse
Affiliation(s)
| | | | - Ryan Randolph
- DMPK
Lab, SCYNEXIS, Inc., Durham, North Carolina 27713, United States
| | | | | |
Collapse
|