1
|
Li J, Ma X, Xu F, Yan Y, Chen W. Babaodan overcomes cisplatin resistance in cholangiocarcinoma via inhibiting YAP1. PHARMACEUTICAL BIOLOGY 2024; 62:314-325. [PMID: 38571483 PMCID: PMC10997361 DOI: 10.1080/13880209.2024.2331060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
CONTEXT Cholangiocarcinoma with highly heterogeneous, aggressive, and multidrug resistance has a poor prognosis. Although babaodan (BBD) combined with cisplatin improved non-small cell lung cancer efficacy, its impact on overcoming resistance in cholangiocarcinoma remains unexplored. OBJECTIVE This study explored the role and mechanism of BBD on cisplatin resistance in cholangiocarcinoma cells (CCAs). MATERIALS AND METHODS Cisplatin-resistant CCAs were exposed to varying concentrations of cisplatin (25-400 μg/mL) or BBD (0.25-1.00 mg/mL) for 48 h. IC50 values, inhibition ratios, apoptosis levels, DNA damage, glutathione (GSH) levels, oxidized forms of GSH, total GSH content, and glutaminase relative activity were evaluated using the cell counting kit 8, flow cytometry, comet assay, and relevant assay kits. RESULTS BBD-reduced the cisplatin IC50 in CCAs from 118.8 to 61.83 μg/mL, leading to increased inhibition rate, apoptosis, and DNA damage, and decreased expression of B-cell lymphoma-2, p-Yes-associated protein 1/Yes-associated protein 1, solute carrier family 1 member 5, activating transcription factor 4, and ERCC excision repair 1 in a dose-dependent manner with maximum reductions of 78.97%, 51.98%, 54.03%, 56.59%, and 63.22%, respectively; bcl2-associated X and gamma histone levels were increased by 0.43-115.77% and 22.15-53.39%. The impact of YAP1 knockdown on cisplatin-resistant CCAs resembled BBD. GSH, oxidized GSH species, total GSH content, and glutaminase activity in cisplatin-resistant CCAs with BBD treatment also decreased, while YAP1 overexpression countered BBD's effects. DISCUSSION AND CONCLUSION This study provides a scientific basis for BBD clinical application and provides a new direction for BBD biological mechanism research.
Collapse
Affiliation(s)
- Jiong Li
- Department of Traditional Chinese Medicine, The First People’s Hospital of Lin’an District, Hangzhou, China
| | - Xiangjun Ma
- Department of Traditional Chinese Medicine, The First People’s Hospital of Lin’an District, Hangzhou, China
| | - Faying Xu
- College of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiqing Chen
- Department of General Surgery, The First People’s Hospital of Lin’an District, Hangzhou, China
| |
Collapse
|
2
|
Zhang X, An M, Zhang J, Zhao Y, Liu Y. Nano-medicine therapy reprogramming metabolic network of tumour microenvironment: new opportunity for cancer therapies. J Drug Target 2024; 32:241-257. [PMID: 38251656 DOI: 10.1080/1061186x.2024.2309565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/26/2023] [Indexed: 01/23/2024]
Abstract
Metabolic heterogeneity is one of the characteristics of tumour cells. In order to adapt to the tumour microenvironment of hypoxia, acidity and nutritional deficiency, tumour cells have undergone extensive metabolic reprogramming. Metabolites involved in tumour cell metabolism are also very different from normal cells, such as a large number of lactate and adenosine. Metabolites play an important role in regulating the whole tumour microenvironment. Taking metabolites as the target, it aims to change the metabolic pattern of tumour cells again, destroy the energy balance it maintains, activate the immune system, and finally kill tumour cells. In this paper, the regulatory effects of metabolites such as lactate, glutamine, arginine, tryptophan, fatty acids and adenosine were reviewed, and the related targeting strategies of nano-medicines were summarised, and the future therapeutic strategies of nano-drugs were discussed. The abnormality of tumour metabolites caused by tumour metabolic remodelling not only changes the energy and material supply of tumour, but also participates in the regulation of tumour-related signal pathways, which plays an important role in the survival, proliferation, invasion and metastasis of tumour cells. Regulating the availability of local metabolites is a new aspect that affects tumour progress. (The graphical abstract is by Figdraw).
Collapse
Affiliation(s)
- Xiaojie Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Min An
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Juntao Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yumeng Zhao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chem Soc Rev 2024. [PMID: 39431683 DOI: 10.1039/d4cs00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinghong Li
- Beijing Institute of Life Science and Technology, Beijing 102206, P. R. China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
4
|
Sharma A, Virmani T, Kumar G, Sharma A, Virmani R, Gugulothu D, Singh K, Misra SK, Pathak K, Chitranshi N, Coutinho HDM, Jain D. Mitochondrial signaling pathways and their role in cancer drug resistance. Cell Signal 2024; 122:111329. [PMID: 39098704 DOI: 10.1016/j.cellsig.2024.111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Mitochondria, traditionally known as cellular powerhouses, now emerge as critical signaling centers influencing cancer progression and drug resistance. The review highlights the role that apoptotic signaling, DNA mutations, mitochondrial dynamics and metabolism play in the development of resistance mechanisms and the advancement of cancer. Targeted approaches are discussed, with an emphasis on managing mitophagy, fusion, and fission of the mitochondria to make resistant cancer cells more susceptible to traditional treatments. Additionally, metabolic reprogramming can be used to effectively target metabolic enzymes such GLUT1, HKII, PDK, and PKM2 in order to avoid resistance mechanisms. Although there are potential possibilities for therapy, the complex structure of mitochondria and their subtle role in tumor development hamper clinical translation. Novel targeted medicines are put forth, providing fresh insights on combating drug resistance in cancer. The study also emphasizes the significance of glutamine metabolism, mitochondrial respiratory complexes, and apoptotic pathways as potential targets to improve treatment effectiveness against drug-resistant cancers. Combining complementary and nanoparticle-based techniques to target mitochondria has demonstrated encouraging results in the treatment of cancer, opening doors to reduce resistance and enable individualized treatment plans catered to the unique characteristics of each patient. Suggesting innovative approaches such as drug repositioning and mitochondrial drug delivery to enhance the efficacy of mitochondria-targeting therapies, presenting a pathway for advancements in cancer treatment. This thorough investigation is a major step forward in the treatment of cancer and has the potential to influence clinical practice and enhance patient outcomes.
Collapse
Affiliation(s)
- Ashwani Sharma
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Anjali Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Reshu Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Dalapathi Gugulothu
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Shashi Kiran Misra
- School of Pharmaceutical Sciences, CSJM University Kanpur, Kanpur 208024, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India
| | - Nitin Chitranshi
- Macquarie Medical School, Macquarie University, New South Wales, Australia; School of Science and Technology, the University of New England, Armidale, New South Wales, Australia.
| | | | - Divya Jain
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
5
|
Loftus AW, Zarei M, Kakish H, Hajihassani O, Hue JJ, Boutros C, Graor HJ, Nakazzi F, Bahlibi T, Winter JM, Rothermel LD. Therapeutic implications of the metabolic changes associated with BRAF inhibition in melanoma. Cancer Treat Rev 2024; 129:102795. [PMID: 38972133 PMCID: PMC11361048 DOI: 10.1016/j.ctrv.2024.102795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Melanoma metabolism can be reprogrammed by activating BRAF mutations. These mutations are present in up to 50% of cutaneous melanomas, with the most common being V600E. BRAF mutations augment glycolysis to promote macromolecular synthesis and proliferation. Prior to the development of targeted anti-BRAF therapies, these mutations were associated with accelerated clinical disease in the metastatic setting. Combination BRAF and MEK inhibition is a first line treatment option for locally advanced or metastatic melanoma harboring targetable BRAF mutations. This therapy shows excellent response rates but these responses are not durable, with almost all patients developing resistance. When BRAF mutated melanoma cells are inhibited with targeted therapies the metabolism of those cells also changes. These cells rely less on glycolysis for energy production, and instead shift to a mitochondrial phenotype with upregulated TCA cycle activity and oxidative phosphorylation. An increased dependence on glutamine utilization is exhibited to support TCA cycle substrates in this metabolic rewiring of BRAF mutated melanoma. Herein we describe the relevant core metabolic pathways modulated by BRAF inhibition. These adaptive pathways represent vulnerabilities that could be targeted to overcome resistance to BRAF inhibitors. This review evaluates current and future therapeutic strategies that target metabolic reprogramming in melanoma cells, particularly in response to BRAF inhibition.
Collapse
Affiliation(s)
- Alexander W Loftus
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Mehrdad Zarei
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Hanna Kakish
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Omid Hajihassani
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan J Hue
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Christina Boutros
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Hallie J Graor
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Faith Nakazzi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Tsegaw Bahlibi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jordan M Winter
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Luke D Rothermel
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
6
|
Wang Z, Liu M, Yang Q. Glutamine and leukemia research: progress and clinical prospects. Discov Oncol 2024; 15:391. [PMID: 39215845 PMCID: PMC11365919 DOI: 10.1007/s12672-024-01245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Leukemia is an abnormal proliferation of white blood cells that occurs in bone marrow and expands through the blood. It arises from dysregulated differentiation, uncontrolled growth, and inhibition of apoptosis. Glutamine (GLN) is a "conditionally essential" amino acid that promotes growth and proliferation of leukemic cells. Recently, details about the role of GLN and its metabolism in the diagnosis and treatment of acute myeloid, chronic lymphocytic, and acute lymphoblastic leukemia have emerged. The uptake of GLN by leukemia cells and the dynamic changes of glutamine-related indexes in leukemia patients may be able to assist in determining whether the condition of leukemia is in a state of progression, remission or relapse. Utilizing the possible differences in GLN metabolism in different subtypes of leukemia may help to differentiate between different subtypes of leukemia, thus providing a basis for accurate diagnosis. Targeting GLN metabolism in leukemia requires simultaneous blockade of multiple metabolic pathways without interfering with the normal cellular and immune functions of the body to achieve effective leukemia therapy. The present review summarizes recent advances, possible applications, and clinical perspectives of GLN metabolism in leukemia. In particular, it focuses on the prospects of GLN metabolism in the diagnosis and treatment of acute myeloid leukemia. The review provides new directions and hints at potential roles for future clinical treatments and studies.
Collapse
Affiliation(s)
- Zexin Wang
- Mianyang Central Hospital, Fucheng District, Mianyang, 621000, Sichuan, China.
| | - Miao Liu
- Mianyang Central Hospital, Fucheng District, Mianyang, 621000, Sichuan, China
| | - Qiang Yang
- Mianyang Central Hospital, Fucheng District, Mianyang, 621000, Sichuan, China
| |
Collapse
|
7
|
Wu H, Fu M, Wu M, Cao Z, Zhang Q, Liu Z. Emerging mechanisms and promising approaches in pancreatic cancer metabolism. Cell Death Dis 2024; 15:553. [PMID: 39090116 PMCID: PMC11294586 DOI: 10.1038/s41419-024-06930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Pancreatic cancer is an aggressive cancer with a poor prognosis. Metabolic abnormalities are one of the hallmarks of pancreatic cancer, and pancreatic cancer cells can adapt to biosynthesis, energy intake, and redox needs through metabolic reprogramming to tolerate nutrient deficiency and hypoxic microenvironments. Pancreatic cancer cells can use glucose, amino acids, and lipids as energy to maintain malignant growth. Moreover, they also metabolically interact with cells in the tumour microenvironment to change cell fate, promote tumour progression, and even affect immune responses. Importantly, metabolic changes at the body level deserve more attention. Basic research and clinical trials based on targeted metabolic therapy or in combination with other treatments are in full swing. A more comprehensive and in-depth understanding of the metabolic regulation of pancreatic cancer cells will not only enrich the understanding of the mechanisms of disease progression but also provide inspiration for new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hao Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengdi Fu
- Department of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhen Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qiyao Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
8
|
Guo S, Wang X, Wang Y, Bai J, Liu Y, Shao Z. The potential therapeutic targets of glutamine metabolism in head and neck squamous cell carcinoma. Biomed Pharmacother 2024; 176:116906. [PMID: 38876051 DOI: 10.1016/j.biopha.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
Targeting metabolic reprogramming may be an effective strategy to enhance cancer treatment efficacy. Glutamine serves as a vital nutrient for cancer cells. Inhibiting glutamine metabolism has shown promise in preventing tumor growth both in vivo and in vitro through various mechanisms. Therefore, this review collates recent scientific literature concerning the correlation between glutamine metabolism and cancer treatment. Novel treatment modalities based on amino acid transporters, metabolites, and glutaminase are discussed. Moreover, we demonstrate the relationship between glutamine metabolism and tumor proliferation, drug resistance, and the tumor immune microenvironment, offering new perspectives for the clinical treatment of head and neck squamous cell carcinoma, particularly for combined therapies. Identifying innovative approaches for enhancing the efficacy of glutamine-based metabolic therapy is crucial to improving HNSCC treatment.
Collapse
Affiliation(s)
- Shutian Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinmiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yifan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Liu
- Department of stomatology, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Huangshi 435000, China.
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Day Surgery Center, School and Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
9
|
Zhang G, Xiao Y, Tan J, Liu H, Fan W, Li J. Elevated SLC1A5 associated with poor prognosis and therapeutic resistance to transarterial chemoembolization in hepatocellular carcinoma. J Transl Med 2024; 22:543. [PMID: 38844930 PMCID: PMC11157896 DOI: 10.1186/s12967-024-05298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/12/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common malignant tumor, and glutamine is vital for tumor cells. The role of glutamine transporter SLC1A5 in tumor progression and transarterial chemoembolization (TACE) efficacy is under study. This research seeks to determine the impact of SLC1A5 expression on the prognosis and TACE efficacy of HCC and elucidate its mechanisms. METHODS SLC1A5 expression in HCC, correlation with patient outcomes, and response to TACE were studied in an open access liver cancer dataset and confirmed in our cohort. Additionally, the correlation between SLC1A5 expression and hypoxia, angiogenesis and immune infiltration was analyzed and verified by immunohistochemistry, immunofluorescence and transcriptome sequencing. Liver cancer cell lines with SLC1A5 expression knockdown or overexpression were constructed, and cell proliferation, colony formation, apoptosis, migration and drug sensitivity as well as in vivo xenograft tumor were measured. A gene set enrichment analysis was conducted to determine the signaling pathway influenced by SLC1A5, and a western blot analysis was performed to detect protein expression alterations. RESULTS SLC1A5 expression was higher in HCC tissue and associated with poor survival and TACE resistance. Hypoxia could stimulate the upregulation of glutamine transport, angiogenesis and SLC1A5 expression. The SLC1A5 expression was positively correlated with hypoxia and angiogenesis-related genes, immune checkpoint pathways, macrophage, Tregs, and other immunosuppressive cells infiltration. Knockdown of SLC1A5 decreased proliferation, colony formation, and migration, but increased apoptosis and increased sensitivity to chemotherapy drugs. Downregulation of SLC1A5 resulted in a decrease in Vimentin and N-cadherin expression, yet an increase in E-cadherin expression. Upregulation of SLC1A5 increased Vimentin and N-cadherin expression, while decreasing E-cadherin. Overexpression of β-catenin in SLC1A5-knockdown HCC cell lines could augment Vimentin and N-cadherin expression, suppress E-cadherin expression, and increase the migration and drug resistance. CONCLUSIONS Elevated SLC1A5 was linked to TACE resistance and survival shortening in HCC patients. SLC1A5 was positively correlated with hypoxia, angiogenesis, and immunosuppression. SLC1A5 may mediate HCC cell migration and drug resistance via Epithelial-mesenchymal transition (EMT) pathway.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/blood supply
- Humans
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Liver Neoplasms/genetics
- Chemoembolization, Therapeutic
- Drug Resistance, Neoplasm/genetics
- Amino Acid Transport System ASC/metabolism
- Amino Acid Transport System ASC/genetics
- Animals
- Cell Line, Tumor
- Prognosis
- Male
- Female
- Minor Histocompatibility Antigens/metabolism
- Minor Histocompatibility Antigens/genetics
- Gene Expression Regulation, Neoplastic
- Middle Aged
- Mice, Nude
- Cell Proliferation
- Cell Movement
- Apoptosis
- Mice
- Mice, Inbred BALB C
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Guixiong Zhang
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, P. R. China
| | - Yitai Xiao
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong Province, 510060, P. R. China
| | - Jizhou Tan
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, P. R. China
- Department of Stomatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Hang Liu
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, P. R. China
| | - Wenzhe Fan
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, P. R. China
| | - Jiaping Li
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, P. R. China.
| |
Collapse
|
10
|
Hu C, Lei Y, Liu X, Yu X, Geng Z, Liu Y, Yang L, Tie X, Zhou W, Li X, Zhang Y, Liang Y. Dissecting microenvironment in cystadenomas and hepatic cysts based on single nucleus RNA-sequencing data. Comput Biol Med 2024; 176:108541. [PMID: 38744012 DOI: 10.1016/j.compbiomed.2024.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Hepatic cystadenoma is a rare disease, accounting for about 5% of all cystic lesions, with a high tendency of malignant transformation. The preoperative diagnosis of cystadenoma is difficult, and some cystadenomas are easily misdiagnosed as hepatic cysts at first. Hepatic cyst is a relatively common liver disease, most of which are benign, but large hepatic cysts can lead to pressure on the bile duct, resulting in abnormal liver function. To better understand the difference between the microenvironment of cystadenomas and hepatic cysts, we performed single-nuclei RNA-sequencing on cystadenoma and hepatic cysts samples. In addition, we performed spatial transcriptome sequencing of hepatic cysts. Based on nucleus RNA-sequencing data, a total of seven major cell types were identified. Here we described the tumor microenvironment of cystadenomas and hepatic cysts, particularly the transcriptome signatures and regulators of immune cells and stromal cells. By inferring copy number variation, it was found that the malignant degree of hepatic stellate cells in cystadenoma was higher. Pseudotime trajectory analysis demonstrated dynamic transformation of hepatocytes in hepatic cysts and cystadenomas. Cystadenomas had higher immune infiltration than hepatic cysts, and T cells had a more complex regulatory mechanism in cystadenomas than hepatic cysts. Immunohistochemistry confirms a cystadenoma-specific T-cell immunoregulatory mechanism. These results provided a single-cell atlas of cystadenomas and hepatic cyst, revealed a more complex microenvironment in cystadenomas than in hepatic cysts, and provided new perspective for the molecular mechanisms of cystadenomas and hepatic cyst.
Collapse
Affiliation(s)
- Congxue Hu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yongqi Lei
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xinyang Liu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xingxin Yu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Zhida Geng
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yu Liu
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Liyu Yang
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xuehong Tie
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Wenzhe Zhou
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xia Li
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yunpeng Zhang
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yingjian Liang
- College of the First Affiliated Hospital of Harbin Medical University, Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
11
|
Zhang Z, Liu W, Huang T, Li J, Hu H, Xu X, Fan Z. CircCPA4 induces ASCT2 expression to promote tumor property of non-small cell lung cancer cells in a miR-145-5p-dependent manner. Thorac Cancer 2024; 15:764-777. [PMID: 38400818 PMCID: PMC10995715 DOI: 10.1111/1759-7714.15257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a type of lung cancer that occurs in the cells of the respiratory tract, and its development is influenced by the regulation of circular RNAs (circRNAs). However, the role of circRNA carboxypeptidase A4 (circCPA4) in the progression of NSCLC and the underlying mechanism remain relatively clear. METHODS The study utilized both real-time quantitative polymerase chain reaction (RT-qPCR) and western blot techniques to evaluate the levels of circCPA4, microRNA-145-5p (miR-145-5p), alanine, serine, or cysteine-preferring transporter 2 (ASCT2). To assess cell proliferation, cell counting kit-8 (CCK8) and 5-ethynyl-2'-deoxyuridine (EdU) assays were performed. Apoptosis was determined using flow cytometry, while cell migration and invasive capacity were evaluated through transwell and wound-healing assays. Intracellular levels of glutamine, glutamate, and α-KG were measured using specific kits. The relationship between miR-145-5p and circCPA4 or ASCT2 was confirmed using dual-luciferase reporter assay and RNA immunoprecipitation assay. RESULTS CircCPA4 and ASCT2 RNA levels were elevated, while miR-145-5p was downregulated in both NSCLC tissues and cells. Depletion of circCPA4 significantly inhibited NSCLC cell proliferation, migration, invasion, and intracellular levels of glutamine, glutamate, and α-KG, and promoted apoptosis. Moreover, circCPA4 knockdown delayed tumor growth in vivo. Furthermore, circCPA4 was found to bind to miR-145-5p, thereby regulating the progression of NSCLC in vitro. ASCT2 was also identified as a downstream target of miR-145-5p, and its upregulation rescued the effects of miR-145-5p overexpression on NSCLC cell processes. CONCLUSION CircCPA4 knockdown inhibited tumor property of NSCLC cells by modulating the miR-145-5p/ASCT2 axis.
Collapse
Affiliation(s)
| | - Weiliang Liu
- Department of Cardiothoracic SurgeryHanzhongChina
| | - Tao Huang
- Department of Cardiothoracic SurgeryHanzhongChina
| | - Junyan Li
- Department of Cardiothoracic SurgeryHanzhongChina
| | - Hui Hu
- Department of Cardiothoracic SurgeryHanzhongChina
| | - Xinyu Xu
- Department of Cardiothoracic SurgeryHanzhongChina
| | | |
Collapse
|
12
|
Li J, Zhang D, Wang S, Yu P, Sun J, Zhang Y, Meng X, Li J, Xiang L. Baicalein induces apoptosis by inhibiting the glutamine-mTOR metabolic pathway in lung cancer. J Adv Res 2024:S2090-1232(24)00085-7. [PMID: 38432394 DOI: 10.1016/j.jare.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION Baicalein, a bioactive component of Scutellaria baicalensis Georgi, has been shown to promote apoptosis in non-small cell lung cancer cells. However, previous studies have not determined if baicalein exerts proapoptotic effects by modulating the metabolic pathways. OBJECTIVE To investigate if baicalein induces apoptosis in lung cancer cells by modulating the glutamine-mTOR metabolic pathway. METHODS The in vivo anti-lung cancer activity of baicalein (50, 100, and 200 mg/kg) was evaluated using a xenograft model. In vitro experiments were used to assess the efficacy of baicalein (for H1299: 12.5, 25, and 50 μM; for A549: 10, 20, and 40 μM) on lung cancer cell proliferation, colony formation, and apoptosis. Metabolomics analysis was performed using liquid chromatography-mass spectrometry. The binding of baicalein to glutamine transporters and glutaminase was examined using molecular docking. The overexpression of glutamine transporters was validated using qRT-PCR and western blot analyses. The levels of ASCT2, LAT1, GLS1, p-mTOR, mTOR, and apoptosis-related proteins were evaluated using western blot analysis. RESULTS Baicalein inhibited lung cancer xenograft tumor growth in vivo and suppressed proliferation and promoted apoptosis in lung cancer cells in vitro. Additionally, baicalein altered amino acid metabolites, especially glutamine metabolites, in H1299 and A549 cells. Mechanistically, baicalein interacted with glutamine transporters as well as glutaminase and inhibited their activation. The expression of mTOR, an apoptosis-related protein and downstream target of glutamine metabolism, was also inhibited by baicalein treatment. Importantly, we next demonstrated the suppression of mTOR signaling and the induction of apoptosis by baicalein were achieved by regulating glutamine metabolism. CONCLUSION Baicalein inhibited the mTOR signaling pathway and induced apoptosis by downregulating glutamine metabolism. The potential of baicalein to induce apoptosis in lung cancer cells by selectively targeting the glutamine-mTOR pathway suggests an encouraging approach for treating lung cancer.
Collapse
Affiliation(s)
- Jingyang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Di Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayi Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Juan Li
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
13
|
Cheng L, Zhai H, Du J, Zhang G, Shi G. Lobetyolin inhibits cell proliferation and induces cell apoptosis by downregulating ASCT2 in gastric cancer. Cytotechnology 2023; 75:435-448. [PMID: 37655270 PMCID: PMC10465467 DOI: 10.1007/s10616-023-00588-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/29/2023] [Indexed: 09/02/2023] Open
Abstract
Gastric cancer (GC) is a heterogeneous disease and is the fifth most common cancer worldwide. Lobetyolin, as a bioactive ingredient extracted from Codonopsis pilosula (Franch.) Nannf., has been reported to exert anti-tumor effects in several cancer types. This study was aimed to investigate the role of lobetyolin in GC and the associated mechanism. MKN-45 and MKN-28 cells were incubated with concentrations of lobetyolin for 24 h. The viability and survival of GC cells were evaluated by performing MTT assay. Glutamine uptake, Adenosine Triphosphate, reactive oxygen species (ROS), and glutathione levels were measured by corresponding kits. Apoptosis and mitochondrial membrane potential of GC cells were determined by flow cytometry. Alanine, serine, cysteine-preferring transporter 2 (ASCT2) and the AKT/GSK3β/c-Myc pathway protein levels were examined by western blotting. Xenograft model and immunohistochemical staining were used to evaluate the pharmacological effects of lobetyolin in mice in vivo. We found that lobetyolin treatment suppressed the proliferative capacity of both MKN-45 and MKN-28 cells in a concentration-dependent manner. Lobetyolin reduced the uptake of glutamine and downregulated the expression levels of ASCT2 in GC cells and xenograft tumors. Lobetyolin effectively restrained the growth of tumors in vivo. In addition, lobetyolin induced the accumulation of ROS to attenuate mitochondria-mediated apoptosis via downregulation of ASCT2 expression. Lobetyolin promoted the phosphorylation of c-Myc and suppressed the phosphorylation of GSK3β and AKT in both MKN-45 and MKN-28 cells. The level of total Nrf2 protein was reduced after lobetyolin treatment. Overall, lobetyolin exerts anti-cancer effects by repressing cell proliferation and inducing cell apoptosis via downregulation of ASCT2 in GC.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Gastroenterology, The Central Hospital of Qianjiang, Yangtze University, Qianjiang, 433100 China
| | - Haoqing Zhai
- Department of Oncology, The Central Hospital of Qianjiang, Yangtze University, Qianjiang, 433100 China
| | - Juan Du
- Department of Internal Medicine, Hubei University Hospital, Wuhan, 430062 China
| | - Gang Zhang
- Department of Digestive 2, Wuhan Sixth Hospital, Wuhan, 430015 China
| | - Gan Shi
- Department of Gastroenterology, Wuhan Xinzhou District People’s Hospital, No.61, Xinzhou Street, Zhucheng Street, Xinzhou District, Wuhan, 430400 China
| |
Collapse
|
14
|
Liu D, Wang H, Li X, Liu J, Zhang Y, Hu J. Small molecule inhibitors for cancer metabolism: promising prospects to be explored. J Cancer Res Clin Oncol 2023; 149:8051-8076. [PMID: 37002510 DOI: 10.1007/s00432-022-04501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 04/03/2023]
Abstract
BACKGROUND Abnormal metabolism is the main hallmark of cancer, and cancer metabolism plays an important role in tumorigenesis, metastasis, and drug resistance. Therefore, studying the changes of tumor metabolic pathways is beneficial to find targets for the treatment of cancer diseases. The success of metabolism-targeted chemotherapy suggests that cancer metabolism research will provide potential new targets for the treatment of malignant tumors. PURPOSE The aim of this study was to systemically review recent research findings on targeted inhibitors of tumor metabolism. In addition, we summarized new insights into tumor metabolic reprogramming and discussed how to guide the exploration of new strategies for cancer-targeted therapy. CONCLUSION Cancer cells have shown various altered metabolic pathways, providing sufficient fuel for their survival. The combination of these pathways is considered to be a more useful method for screening multilateral pathways. Better understanding of the clinical research progress of small molecule inhibitors of potential targets of tumor metabolism will help to explore more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - HongPing Wang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - XingXing Li
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - JiFang Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - YanLing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
15
|
Anagnostakis F, Kokkorakis M, Markouli M, Piperi C. Impact of Solute Carrier Transporters in Glioma Pathology: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24119393. [PMID: 37298344 DOI: 10.3390/ijms24119393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Solute carriers (SLCs) are essential for brain physiology and homeostasis due to their role in transporting necessary substances across cell membranes. There is an increasing need to further unravel their pathophysiological implications since they have been proposed to play a pivotal role in brain tumor development, progression, and the formation of the tumor microenvironment (TME) through the upregulation and downregulation of various amino acid transporters. Due to their implication in malignancy and tumor progression, SLCs are currently positioned at the center of novel pharmacological targeting strategies and drug development. In this review, we discuss the key structural and functional characteristics of the main SLC family members involved in glioma pathogenesis, along with their potential targeting options to provide new opportunities for CNS drug design and more effective glioma management.
Collapse
Affiliation(s)
- Filippos Anagnostakis
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Michail Kokkorakis
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Mariam Markouli
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
16
|
Wen Q, Huang M, Xie J, Liu R, Miao Q, Huang J, Zhang J, Lyu W, Qi M, Wu C, Qi Q, Zhang Z, Deng R, Wang C, Chen ZS, Zhang D, Ye W, Chen M. lncRNA SYTL5-OT4 promotes vessel co-option by inhibiting the autophagic degradation of ASCT2. Drug Resist Updat 2023; 69:100975. [PMID: 37207473 DOI: 10.1016/j.drup.2023.100975] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
AIMS Vessel co-option is responsible for tumor resistance to antiangiogenic therapies (AATs) in patients with colorectal cancer liver metastasis (CRCLM). However, the mechanisms underlying vessel co-option remain largely unknown. Herein, we investigated the roles of a novel lncRNA SYTL5-OT4 and Alanine-Serine-Cysteine Transporter 2 (ASCT2) in vessel co-option-mediated AAT resistance. METHODS SYTL5-OT4 was identified by RNA-sequencing and verified by RT-qPCR and RNA fluorescence in situ hybridization assays. The effects of SYTL5-OT4 and ASCT2 on tumor cells were investigated by gain- and loss-of-function experiments, and those of SYTL5-OT4 on ASCT2 expression were analyzed by RNA immunoprecipitation and co-immunoprecipitation assays. The roles of SYTL5-OT4 and ASCT2 in vessel co-option were detected by histological, immunohistochemical, and immunofluorescence analyses. RESULTS The expression of SYTL5-OT4 and ASCT2 was higher in patients with AAT-resistant CRCLM. SYTL5-OT4 enhanced the expression of ASCT2 by inhibiting its autophagic degradation. SYTL5-OT4 and ASCT2 promoted vessel co-option by increasing the proliferation and epithelial-mesenchymal transition of tumor cells. Combination therapy of ASCT2 inhibitor and antiangiogenic agents overcame vessel co-option-mediated AAT resistance in CRCLM. CONCLUSION This study highlights the crucial roles of lncRNA and glutamine metabolism in vessel co-option and provides a potential therapeutic strategy for patients with AAT-resistant CRCLM.
Collapse
Affiliation(s)
- Qing Wen
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jingwen Xie
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Runyu Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qun Miao
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jinjun Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Junqiu Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wenyu Lyu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ming Qi
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chunyi Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qi Qi
- School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhijing Zhang
- School of Medicine, Jinan University, Guangzhou 510632, China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chenran Wang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for Biotechnology, St. John's University, NY 11439, USA.
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Minfeng Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Luo H, Peng J, Yuan Y. CircRNA OXCT1 promotes the malignant progression and glutamine metabolism of non-small cell lung cancer by absorbing miR-516b-5p and upregulating SLC1A5. Cell Cycle 2023; 22:1182-1195. [PMID: 35482822 PMCID: PMC10193882 DOI: 10.1080/15384101.2022.2071565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 12/24/2022] Open
Abstract
Previous study has demonstrated the high expression of circular RNA 3-oxoacid CoA-transferase 1 (circ-OXCT1) in lung adenocarcinoma tumor tissues. However, the role and possible mechanism of circ-OXCT1 in non-small cell lung cancer (NSCLC) progression was unclear.Quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry (IHC) staining assay were performed to detect the expression of circ-OXCT1, microRNA-516b-5p (miR-516b-5p), solute carrier family 1 member 5 (SLC1A5) and other indicated protein markers. Cell proliferation was measured by Cell counting kit 8 (CCK8), colony formation and 5-Ethynyl-2'-deoxyuridine (EdU) assays. Flow cytometry was employed to detect the rate of apoptotic cells. Cell migration and invasion were measured using transwell assay. The relative glutamine uptake and α-ketoglutarate (α-KG) production was determined using commercial kits. Interaction between miR-516b-5p and circ-OXCT1 or SLC1A5 was predicted by bioinformatics analysis and confirmed via luciferase reporter and RNA immunoprecipitation (RIP) assays. In vivo assay was implemented to demonstrate the effect of circ-OXCT1 in tumor growth.Circ-OXCT1 and SLC1A5 were upregulated and miR-516b-5p was downregulated in NSCLC tissues and cells. Functional experiments revealed that circ-OXCT1 silencing suppressed cell proliferation, migration and invasion, but promoted cell apoptosis in vitro. Circ-OXCT1 knockdown repressed tumor formation in vivo. Besides, miR-516b-5p was a target of circ-OXCT1, and miR-516b-5p inhibitor could relieve circ-OXCT1 absence-mediated effects in NSCLC cells. SLC1A5 was identified as a target of miR-516b-5p. Circ-OXCT1 promoted SLC1A5 expression by target binding with miR-516b-5p.Circ-OXCT1 facilitated NSCLC progression via miR-516b-5p-dependent regulation of SLC1A5, which provided a possible circRNA-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Hua Luo
- Department of Thoracic Surgery, Changsha Central Hospital, Changsha, Hunan, China
| | - Jianming Peng
- Department of Thoracic Surgery, Changsha Central Hospital, Changsha, Hunan, China
| | - Yuexi Yuan
- Department of Thoracic Surgery, Changsha Central Hospital, Changsha, Hunan, China
| |
Collapse
|
18
|
Fu S, Xu S, Zhang S. The role of amino acid metabolism alterations in pancreatic cancer: From mechanism to application. Biochim Biophys Acta Rev Cancer 2023; 1878:188893. [PMID: 37015314 DOI: 10.1016/j.bbcan.2023.188893] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
The incidence of pancreatic cancer is increasing in both developed and developing Nations. In recent years, various research evidence suggested that reprogrammed metabolism may play a key role in pancreatic cancer tumorigenesis and development. Therefore, it has great potential as a diagnostic, prognostic and therapeutic target. Amino acid metabolism is deregulated in pancreatic cancer, and changes in amino acid metabolism can affect cancer cell status, systemic metabolism in malignant tumor patients and mistakenly involved in different biological processes including stemness, proliferation and growth, invasion and migration, redox state maintenance, autophagy, apoptosis and even tumor microenvironment interaction. Generally, the above effects are achieved through two pathways, energy metabolism and signal transduction. This review aims to highlight the current research progress on the abnormal alterations of amino acids metabolism in pancreatic cancer, how they affect tumorigenesis and development of pancreatic cancer and the application prospects of them as diagnostic, prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Shenao Fu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China; Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shaokang Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China; Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China.
| |
Collapse
|
19
|
Zheng S, Liu T, Li L, Liu Q, Huang C, Liang Y, Tan Y, Zhang L, Lu X. SLC1A5, unrelated to prognosis, was associated with CD8 + T-cell exclusion in the tumor microenvironment of squamous cell carcinoma. Heliyon 2023; 9:e14571. [PMID: 36950604 PMCID: PMC10025928 DOI: 10.1016/j.heliyon.2023.e14571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
SLC1A5, short for solute carrier family 1 member 5, is a neutral amino acid transporter whose expression has been reported to be upregulated in various cancers, including esophageal squamous cell carcinoma (ESCC). Despite this, little has been described regarding the immunological involvement of SLC1A5 expression in the tumor microenvironment of ESCC. Given this, we adopted in silico analyses together with a wet lab strategy to investigate the prognostic and clinicopathological meaning of SLC1A5 expression in ESCC. In silico analyses of SLC1A5 expression data available from The Cancer Genome Atlas (TCGA) database revealed that SLC1A5 expression was unrelated to the prognosis of ESCC, which holds true when extended to other types of squamous cell carcinoma (SCC), including head and neck squamous cell carcinoma (HNSC) and lung squamous cell carcinoma (LUSC). Further analyses revealed that SLC1A5 expression correlated markedly with the infiltration density of effector CD8+ T cells in ESCC, and the same was true for HNSC and LUSC when extrapolated. As experimental confirmation, multiplexed immunofluorescent staining was undertaken to verify the correlation between SLC1A5 expression and infiltration of CD8+ T cells in a tissue microarray prepared from ESCC and matched normal control tissues. Our data confirmed that SLC1A5 expression was not associated with prognosis but was associated with the exclusion of CD8+ T cells. Taken together, all the data we curated strongly support the notion that SLC1A5 expression is associated with CD8+ T-cell exclusion in the tumor microenvironment of SCC.
Collapse
Affiliation(s)
- Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, PR China
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Lu Li
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, PR China
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Conggai Huang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, PR China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yan Liang
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi, 830017, China
| | - Yiyi Tan
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Li Zhang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, PR China
- VIP Medicine, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, PR China
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
- Corresponding author. State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, PR China.
| |
Collapse
|
20
|
Ni R, Li Z, Li L, Peng D, Ming Y, Li L, Liu Y. Rethinking glutamine metabolism and the regulation of glutamine addiction by oncogenes in cancer. Front Oncol 2023; 13:1143798. [PMID: 36959802 PMCID: PMC10029103 DOI: 10.3389/fonc.2023.1143798] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Glutamine, the most abundant non-essential amino acid in human blood, is crucial for cancer cell growth and cancer progression. Glutamine mainly functions as a carbon and nitrogen source for biosynthesis, energy metabolism, and redox homeostasis maintenance in cancer cells. Dysregulated glutamine metabolism is a notable metabolic characteristic of cancer cells. Some carcinogen-driven cancers exhibit a marked dependence on glutamine, also known as glutamine addiction, which has rendered the glutamine metabolic pathway a breakpoint in cancer therapeutics. However, some cancer cells can adapt to the glutamine unavailability by reprogramming metabolism, thus limiting the success of this therapeutic approach. Given the complexity of metabolic networks and the limited impact of inhibiting glutamine metabolism alone, the combination of glutamine metabolism inhibition and other therapeutic methods may outperform corresponding monotherapies in the treatment of cancers. This review summarizes the uptake, transport, and metabolic characteristics of glutamine, as well as the regulation of glutamine dependence by some important oncogenes in various cancers to emphasize the therapeutic potential of targeting glutamine metabolism. Furthermore, we discuss a glutamine metabolic pathway, the glutaminase II pathway, that has been substantially overlooked. Finally, we discuss the applicability of polytherapeutic strategies targeting glutamine metabolism to provide a new perspective on cancer therapeutics.
Collapse
Affiliation(s)
- Rui Ni
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziwei Li
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Li
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Peng
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Ming
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Li
- Department of pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Lin Li, ; Yao Liu,
| | - Yao Liu
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Lin Li, ; Yao Liu,
| |
Collapse
|
21
|
Zhao J, Lv J, Chen Y, Dong Q, Dong H. Recent progress of amino acid transporters as a novel antitumor target. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abstract
Glutamine transporters transport different amino acids for cell growth and metabolism. In tumor cells, glutamine transporters are often highly expressed and play a crucial role in their growth. By inhibiting the amino acid transport of these transporters, the growth of cancer cells can be inhibited. In recent years, more and more attention has been paid to the study of glutamine transporter. In this article, the differences between the ASC system amino acid transporter 2 (ASCT2), L-type amino acid transporter 1 (LAT1), and the cystine–glutamate exchange (xCT) transporters research progress on the mechanism of action and corresponding small molecule inhibitors are summarized. This article introduces 62 related small molecule inhibitors of different transporters of ASCT2, LAT1, and xCT. These novel chemical structures provide ideas for the research and design of targeted inhibitors of glutamine transporters, as well as important references and clues for the design of new anti-tumor drugs.
Collapse
Affiliation(s)
- Jiye Zhao
- Department of Innovation and Entrepreneurship, School of Teacher Education, Nanjing Xiaozhuang University , No. 3601 Hongjing Avenue, Jiangning District , Nanjing 211171 , China
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , No. 639 Longmian Avenue, Jiangning District , Nanjing 211198 , China
| | - Jiayi Lv
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , No. 639 Longmian Avenue, Jiangning District , Nanjing 211198 , China
| | - Yang Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , No. 639 Longmian Avenue, Jiangning District , Nanjing 211198 , China
| | - Qile Dong
- Department of Innovation and Entrepreneurship, School of Teacher Education, Nanjing Xiaozhuang University , No. 3601 Hongjing Avenue, Jiangning District , Nanjing 211171 , China
| | - Hao Dong
- Department of Innovation and Entrepreneurship, School of Teacher Education, Nanjing Xiaozhuang University , No. 3601 Hongjing Avenue, Jiangning District , Nanjing 211171 , China
| |
Collapse
|
22
|
Alanine-Serine-Cysteine Transporter 2 Inhibition Suppresses Prostate Cancer Cell Growth In Vitro. J Clin Med 2022; 11:jcm11185466. [PMID: 36143113 PMCID: PMC9501406 DOI: 10.3390/jcm11185466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Alanine-serine-cysteine transporter 2 (ASCT2) has been associated with increased levels of metabolism in various malignant tumors. However, its biological significance in the proliferation of prostate cancer (PCa) cells remains under investigation. We used the cBioPortal database to assess the effect of ASCT2 expression on the oncological outcomes of 108 PCa patients. To evaluate the function of ASCT2 in castration-sensitive PCa (CSPC) and castration-resistant PCa (CRPC), LNCaP cells and the ARV7-positive PCa cell line, 22Rv1, were assessed using cell proliferation assays and Western blot analyses. The ASCT2 expression level was associated with biochemical recurrence-free survival after prostatectomy in patients with a Gleason score ≥ 7. In vitro experiments indicated that the growth of LNCaP cells after combination therapy of ASCT2 siRNA and enzalutamide treatment was significantly reduced, compared to that following treatment with enzalutamide alone or ASCT2 siRNA transfection alone (p < 0.01, 0.01, respectively). After ASCT2 inhibition by siRNA transfection, the growth of 22Rv1 cells was significantly suppressed as compared with negative control siRNA via downregulation of ARV7 both in fetal bovine serum and androgen-deprivation conditions (p < 0.01, 0.01, respectively). We demonstrated that ASCT2 inhibition significantly reduced the proliferation rates of both CSPC and CRPC cells in vitro.
Collapse
|
23
|
Identification of a novel GLUT1 inhibitor with in vitro and in vivo anti-tumor activity. Int J Biol Macromol 2022; 216:768-778. [PMID: 35878663 DOI: 10.1016/j.ijbiomac.2022.07.123] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/23/2022]
Abstract
Glucose transporter (GLUT) is a group of membrane proteins which transport extracellular glucoses into cytoplasm, amongst GLUT1 is widely up-regulated in tumor cells. However, no FDA approved GLUT drug has been developed. In this study, we synthesized and identified a novel GLUT1 inhibitor (SMI277) based on in vitro assays and in vivo experiments. Compared with a known GLUT1 inhibitor, SMI277 showed stronger inhibitory activity to glucose uptake, and the inhibition was increased by 40 %. Lactate secretions were decreased by SMI277 in a dose dependent manner. SMI277 was able to inhibit cell proliferations and induce apoptosis of tumor cells. Compared to that of the control group, the tumor growth in mouse model with the administration of 10 mg/kg SMI277 was significantly alleviated and the tumor size was reduced by 58 % on day 21 after inoculation. Interestingly, SMI277 could negatively regulate the expression of GLUT1 protein. Ex vivo experiments showed that SMI277 was capable to enhance CD8+ T cell response. Residues Q283, F379 and E380 were identified as contact residues for GLUT1/SMI277 interactions by mutagenesis based binding affinity measurement. In conclusion, SMI277 appeared to be a good lead compound for drug development with specific GLUT1+ cancer treatment.
Collapse
|
24
|
Pacifico F, Mellone S, D'Incalci M, Stornaiuolo M, Leonardi A, Crescenzi E. Trabectedin suppresses escape from therapy-induced senescence in tumor cells by interfering with glutamine metabolism. Biochem Pharmacol 2022; 202:115159. [PMID: 35780827 DOI: 10.1016/j.bcp.2022.115159] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 01/10/2023]
Abstract
Conventional and targeted cancer therapies may induce a cellular senescence program termed therapy-induced senescence. However, unlike normal cells, cancer cells are able to evade the senescence cell cycle arrest and to resume proliferation, driving tumor recurrence after treatments. Cells that escape from therapy-induced senescence are characterized by a plastic, cancer stem cell-like phenotype, and recent studies are beginning to define their unique metabolic features, such as glutamine dependence. Here, we show that the antineoplastic drug trabectedin suppresses escape from therapy-induced senescence in all cell lines studied, and reduces breast cancer stem-like cells, at concentrations that do not affect the viability of senescent tumor cells. We demonstrate that trabectedin downregulates both the glutamine transporter SLC1A5 and glutamine synthetase, thereby interfering with glutamine metabolism. On the whole, our results indicate that trabectedin targets a glutamine-dependent cancer stem-like cell population involved in evasion from therapy-induced senescence and suggest a therapeutic potential for trabectedin combined with pro-senescence chemotherapy in tumor treatment.
Collapse
Affiliation(s)
- Francesco Pacifico
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Stefano Mellone
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Maurizio D'Incalci
- Department of Biomedical Sciences, Humanitas University, IRCCS Humanitas Research Hospital, 20072 Pieve Emanuele, Milan, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, 80149 Naples, Italy
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, 80131 Naples, Italy.
| | - Elvira Crescenzi
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy.
| |
Collapse
|
25
|
Carmo F, Silva C, Martel F. Inhibition of Glutamine Cellular Uptake Contributes to the Cytotoxic Effect of Xanthohumol in Triple-Negative Breast Cancer Cells. Nutr Cancer 2022; 74:3413-3430. [PMID: 35594207 DOI: 10.1080/01635581.2022.2076889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer constitutes the most incident cancer and one of the most common causes of cancer-related death. "Glutamine addiction", an important metabolic feature of cancer cells, is dependent on supply of this amino acid from external sources. In this study, the effect of several polyphenols (catechin, epicatechin, EGCG, catechin:lysine, naringenin, hesperidin, malvidin, delphinidin, kaempferol, quercetin, rutin, myricetin, resveratrol, xanthohumol, and chrysin) upon glutamine (3H-GLN) uptake by human breast epithelial adenocarcinoma cell lines with distinct characteristics (MCF-7 and MDA-MB-231) was assessed.Several polyphenols interfere with 3H-GLN uptake by both cell lines. Xanthohumol markedly decreases total and Na+-dependent 3H-GLN uptake and showed a cytotoxic and anti-proliferative effect in MDA-MB-231 cells. Xanthohumol is as an uncompetitive inhibitor of Na+-dependent 3H-GLN uptake and inhibits GPNA (L-γ-glutamyl-p-nitroanilide)-sensitive, both ASCT2 (alanine, serine, cysteine transporter 2)-mediated and non-ASCT2-mediated 3H-GLN uptake. Xanthohumol does not interfere with the transcription rates of ASCT2. The cytotoxic effect of xanthohumol, but not its anti-proliferative effect, is GPNA-sensitive and related to ASCT2 inhibition. Combination of xanthohumol with the breast cancer chemotherapeutic agent doxorubicin results in an additive anti-proliferative, but not cytotoxic effect.We conclude that targeting glutamine uptake might constitute a potential interesting strategy for triple-negative breast cancer.
Collapse
Affiliation(s)
- F Carmo
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - C Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - F Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
26
|
Lin R, Xu Y, Xie S, Zhang Y, Wang H, Yi GZ, Huang G, Ni B, Song H, Wang Z, Qi ST, Liu Y. Recycling of SLC38A1 to the plasma membrane by DSCR3 promotes acquired temozolomide resistance in glioblastoma. J Neurooncol 2022; 157:15-26. [PMID: 35187626 DOI: 10.1007/s11060-022-03964-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is a primary brain tumor with devastating prognosis. Although the O6-methylguanine-DNA methyltransferase (MGMT) leads to inherent temozolomide (TMZ) resistance, approximately half of GBMs were sufficient to confer acquired TMZ resistance, which express low levels of MGMT. The purpose of this study was to investigate the underlying mechanisms of the acquired TMZ resistance in MGMT-deficient GBM. METHODS The function of Down syndrome critical region protein 3 (DSCR3) on MGMT-deficient GBM was investigated in vitro and in an orthotopic brain tumor model in mice. Purification of plasma membrane proteins by membrane-cytoplasmic separation and subsequent label free-based quantitative proteomics were used to identified potential protein partners for DSCR3. Immunofluorescence was performed to show the reverse transport of solute carrier family 38 member 1 (SLC38A1) mediated by DSCR3. RESULTS DSCR3 is upregulated in MGMT-deficient GBM cells during TMZ treatment. Both DSCR3 and SLC38A1 were highly expressed in recurrent GBM patients. Silencing DSCR3 or SLC38A1 expression can increase TMZ sensitivity in MGMT-deficient GBM cells. Combination of proteomics and in vitro experiments show that DSCR3 directly binds internalized SLC38A1 to mediate its sorting into recycling pathway, which maintains the abundance on plasma membrane and enhances uptake of glutamine in MGMT-deficient GBM cells. CONCLUSIONS DSCR3 is a crucial regulator of acquired TMZ resistance in MGMT-deficient GBM. The DSCR3-dependent recycling of SLC38A1 maintains its abundance on plasma membrane, leading to tumor progression and acquired TMZ resistance in MGMT-deficient GBM.
Collapse
Affiliation(s)
- Rui Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Yimin Xu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Sidi Xie
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yunxiao Zhang
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Hai Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Guo-Zhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Bowen Ni
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Haimin Song
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Ziyu Wang
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Song-Tao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yawei Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| |
Collapse
|
27
|
Ionizing Radiation Upregulates Glutamine Metabolism and Induces Cell Death via Accumulation of Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:5826932. [PMID: 35028001 PMCID: PMC8749225 DOI: 10.1155/2021/5826932] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 01/21/2023]
Abstract
Glutamine metabolism provides energy to tumor cells and also produces reactive oxygen species (ROS). Excessive accumulation of ROS can damage mitochondria and eventually lead to cell death. xCT (SLC7A11) is responsible for the synthesis of glutathione in order to neutralize ROS. In addition, mitophagy can remove damaged mitochondria to keep the cell alive. Ionizing radiation kills tumor cells by causing the accumulation of ROS, which subsequently induces nuclear DNA damage. With this in mind, we explored the mechanism of intracellular ROS accumulation induced by ionizing radiation and hypothesized new methods to enhance the effect of radiotherapy. We used MCF-7 breast cancer cells and HCT116 colorectal cancer cells in our study. The above-mentioned cells were irradiated with different doses of X-rays or carbon ions. Clone formation assays were used to detect cell proliferation, enzyme-linked immunosorbent assay (ELISA) detected ATP, and glutathione (GSH) production, while the expression of proteins was detected by Western blot and quantitative real-time PCR analysis. The production of ROS was detected by flow cytometry, and immunofluorescence was used to track mitophagy-related processes. Finally, BALB/C tumor-bearing nude mice were irradiated with X-rays in order to further explore the protein expression found in tumors with the use of immunohistochemistry. Ionizing radiation increased the protein expressions of ASCT2, GLS, and GLUD in order to upregulate the glutamine metabolic flux in tumor cells. This caused an increase in ATP secretion. Meanwhile, ionizing radiation inhibited the expression of the xCT (SLC7A11) protein and reduced the generation of glutathione, leading to excessive accumulation of intracellular ROS. The mitophagy inhibitor, or knockdown Parkin gene, is able to enhance the ionizing radiation-induced ROS production and increase nucleus DNA damage. This combined treatment can significantly improve the killing effect of radiation on tumor cells. We concluded that ionizing radiation could upregulate the glutamine metabolic flux and enhance ROS accumulation in mitochondria. Ionizing radiation also decreased the SLC7A11 expression, resulting in reduced GSH generation. Therefore, inhibition of mitophagy can increase ionizing radiation-induced cell death.
Collapse
|
28
|
Silva C, Andrade N, Rodrigues I, Ferreira AC, Soares ML, Martel F. The pro-proliferative effect of interferon-γ in breast cancer cell lines is dependent on stimulation of ASCT2-mediated glutamine cellular uptake. Life Sci 2021; 286:120054. [PMID: 34662550 DOI: 10.1016/j.lfs.2021.120054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
AIMS Type 2 diabetes mellitus (T2DM) is a risk factor for breast cancer initiation and progression. Glutamine (GLN) is a critical nutrient for cancer cells. The aim of this study was to investigate the effect of T2DM-associated compounds upon GLN uptake by breast cancer cells. MAIN METHODS The in vitro uptake of 3H-GLN by breast cancer (MCF-7 and MDA-MB-231) and non-tumorigenic (MCF-12A) cell lines was measured. KEY FINDINGS 3H-GLN uptake in the three cell lines is mainly Na+-dependent and sensitive to the ASCT2 inhibitor GPNA. IFN-γ increased total and Na+-dependent 3H-GLN uptake in the two breast cancer cell lines, and insulin increased total and Na+-dependent 3H-GLN uptake in the non-tumorigenic cell line. GPNA abolished the increase in 3H-GLN uptake promoted by these T2DM-associated compounds. ASCT2 knockdown confirmed that the increase in 3H-GLN uptake caused by IFN-γ (in breast cancer cells) and by insulin (in non-tumorigenic cells) is ASCT2-dependent. IFN-γ (in MDA-MB-231 cells) and insulin (in MCF-12A cells) increased ASCT2 transcript and protein levels. Importantly, the pro-proliferative effect of IFN-γ in breast cancer cell lines was associated with an increase in 3H-GLN uptake which was GPNA-sensitive, blocked by ASCT2 knockdown and mediated by activation of the PI3K-, STAT3- and STAT1 intracellular signalling pathways. SIGNIFICANCE IFN-γ and insulin possess pro-proliferative effects in breast cancer and non-cancer cell lines, respectively, which are dependent on an increase in ASCT2-mediated glutamine transport. Thus, an effective inhibition of ASCT2-mediated glutamine uptake may be a therapeutic strategy against human breast cancer in T2DM patients.
Collapse
Affiliation(s)
- Cláudia Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Nelson Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Ilda Rodrigues
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - António Carlos Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Laboratório de Apoio à Investigação em Medicina Molecular, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Miguel Luz Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Laboratório de Apoio à Investigação em Medicina Molecular, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.
| |
Collapse
|
29
|
Zacharias NM, Wang L, Maity T, Li L, Millward SW, Karam JA, Wood CG, Navai N. Prolyl Hydroxylase 3 Knockdown Accelerates VHL-Mutant Kidney Cancer Growth In Vivo. Int J Mol Sci 2021; 22:2849. [PMID: 33799686 PMCID: PMC8001211 DOI: 10.3390/ijms22062849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/07/2021] [Indexed: 01/01/2023] Open
Abstract
Von Hippel Lindau (VHL) inactivation, which is common in clear cell renal cell carcinoma (ccRCC), leads directly to the disruption of oxygen homoeostasis. VHL works through hypoxia-inducible factors (HIFs). Within this VHL-HIF system, prolyl hydroxylases (PHDs) are the intermediary proteins that initiate the degradation of HIFs. PHD isoform 3's (PHD3) role in ccRCC growth in vivo is poorly understood. Using viral transduction, we knocked down the expression of PHD3 in the human ccRCC cell line UMRC3. Compared with control cells transduced with scrambled vector (UMRC3-SC cells), PHD3-knockdown cells (UMRC3-PHD3KD cells) showed increased cell invasion, tumor growth, and response to sunitinib. PHD3 knockdown reduced HIF2α expression and increased phosphorylated epidermal growth factor (EGFR) expression in untreated tumor models. However, following sunitinib treatment, expression of HIF2α and phosphorylated EGFR were equivalent in both PHD3 knockdown and control tumors. PHD3 knockdown changed the overall redox state of the cell as seen by the increased concentration of glutathione in PHD3 knockdown tumors relative to control tumors. UMRC3-PHD3KD cells had increased proliferation in cell culture when grown in the presence of hydrogen peroxide compared to UMRC3-SC control cells. Our findings illustrate (1) the variable effect of PHD3 on HIF2α expression, (2) an inverse relationship between PHD3 expression and tumor growth in ccRCC animal models, and (3) the role of PHD3 in maintaining the redox state of UMRC3 cells and their proliferative rate under oxidative stress.
Collapse
Affiliation(s)
- Niki M. Zacharias
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.M.Z.); (L.W.); (T.M.); (L.L.); (J.A.K.); (C.G.W.)
| | - Lei Wang
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.M.Z.); (L.W.); (T.M.); (L.L.); (J.A.K.); (C.G.W.)
| | - Tapati Maity
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.M.Z.); (L.W.); (T.M.); (L.L.); (J.A.K.); (C.G.W.)
| | - Li Li
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.M.Z.); (L.W.); (T.M.); (L.L.); (J.A.K.); (C.G.W.)
| | - Steven W. Millward
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jose A. Karam
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.M.Z.); (L.W.); (T.M.); (L.L.); (J.A.K.); (C.G.W.)
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher G. Wood
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.M.Z.); (L.W.); (T.M.); (L.L.); (J.A.K.); (C.G.W.)
| | - Neema Navai
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.M.Z.); (L.W.); (T.M.); (L.L.); (J.A.K.); (C.G.W.)
| |
Collapse
|