1
|
de Araújo Silva-Cardoso IM, Medeiros MO, Gomes ACMM, de Souza ALX, Scherwinski-Pereira JE. Use of Electron Microscopy for the Detection of Contaminant Endophytic Bacteria In Vitro. Methods Mol Biol 2024; 2827:71-84. [PMID: 38985263 DOI: 10.1007/978-1-0716-3954-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The success of in vitro cultivation, particularly for micropropagation purposes, depends on the efficient control of contaminants. In this context, the sterilization of plant material constitutes a fundamental step in initiating cultures. Microbial contaminants can be found either on the surface (epiphyte) or inside plant explants (endophyte). However, the latter is generally challenging to detect and may not always be eradicated through surface sterilization alone. Endophyte contaminants, such as bacteria, can persist within plant material over several cultivation cycles, potentially interfering with or inhibiting in vitro establishment, growth, or recovery of cryopreserved materials. Therefore, microscopy techniques, such as electron microscopy, can yield valuable insights into bacterial endophytes' localization, tissue colonization patterns, and functions in in vitro plant culture. This information is essential for adopting effective strategies for eliminating, preventing, or harmonious coexistence with contaminants.
Collapse
Affiliation(s)
| | - Mariana Oliveira Medeiros
- Department of Botany, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | | | | | | |
Collapse
|
2
|
Zafeiropoulos H, Gargan L, Hintikka S, Pavloudi C, Carlsson J. The Dark mAtteR iNvestigator (DARN) tool: getting to know the known unknowns in COI amplicon data. METABARCODING AND METAGENOMICS 2021. [DOI: 10.3897/mbmg.5.69657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mitochondrial cytochrome C oxidase subunit I gene (COI) is commonly used in environmental DNA (eDNA) metabarcoding studies, especially for assessing metazoan diversity. Yet, a great number of COI operational taxonomic units (OTUs) or/and amplicon sequence variants (ASVs) retrieved from such studies do not get a taxonomic assignment with a reference sequence. To assess and investigate such sequences, we have developed the Dark mAtteR iNvestigator (DARN) software tool. For this purpose, a reference COI-oriented phylogenetic tree was built from 1,593 consensus sequences covering all the three domains of life. With respect to eukaryotes, consensus sequences at the family level were constructed from 183,330 sequences retrieved from the Midori reference 2 database, which represented 70% of the initial number of reference sequences. Similarly, sequences from 431 bacterial and 15 archaeal taxa at the family level (29% and 1% of the initial number of reference sequences respectively) were retrieved from the BOLD and the PFam databases. DARN makes use of this phylogenetic tree to investigate COI pre-processed sequences of amplicon samples to provide both a tabular and a graphical overview of their phylogenetic assignments. To evaluate DARN, both environmental and bulk metabarcoding samples from different aquatic environments using various primer sets were analysed. We demonstrate that a large proportion of non-target prokaryotic organisms, such as bacteria and archaea, are also amplified in eDNA samples and we suggest prokaryotic COI sequences to be included in the reference databases used for the taxonomy assignment to allow for further analyses of dark matter. DARN source code is available on GitHub at https://github.com/hariszaf/darn and as a Docker image at https://hub.docker.com/r/hariszaf/darn.
Collapse
|
3
|
J J Schreven S, de Vries H, D A Hermes G, Smidt H, Dicke M, J A van Loon J. Relative contributions of egg-associated and substrate-associated microorganisms to black soldier fly larval performance and microbiota. FEMS Microbiol Ecol 2021; 97:6204668. [PMID: 33784380 PMCID: PMC8044291 DOI: 10.1093/femsec/fiab054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/26/2021] [Indexed: 11/23/2022] Open
Abstract
Larvae of the black soldier fly (BSF) can be used to convert organic waste into insect biomass for animal feed. In this process, they interact with microorganisms originating from the substrate, the insect and the environment. The substrate is the main determinant of the larval gut microbiota composition, but inoculation of the substrate with egg-associated bacteria can improve larval performance. We aimed to quantify the relative importance of substrate-associated and egg-associated microorganisms in BSF larval performance, bacterial abundance and bacterial community composition, when larvae were fed with chicken feed or chicken manure. For this, we inactivated substrate-associated microorganisms by autoclaving, or disinfected BSF eggs. Larval survival, weight and proportion of prepupae were determined on day 15. We collected substrate and larval samples on days 0 and 15 and performed 16S rRNA gene-targeted qPCR and amplicon sequencing. In both chicken feed and chicken manure, egg disinfection did not cause any difference in larval performance or overall microbiota composition. In contrast, in chicken manure, substrate-associated microorganisms increased larval biomass and sterilizing the substrate caused major shifts in microbiota. Thus, substrate-associated microorganisms impact not only larval microbiota but also larval performance, whereas egg-associated microorganisms have a minor role in the densities present.
Collapse
Affiliation(s)
- Stijn J J Schreven
- Laboratory of Entomology, Plant Sciences Group, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Hugo de Vries
- Laboratory of Microbiology, Agrotechnology & Food Sciences Group, Wageningen University & Research, PO Box 8033, 6700 EH Wageningen, The Netherlands
| | - Gerben D A Hermes
- Laboratory of Microbiology, Agrotechnology & Food Sciences Group, Wageningen University & Research, PO Box 8033, 6700 EH Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Agrotechnology & Food Sciences Group, Wageningen University & Research, PO Box 8033, 6700 EH Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Plant Sciences Group, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Plant Sciences Group, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
4
|
No evidence for a placental microbiome in human pregnancies at term. Am J Obstet Gynecol 2021; 224:296.e1-296.e23. [PMID: 32871131 DOI: 10.1016/j.ajog.2020.08.103] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The placenta plays an important role in the modulation of pregnancy immunity; however, there is no consensus regarding the existence of a placental microbiome in healthy full-term pregnancies. OBJECTIVE This study aimed to investigate the existence and origin of a placental microbiome. STUDY DESIGN A cross-sectional study comparing samples (3 layers of placental tissue, amniotic fluid, vernix caseosa, and saliva, vaginal, and rectal samples) from 2 groups of full-term births: 50 women not in labor with elective cesarean deliveries and 26 with vaginal deliveries. The comparisons were performed using polymerase chain reaction amplification and DNA sequencing techniques and bacterial culture experiments. RESULTS There were no significant differences regarding background characteristics between women who delivered by elective cesarean and those who delivered vaginally. Quantitative measurements of bacterial content in all 3 placental layers (quantitative polymerase chain reaction of the 16S ribosomal RNA gene) did not show any significant difference among any of the sample types and the negative controls. Here, 16S ribosomal RNA gene sequencing of the maternal side of the placenta could not differentiate between bacteria in the placental tissue and contamination of the laboratory reagents with bacterial DNA. Probe-specific quantitative polymerase chain reaction for bacterial taxa suspected to be present in the placenta could not detect any statistically significant difference between the 2 groups. In bacterial cultures, substantially more bacteria were observed in the placenta layers from vaginal deliveries than those from cesarean deliveries. In addition, 16S ribosomal RNA gene sequencing of bacterial colonies revealed that most of the bacteria that grew on the plates were genera typically found in human skin; moreover, it revealed that placentas delivered vaginally contained a high prevalence of common vaginal bacteria. Bacterial growth inhibition experiments indicated that placental tissue may facilitate the inhibition of bacterial growth. CONCLUSION We found no evidence to support the existence of a placental microbiome in our study of 76 term pregnancies, which used polymerase chain reaction amplification and sequencing techniques and bacterial culture experiments. Incidental findings of bacterial species could be due to contamination or to low-grade bacterial presence in some locations; such bacteria do not represent a placental microbiome per se.
Collapse
|
5
|
Wang XD, Qiu SY, Li P, Ban SD. Analysis of Microbial Community Structure in Traditional and Automated Moutai-Flavor Daqu. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2019. [DOI: 10.1080/03610470.2019.1569886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Dan Wang
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang, Guizhou, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Shu-Yi Qiu
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang, Guizhou, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Pei Li
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine, Kaili University, Kaili, China
| | - Shi-Dong Ban
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang, Guizhou, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Hossain MAM, Uddin SMK, Chowdhury ZZ, Sultana S, Johan MR, Rohman A, Erwanto Y, Ali ME. Universal mitochondrial 16s rRNA biomarker for mini-barcode to identify fish species in Malaysian fish products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:493-506. [PMID: 30865559 DOI: 10.1080/19440049.2019.1580389] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mislabelling in fish products is a highly significant emerging issue in world fish trade in terms of health and economic concerns. DNA barcoding is an efficient sequencing-based tool for detecting fish species substitution but due to DNA degradation, it is in many cases difficult to amplify PCR products of the full-length barcode marker (~650 bp), especially in severely processed products. In the present study, a pair of universal primers targeting a 198 bp sequence of the mitochondrial 16s rRNA gene was designed for identification of fish species in the processed fish products commonly consumed in Malaysia. The specificity of the universal primers was tested by both in-silico studies using bioinformatics software and through cross-reaction assessment by practical PCR experiments against the DNA from 38 fish species and 22 other non-target species (animals and plants) and found to be specific for all the tested fish species. To eliminate the possibility of any false-negative detection, eukaryotic endogenous control was used during specificity evaluation. The developed primer set was validated with various heat-treated (boiled, autoclaved and microwaved) fish samples and was found to show high stability under all processing conditions. The newly developed marker successfully identified 92% of the tested commercial fish products with 96-100% sequence similarities. This study reveals a considerable degree of species mislabelling (20.8%); 5 out of 24 fish products were found to be mislabelled. The new marker developed in this work is a reliable tool to identify fish species even in highly processed products and might be useful in detecting fish species substitution thus protecting consumers' health and economic interests.
Collapse
Affiliation(s)
- M A Motalib Hossain
- a Nanotechnology and Catalysis Research Center, Institute of Graduate Studies , University of Malaya , Kuala Lumpur , Malaysia
| | - Syed Muhammad Kamal Uddin
- a Nanotechnology and Catalysis Research Center, Institute of Graduate Studies , University of Malaya , Kuala Lumpur , Malaysia
| | - Zaira Zaman Chowdhury
- a Nanotechnology and Catalysis Research Center, Institute of Graduate Studies , University of Malaya , Kuala Lumpur , Malaysia
| | - Sharmin Sultana
- a Nanotechnology and Catalysis Research Center, Institute of Graduate Studies , University of Malaya , Kuala Lumpur , Malaysia
| | - Mohd Rafie Johan
- a Nanotechnology and Catalysis Research Center, Institute of Graduate Studies , University of Malaya , Kuala Lumpur , Malaysia
| | - Abdul Rohman
- b Faculty of Pharmacy , Universitas Gadjah Mada , Yogyakarta , Indonesia
| | - Yuny Erwanto
- c Department of Animal Products Technology, Faculty of Animal Science , Universitas Gadjah Mada , Yogyakarta , Indonesia
| | - Md Eaqub Ali
- a Nanotechnology and Catalysis Research Center, Institute of Graduate Studies , University of Malaya , Kuala Lumpur , Malaysia.,d Centre for Research in Biotechnology for Agriculture , University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
7
|
Eraqi WA, ElRakaiby MT, Megahed SA, Yousef NH, Elshahed MS, Yassin AS. The Nile River Microbiome Reveals a Remarkably Stable Community Between Wet and Dry Seasons, and Sampling Sites, in a Large Urban Metropolis (Cairo, Egypt). OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:553-564. [PMID: 30106354 DOI: 10.1089/omi.2018.0090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
World freshwater supplies are in need of microbiome diversity analyses as a first step to future ecological studies, and to monitor water safety and quality. The Nile is a major north-flowing river in Africa that displays both spatial and temporal variations in its water quality. Here, we present the first microbiome analysis of the Nile River water in two seasons: (1) summer representing the wet season, and (2) winter representing the dry season, as sampled around Cairo, the capital of Egypt. Surface river water samples were collected from selected locations along the path of river, and the microbial composition was analyzed by next-generation sequencing of the 16S rRNA gene. We found a striking stability in the Nile microbiome community structure along the examined geographical urban sites and between the wet and dry seasons as evidenced by the high proportion of shared operational taxonomic unit values among all samples. The community was dominated by the Cyanobacteria (mainly Synechococcus), Actinobacteria candidate family (ACK-M1), and Proteobacteria (mainly family Comamonadaceae). Among these dominant taxa, Synechococcus exhibited seasonal driven variation in relative abundance. Other taxa were predominantly rare across all seasons and locations, including genera members of which have been implicated as pathogens such as Acinetobacter, Aeromonas, and Legionella. In addition, comparisons with data on freshwater microbiome in other world regions suggest that surface water communities in large rivers exhibit limited variation. Our results offer the first insights on microbial composition in one of the most notable rivers near a large metropolis.
Collapse
Affiliation(s)
- Walaa A Eraqi
- 1 Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University , Cairo, Egypt
| | - Marwa T ElRakaiby
- 1 Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University , Cairo, Egypt
| | - Salwa A Megahed
- 1 Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University , Cairo, Egypt .,2 Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) , 6th of October, Giza, Egypt
| | - Noha H Yousef
- 3 Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater, Oklahoma
| | - Mostafa S Elshahed
- 3 Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater, Oklahoma
| | - Aymen S Yassin
- 1 Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University , Cairo, Egypt
| |
Collapse
|
8
|
Tarnecki AM, Rhody NR, Walsh CJ. Health Characteristics and Blood Bacterial Assemblages of Healthy Captive Red Drum: Implications for Aquaculture and Fish Health Management. JOURNAL OF AQUATIC ANIMAL HEALTH 2018; 30:339-353. [PMID: 30269412 DOI: 10.1002/aah.10047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
The newly emerging tissue microbiota hypothesis suggests that bacteria found in blood and tissues play a role in host health, as these bacterial communities have been associated with various noncommunicable diseases such as obesity, liver disease, and cardiovascular disease. Numerous reports have identified bacteria in the blood of healthy finfish, indicating bacteremia may not always indicate disease. Current research priorities in aquaculture include the development of technologies and practices that will allow for an effective reduction in antibiotic use for the prevention and treatment of disease. Overall, a better understanding of fish health is needed, particularly among species selected for commercial-scale production. This study investigated blood characteristics of cultured Red Drum Sciaenops ocellatus with the tissue microbiota hypothesis in mind. Bacterial assemblages within the blood were characterized using next-generation sequencing and compared with other various blood characteristics, including innate immune function enzymes, between two fish cohorts reared in aquaculture. A total of 137 prokaryotic operational taxonomic units (OTUs) were identified from the blood of Red Drum. Microbiota diversity and structure varied greatly among individuals, for which the number of OTUs ranged from 4 to 58; however, predicted metagenomic function was highly similar between individuals and was dominated by the metabolism of carbohydrates and amino acids and membrane transport. Communities were dominated by Proteobacteria, followed by Bacteroidetes, Firmicutes, and Actinobacteria. The most commonly identified genera included Acinetobacter, Bacillus, Corynebacterium, and Pseudomonas. Three genera previously identified as containing marine fish pathogens were detected: Corynebacterium, Pantoea, and Chryseobacterium. A subset of bacterial OTUs were positively correlated with superoxide dismutase activity and negatively correlated with lysozyme activity, indicating a relationship between blood microbiota and the innate immune system. The results of this study provide further evidence for the tissue microbiota hypothesis and demonstrate the potential for these bacterial communities to be linked to immunological characteristics often used as biomarkers for fish health.
Collapse
Affiliation(s)
- Andrea M Tarnecki
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, Florida, 34236, USA
| | - Nicole R Rhody
- Mote Aquaculture Research Park, 874 WR Mote Way, Sarasota, Florida, 34240, USA
| | - Catherine J Walsh
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, Florida, 34236, USA
| |
Collapse
|
9
|
Zhang H, You C. A universal PCR method and its application in sequence-based identification of microorganisms in dairy. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Thangamony HH, Kumar R, Thangavelu CP, Mariappa M, Mariammal BGV, Brahmadathan KN. Nonspecific amplification of human DNA by Streptococcus pneumoniae LytA primer. Indian J Med Microbiol 2018; 36:65-69. [PMID: 29735829 DOI: 10.4103/ijmm.ijmm_17_342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Determination of various analytical parameters is essential for the validation of primers used for in-house nucleic acid amplification tests. While standardising a high-resolution melt analysis (HRMA) for detection of Streptococcus pneumoniae in acute pyogenic meningitis, we encountered non-specific amplification of certain base pair sequences of human DNA by Centers for Disease Control & Prevention, USA recommended S. pneumoniae LytA primer. Materials and Methods HRMA was standardised using DNA extracted from an ATCC strain of S. pneumoniae using SP LytA F373 primer and Type-it HRMTM polymerase chain reaction kit in Rotor-Gene Q Thermal Cycler according to the manufacturer's instructions. Specificity of the primers was determined in dry and wet laboratory experiments against diverse related and unrelated microbial pathogens by HRMA and on DNA extracted from unspiked clinical samples negative for SP DNA. Sensitivity was determined by calculating lower limit of detection threshold in experiments with spiked samples. The amplicon from spiked experiments was sequenced and analysed through Gene Bank. Results Our dry/wet laboratory experiments showed two separate curves and different Tm values indicating certain non-specific amplification by the primer. Basic Local Alignment Search Tool (BLAST) analysis of the amplicon obtained in the spiked experiment showed sequences of human chromosome 20 associated with Homo sapiens protein tyrosine phosphatase, receptor type T gene. The problem was resolved by stopping the reaction at 30th Ct cycle and observing the Tm values. Conclusion Since HRMA is done without a specific probe, one should be aware of non-specific amplifications while using primers for HRMA of human clinical samples.
Collapse
Affiliation(s)
- Helen Hencida Thangamony
- Division of Molecular Diagnostics, Microbiological Laboratory, 12A Cowley Brown Road, R.S.Puram, Coimbatore, Tamil Nadu, India
| | - Ravindran Kumar
- Division of Molecular Diagnostics, Microbiological Laboratory, 12A Cowley Brown Road, R.S.Puram, Coimbatore, Tamil Nadu, India
| | | | - Mani Mariappa
- Division of Molecular Diagnostics, Microbiological Laboratory, 12A Cowley Brown Road, R.S.Puram, Coimbatore, Tamil Nadu, India
| | - Berlin Grace Viswanathan Mariammal
- Department of Biotechnology, School of Biotechnology & Health Sciences, Karunya University, Karunya Nagar, Coimbatore, Tamil Nadu, India
| | | |
Collapse
|
11
|
Yadav S, Kumar A, Gupta M, Maitra SS. Cross-Reactivity of Prokaryotic 16S rDNA-Specific Primers to Eukaryotic DNA: Mistaken Microbial Community Profiling in Environmental Samples. Curr Microbiol 2018; 75:1038-1045. [PMID: 29610942 DOI: 10.1007/s00284-018-1482-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/23/2018] [Indexed: 12/24/2022]
Abstract
16S ribosomal RNA gene sequences are characteristically used as gold-standard genetic marker for the determination of bacterial and/or archaeal biodiversity, and community profiling of environmental samples. The 16S rRNA amplicon analysis till-date is taken as a standard method for investigation and identification of uncultivable bacteria in microbial diversity studies. The accuracy of these analyses strongly depends upon the choice of primers. It is presumed that these primers do not participate in non-specific amplifications. In the present study, by in silico, PCR and denaturing gradient gel electrophoresis (DGGE) analysis, we have shown that primers do cross-react with eukaryotic DNAs as well, eventually leading to overestimation of microbial biodiversity. We further demonstrated that the overestimation is not only due to cross-reaction with eukaryotic mitochondrial or plastid DNA, but also with eukaryotic chromosomal DNA, that is ubiquitous in environmental samples. We tried to establish methanogenic diversity in municipal solid waste (MSW) leachates and cow dung samples before and after enrichment of the prokaryotic DNA from eukaryotic ones. Results revealed that bands disappeared/get lightened in bacterial 16S rRNA-based DGGE community profiles, after prokaryotic DNA enrichment, but not in mcrA-based community profiles.
Collapse
Affiliation(s)
- Shailendra Yadav
- Environmental Biotechnology and Genomics Division, National Environmental and Engineering Research Institute, CSIR, Nagpur, 440020, India
| | - Arvind Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manish Gupta
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - S S Maitra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
12
|
Osimani A, Milanović V, Cardinali F, Garofalo C, Clementi F, Pasquini M, Riolo P, Ruschioni S, Isidoro N, Loreto N, Franciosi E, Tuohy K, Petruzzelli A, Foglini M, Gabucci C, Tonucci F, Aquilanti L. The bacterial biota of laboratory-reared edible mealworms (Tenebrio molitor L.): From feed to frass. Int J Food Microbiol 2018. [PMID: 29525619 DOI: 10.1016/j.ijfoodmicro.2018.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tenebrio molitor represents one of the most popular species used for the large-scale conversion of plant biomass into protein and is characterized by high nutritional value. In the present laboratory study, the bacterial biota characterizing a pilot production chain of fresh T. molitor larvae was investigated. To this end, different batches of fresh mealworm larvae, their feeding substrate (wheatmeal) and frass were analyzed by viable microbial counts, PCR-DGGE and Illumina sequencing. Moreover, the occurrence of Coxiella burnetii, Pseudomonas aeruginosa and Shiga toxin-producing E. coli (STEC) was assessed through qualitative real-time PCR assays. Microbial viable counts highlighted low microbial contamination of the wheatmeal, whereas larvae and frass were characterized by high loads of Enterobacteriaceae, lactic acid bacteria, and several species of mesophilic aerobes. Spore-forming bacteria were detected to a lesser extent in all the samples. The combined molecular approach used to profile the microbiota confirmed the low microbial contamination of wheatmeal and allowed the detection of Enterobacter spp., Erwinia spp., Enterococcus spp. and Lactococcus spp. as dominant genera in both larvae and frass. Moreover, Klebsiella spp., Pantoea spp., and Xenorhabdus spp. were found to be in the minority. Entomoplasmatales (including Spiroplasma spp.) constituted a major fraction of the microbiota of one batch of larvae. From the real-time PCR assays, no sample was positive for either C. burnetii or STEC, whereas P. aeruginosa was detected in one sample of frass. Based on the overall results, two sources of microbial contamination were hypothesized, namely feeding with wheatmeal and vertical transmission of microorganisms from mother to offspring. Since mealworms are expected to be eaten as a whole, the overall outcomes collected in this laboratory study discourage the consumption of fresh mealworm larvae. Moreover, microbial loads and the absence of potential pathogens known to be associated with this insect species should be carefully assessed in order to reduce the minimum risk for consumers, by identifying the most opportune processing methods (e.g., boiling, frying, drying, etc.).
Collapse
Affiliation(s)
- Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Marina Pasquini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Paola Riolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Sara Ruschioni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Nunzio Isidoro
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Nino Loreto
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Elena Franciosi
- Food Quality and Nutrition Department (DQAN), Research and Innovation Center, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Kieran Tuohy
- Food Quality and Nutrition Department (DQAN), Research and Innovation Center, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Annalisa Petruzzelli
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Martina Foglini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Claudia Gabucci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Franco Tonucci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
13
|
Banerjee S, Sar A, Misra A, Pal S, Chakraborty A, Dam B. Increased productivity in poultry birds by sub-lethal dose of antibiotics is arbitrated by selective enrichment of gut microbiota, particularly short-chain fatty acid producers. Microbiology (Reading) 2018; 164:142-153. [PMID: 29393019 DOI: 10.1099/mic.0.000597] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Sohini Banerjee
- Microbiology Laboratory, Department of Botany (DST-FIST & UGC-DRS Funded), Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235, India
- Department of Environmental Studies, Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235, India
| | - Abhijit Sar
- Microbiology Laboratory, Department of Botany (DST-FIST & UGC-DRS Funded), Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235, India
| | - Arijit Misra
- Microbiology Laboratory, Department of Botany (DST-FIST & UGC-DRS Funded), Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235, India
| | - Srikanta Pal
- Microbiology Laboratory, Department of Botany (DST-FIST & UGC-DRS Funded), Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235, India
| | - Arindom Chakraborty
- Department of Statistics, Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235, India
| | - Bomba Dam
- Microbiology Laboratory, Department of Botany (DST-FIST & UGC-DRS Funded), Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235, India
| |
Collapse
|
14
|
Wang X, Ban S, Hu B, Qiu S, Zhou H. Bacterial diversity of Moutai-flavour Daqu based on high-throughput sequencing method. JOURNAL OF THE INSTITUTE OF BREWING 2017. [DOI: 10.1002/jib.391] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xiaodan Wang
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy; Guizhou University; Guiyang Guizhou 550025 China
- School of Liquor-making and Food Engineering; Guizhou University; Guiyang Guizhou 550025 China
- College of Life Sciences; Guizhou University; Guiyang Guizhou 550025 China
| | - Shidong Ban
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy; Guizhou University; Guiyang Guizhou 550025 China
- School of Liquor-making and Food Engineering; Guizhou University; Guiyang Guizhou 550025 China
| | - Baodong Hu
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy; Guizhou University; Guiyang Guizhou 550025 China
- School of Liquor-making and Food Engineering; Guizhou University; Guiyang Guizhou 550025 China
| | - Shuyi Qiu
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy; Guizhou University; Guiyang Guizhou 550025 China
- School of Liquor-making and Food Engineering; Guizhou University; Guiyang Guizhou 550025 China
| | - Hongxiang Zhou
- School of Liquor-making and Food Engineering; Guizhou University; Guiyang Guizhou 550025 China
| |
Collapse
|
15
|
Study of the bacterial diversity of foods: PCR-DGGE versus LH-PCR. Int J Food Microbiol 2017; 242:24-36. [DOI: 10.1016/j.ijfoodmicro.2016.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/27/2022]
|
16
|
Bal J, Yun SH, Yeo SH, Kim JM, Kim BT, Kim DH. Effects of initial moisture content of Korean traditional wheat-based fermentation starter nuruk on microbial abundance and diversity. Appl Microbiol Biotechnol 2016; 101:2093-2106. [PMID: 27975136 DOI: 10.1007/s00253-016-8042-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022]
Abstract
The brewing of makgeolli, one of Korea's most popular alcoholic beverages that is gaining popularity globally, is facilitated by nuruk, a traditional Korean cereal starter. The nuruk microbiome greatly influences the fermentation process as well as the nutritional, hygienic, and aromatic qualities of the product. This study is a continuation of our efforts to examine nuruk biodiversity at a depth previously unattainable. In this study, microfloral dynamics in wheat-based nuruk C, composed of traditional ingredients such as barley, green gram, and wheat and fermented under various internal moisture contents of 20% (C20), 26% (C26), and 30% (C30), was evaluated using 454 pyrosequencing during the 30-day fermentation process. Rarefaction analysis and alpha diversity parameters indicated adequate sampling. C20 showed the greatest fungal richness and diversity, C20 and C26 exhibited similar bacterial richness and diversity, while C30 had low fungal and bacterial richness. Fungal taxonomic assignments revealed that the initial moisture content caused selective enrichment of Aspergillus candidus with a decreasing trend during fermentation, whereas Saccharomycetales sp. exhibited increasing relative abundance with increasing moisture content from day 6 of the fermentation process. Depending on initial moisture level, changes in bacterial communities were also observed in the genera Streptomyces, Bacillus, and Staphylococcus, with decreasing trends whereas Saccharopolyspora exhibited a sigmoidal trend with the highest abundance in C26. These findings demonstrate the possible impact of initial moisture content of nuruk on microfloral richness, diversity, and dynamics; this study is thus a step toward our ultimate goal of enhancing the quality of nuruk.
Collapse
Affiliation(s)
- Jyotiranjan Bal
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 561-756, Korea
| | - Suk-Hyun Yun
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 561-756, Korea
| | - Soo-Hwan Yeo
- Fermented Food Science Division, Department of Agrofood Resource, NAAS, RDA, Wanju-gun, Jeollabuk-do, 565-851, Korea
| | - Jung-Mi Kim
- Department of Bio-Environmental Chemistry, Institute of Life Science and Natural Resources, Wonkwang University, Iksan, Jeollabuk-do, 570-749, Korea
| | - Beom-Tae Kim
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 561-756, Korea
| | - Dae-Hyuk Kim
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 561-756, Korea.
| |
Collapse
|
17
|
Skvortsov T, de Leeuwe C, Quinn JP, McGrath JW, Allen CCR, McElarney Y, Watson C, Arkhipova K, Lavigne R, Kulakov LA. Metagenomic Characterisation of the Viral Community of Lough Neagh, the Largest Freshwater Lake in Ireland. PLoS One 2016; 11:e0150361. [PMID: 26927795 PMCID: PMC4771703 DOI: 10.1371/journal.pone.0150361] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/12/2016] [Indexed: 11/18/2022] Open
Abstract
Lough Neagh is the largest and the most economically important lake in Ireland. It is also one of the most nutrient rich amongst the world’s major lakes. In this study, 16S rRNA analysis of total metagenomic DNA from the water column of Lough Neagh has revealed a high proportion of Cyanobacteria and low levels of Actinobacteria, Acidobacteria, Chloroflexi, and Firmicutes. The planktonic virome of Lough Neagh has been sequenced and 2,298,791 2×300 bp Illumina reads analysed. Comparison with previously characterised lakes demonstrates that the Lough Neagh viral community has the highest level of sequence diversity. Only about 15% of reads had homologs in the RefSeq database and tailed bacteriophages (Caudovirales) were identified as a major grouping. Within the Caudovirales, the Podoviridae and Siphoviridae were the two most dominant families (34.3% and 32.8% of the reads with sequence homology to the RefSeq database), while ssDNA bacteriophages constituted less than 1% of the virome. Putative cyanophages were found to be abundant. 66,450 viral contigs were assembled with the largest one being 58,805 bp; its existence, and that of another 34,467 bp contig, in the water column was confirmed. Analysis of the contigs confirmed the high abundance of cyanophages in the water column.
Collapse
Affiliation(s)
- Timofey Skvortsov
- School of Biological Sciences, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - Colin de Leeuwe
- School of Biological Sciences, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - John P. Quinn
- School of Biological Sciences, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - John W. McGrath
- School of Biological Sciences, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - Christopher C. R. Allen
- School of Biological Sciences, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - Yvonne McElarney
- Agri-Food & Biosciences Institute, Belfast, Northern Ireland, United Kingdom
| | - Catherine Watson
- Agri-Food & Biosciences Institute, Belfast, Northern Ireland, United Kingdom
| | - Ksenia Arkhipova
- School of Biological Sciences, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Leonid A. Kulakov
- School of Biological Sciences, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Prosdocimi EM, Mapelli F, Gonella E, Borin S, Crotti E. Microbial ecology-based methods to characterize the bacterial communities of non-model insects. J Microbiol Methods 2015; 119:110-25. [PMID: 26476138 DOI: 10.1016/j.mimet.2015.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 12/30/2022]
Abstract
Among the animals of the Kingdom Animalia, insects are unparalleled for their widespread diffusion, diversity and number of occupied ecological niches. In recent years they have raised researcher interest not only because of their importance as human and agricultural pests, disease vectors and as useful breeding species (e.g. honeybee and silkworm), but also because of their suitability as animal models. It is now fully recognized that microorganisms form symbiotic relationships with insects, influencing their survival, fitness, development, mating habits and the immune system and other aspects of the biology and ecology of the insect host. Thus, any research aimed at deepening the knowledge of any given insect species (perhaps species of applied interest or species emerging as novel pests or vectors) must consider the characterization of the associated microbiome. The present review critically examines the microbiology and molecular ecology techniques that can be applied to the taxonomical and functional analysis of the microbiome of non-model insects. Our goal is to provide an overview of current approaches and methods addressing the ecology and functions of microorganisms and microbiomes associated with insects. Our focus is on operational details, aiming to provide a concise guide to currently available advanced techniques, in an effort to extend insect microbiome research beyond simple descriptions of microbial communities.
Collapse
Affiliation(s)
- Erica M Prosdocimi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Francesca Mapelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Elena Gonella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy.
| | - Sara Borin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
19
|
Arenz BE, Schlatter DC, Bradeen JM, Kinkel LL. Blocking primers reduce co-amplification of plant DNA when studying bacterial endophyte communities. J Microbiol Methods 2015; 117:1-3. [PMID: 26159909 DOI: 10.1016/j.mimet.2015.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 12/28/2022]
Abstract
A blocking primer set based on the technique described by Vestheim and Jarman (2008) was developed to reduce amplification of non-target plant DNA when conducting metagenomic studies on bacterial endophyte communities. Bacterial amplification efficiency was increased 300-fold compared to standard PCR in an Illumina-based study of Sorghastrum nutans leaves.
Collapse
Affiliation(s)
- Brett E Arenz
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108, United States
| | - Dan C Schlatter
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108, United States
| | - James M Bradeen
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108, United States
| | - Linda L Kinkel
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108, United States
| |
Collapse
|
20
|
Directly sampling the lung of a young child with cystic fibrosis reveals diverse microbiota. Ann Am Thorac Soc 2015; 11:1049-55. [PMID: 25072206 DOI: 10.1513/annalsats.201311-383oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RATIONALE The airways of people with cystic fibrosis (CF) are chronically infected with a variety of bacterial species. Although routine culture methods are usually used to diagnose these infections, culture-independent, DNA-based methods have identified many bacterial species in CF respiratory secretions that are not routinely cultured. Many prior culture-independent studies focused either on microbiota in explanted CF lungs, reflecting end-stage disease, or those in oropharyngeal swabs, which likely sample areas in addition to the lower airways. Therefore, it was unknown whether the lower airways of children with CF, well before end-stage but with symptomatic lung disease, truly contained diverse microbiota. OBJECTIVES To define the microbiota in the diseased lung tissue of a child who underwent lobectomy for severe, localized CF lung disease. METHODS After pathologic examination verified that this child's lung tissue reflected CF lung disease, we used bacterial ribosomal RNA gene pyrosequencing and computational phylogenetic analysis to identify the microbiota in serial sections of the tissue. MEASUREMENTS AND MAIN RESULTS This analysis identified diverse, and anatomically heterogeneous, bacterial populations in the lung tissue that contained both culturable and nonculturable species, including abundant Haemophilus, Ralstonia, and Propionibacterium species. Routine clinical cultures identified only Staphylococcus aureus, which represented only a small fraction of the microbiota found by sequencing. Microbiota analysis of an intraoperative oropharyngeal swab identified predominantly Streptococcus species. The oropharyngeal findings therefore represented the lung tissue microbiota poorly, in agreement with findings from earlier studies of oropharyngeal swabs in end-stage disease. CONCLUSIONS These results support the concept that diverse and spatially heterogeneous microbiota, not necessarily dominated by "traditional CF pathogens," are present in the airways of young, symptomatic children with early CF lung disease.
Collapse
|
21
|
Brukner I, Longtin Y, Oughton M, Forgetta V, Dascal A. Assay for estimating total bacterial load: relative qPCR normalisation of bacterial load with associated clinical implications. Diagn Microbiol Infect Dis 2015; 83:1-6. [PMID: 26008123 DOI: 10.1016/j.diagmicrobio.2015.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/03/2015] [Accepted: 04/20/2015] [Indexed: 12/26/2022]
Abstract
Relative microorganism abundance is a parameter describing biodiversity, referring to how common a bacterial species is within the total bacterial flora. Anal, rectal, skin, mucal, and respiratory swabs are typical clinical samples where knowledge of relative bacterial abundance might make distinction between asymptomatic carriers and symptomatic cases. Assays trying to measure total bacterial load are usually based on the amplification of universal segments of 16S rRNA genes. Previous assays were not adoptable to "direct" PCR protocols, and/or they were not compatible with hydrolysis-based detection. Using the latest summary of universal 16S sequence motifs present in literature and testing our design with 500 liquid and 50 formed stool samples, we illustrate the performance characteristics of a new 16S quantitative PCR (qPCR) assay, which addresses well-known technical problems, including a) positive priming reaction in the absence of intended target due to self-priming and/or mispriming of unintended targets; b) amplification bias due to nonoptimal primer/probe coverage; and c) too large amplicons for clinical qPCR. Stool swabs ranked into bins of different bacterial loads show significant correlation with threshold cycle values of our new assay. To the best of our knowledge, this is the first description of qPCR assay measuring individual differences of total bacterial load present in human stool.
Collapse
Affiliation(s)
- Ivan Brukner
- Medical Faculty, McGill University, Montreal, Quebec, Canada; SMBD-Jewish General Hospital, Montreal, Quebec, Canada.
| | - Yves Longtin
- Medical Faculty, McGill University, Montreal, Quebec, Canada; SMBD-Jewish General Hospital, Montreal, Quebec, Canada
| | - Matthew Oughton
- Medical Faculty, McGill University, Montreal, Quebec, Canada; SMBD-Jewish General Hospital, Montreal, Quebec, Canada
| | | | - Andre Dascal
- Medical Faculty, McGill University, Montreal, Quebec, Canada; SMBD-Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T. Roots shaping their microbiome: global hotspots for microbial activity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:403-24. [PMID: 26243728 DOI: 10.1146/annurev-phyto-082712-102342] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Land plants interact with microbes primarily at roots. Despite the importance of root microbial communities for health and nutrient uptake, the current understanding of the complex plant-microbe interactions in the rhizosphere is still in its infancy. Roots provide different microhabitats at the soil-root interface: rhizosphere soil, rhizoplane, and endorhizosphere. We discuss technical aspects of their differentiation that are relevant for the functional analysis of their different microbiomes, and we assess PCR (polymerase chain reaction)-based methods to analyze plant-associated bacterial communities. Development of novel primers will allow a less biased and more quantitative view of these global hotspots of microbial activity. Based on comparison of microbiome data for the different root-soil compartments and on knowledge of bacterial functions, a three-step enrichment model for shifts in community structure from bulk soil toward roots is presented. To unravel how plants shape their microbiome, a major research field is likely to be the coupling of reductionist and molecular ecological approaches, particularly for specific plant genotypes and mutants, to clarify causal relationships in complex root communities.
Collapse
Affiliation(s)
- Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, University of Bremen, D-28334 Bremen, Germany; , , , ,
| | | | | | | | | |
Collapse
|
23
|
Berglund B, Khan GA, Weisner SEB, Ehde PM, Fick J, Lindgren PE. Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 476-477:29-37. [PMID: 24448029 DOI: 10.1016/j.scitotenv.2013.12.128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/20/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
Recently, there have been growing concerns about pharmaceuticals including antibiotics as environmental contaminants. Antibiotics of concentrations commonly encountered in wastewater have been suggested to affect bacterial population dynamics and to promote dissemination of antibiotic resistance. Conventional wastewater treatment processes do not always adequately remove pharmaceuticals causing environmental dissemination of low levels of these compounds. Using constructed wetlands as an additional treatment step after sewage treatment plants have been proposed as a cheap alternative to increase reduction of wastewater contaminants, however this means that the natural microbial community of the wetlands becomes exposed to elevated levels of antibiotics. In this study, experimental surface-flow wetlands in Sweden were continuously exposed to antibiotics of concentrations commonly encountered in wastewater. The aim was to assess the antibiotic removal efficiency of constructed wetlands and to evaluate the impact of low levels of antibiotics on bacterial diversity, resistance development and expression in the wetland bacterial community. Antibiotic concentrations were measured using liquid chromatography-mass spectrometry and the effect on the bacterial diversity was assessed with 16S rRNA-based denaturing gradient gel electrophoresis. Real-time PCR was used to detect and quantify antibiotic resistance genes and integrons in the wetlands, during and after the exposure period. The results indicated that the antibiotic removal efficiency of constructed wetlands was comparable to conventional wastewater treatment schemes. Furthermore, short-term treatment of the constructed wetlands with environmentally relevant concentrations (i.e. 100-2000 ng×l(-1)) of antibiotics did not significantly affect resistance gene concentrations, suggesting that surface-flow constructed wetlands are well-suited for wastewater treatment purposes.
Collapse
Affiliation(s)
- Björn Berglund
- Linköping University, Division of Medical Microbiology, Department of Clinical and Experimental Medicine, SE-581 85 Linköping, Sweden.
| | | | - Stefan E B Weisner
- Wetland Research Centre, Halmstad University, P.O. Box 823, SE-301 18 Halmstad, Sweden
| | - Per Magnus Ehde
- Wetland Research Centre, Halmstad University, P.O. Box 823, SE-301 18 Halmstad, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Per-Eric Lindgren
- Linköping University, Division of Medical Microbiology, Department of Clinical and Experimental Medicine, SE-581 85 Linköping, Sweden; Department of Microbiology, Medical Services, County Hospital Ryhov, SE-551 85 Jönköping, Sweden
| |
Collapse
|
24
|
Mori H, Maruyama F, Kato H, Toyoda A, Dozono A, Ohtsubo Y, Nagata Y, Fujiyama A, Tsuda M, Kurokawa K. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res 2013; 21:217-27. [PMID: 24277737 PMCID: PMC3989492 DOI: 10.1093/dnares/dst052] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The deep sequencing of 16S rRNA genes amplified by universal primers has revolutionized our understanding of microbial communities by allowing the characterization of the diversity of the uncultured majority. However, some universal primers also amplify eukaryotic rRNA genes, leading to a decrease in the efficiency of sequencing of prokaryotic 16S rRNA genes with possible mischaracterization of the diversity in the microbial community. In this study, we compared 16S rRNA gene sequences from genome-sequenced strains and identified candidates for non-degenerate universal primers that could be used for the amplification of prokaryotic 16S rRNA genes. The 50 identified candidates were investigated to calculate their coverage for prokaryotic and eukaryotic rRNA genes, including those from uncultured taxa and eukaryotic organelles, and a novel universal primer set, 342F-806R, covering many prokaryotic, but not eukaryotic, rRNA genes was identified. This primer set was validated by the amplification of 16S rRNA genes from a soil metagenomic sample and subsequent pyrosequencing using the Roche 454 platform. The same sample was also used for pyrosequencing of the amplicons by employing a commonly used primer set, 338F-533R, and for shotgun metagenomic sequencing using the Illumina platform. Our comparison of the taxonomic compositions inferred by the three sequencing experiments indicated that the non-degenerate 342F-806R primer set can characterize the taxonomic composition of the microbial community without substantial bias, and is highly expected to be applicable to the analysis of a wide variety of microbial communities.
Collapse
Affiliation(s)
- Hiroshi Mori
- 1Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B-36, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lu L, Cheng B, Yao J, Peng A, Du D, Fan G, Hu X, Zhang L, Chen G. A New Diagnostic System for Detection of 'Candidatus Liberibacter asiaticus' Infection in Citrus. PLANT DISEASE 2013; 97:1295-1300. [PMID: 30722132 DOI: 10.1094/pdis-11-12-1086-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, two polyclonal antibodies were produced against the Omp protein of 'Candidatus Liberibacter asiaticus'. First, omp genes were sequenced to exhibit 99.9% identity among 137 isolates collected from different geographical origins. Then, two peptides containing the hydrophobic polypeptide-transport-associated (POTRA) domain and β-barrel domain, respectively, were identified on Omp protein. After that, these two peptides were overexpressed in Escherichia coli and purified by affinity chromatography to immunize the white rabbits. Finally, the antiserum was purified by affinity chromatography. The two Omp antibodies gave positive results (0.454 to 0.633, 1:1,600 dilution) in enzyme-linked immunosorbent assay against 'Ca. L. asiaticus'-infected samples collected from different geographical origins but revealed negative results against other pathogen-infected, nutrient-deficient and healthy samples. The antibody against the POTRA domain of Omp protein could detect 'Ca. L. asiaticus' in 45.7% of the symptomatic samples compared with a 56.2% detection rate with a polymerase chain reaction assay. These new antibodies will provide a very useful supplement to the current approaches to 'Ca. L. asiaticus' detection and also provide powerful research tools for tracking distribution of this pathogen in vivo.
Collapse
Affiliation(s)
- Lianming Lu
- Zhejiang Citrus Research Institute, Taizhou, 318020, China
| | - Baoping Cheng
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Jinai Yao
- Plant Protection Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Aitian Peng
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of High Technology for Plant Protection
| | | | - Guocheng Fan
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | | | | | | |
Collapse
|
26
|
Salipante SJ, Sengupta DJ, Rosenthal C, Costa G, Spangler J, Sims EH, Jacobs MA, Miller SI, Hoogestraat DR, Cookson BT, McCoy C, Matsen FA, Shendure J, Lee CC, Harkins TT, Hoffman NG. Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections. PLoS One 2013; 8:e65226. [PMID: 23734239 PMCID: PMC3666980 DOI: 10.1371/journal.pone.0065226] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/23/2013] [Indexed: 12/25/2022] Open
Abstract
Classifying individual bacterial species comprising complex, polymicrobial patient specimens remains a challenge for culture-based and molecular microbiology techniques in common clinical use. We therefore adapted practices from metagenomics research to rapidly catalog the bacterial composition of clinical specimens directly from patients, without need for prior culture. We have combined a semiconductor deep sequencing protocol that produces reads spanning 16S ribosomal RNA gene variable regions 1 and 2 (∼360 bp) with a de-noising pipeline that significantly improves the fraction of error-free sequences. The resulting sequences can be used to perform accurate genus- or species-level taxonomic assignment. We explore the microbial composition of challenging, heterogeneous clinical specimens by deep sequencing, culture-based strain typing, and Sanger sequencing of bulk PCR product. We report that deep sequencing can catalog bacterial species in mixed specimens from which usable data cannot be obtained by conventional clinical methods. Deep sequencing a collection of sputum samples from cystic fibrosis (CF) patients reveals well-described CF pathogens in specimens where they were not detected by standard clinical culture methods, especially for low-prevalence or fastidious bacteria. We also found that sputa submitted for CF diagnostic workup can be divided into a limited number of groups based on the phylogenetic composition of the airway microbiota, suggesting that metagenomic profiling may prove useful as a clinical diagnostic strategy in the future. The described method is sufficiently rapid (theoretically compatible with same-day turnaround times) and inexpensive for routine clinical use.
Collapse
Affiliation(s)
- Stephen J. Salipante
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail: (SS); (NH)
| | - Dhruba J. Sengupta
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Christopher Rosenthal
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Gina Costa
- Life Technologies, Beverly, Massachusetts, United States of America
| | - Jessica Spangler
- Life Technologies, Beverly, Massachusetts, United States of America
| | - Elizabeth H. Sims
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Michael A. Jacobs
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Samuel I. Miller
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Daniel R. Hoogestraat
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Brad T. Cookson
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Connor McCoy
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Frederick A. Matsen
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Clarence C. Lee
- Life Technologies, Beverly, Massachusetts, United States of America
| | | | - Noah G. Hoffman
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail: (SS); (NH)
| |
Collapse
|
27
|
Prosthetic joint infection diagnosis using broad-range PCR of biofilms dislodged from knee and hip arthroplasty surfaces using sonication. J Clin Microbiol 2012; 50:3501-8. [PMID: 22895042 DOI: 10.1128/jcm.00834-12] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Periprosthetic tissue and/or synovial fluid PCR has been previously studied for prosthetic joint infection (PJI) diagnosis; however, few studies have assessed the utility of PCR on biofilms dislodged from the surface of explanted arthroplasties using vortexing and sonication (i.e., sonicate fluid PCR). We compared sonicate fluid 16S rRNA gene real-time PCR and sequencing to culture of synovial fluid, tissue, and sonicate fluid for the microbiologic diagnosis of PJI. PCR sequences generating mixed chromatograms were decatenated using RipSeq Mixed. We studied sonicate fluids from 135 and 231 subjects with PJI and aseptic failure, respectively. Synovial fluid, tissue, and sonicate fluid culture and sonicate fluid PCR had similar sensitivities (64.7, 70.4, 72.6, and 70.4%, respectively; P > 0.05) and specificities (96.9, 98.7, 98.3, and 97.8%, respectively; P > 0.05). Combining sonicate fluid culture and PCR, the sensitivity was higher (78.5%, P < 0.05) than those of individual tests, with similar specificity (97.0%). Thirteen subjects had positive sonicate fluid culture but negative PCR, and 11 had negative sonicate fluid culture but positive PCR (among which 7 had prior use of antimicrobials). Broad-range PCR and culture of sonicate fluid have equivalent performance for PJI diagnosis.
Collapse
|
28
|
Prosdocimi EM, Novati S, Bruno R, Bandi C, Mulatto P, Giannico R, Casiraghi M, Ferri E. Errors in ribosomal sequence datasets generated using PCR-coupled 'panbacterial' pyrosequencing, and the establishment of an improved approach. Mol Cell Probes 2012; 27:65-7. [PMID: 22824825 DOI: 10.1016/j.mcp.2012.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 01/03/2023]
Abstract
Universal bacterial primers are often used in PCR-coupled sequencing approaches to investigate environmental and host-associated bacterial communities. Some of these primers can also amplify eukaryotic DNA. This is leading to the submission of datasets to public databases which are erroneously annotated as prokaryotic sequences. The present note sends a message about the risk of submitting incorrectly annotated sequence data and suggests a reliable approach for the sequencing of 16S rRNA genes and identification of bacteria within complex communities.
Collapse
Affiliation(s)
- Erica M Prosdocimi
- BTBS, Università degli Studi di Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Park EJ, Chun J, Cha CJ, Park WS, Jeon CO, Bae JW. Bacterial community analysis during fermentation of ten representative kinds of kimchi with barcoded pyrosequencing. Food Microbiol 2012; 30:197-204. [DOI: 10.1016/j.fm.2011.10.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 12/23/2022]
|
30
|
LaTuga MS, Ellis JC, Cotton CM, Goldberg RN, Wynn JL, Jackson RB, Seed PC. Beyond bacteria: a study of the enteric microbial consortium in extremely low birth weight infants. PLoS One 2011; 6:e27858. [PMID: 22174751 PMCID: PMC3234235 DOI: 10.1371/journal.pone.0027858] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/26/2011] [Indexed: 12/30/2022] Open
Abstract
Extremely low birth weight (ELBW) infants have high morbidity and mortality, frequently due to invasive infections from bacteria, fungi, and viruses. The microbial communities present in the gastrointestinal tracts of preterm infants may serve as a reservoir for invasive organisms and remain poorly characterized. We used deep pyrosequencing to examine the gut-associated microbiome of 11 ELBW infants in the first postnatal month, with a first time determination of the eukaryote microbiota such as fungi and nematodes, including bacteria and viruses that have not been previously described. Among the fungi observed, Candida sp. and Clavispora sp. dominated the sequences, but a range of environmental molds were also observed. Surprisingly, seventy-one percent of the infant fecal samples tested contained ribosomal sequences corresponding to the parasitic organism Trichinella. Ribosomal DNA sequences for the roundworm symbiont Xenorhabdus accompanied these sequences in the infant with the greatest proportion of Trichinella sequences. When examining ribosomal DNA sequences in aggregate, Enterobacteriales, Pseudomonas, Staphylococcus, and Enterococcus were the most abundant bacterial taxa in a low diversity bacterial community (mean Shannon-Weaver Index of 1.02±0.69), with relatively little change within individual infants through time. To supplement the ribosomal sequence data, shotgun sequencing was performed on DNA from multiple displacement amplification (MDA) of total fecal genomic DNA from two infants. In addition to the organisms mentioned previously, the metagenome also revealed sequences for gram positive and gram negative bacteriophages, as well as human adenovirus C. Together, these data reveal surprising eukaryotic and viral microbial diversity in ELBW enteric microbiota dominated bytypes of bacteria known to cause invasive disease in these infants.
Collapse
Affiliation(s)
- Mariam Susan LaTuga
- Department of Pediatrics, Albert Einstein College of Medicine, New York, New York, United States of America
| | | | - Charles Michael Cotton
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- Jean and George Brumley, Jr Neonatal-Perinatal Research Institute, Duke University, Durham, North Carolina, United States of America
| | - Ronald N. Goldberg
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- Jean and George Brumley, Jr Neonatal-Perinatal Research Institute, Duke University, Durham, North Carolina, United States of America
| | - James L. Wynn
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- Jean and George Brumley, Jr Neonatal-Perinatal Research Institute, Duke University, Durham, North Carolina, United States of America
| | - Robert B. Jackson
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Nicholas School of the Environment and Center on Global Change, Duke University, Durham, North Carolina, United States of America
| | - Patrick C. Seed
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Microbial Pathogenesis, Duke University, Durham, North Carolina, United States of America
- Jean and George Brumley, Jr Neonatal-Perinatal Research Institute, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
31
|
Mikelsaar M, Lazar V, Onderdonk A, Donelli G. Do probiotic preparations for humans really have efficacy? MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2011. [DOI: 10.3402/mehd.v22i0.10128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marika Mikelsaar
- Department of Microbiology, Medical Faculty, University of Tartu , Tartu, Estonia
| | - Veronica Lazar
- Department of Microbiology, Faculty of Biology, University of Bucharest , Bucharest, Romania
| | - Andrew Onderdonk
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School , Boston MA USA
| | | |
Collapse
|
32
|
Carbonero F, Nava GM, Benefiel AC, Greenberg E, Gaskins HR. Microbial DNA extraction from intestinal biopsies is improved by avoiding mechanical cell disruption. J Microbiol Methods 2011; 87:125-7. [PMID: 21820015 DOI: 10.1016/j.mimet.2011.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/14/2011] [Accepted: 07/16/2011] [Indexed: 12/28/2022]
Abstract
Currently, standard protocols for microbial DNA extraction from intestinal tissues do not exist. We assessed the efficiency of a commercial kit with and without mechanical disruption. Better quality DNA was obtained without mechanical disruption. Thus, it appears that bead-beating is not required for efficient microbial DNA extraction from intestinal biopsies.
Collapse
Affiliation(s)
- Franck Carbonero
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, IL 61801, USA
| | | | | | | | | |
Collapse
|
33
|
Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISME JOURNAL 2011; 6:57-70. [PMID: 21753800 DOI: 10.1038/ismej.2011.90] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogenotrophic microbiota have a significant impact on colonic health; however, little is known about their diversity and ecology in situ. Here, molecular-based methods and multivariate analyses were used to examine the abundance and diversity of mucosa-associated hydrogenotrophic microbes in 90 biopsies collected from right colon, left colon and rectum of 25 healthy subjects. Functional genes of all three hydrogenotrophic groups were detected in at least one colonic region of all subjects. Methanogenic archaea (MA) constituted approximately one half of the hydrogenotrophic microbiota in each colonic region. Sulfate-reducing bacteria (SRB) were more abundant than acetogens in right colon, while acetogens were more abundant than SRB in left colon and rectum. MA genotypes exhibited low diversity, whereas SRB genotypes were diverse and generally similar across the three regions within subject but significantly variable among subjects. Multivariate cluster analysis defined subject-specific patterns for the diversity of SRB genotypes; however, neither subject- nor region-specific clusters were observed for the abundance of hydrogenotrophic functional genes. Sequence analyses of functional gene clones revealed that mucosa-associated SRB were phylogenetically related to Desulfovibrio piger, Desulfovibrio desulfuricans and Bilophila wadsworthia; whereas MA were related to Methanobrevibacter spp., Mb. smithii and the order Methanomicrobiales. Together these data demonstrate for the first time that the human colonic mucosa is persistently colonized by all three groups of hydrogenotrophic microbes, which exhibit segmental and interindividual variation in abundance and diversity.
Collapse
|
34
|
Madoroba E, Steenkamp ET, Theron J, Scheirlinck I, Cloete TE, Huys G. Diversity and dynamics of bacterial populations during spontaneous sorghum fermentations used to produce ting, a South African food. Syst Appl Microbiol 2011; 34:227-34. [PMID: 21300507 DOI: 10.1016/j.syapm.2010.11.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 12/25/2022]
Abstract
Ting is a spontaneously fermented sorghum food that is popular for its sour taste and unique flavour. Insight of the microbial diversity and population dynamics during sorghum fermentations is an essential component of the development of starter cultures for commercial production of ting. In this study, bacterial populations associated with spontaneous sorghum fermentations were examined using a culture-independent strategy based on denaturing gradient gel electrophoresis and sequence analysis of V3-16S rRNA gene amplicons, and a culture-dependent strategy using conventional isolation based on culturing followed by 16S rRNA and/or pheS gene sequence analysis. The entire fermentation process was monitored over a 54 h period and two phases were observed with respect to pH evolution and microbial succession. The first phase of the process (0-6h) was characterized by relatively high pH conditions and the presence of Enterococcus mundtii, albeit that this species was only detected with the culture-dependent approach. The second phase of the fermentation process (12-54 h) was characterized by increased acidity and the predominance of a broader range of lactic acid bacteria, including Lactococcus lactis, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus rhamnosus, Weissella cibaria, Enterococcus faecalis, and a close relative of Lactobacillus curvatus, as well as some members of the Enterobacteriaceae family. The Lb. curvatus-like species was only detected with PCR-DGGE, while the majority of the other species was only detected using the culture-dependent approach. These findings highlighted the fact that a combination of both approaches was essential in revealing the microbial diversity and dynamics during spontaneous sorghum fermentations.
Collapse
Affiliation(s)
- Evelyn Madoroba
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa
| | | | | | | | | | | |
Collapse
|
35
|
Kwambana BA, Mohammed NI, Jeffries D, Barer M, Adegbola RA, Antonio M. Differential effects of frozen storage on the molecular detection of bacterial taxa that inhabit the nasopharynx. BMC Clin Pathol 2011; 11:2. [PMID: 21261963 PMCID: PMC3037839 DOI: 10.1186/1472-6890-11-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 01/24/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Frozen storage often precedes metagenomic analysis of biological samples; however, the freezing process can have adverse effects on microbial composition. The effect of freezing on the detection of bacteria inhabiting the infant nasopharynx, a major reservoir of bacterial pathogens, was investigated. METHODS 16S ribosomal RNA (rRNA) gene-based terminal restriction fragment length polymorphism (T-RFLP) analysis of nasopharyngeal (NP) swabs from twelve Gambian infants was employed. NP swabs were analysed within hours of collection and then after 30 days of storage at -70°C. RESULTS There was substantial heterogeneity among subjects with respect to the effect of freezing on the number of operational taxonomic units (OTUs) detected. Nevertheless, the mean number of OTUs decreased after frozen storage and the relative abundance for 72% of the OTUs changed by less than 0.5% after deep frozen storage. There were differences in the odds of detection and relative abundance of OTUs matched with Moraxella sp., Haemophilus sp./Burkholderia sp., and Pseudomonas sp. A strong interaction between sex and the effect of freezing was found, whereby there was no significant change observed for males while the mean number of OTUs significantly declined among female infants following frozen storage. CONCLUSIONS Although frozen storage of biological samples is often necessary for archiving and logistic purposes, the potential effects on the number of taxa (composition) detected in microbial community studies are significant and should not be overlooked. Moreover, genetic factors such as sex may influence the integrity of nucleic acids during the freezing process.
Collapse
Affiliation(s)
- Brenda A Kwambana
- Bacterial Diseases Programme, Medical Research Council Laboratories (UK), Banjul, The Gambia.
| | | | | | | | | | | |
Collapse
|
36
|
Bakke I, De Schryver P, Boon N, Vadstein O. PCR-based community structure studies of bacteria associated with eukaryotic organisms: a simple PCR strategy to avoid co-amplification of eukaryotic DNA. J Microbiol Methods 2010; 84:349-51. [PMID: 21182876 DOI: 10.1016/j.mimet.2010.12.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 12/13/2010] [Accepted: 12/13/2010] [Indexed: 01/09/2023]
Abstract
PCR primers targeting conserved regions of the SSU rRNA gene are commonly used in bacterial community studies. For microbes associated with eukaryotes, co-amplification of eukaryotic DNA may preclude the analysis. We present a simple and efficient PCR strategy to obtain pure bacterial rDNA amplicons from samples predominated by eukaryotic DNA.
Collapse
Affiliation(s)
- Ingrid Bakke
- Norwegian University of Science and Technology, Department of Biotechnology, Trondheim, Norway.
| | | | | | | |
Collapse
|
37
|
Unno T, Jang J, Han D, Kim JH, Sadowsky MJ, Kim OS, Chun J, Hur HG. Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7777-82. [PMID: 20853824 DOI: 10.1021/es101500z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
While many current microbial source tracking (MST) methods rely on the use of specific molecular marker genes to identify sources of fecal contamination, these methods often fail to determine all point and nonpoint contributors of fecal inputs into waterways. In this study, we developed a new library-dependent MST method that uses pyrosequencing-derived shared operational taxonomy units (OTUs) to define sources of fecal contamination in waterways. A total 56,841 pyrosequencing reads of 16S rDNA obtained from the feces of humans and animals were evaluated and used to compare fecal microbial diversity in three freshwater samples obtained from the Yeongsan river basin in Jeonnam Province, South Korea. Sites included an urbanized agricultural area (Y1) (Escherichia coli counts ≥ 1600 CFU/100 mL), an open area (Y2) with no major industrial activities (940 CFU/100 mL), and a typical agricultural area (Y3) (≥ 1600 CFU/100 mL). Data analyses indicated that the majority of bacteria in the feces of humans and domesticated animals were comprised of members of the phyla Bacteroidetes or Firmicutes, whereas the majority of bacteria in wild goose feces and freshwater samples were classified to the phylum Proteobacteria. Analysis of OTUs shared between the fecal and environmental samples suggested that the potential sources of the fecal contamination at the sites were of human and swine origin. Quantification of fecal contamination was also examined by comparing the density of pyrosequencing reads in each fecal sample within shared OTUs. Taken together, our results indicated that analysis of shared OTUs derived from barcoded pyrosequencing reads provide the necessary resolution and discrimination to be useful as a next generation platform for microbial source tracking studies.
Collapse
Affiliation(s)
- Tatsuya Unno
- Department of Environmental Science and Engineering and International Environmental Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yu J, Sun Z, Liu W, Zhang J, Sun T, Bao Q, Zhang H. Rapid identification of lactic acid bacteria isolated from home-made fermented milk in Tibet. J GEN APPL MICROBIOL 2009; 55:181-90. [PMID: 19590145 DOI: 10.2323/jgam.55.181] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fermented milk is a very delicious and nutritional food distributed in the international markets. Rapid preliminary identification of lactic acid bacteria to the species level is an important issue for the fermentation industry. One hundred seventy-one strains of lactic acid bacteria (LAB) were isolated from twenty-nine kurut samples and fifteen traditional fermented mongolian cattle milk (FMCM) samples in Tibet, China. All of the strains were isolated and divided into bacilli or cocci by phenotype, and then differentiated by restriction fragment length polymorphism (RFLP) analysis using a set of restriction enzymes, AluI, HaeIII, BsmaI, TspRI and HinfI. Restriction pattern analyses indicated that the lactobacilli could be clearly identified at the species level and the LAB cocci at the genera level by the five restriction enzymes. Further studies on 16S rDNA sequences of representative and undefined strains showed that the combination of RFLP analysis of polymerase chain reaction (PCR) for amplifying 16S rDNA and 16S rDNA sequence analysis is rapid, easy to perform, and effective for large-scale preliminary identification of LAB.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, PRC
| | | | | | | | | | | | | |
Collapse
|
39
|
Roh SW, Kim KH, Nam YD, Chang HW, Park EJ, Bae JW. Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISME JOURNAL 2009; 4:1-16. [PMID: 19587773 DOI: 10.1038/ismej.2009.83] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Little is known about the archaeal diversity of fermented seafood; most of the earlier studies of fermented food have focused on lactic acid bacteria (LAB) in the fermentation process. In this study, the archaeal and bacterial diversity in seven kinds of fermented seafood were culture-independently examined using barcoded pyrosequencing and PCR-denaturing gradient gel electrophoresis (DGGE) methods. The multiplex barcoded pyrosequencing was performed in a single run, with multiple samples tagged uniquely by multiplex identifiers, using different primers for Archaea or Bacteria. Because PCR-DGGE analysis is a conventional molecular ecological approach, this analysis was also performed on the same samples and the results were compared with the results of the barcoded pyrosequencing analysis. A total of 13 372 sequences were retrieved from 15 898 pyrosequencing reads and were analyzed to evaluate the diversity of the archaeal and bacterial populations in seafood. The most predominant types of archaea and bacteria identified in the samples included extremely halophilic archaea related to the family Halobacteriaceae; various uncultured mesophilic Crenarchaeota, including Crenarchaeota Group I.1 (CG I.1a and CG I.1b), Marine Benthic Group B (MBG-B), and Miscellaneous Crenarchaeotic Group (MCG); and LAB affiliated with genus Lactobacillus and Weissella. Interestingly, numerous uncultured mesophilic Crenarchaeota groups were as ubiquitous in the fermented seafood as in terrestrial and aquatic niches; the existence of these Crenarchaeota groups has not been reported in any fermented food. These results indicate that the archaeal populations in the fermented seafood analyzed are diverse and include the halophilic and mesophilic groups, and that barcoded pyrosequencing is a promising and cost-effective method for analyzing microbial diversity compared with conventional approaches.
Collapse
Affiliation(s)
- Seong Woon Roh
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
40
|
Huys G, Vanhoutte T, Vandamme P. Application of sequence-dependent electrophoresis fingerprinting in exploring biodiversity and population dynamics of human intestinal microbiota: what can be revealed? Interdiscip Perspect Infect Dis 2008; 2008:597603. [PMID: 19277102 PMCID: PMC2648627 DOI: 10.1155/2008/597603] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 09/22/2008] [Indexed: 01/13/2023] Open
Abstract
Sequence-dependent electrophoresis (SDE) fingerprinting techniques such as denaturing gradient gel electrophoresis (DGGE) have become commonplace in the field of molecular microbial ecology. The success of the SDE technology lays in the fact that it allows visualization of the predominant members of complex microbial ecosystems independent of their culturability and without prior knowledge on the complexity and diversity of the ecosystem. Mainly using the prokaryotic 16S rRNA gene as PCR amplification target, SDE-based community fingerprinting turned into one of the leading molecular tools to unravel the diversity and population dynamics of human intestinal microbiota. The first part of this review covers the methodological concept of SDE fingerprinting and the technical hurdles for analyzing intestinal samples. Subsequently, the current state-of-the-art of DGGE and related techniques to analyze human intestinal microbiota from healthy individuals and from patients with intestinal disorders is surveyed. In addition, the applicability of SDE analysis to monitor intestinal population changes upon nutritional or therapeutic interventions is critically evaluated.
Collapse
Affiliation(s)
- Geert Huys
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Tom Vanhoutte
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
41
|
Analysis of mixed sequencing chromatograms and its application in direct 16S rRNA gene sequencing of polymicrobial samples. J Clin Microbiol 2008; 46:3766-71. [PMID: 18768654 DOI: 10.1128/jcm.00213-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Investigation of clinical samples by direct 16S rRNA gene sequencing provides the possibility to detect nonviable bacteria and bacteria with special growth requirements. This approach has been particularly valuable for the diagnosis of patients who have received antibiotics prior to sample collection. In specimens containing more than one bacterium, direct sequencing gives mixed chromatograms that complicate further interpretation. We designed an algorithm able to analyze these ambiguous chromatograms and implemented it as a Web-based service. The algorithm contains both a new base-calling procedure and a new database search procedure. 16S rRNA gene sequencing was performed on polybacterial suspensions prepared in the laboratory. The computer program identified all bacteria correctly to the species level in 23 out of 23 samples containing two different bacteria. For samples containing three different bacteria, correct identification to the species level was achieved for three out of five and to the genus level for five out of five.
Collapse
|