1
|
Tonello S, D’Onghia D, Di Ruscio A, Mora SM, Vincenzi F, Caria G, Fracchia A, Vercellino N, Bussolati B, Tanzi A, Rizzi M, Minisini R, Sola D, Scacchi M, Mai S, Pirisi M, Smirne C, Grossini E, Cantaluppi V, Comi C, Murdaca G, Colangelo D, Sainaghi PP. Extracellular Vesicles as a Potential Biomarker of Pulmonary Arterial Hypertension in Systemic Sclerosis. Pharmaceuticals (Basel) 2025; 18:259. [PMID: 40006072 PMCID: PMC11859480 DOI: 10.3390/ph18020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/28/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction: Pulmonary arterial hypertension (PAH) and interstitial lung disease (ILD) are severe complications of patients with systemic sclerosis (SSc). Currently, there are a few tests for early identification of these conditions, although they are invasive and time-consuming. Extracellular vesicles (EVs) offer a promising possibility for gathering information on tissue health. This study aims to characterize EVs in cases of systemic sclerosis complicated by pulmonary hypertension and pulmonary fibrosis. Methods: A cohort of 58 patients with SSc was evaluated, including 14 with pulmonary hypertension, 17 with pulmonary fibrosis, and 27 without complications. Additionally, 11 healthy subjects, matched for sex and age, served as a control group. EVs were characterized by using a MACSplex kit to analyze the expression of 37 membrane markers. Results: After the overall analysis, we show that EVs from SSc patients had higher expression of CD146, CD42a, and CD29 (p = 0.03, p = 0.02 and p = 0.05) but lower expression of HLA-ABC with respect to the control patients (p = 0.02). Multivariate analyses demonstrated that only CD42a has a significant association with the disease (p = 0.0478). In group comparative analyses (PAH, ILD, uncomplicated systemic sclerosis (named SSc no PAH no ILD), and controls), CD3 and CD56 were higher in PAH patients, with respect to the controls, ILD, and the group SSc no PAH no ILD (CD3: p = 0.01, p = 0.003, p = 0.0005; CD56: p = 0.002, p < 0.0001, p = 0.0002). HLA-DR showed higher expression in PAH patients with respect to ILD patients (p = 0.02), CD25 showed higher expression in PAH patients with respect uncomplicated SSc (p = 0.02), and CD42a showed higher expression in PAH patients with respect to the controls (p = 0.03); nevertheless, multivariate analyses demonstrated that only CD3 retained its association with PAH. Conclusions: The expression of CD42a, a platelet-derived marker indicating endothelial damage, suggests its potential to provide information on the state of the microcirculation in systemic sclerosis. The higher expression of CD3 on the surface of the EVs in PAH patients might indicate increased T-cell activity in tissues, with a possible association with the development of pulmonary hypertension.
Collapse
Affiliation(s)
- Stelvio Tonello
- Department on Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (S.M.M.); (F.V.); (G.C.); (A.F.); (N.V.); (R.M.); (M.P.); (C.S.); (P.P.S.)
| | - Davide D’Onghia
- Department on Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (S.M.M.); (F.V.); (G.C.); (A.F.); (N.V.); (R.M.); (M.P.); (C.S.); (P.P.S.)
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
| | - Annalisa Di Ruscio
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Silvia Maria Mora
- Department on Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (S.M.M.); (F.V.); (G.C.); (A.F.); (N.V.); (R.M.); (M.P.); (C.S.); (P.P.S.)
| | - Federica Vincenzi
- Department on Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (S.M.M.); (F.V.); (G.C.); (A.F.); (N.V.); (R.M.); (M.P.); (C.S.); (P.P.S.)
| | - Giulia Caria
- Department on Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (S.M.M.); (F.V.); (G.C.); (A.F.); (N.V.); (R.M.); (M.P.); (C.S.); (P.P.S.)
| | - Alessia Fracchia
- Department on Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (S.M.M.); (F.V.); (G.C.); (A.F.); (N.V.); (R.M.); (M.P.); (C.S.); (P.P.S.)
| | - Nicole Vercellino
- Department on Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (S.M.M.); (F.V.); (G.C.); (A.F.); (N.V.); (R.M.); (M.P.); (C.S.); (P.P.S.)
| | - Benedetta Bussolati
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, Università di Torino, 10125 Torino, Italy; (B.B.); (A.T.)
| | - Adele Tanzi
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, Università di Torino, 10125 Torino, Italy; (B.B.); (A.T.)
| | - Manuela Rizzi
- Human Anatomy Laboratory, Department of Health Sciences, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Rosalba Minisini
- Department on Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (S.M.M.); (F.V.); (G.C.); (A.F.); (N.V.); (R.M.); (M.P.); (C.S.); (P.P.S.)
| | - Daniele Sola
- Department on Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (S.M.M.); (F.V.); (G.C.); (A.F.); (N.V.); (R.M.); (M.P.); (C.S.); (P.P.S.)
- Laboratory of Metabolic Research, IRCCS Istituto Auxologico Italiano, 28824 Oggebbio, Italy; (M.S.); (S.M.)
| | - Massimo Scacchi
- Laboratory of Metabolic Research, IRCCS Istituto Auxologico Italiano, 28824 Oggebbio, Italy; (M.S.); (S.M.)
- Department of Clinical Sciences and Community Health, Università di Milano, 20122 Milano, Italy
| | - Stefania Mai
- Laboratory of Metabolic Research, IRCCS Istituto Auxologico Italiano, 28824 Oggebbio, Italy; (M.S.); (S.M.)
| | - Mario Pirisi
- Department on Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (S.M.M.); (F.V.); (G.C.); (A.F.); (N.V.); (R.M.); (M.P.); (C.S.); (P.P.S.)
- Department of Internal Medicine and Rheumatology Unit, AOU Maggiore della Carità, 28100 Novara, Italy
| | - Carlo Smirne
- Department on Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (S.M.M.); (F.V.); (G.C.); (A.F.); (N.V.); (R.M.); (M.P.); (C.S.); (P.P.S.)
- Department of Internal Medicine and Rheumatology Unit, AOU Maggiore della Carità, 28100 Novara, Italy
| | - Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy;
| | - Vincenzo Cantaluppi
- Nephrology Unit, Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy;
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy;
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy;
- Allergology and Clinical Immunology Unit, San Bartolomeo Hospital, 19038 Sarzana, Italy
| | - Donato Colangelo
- Pharmacology, Department of Health Sciences, Università del Piemonte Orientale (UPO), 28100 Novara, Italy;
| | - Pier Paolo Sainaghi
- Department on Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (S.M.M.); (F.V.); (G.C.); (A.F.); (N.V.); (R.M.); (M.P.); (C.S.); (P.P.S.)
- Department of Internal Medicine and Rheumatology Unit, AOU Maggiore della Carità, 28100 Novara, Italy
- CAAD-Center for Autoimmune and Allergic Diseases and IRCAD-Interdisciplinary Research Center for Autoimmune Diseases, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
2
|
Janssen LM, Lemaire F, Sanchez-Calero CL, Huaux F, Ronsmans S, Hoet PH, Ghosh M. External and internal exposome as triggers of biological signalling in systemic sclerosis - A narrative synthesis. J Autoimmun 2025; 150:103342. [PMID: 39643962 DOI: 10.1016/j.jaut.2024.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Systemic sclerosis (SSc) is an autoimmune chronic connective tissue disorder with a complex pathogenesis and a strong gene-environment interaction. Despite the low prevalence of SSc, with around 100-250 cases per million, the morbidity and mortality are high and disproportionately affecting women. In this context, we review the influence of the external and internal exposome on the "immunome" in SSc. While several studies have addressed aspects of exposure-induced autoimmunity in general, very few have focused on SSc-specific phenotypes. In epidemiological studies, targeted characterization of the external exposome component in relation to SSc has often been limited to a single exposure. Despite the selective characterization of exposure, such studies play an important role in providing evidence that can be used towards reduction of exposure of modifiable factors, and can lead to proper management and prevention of SSc. Additionally, there is an effort towards integration of external exposome data with health data (health records, medical imaging, diagnostic results, etc.), to significantly improve our understanding of the environmental and occupational causes of SSc. A limited number of studies have identified biological processes related to the vascular homeostasis, fibrotic processes and the immune system. The key findings of the current review show advances in our understanding of the SSc disease phenotype and associated biomarkers in relation to specific pathophysiological features, however most often such studies are not supplemented with external exposome data.
Collapse
Affiliation(s)
- Lisa Mf Janssen
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Frauke Lemaire
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | - François Huaux
- Louvain Center for Toxicology and Applied Pharmacology, UCLouvain, Brussels, Belgium
| | - Steven Ronsmans
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Peter Hm Hoet
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Manosij Ghosh
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Tang B, Shi Y, Zeng Z, He X, Yu J, Chai K, Liu J, Liu L, Zhan Y, Qiu X, Tang R, Xiao Y, Xiao R. Silica's silent threat: Contributing to skin fibrosis in systemic sclerosis by targeting the HDAC4/Smad2/3 pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124194. [PMID: 38782158 DOI: 10.1016/j.envpol.2024.124194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Nowadays, silica products are widely used in daily life, especially in skin applications, which inevitably increases the risk of silica exposure in general population. However, inadequate awareness of silica's potential hazards and lack of self-protection are of concern. Systemic sclerosis (SSc) is characterized by progressive tissue fibrosis under environmental and genetic interactions. Silica exposure is considered an important causative factor for SSc, but its pathogenesis remains unclear. Within this study, we showed that lower doses of silica significantly promoted the proliferation, migration, and activation of human skin fibroblasts (HSFs) within 24 h. Silica injected subcutaneously into mice induced and exacerbated skin fibrosis. Notably, silica increased histone deacetylase-4 (HDAC4) expression by inducing its DNA hypomethylation in normal HSFs. The elevated HDAC4 expression was also confirmed in SSc HSFs. Furthermore, HDAC4 was positively correlated with Smad2/3 phosphorylation and COL1, α-SMA, and CTGF expression. The HDAC4 inhibitor LMK235 mitigated silica-induced upregulation of these factors and alleviated skin fibrosis in SSc mice. Taken together, silica induces and exacerbates skin fibrosis in SSc patients by targeting the HDAC4/Smad2/3 pathway. Our findings provide new insights for evaluating the health hazards of silica exposure and identify HDAC4 as a potential interventional target for silica-induced SSc skin fibrosis.
Collapse
Affiliation(s)
- Bingsi Tang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yaqian Shi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xinglan He
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jiangfan Yu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ke Chai
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jiani Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Licong Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiangning Qiu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Rui Tang
- Department of Rheumatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
4
|
Abstract
There is an increasing body of literature suggesting a relationship between environmental factors and the development of systemic sclerosis (SSc). These include occupational exposures, chemical materials, medications, alterations in the microbiome, and dysbiosis. Environmental exposures may impact epigenetic regulation thereby triggering an aberrant immune response resulting in the clinical and serologic phenotype that we diagnose as SSc. Screening and studying putative triggers will not only improve our understanding of the pathogenesis of SSc but also inform the institution for protective measures.
Collapse
Affiliation(s)
- Hana Alahmari
- Toronto Scleroderma Program, Mount Sinai Hospital, 2nd Floor, Box 9, 60 Murray Street, Toronto, Ontario M5T 3L9, Canada
| | - Zareen Ahmad
- Toronto Scleroderma Program, Mount Sinai Hospital, 2nd Floor, Box 9, 60 Murray Street, Toronto, Ontario M5T 3L9, Canada
| | - Sindhu R Johnson
- Toronto Scleroderma Program, Division of Rheumatology, Department of Medicine, Toronto Western Hospital, Mount Sinai Hospital, Institute of Health Policy, Management and Evaluation, University of Toronto, Room 2-004, Box 9, 60 Murray Street, Toronto, Ontario M5T 3L9, Canada.
| |
Collapse
|
5
|
Alpoim-Moreira J, Fernandes C, Pimenta J, Bliebernicht M, Rebordão MR, Castelo-Branco P, Szóstek-Mioduchowska A, Skarzynski DJ, Ferreira-Dias G. Metallopeptidades 2 and 9 genes epigenetically modulate equine endometrial fibrosis. Front Vet Sci 2022; 9:970003. [PMID: 36032279 PMCID: PMC9412240 DOI: 10.3389/fvets.2022.970003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/22/2022] [Indexed: 12/13/2022] Open
Abstract
Endometrium type I (COL1) and III (COL3) collagen accumulation, periglandular fibrosis and mare infertility characterize endometrosis. Metalloproteinase-2 (MMP-2), MMP-9 and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) are involved in collagen turnover. Since epigenetic changes may control fibroproliferative diseases, we hypothesized that epigenetic mechanisms could modulate equine endometrosis. Epigenetic changes can be reversed and therefore extremely promising for therapeutic use. Methylation pattern analysis of a particular gene zone is used to detect epigenetic changes. DNA methylation commonly mediates gene repression. Thus, this study aimed to evaluate if the transcription of some genes involved in equine endometrosis was altered with endometrial fibrosis, and if the observed changes were epigenetically modulated, through DNA methylation analysis. Endometrial biopsies collected from cyclic mares were histologically classified (Kenney and Doig category I, n = 6; category IIA, n = 6; category IIB, n = 6 and category III, n = 6). Transcription of COL1A1, COL1A2, COL3A1, MMP2, MMP9, TIMP1, and TIMP2 genes and DNA methylation pattern by pyrosequencing of COL1A1, MMP2, MMP9, TIMP1 genes were evaluated. Both MMP2 and MMP9 transcripts decreased with fibrosis, when compared with healthy endometrium (category I) (P < 0.05). TIMP1 transcripts were higher in category III, when compared to category I endometrium (P < 0.05). No differences were found for COL1A1, COL1A2, COL3A1 and TIMP2 transcripts between endometrial categories. There were higher methylation levels of (i) COL1A1 in category IIB (P < 0.05) and III (P < 0.01), when compared to category I; (ii) MMP2 in category III, when compared to category I (P < 0.001) and IIA (P < 0.05); and (iii) MMP9 in category III, when compared to category I and IIA (P < 0.05). No differences in TIMP1 methylation levels were observed between endometrial categories. The hypermethylation of MMP2 and MMP9, but not of COL1A1 genes, occurred simultaneously with a decrease in their mRNA levels, with endometrial fibrosis, suggesting that this hypermethylation is responsible for repressing their transcription. Our results show that endometrosis is epigenetically modulated by anti-fibrotic genes (MMP2 and MMP9) inhibition, rather than fibrotic genes activation and therefore, might be promising targets for therapeutic use.
Collapse
Affiliation(s)
- Joana Alpoim-Moreira
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Carina Fernandes
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Jorge Pimenta
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Unidade Estratégica de Investigação e Serviços de Biotecnologia e Recursos Genéticos (UEISBR), Instituto Nacional de Investigação Agrária e Veterinária, I. P. (INIAV), Vairão, Portugal
| | | | - Maria Rosa Rebordão
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
- Polytechnic of Coimbra, Coimbra Agriculture School, Coimbra, Portugal
| | - Pedro Castelo-Branco
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
| | | | | | - Graça Ferreira-Dias
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
- *Correspondence: Graça Ferreira-Dias
| |
Collapse
|
6
|
Shen L, Yu Y, Jiang M, Zhao J. Alteration of the m 6A methylation landscape in a mouse model of scleroderma. Epigenomics 2021; 13:1867-1883. [PMID: 34791892 DOI: 10.2217/epi-2021-0369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: To explore the N6-methyladenosine (m6A) methylation of mRNAs and its roles in a mouse model of scleroderma. Materials & methods: To evaluate whether the mouse model of scleroderma could meet the experimental requirements, we examined skin tissue specimens by pathological staining and identified the related indicators by quantitative PCR (qPCR). m6A-tagged mRNAs were identified via m6A epitranscriptomic microarray, and m6A-RNA-immunoprecipitation qPCR and qPCR were performed to confirm microarray data. Results: There were differences in m6A methylation among 843 mRNAs. Further, there were significant differences among Hras, Saa1, Ccl3, Ccl9 and Il1b in terms of methylation and expression. Conclusion: The m6A methylation spectrum in a mouse model of scleroderma may explain the occurrence of scleroderma.
Collapse
Affiliation(s)
- Liangliang Shen
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yue Yu
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Miao Jiang
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jingjun Zhao
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| |
Collapse
|
7
|
Szabo I, Muntean L, Crisan T, Rednic V, Sirbe C, Rednic S. Novel Concepts in Systemic Sclerosis Pathogenesis: Role for miRNAs. Biomedicines 2021; 9:biomedicines9101471. [PMID: 34680587 PMCID: PMC8533248 DOI: 10.3390/biomedicines9101471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disease with heterogeneous clinical phenotypes. It is characterized by the pathogenic triad: microangiopathy, immune dysfunction, and fibrosis. Epigenetic mechanisms modulate gene expression without interfering with the DNA sequence. Epigenetic marks may be reversible and their differential response to external stimuli could explain the protean clinical manifestations of SSc while offering the opportunity of targeted drug development. Small, non-coding RNA sequences (miRNAs) have demonstrated complex interactions between vasculature, immune activation, and extracellular matrices. Distinct miRNA profiles were identified in SSc skin specimens and blood samples containing a wide variety of dysregulated miRNAs. Their target genes are mainly involved in profibrotic pathways, but new lines of evidence also confirm their participation in impaired angiogenesis and aberrant immune responses. Research approaches focusing on earlier stages of the disease and on differential miRNA expression in various tissues could bring novel insights into SSc pathogenesis and validate the clinical utility of miRNAs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Iulia Szabo
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
| | - Laura Muntean
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
- Department of Rheumatology, County Emergency Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
- Correspondence:
| | - Tania Crisan
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania;
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Voicu Rednic
- Department of Gastroenterology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania;
- Department of Gastroenterology II, “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 400000 Cluj-Napoca, Romania
| | - Claudia Sirbe
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
| | - Simona Rednic
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
- Department of Rheumatology, County Emergency Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Wang Y, Sun J, Kahaleh B. Epigenetic down-regulation of microRNA-126 in scleroderma endothelial cells is associated with impaired responses to VEGF and defective angiogenesis. J Cell Mol Med 2021; 25:7078-7088. [PMID: 34137496 PMCID: PMC8278107 DOI: 10.1111/jcmm.16727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 01/01/2023] Open
Abstract
Impaired angiogenesis in scleroderma (SSc) is a critical component of SSc pathology. MicroRNA‐126 (miR‐126) is expressed in endothelial cells (MVECs) where it regulates VEGF responses by repressing the negative regulators of VEGF, including the sprouty‐related protein‐1 (SPRED1), and phosphoinositide‐3 kinase regulatory subunit 2 (PIK3R2). MVECs were isolated from SSc skin and matched subjects (n = 6). MiR‐126 expression was measured by qPCR and in situ hybridization. Matrigel‐based tube assembly was used to test angiogenesis. MiR‐126 expression was inhibited by hsa‐miR‐126 inhibitor and enhanced by hsa‐miR‐126 Mimic. Epigenetic regulation of miR‐126 expression was examined by the addition of epigenetic inhibitors (Aza and TSA) to MVECs and by bisulphite genomic sequencing of DNA methylation of the miR‐126 promoter region. MiR‐126 expression, as well as EGFL7 (miR‐126 host gene), in SSc‐MVECs and skin, was significantly down‐regulated in association with increased expression of SPRED1 and PIK3R2 and diminished response to VEGF. Inhibition of miR‐126 in NL‐MVECs resulted in reduced angiogenic capacity, whereas overexpression of miR‐126 in SSc‐MVECs resulted in enhanced tube assembly. Addition of Aza and TSA normalized miR‐126 and EGFL7 expression levels in SSc‐MVECs. Heavy methylation in miR‐126/EGFL7 gene was noted. In conclusion, these results demonstrate that the down‐regulation of miR‐126 results in impaired VEGF responses.
Collapse
Affiliation(s)
- Yongqing Wang
- Division of Rheumatology and Immunology, University of Toledo Medical Center, Toledo, OH, USA
| | - John Sun
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Bashar Kahaleh
- Division of Rheumatology and Immunology, University of Toledo Medical Center, Toledo, OH, USA
| |
Collapse
|
9
|
Modulation of microRNome by Human Cytomegalovirus and Human Herpesvirus 6 Infection in Human Dermal Fibroblasts: Possible Significance in the Induction of Fibrosis in Systemic Sclerosis. Cells 2021; 10:cells10051060. [PMID: 33946985 PMCID: PMC8146000 DOI: 10.3390/cells10051060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) and Human herpesvirus 6 (HHV-6) have been reportedly suggested as triggers of the onset and/or progression of systemic sclerosis (SSc), a severe autoimmune disorder characterized by multi-organ fibrosis. The etiology and pathogenesis of SSc are still largely unknown but virological and immunological observations support a role for these beta-herpesviruses, and we recently observed a direct impact of HCMV and HHV-6 infection on the expression of cell factors associated with fibrosis at the cell level. Since miRNA expression has been found profoundly deregulated at the tissue level, here we aimed to investigate the impact on cell microRNome (miRNome) of HCMV and HHV-6 infection in in vitro infected primary human dermal fibroblasts, which represent one of the main SSc target cells. The analysis, performed by Taqman arrays detecting and quantifying 754 microRNAs (miRNAs), showed that both herpesviruses significantly modulated miRNA expression in infected cells, with evident early and late effects and deep modulation (>10 fold) of >40 miRNAs at each time post infection, including those previously recognized for their key function in fibrosis. The correlation between these in vitro results with in vivo observations is strongly suggestive of a role of HCMV and/or HHV-6 in the multistep pathogenesis of fibrosis in SSc and in the induction of fibrosis-signaling pathways finally leading to tissue fibrosis. The identification of specific miRNAs may open the way to their use as biomarkers for SSc diagnosis, assessment of disease progression and possible antifibrotic therapies.
Collapse
|
10
|
Ramahi A, Altorok N, Kahaleh B. Epigenetics and systemic sclerosis: An answer to disease onset and evolution? Eur J Rheumatol 2020; 7:S147-S156. [PMID: 32697935 PMCID: PMC7647676 DOI: 10.5152/eurjrheum.2020.19112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
There is growing evidence that implicates epigenetic modification in the pathogenesis of systemic sclerosis (SSc). The complexity of epigenetic regulation and its dynamic nature complicate the investigation of its role in the disease. We will review the current literature for factors that link epigenetics to SSc by discussing DNA methylation, histone acetylation and methylation, and non-coding RNAs (ncRNAs), particularly microRNA changes in endothelial cells, fibroblasts (FBs), and lymphocytes. These three cell types are significantly involved in the early stages and throughout the course of the disease and are particularly vulnerable to epigenetic regulation. The pathogenesis of SSc is likely related to modifications of the epigenome by environmental signals in individuals with a specific genetic makeup. The epigenome is an attractive therapeutic target; however, successful epigenetics-based treatments require a better understanding of the molecular mechanisms controlling the epigenome and its alteration in the disease.
Collapse
Affiliation(s)
- Ahmad Ramahi
- Division of Rheumatology and Immunology, Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH, USA
| | - Nezam Altorok
- Division of Rheumatology and Immunology, Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH, USA
| | - Bashar Kahaleh
- Division of Rheumatology and Immunology, Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH, USA
| |
Collapse
|
11
|
The Pathogenesis of Systemic Sclerosis: An Understanding Based on a Common Pathologic Cascade across Multiple Organs and Additional Organ-Specific Pathologies. J Clin Med 2020; 9:jcm9092687. [PMID: 32825112 PMCID: PMC7565034 DOI: 10.3390/jcm9092687] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023] Open
Abstract
Systemic sclerosis (SSc) is a multisystem autoimmune and vascular disease resulting in fibrosis of various organs with unknown etiology. Accumulating evidence suggests that a common pathologic cascade across multiple organs and additional organ-specific pathologies underpin SSc development. The common pathologic cascade starts with vascular injury due to autoimmune attacks and unknown environmental factors. After that, dysregulated angiogenesis and defective vasculogenesis promote vascular structural abnormalities, such as capillary loss and arteriolar stenosis, while aberrantly activated endothelial cells facilitate the infiltration of circulating immune cells into perivascular areas of various organs. Arteriolar stenosis directly causes pulmonary arterial hypertension, scleroderma renal crisis and digital ulcers. Chronic inflammation persistently activates interstitial fibroblasts, leading to the irreversible fibrosis of multiple organs. The common pathologic cascade interacts with a variety of modifying factors in each organ, such as keratinocytes and adipocytes in the skin, esophageal stratified squamous epithelia and myenteric nerve system in gastrointestinal tract, vasospasm of arterioles in the heart and kidney, and microaspiration of gastric content in the lung. To better understand SSc pathogenesis and develop new disease-modifying therapies, it is quite important to understand the complex pathogenesis of SSc from the two distinct perspectives, namely the common pathologic cascade and additional organ-specific pathologies.
Collapse
|
12
|
Tabata K, Mikita N, Yasutake M, Matsumiya R, Tanaka K, Tani S, Okuhira H, Jinnin M, Fujii T. Up-regulation of IGF-1, RANTES and VEGF in patients with anti-centromere antibody-positive early/mild systemic sclerosis. Mod Rheumatol 2020; 31:171-176. [PMID: 32013651 DOI: 10.1080/14397595.2020.1726599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Multiple cytokine network may control the pathogenesis of vasculopathy in patients with systemic sclerosis (SSc). We aimed at comparing angiogenic cytokine profile among SSc patients at various clinical stage. METHODS We divided nine patients with anti-centromere antibody (ACA) who were suspected of SSc and diagnosed as having SSc into three groups (group1: pre-clinical stage of SSc, group2: mild/early SSc and group3: typical lcSSc) according to the ACR/EULAR2013 classification criteria or ACR1980 preliminary classification, and serum sample were obtained from them. We evaluated the expression levels of 20 cytokines by membrane array. RESULTS Average values of EGF, ENA-78, bFGF, IGF-I, IL-8, MCP-1, TGF-β1, thrombopoietin, VEGF and VEGF-D in group2 were increased compared as those of group1 more than twofold. Statistically significant difference was found in serum levels of IGF-1, RANTES and VEGF between group1 and group2. There was also significant difference in the value of VEGF between group1 and group3. There were mild and significant correlations between serum IGF-1 and RANTES levels (r = 0.721, p = .028). CONCLUSION IGF-1, RANTES and VEGF are thought to be involved in the disease development from pre-clinical stage of SSc to early/mild SSc. Thus, these cytokines may be utilized as a biomarker for early diagnosis.
Collapse
Affiliation(s)
- Kayoko Tabata
- Department of Rheumatology and Clinical Immunology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Naoya Mikita
- Department of Dermatology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Misaki Yasutake
- Department of Rheumatology and Clinical Immunology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Ryo Matsumiya
- Department of Rheumatology and Clinical Immunology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Katsunori Tanaka
- Department of Rheumatology and Clinical Immunology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Sayaka Tani
- Department of Dermatology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Hisako Okuhira
- Department of Dermatology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Masatoshi Jinnin
- Department of Dermatology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Takao Fujii
- Department of Rheumatology and Clinical Immunology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| |
Collapse
|
13
|
Henry TW, Mendoza FA, Jimenez SA. Role of microRNA in the pathogenesis of systemic sclerosis tissue fibrosis and vasculopathy. Autoimmun Rev 2019; 18:102396. [PMID: 31520794 DOI: 10.1016/j.autrev.2019.102396] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Systemic Sclerosis (SSc) pathogenesis involves multiple immunological, vascular and fibroproliferative abnormalities that contribute to a severe and complex clinical picture. Vasculopathy and fibroproliferative alterations are two hallmark pathological processes in SSc that are responsible for the most severe clinical manifestations of the disease and determine its clinical outcome and mortality. However, the pathogenesis of SSc vasculopathy and of the uncontrolled SSc fibrotic process remain incompletely understood. Recent investigations into the molecular pathways involved in these processes have identified an important role for epigenetic processes that contribute to overall disease progression and have emphasized microRNAs (miRNAs) as crucial epigenetic regulators. MiRNAs hold unique potential for elucidating SSc pathogenesis, improving diagnosis and developing effective targeted therapies for the disease. This review examines the important role that miRNAs play in the development and regulation of vascular and fibroproliferative alterations associated with SSc pathogenesis and their possible participation in the establishment of pathogenetic connections between these two processes. This review also emphasizes that further understanding of the involvement of miRNA in SSc fibrosis and vasculopathy will very likely provide novel future research directions and allow for the identification of groundbreaking therapeutic interventions within these processes. MiR-21, miR- 31, and miR-155 are of particular interest owing to their important involvement in both SSc vasculopathy and fibroproliferative alterations.
Collapse
Affiliation(s)
- Tyler W Henry
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia 19107, USA; Sidney Kimmel Medical College, Thomas Jefferson University, USA
| | - Fabian A Mendoza
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, USA; Division of Rheumatology, Department of Medicine, Thomas Jefferson University, USA
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, USA.
| |
Collapse
|
14
|
[Updates in systemic sclerosis pathogenesis: Toward new therapeutic opportunities]. Rev Med Interne 2019; 40:654-663. [PMID: 31301944 DOI: 10.1016/j.revmed.2019.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/04/2019] [Accepted: 05/30/2019] [Indexed: 01/27/2023]
Abstract
Systemic sclerosis is a rare connective tissue disease characterized by skin and several internal organ fibrosis, systemic vasculopathy and immune abnormalities. Even if fibroblasts and endothelial cells dysfunction, as well as lymphocytes and other immune cells implication are now well described, the exact origin and chronology of the disease pathogenesis remain unclear. Oxidative stress, influenced by genetic and environmental factors, seems to play a key role. Indeed, it seems to be implicated in the early phases of fibrosis development, vasculopathy and in immune tolerance abnormalities shared by all patients, although disease expression is heterogeneous. To date, no curative treatment is available. Even if immunosuppressive treatment or drugs acting on vascular system are proposed for some patients, overall, treatment efficiency remains modest. Only autologous hematopoietic stem cells transplantation, reserved for patients with severe or rapidly progressive fibrosis, has recently demonstrated efficiency, with lasting regression of fibrosis. Nevertheless, this treatment can expose to important, life-threatening toxicity. In the last decade, new mechanisms implicated in the pathogenesis of systemic sclerosis have been unraveled, bringing new therapeutic opportunities. In this review, we offer to focus on recent insights in the knowledge of systemic sclerosis pathogenesis and its implication in current and future medical care.
Collapse
|
15
|
Jafarinejad-Farsangi S, Gharibdoost F, Farazmand A, Kavosi H, Jamshidi A, Karimizadeh E, Noorbakhsh F, Mahmoudi M. MicroRNA-21 and microRNA-29a modulate the expression of collagen in dermal fibroblasts of patients with systemic sclerosis. Autoimmunity 2019; 52:108-116. [DOI: 10.1080/08916934.2019.1621856] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Farazmand
- Department of Cell and Molecular Biology, University of Tehran, Tehran, Iran
| | - Hoda Kavosi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Karimizadeh
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Immunology Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Hassan WA, Hamaad GA, Sayed EA, El Behisy MM, Gomaa MK. Clinical significance of interleukin 27 serum concentration in patients with systemic sclerosis: relation to clinical, laboratory and radiological parameters. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2019. [DOI: 10.4103/err.err_63_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
17
|
|
18
|
He Y, Tsou PS, Khanna D, Sawalha AH. Methyl-CpG-binding protein 2 mediates antifibrotic effects in scleroderma fibroblasts. Ann Rheum Dis 2018; 77:1208-1218. [PMID: 29760157 PMCID: PMC7297461 DOI: 10.1136/annrheumdis-2018-213022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Emerging evidence supports a role for epigenetic regulation in the pathogenesis of scleroderma (SSc). We aimed to assess the role of methyl-CpG-binding protein 2 (MeCP2), a key epigenetic regulator, in fibroblast activation and fibrosis in SSc. METHODS Dermal fibroblasts were isolated from patients with diffuse cutaneous SSc (dcSSc) and from healthy controls. MeCP2 expression was measured by qPCR and western blot. Myofibroblast differentiation was evaluated by gel contraction assay in vitro. Fibroblast proliferation was analysed by ki67 immunofluorescence staining. A wound healing assay in vitro was used to determine fibroblast migration rates. RNA-seq was performed with and without MeCP2 knockdown in dcSSc to identify MeCP2-regulated genes. The expression of MeCP2 and its targets were modulated by siRNA or plasmid. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) using anti-MeCP2 antibody was performed to assess MeCP2 binding sites within MeCP2-regulated genes. RESULTS Elevated expression of MeCP2 was detected in dcSSc fibroblasts compared with normal fibroblasts. Overexpressing MeCP2 in normal fibroblasts suppressed myofibroblast differentiation, fibroblast proliferation and fibroblast migration. RNA-seq in MeCP2-deficient dcSSc fibroblasts identified MeCP2-regulated genes involved in fibrosis, including PLAU, NID2 and ADA. Plasminogen activator urokinase (PLAU) overexpression in dcSSc fibroblasts reduced myofibroblast differentiation and fibroblast migration, while nidogen-2 (NID2) knockdown promoted myofibroblast differentiation and fibroblast migration. Adenosine deaminase (ADA) depletion in dcSSc fibroblasts inhibited cell migration rates. Taken together, antifibrotic effects of MeCP2 were mediated, at least partly, through modulating PLAU, NID2 and ADA. ChIP-seq further showed that MeCP2 directly binds regulatory sequences in NID2 and PLAU gene loci. CONCLUSIONS This study demonstrates a novel role for MeCP2 in skin fibrosis and identifies MeCP2-regulated genes associated with fibroblast migration, myofibroblast differentiation and extracellular matrix degradation, which can be potentially targeted for therapy in SSc.
Collapse
Affiliation(s)
- Ye He
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Zhang Y, Pötter S, Chen CW, Liang R, Gelse K, Ludolph I, Horch RE, Distler O, Schett G, Distler JHW, Dees C. Poly(ADP-ribose) polymerase-1 regulates fibroblast activation in systemic sclerosis. Ann Rheum Dis 2018; 77:744-751. [PMID: 29431122 DOI: 10.1136/annrheumdis-2017-212265] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/04/2018] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The enzyme poly(ADP-ribose) polymerase-1 (PARP-1) transfers negatively charged ADP-ribose units to target proteins. This modification can have pronounced regulatory effects on target proteins. Recent studies showed that PARP-1 can poly(ADP-ribosyl)ate (PARylate) Smad proteins. However, the role of PARP-1 in the pathogenesis of systemic sclerosis (SSc) has not been investigated. METHODS The expression of PARP-1 was determined by quantitative PCR and immunohistochemistry. DNA methylation was analysed by methylated DNA immunoprecipitation assays. Transforming growth factor-β (TGFβ) signalling was assessed using reporter assays, chromatin immunoprecipitation assays and target gene analysis. The effect of PARP-1 inactivation was investigated in bleomycin-induced and topoisomerase-induced fibrosis as well as in tight-skin-1 (Tsk-1) mice. RESULTS The expression of PARP-1 was decreased in patients with SSc, particularly in fibroblasts. The promoter of PARP-1 was hypermethylated in SSc fibroblasts and in TGFβ-stimulated normal fibroblasts. Inhibition of DNA methyltransferases (DNMTs) reduced the promoter methylation and reactivated the expression of PARP-1. Inactivation of PARP-1 promoted accumulation of phosphorylated Smad3, enhanced Smad-dependent transcription and upregulated the expression of TGFβ/Smad target genes. Inhibition of PARP-1 enhanced the effect of TGFβ on collagen release and myofibroblast differentiation in vitro and exacerbated experimental fibrosis in vivo. PARP-1 deficiency induced a more severe fibrotic response to bleomycin with increased dermal thickening, hydroxyproline content and myofibroblast counts. Inhibition of PARylation also exacerbated fibrosis in Tsk-1 mice and in mice with topoisomerase-induced fibrosis. CONCLUSION PARP-1 negatively regulates canonical TGFβ signalling in experimental skin fibrosis. The downregulation of PARP-1 in SSc fibroblasts may thus directly contribute to hyperactive TGFβ signalling and to persistent fibroblast activation in SSc.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Internal Medicine 3 for Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Sebastian Pötter
- Department of Internal Medicine 3 for Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3 for Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Ruifang Liang
- Department of Internal Medicine 3 for Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Kolja Gelse
- Department of Trauma Surgery, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Ingo Ludolph
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Oliver Distler
- Research of Systemic Autoimmune Diseases, University Hospital Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine 3 for Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3 for Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Clara Dees
- Department of Internal Medicine 3 for Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
20
|
Serum microRNA screening and functional studies reveal miR-483-5p as a potential driver of fibrosis in systemic sclerosis. J Autoimmun 2018; 89:162-170. [PMID: 29371048 DOI: 10.1016/j.jaut.2017.12.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are regulatory molecules, which have been addressed as potential biomarkers and therapeutic targets in rheumatic diseases. Here, we investigated the miRNA signature in the serum of systemic sclerosis (SSc) patients and we further assessed their expression in early stages of the disease. METHODS The levels of 758 miRNAs were evaluated in the serum of 26 SSc patients as compared to 9 healthy controls by using an Openarray platform. Three miRNAs were examined in an additional cohort of 107 SSc patients and 24 healthy donors by single qPCR. MiR-483-5p expression was further analysed in the serum of patients with localized scleroderma (LoS) (n = 22), systemic lupus erythematosus (SLE) (n = 33) and primary Sjögren's syndrome (pSS) (n = 23). The function of miR-483-5p was examined by transfecting miR-483-5p into primary human dermal fibroblasts and pulmonary endothelial cells. RESULTS 30 miRNAs were significantly increased in patients with SSc. Of these, miR-483-5p showed reproducibly higher levels in an independent SSc cohort and was also elevated in patients with preclinical-SSc symptoms (early SSc). Notably, miR-483-5p was not differentially expressed in patients with SLE or pSS, whereas it was up-regulated in LoS, indicating that this miRNA could be involved in the development of skin fibrosis. Consistently, miR-483-5p overexpression in fibroblasts and endothelial cells modulated the expression of fibrosis-related genes. CONCLUSIONS Our findings showed that miR-483-5p is up-regulated in the serum of SSc patients, from the early stages of the disease onwards, and indicated its potential function as a fine regulator of fibrosis in SSc.
Collapse
|
21
|
Aslani S, Sobhani S, Gharibdoost F, Jamshidi A, Mahmoudi M. Epigenetics and pathogenesis of systemic sclerosis; the ins and outs. Hum Immunol 2018; 79:178-187. [PMID: 29330110 DOI: 10.1016/j.humimm.2018.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/25/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
Abstract
The pathogenesis of many diseases is influenced by environmental factors which can affect human genome and be inherited from generation to generation. Adverse environmental stimuli are recognized through the epigenetic regulatory complex, leading to gene expression alteration, which in turn culminates in disease outcomes. Three epigenetic regulatory mechanisms modulate the manifestation of a gene, namely DNA methylation, histone changes, and microRNAs. Both epigenetics and genetics have been implicated in the pathogenesis of systemic sclerosis (SSc) disease. Genetic inheritance rate of SSc is low and the concordance rate in both monozygotic (MZ) and dizygotic (DZ) twins is little, implying other possible pathways in SSc pathogenesis scenario. Here, we provide an extensive overview of the studies regarding different epigenetic events which may offer insights into the pathology of SSc. Furthermore, epigenetic-based interventions to treat SSc patients were discussed.
Collapse
Affiliation(s)
- Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Sobhani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Affiliation(s)
- Yoshihide Asano
- Department of Dermatology; University of Tokyo Graduate School of Medicine; Tokyo Japan
| |
Collapse
|
23
|
Affandi AJ, Carvalheiro T, Radstake TRDJ, Marut W. Dendritic cells in systemic sclerosis: Advances from human and mice studies. Immunol Lett 2017; 195:18-29. [PMID: 29126878 DOI: 10.1016/j.imlet.2017.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
Abstract
Systemic sclerosis (SSc) is a complex heterogeneous fibrotic autoimmune disease with an unknown exact etiology, and characterized by three hallmarks: fibrosis, vasculopathy, and immune dysfunction. Dendritic cells (DCs) are specialized cells in pathogen sensing with high potency of antigen presentation and capable of releasing mediators to shape the immune response. Altered DCs distributions and their impaired functions may account for their role in breaking the immune tolerance and driving inflammation in SSc, and the direct contribution of DCs in promoting endothelial dysfunction and fibrotic process has only begun to be understood. Plasmacytoid dendritic cells in particular have been implicated due to their high production of type I interferon as well as other cytokines and chemokines, including the pro-inflammatory and anti-angiogenic CXCL4. Furthermore, a deeper understanding of human and mouse DC biology has clarified their identification and function in different tissues, and novel DC subsets have only recently been discovered. In this review, we highlight key findings and recent advances exploring DC role in the pathogenesis of SSc and other related autoimmune diseases, and consideration of their potential use as targeted therapy in SSc.
Collapse
Affiliation(s)
- Alsya J Affandi
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tiago Carvalheiro
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wioleta Marut
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
24
|
Abstract
Systemic sclerosis, also called scleroderma, is an immune-mediated rheumatic disease that is characterised by fibrosis of the skin and internal organs and vasculopathy. Although systemic sclerosis is uncommon, it has a high morbidity and mortality. Improved understanding of systemic sclerosis has allowed better management of the disease, including improved classification and more systematic assessment and follow-up. Additionally, treatments for specific complications have emerged and a growing evidence base supports the use of immune suppression for the treatment of skin and lung fibrosis. Some manifestations of the disease, such as scleroderma renal crisis, pulmonary arterial hypertension, digital ulceration, and gastro-oesophageal reflux, are now treatable. However, the burden of non-lethal complications associated with systemic sclerosis is substantial and is likely to become more of a challenge. Here, we review the clinical features of systemic sclerosis and describe the best practice approaches for its management. Furthermore, we identify future areas for development.
Collapse
Affiliation(s)
- Christopher P Denton
- UCL Division of Medicine, University College London, London, UK; UCL Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, London, UK.
| | | |
Collapse
|
25
|
Rezaei R, Mahmoudi M, Gharibdoost F, Kavosi H, Dashti N, Imeni V, Jamshidi A, Aslani S, Mostafaei S, Vodjgani M. IRF7 gene expression profile and methylation of its promoter region in patients with systemic sclerosis. Int J Rheum Dis 2017; 20:1551-1561. [DOI: 10.1111/1756-185x.13175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ramazan Rezaei
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
- Department of Immunology, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Hoda Kavosi
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Navid Dashti
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
- Department of Immunology, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Vahideh Imeni
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Saeed Aslani
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Shayan Mostafaei
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Vodjgani
- Department of Immunology, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
26
|
Frank-Bertoncelj M, Klein K, Gay S. Interplay between genetic and epigenetic mechanisms in rheumatoid arthritis. Epigenomics 2017; 9:493-504. [PMID: 28322583 DOI: 10.2217/epi-2016-0142] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genetic and environmental factors contribute to the risk for rheumatoid arthritis (RA), with epigenetics serving as a possible interface through which risk factors contribute to RA. High-throughput technologies for interrogating genome and epigenome, and the availability of genetic and epigenetic datasets across a diversity of cell types, enable the identification of candidate causal genetic variants for RA to study their function in core RA processes. To date, RA risk variants were studied in the immune cells but not joint resident cells, for example, synovial fibroblasts. Synovial fibroblasts from different joints are distinct, anatomically specialized cells, defined by joint-specific transcriptomes, epigenomes and phenotypes. Cell type-specific analysis of epigenetic changes, together with genetic fine mapping and interrogation of chromatin 3D interactions may identify new disease relevant pathways, potential therapeutic targets and biomarkers for RA progression or therapy response.
Collapse
Affiliation(s)
| | - Kerstin Klein
- Center of Experimental Rheumatology, University Hospital Zurich, Switzerland
| | - Steffen Gay
- Center of Experimental Rheumatology, University Hospital Zurich, Switzerland
| |
Collapse
|
27
|
He Y, Deng Z, Alghamdi M, Lu L, Fear MW, He L. From genetics to epigenetics: new insights into keloid scarring. Cell Prolif 2017; 50. [PMID: 28054407 DOI: 10.1111/cpr.12326] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/16/2016] [Indexed: 12/16/2022] Open
Abstract
Keloid scarring is a dermal fibroproliferative response characterized by excessive and progressive deposition of collagen; aetiology and molecular pathology underlying keloid formation and progression remain unclear. Genetic predisposition is important in the pathogenic processes of keloid formation, however, environmental factors and epigenetic mechanisms may also play pivotal roles. Epigenetic modification is a recent area of investigation in understanding the molecular pathogenesis of keloid scarring and there is increasing evidence that epigenetic changes may play a role in induction and persistent activation of fibroblasts in keloid scars. Here we have reviewed three epigenetic mechanisms: DNA methylation, histone modification and the role of non-coding RNAs. We also review the evidence that these mechanisms may play a role in keloid formation - in future, it may be possible that epigenetic markers may be used instead of prognostic or diagnostic markers here. However, there is a significant amount of work required to increase our current understanding of the role of epigenetic modification in keloid disease.
Collapse
Affiliation(s)
- Yongjing He
- Department of Plastic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhenjun Deng
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Physiology, Kunming Medical University, Kunming, China
| | - Mansour Alghamdi
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Crawley, WA, Australia.,Department of Human Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Lechun Lu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Physiology, Kunming Medical University, Kunming, China
| | - Mark W Fear
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Crawley, WA, Australia
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|