1
|
Prodhan MY, Rahman MB, Rahman A, Akbor MA, Ghosh S, Nahar MNEN, Simo, Shamsuzzoha M, Cho KM, Haque MA. Characterization of Growth-Promoting Activities of Consortia of Chlorpyrifos Mineralizing Endophytic Bacteria Naturally Harboring in Rice Plants-A Potential Bio-Stimulant to Develop a Safe and Sustainable Agriculture. Microorganisms 2023; 11:1821. [PMID: 37512993 PMCID: PMC10385066 DOI: 10.3390/microorganisms11071821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Eighteen pesticide-degrading endophytic bacteria were isolated from the roots, stems, and leaves of healthy rice plants and identified through 16S rRNA gene sequencing. Furthermore, biochemical properties, including enzyme production, dye degradation, anti-bacterial activities, plant-growth-promoting traits, including N-fixation, P-solubilization, auxin production, and ACC-deaminase activities of these naturally occurring endophytic bacteria along with their four consortia, were characterized. Enterobacter cloacae HSTU-ABk39 and Enterobacter sp. HSTU-ABk36 displayed inhibition zones of 41.5 ± 1.5 mm, and 29 ± 09 mm against multidrug-resistant human pathogenic bacteria Staphylococcus aureus and Staphylococcus epidermidis, respectively. FT-IR analysis revealed that all eighteen isolates were able to degrade chlorpyrifos pesticide. Our study confirms that pesticide-degrading endophytic bacteria from rice plants play a key role in enhancing plant growth. Notably, rice plants grown in pots containing reduced urea (30%) mixed with either endophytic bacterial consortium-1, consortium-2, consortium-3, or consortia-4 demonstrated an increase of 17.3%, 38.6%, 18.2%, and 39.1% yields, respectively, compared to the control plants grown in pots containing 100% fertilizer. GC-MS/MS analysis confirmed that consortia treatment caused the degradation of chlorpyrifos into different non-toxic metabolites, including 2-Hydroxy-3,5,6 trichloropyridine, Diethyl methane phosphonate, Phorate sulfoxide, and Carbonochloridic. Thus, these isolates could be deployed as bio-stimulants to improve crop production by creating a sustainable biological system.
Collapse
Affiliation(s)
- Md Yeasin Prodhan
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Bokhtiar Rahman
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Ahedul Akbor
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Sibdas Ghosh
- Department of Biological Sciences, College of Arts and Sciences, Carlow University, 3333 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Mst Nur-E-Nazmun Nahar
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Simo
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Shamsuzzoha
- Department of Chemistry, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Kye Man Cho
- Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Md Azizul Haque
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| |
Collapse
|
2
|
Zaouak A, Chouchane H, Jelassi H. Kinetic and mechanism investigation on the gamma irradiation induced degradation of quizalofop-p-ethyl. ENVIRONMENTAL TECHNOLOGY 2022; 43:4147-4155. [PMID: 34182888 DOI: 10.1080/09593330.2021.1944325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
An efficient gamma radiolytic decomposition of one of the extensively used herbicides in the world quizalofo-p-ethyl (QPE) was explored under different experimental conditions. Aqueous solutions of QPE were irradiated by gamma rays emitted by a Cobalt 60 source. QPE aqueous solutions were irradiated at doses of 0.5-3 kGy with 26.31 Gy min-1 dose rate. Obtained results indicated that removal efficiency of 98.5% and 73% of QPE were obtained, respectively, in absence and in presence of dissolved oxygen. Change of absorption spectra, pH effect and Total Organic Carbon (TOC) were carried out and studied. It was found that all absorption bands decreased with increasing irradiation dose and disappear totally after 3 kGy applied dose. Three pH conditions (pH = 10, pH = 6.2 and pH = 3) were applied in radiolytic degradation of QPE showing that the best removal efficiency has been found for neutral pH. Interestingly, the % TOC removal reaches 98% at 3 kGy indicated practically total mineralization. Furthermore, spectrophotometric analyses argued in favour of a pseudo-first-order kinetic of QPE degradation. The resulting apparent rate constant value is approximately kapp = (0.012 ± 0.001) min-1. Finally, several by-products such as 6-chloroquinoxalin -2-ol, 2-(4-hydroxy-phenyoxy) propionate, 1,4-hydroquinone, quinone, 4-chlorobenzene-1,2diol and 1,2,4-benzenetriol were identified by gas chromatography-mass spectrometry (GC/MS) evidencing that radiation process starting with the fragmentation of the molecule involving the hydroxyl radical, which is generated by the radiolysis of water. Based on the identification intermediates, a degradation mechanistic schema of QPE has been proposed.
Collapse
Affiliation(s)
- Amira Zaouak
- Research Laboratory on Energy and Matter for Nuclear Science Development (LR16CNSTN02), National Center for Nuclear Science and Technologies, Tunis, Tunisia
| | - Habib Chouchane
- Univ. Manouba, ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Haikel Jelassi
- Research Laboratory on Energy and Matter for Nuclear Science Development (LR16CNSTN02), National Center for Nuclear Science and Technologies, Tunis, Tunisia
| |
Collapse
|
3
|
Li W, Wilkes RA, Aristilde L. Effects of Phosphonate Herbicides on the Secretions of Plant-Beneficial Compounds by Two Plant Growth-Promoting Soil Bacteria: A Metabolomics Investigation. ACS ENVIRONMENTAL AU 2022; 2:136-149. [PMID: 37101584 PMCID: PMC10114855 DOI: 10.1021/acsenvironau.1c00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) that colonize plant roots produce a variety of plant-beneficial compounds, including plant-growth regulators, metal-scavenging compounds, and antibiotics against plant pathogens. Adverse effects of phosphonate herbicides, the most extensively used herbicides, on the growth and metabolism of PGPR species have been widely reported. However, the potential consequence of these effects on the biosynthesis and secretion of PGPR-derived beneficial compounds still remains to be investigated. Here, using high-resolution mass spectrometry and a metabolomics approach, we investigated both the intracellular metabolome and the extracellular secretions of biomass-normalized metabolite levels in two PGPR species (Pseudomonas protegens Pf-5, a Gram-negative bacterium; Priestia megaterium QM B1551, a Gram-positive bacterium) exposed to three common phosphonate herbicides (glyphosate, glufosinate, and fosamine; 0.1-1 mM) in either iron (Fe)-replete or Fe-deficient nutrient media. We quantified secreted auxin-type plant hormone compounds (phenylacetic acid and indole-3-acetic acid), iron-scavenging compounds or siderophores (pyoverdine and schizokinen), and antibiotics (2,4-diacetylphloroglucinol and pyoluteorin) produced by these PGPR species. The Fe-replete cells exposed to the phosphonate herbicides yielded up to a 25-fold increase in the production of both auxin and antibiotic compounds, indicating that herbicide exposure under Fe-replete conditions triggered metabolite secretions. However, the herbicide-exposed Fe-deficient cells exhibited a near 2-fold depletion in the secretion of these auxin and antibiotic compounds as well as a 77% decrease in siderophore production. Intracellular metabolomics analysis of the Fe-deficient cells further revealed metabolic perturbations in biosynthetic pathways consistent with the impaired production of the plant-beneficial compounds. Our findings implied that compromised cellular metabolism during nutrient deficiency may exacerbate the adverse effects of phosphonate herbicides on PGPR species.
Collapse
Affiliation(s)
- Wenting Li
- Department
of Chemical and Biological Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Rebecca A. Wilkes
- Department
of Biological and Environmental Engineering, College of Agriculture
and Life Sciences, Cornell University, Ithaca, New York 14853, United States
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Ludmilla Aristilde
- Department
of Chemical and Biological Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Biological and Environmental Engineering, College of Agriculture
and Life Sciences, Cornell University, Ithaca, New York 14853, United States
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Li JT, Lu JL, Wang HY, Fang Z, Wang XJ, Feng SW, Wang Z, Yuan T, Zhang SC, Ou SN, Yang XD, Wu ZH, Du XD, Tang LY, Liao B, Shu WS, Jia P, Liang JL. A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes. Biol Rev Camb Philos Soc 2021; 96:2771-2793. [PMID: 34288351 PMCID: PMC9291587 DOI: 10.1111/brv.12779] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022]
Abstract
Phosphate-solubilizing microbes (PSMs) drive the biogeochemical cycling of phosphorus (P) and hold promise for sustainable agriculture. However, their global distribution, overall diversity and application potential remain unknown. Here, we present the first synthesis of their biogeography, diversity and utility, employing data from 399 papers published between 1981 and 2017, the results of a nationwide field survey in China consisting of 367 soil samples, and a genetic analysis of 12986 genome-sequenced prokaryotic strains. We show that at continental to global scales, the population density of PSMs in environmental samples is correlated with total P rather than pH. Remarkably, positive relationships exist between the population density of soil PSMs and available P, nitrate-nitrogen and dissolved organic carbon in soil, reflecting functional couplings between PSMs and microbes driving biogeochemical cycles of nitrogen and carbon. More than 2704 strains affiliated with at least nine archaeal, 88 fungal and 336 bacterial species were reported as PSMs. Only 2.59% of these strains have been tested for their efficiencies in improving crop growth or yield under field conditions, providing evidence that PSMs are more likely to exert positive effects on wheat growing in alkaline P-deficient soils. Our systematic genetic analysis reveals five promising PSM genera deserving much more attention.
Collapse
Affiliation(s)
- Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Hong-Yu Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhou Fang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiao-Juan Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhang Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Ting Yuan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Sheng-Chang Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shu-Ning Ou
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiao-Dan Yang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiang-Deng Du
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Ling-Yun Tang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.,Guangdong Provincial Key Laboratory of Chemical Pollution, South China Normal University, Guangzhou, 510006, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| |
Collapse
|
5
|
Etesami H, Adl SM. Plant Growth-Promoting Rhizobacteria (PGPR) and Their Action Mechanisms in Availability of Nutrients to Plants. ENVIRONMENTAL AND MICROBIAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-981-15-2576-6_9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Ahemad M. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: Paradigms and prospects. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.11.020] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
7
|
Saha A, Bhaduri D, Pipariya A, Jain NK. Influence of imazethapyr and quizalofop-p-ethyl application on microbial biomass and enzymatic activity in peanut grown soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23758-23771. [PMID: 27623852 DOI: 10.1007/s11356-016-7553-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
A field experiment was conducted to examine the degradation and impact of two post-emergence herbicides (imazethapyr and quizalofop-p-ethyl) on soil ecosystems at a half recommended rate (HRE), recommended rate (RE), and double recommended rate (DRE) during kharif peanut cultivation. Herbicides were innocuous to soil microbial activity at HRE, however, showed some significant influences at RE and DRE, and exerted temporary toxic effects on microbial biomass carbon and fluorescein diacetate hydrolyzing activity. Dehydrogenase activity also declined for a shorter period except imazethapyr application at DRE. Acid phosphatase activity was inhibited whereas alkaline phosphatase activity fluctuated between promotion and inhibition, but promotion was predominant suggesting a direct role of alkaline soil environment. Soil NH4+ and NO3- nitrogen were increased by the herbicides at initial (after 7 days) and last phases (after 30 days), respectively. After an early period of inhibition, urease activity returned to the control level after 30 days. Dissipation of imazethapyr residues fitted best to bi-exponential order rate kinetics at DRE and RE, whereas it followed first-order rate kinetics at HRE. The residues of quizalofop-p-ethyl were found only up to 1 day after application suggesting its rapid conversion to active acid metabolites. Both the herbicides had transient harmful effects on most of the soil microbiological parameters.
Collapse
Affiliation(s)
- Ajoy Saha
- ICAR-Directorate of Groundnut Research, Junagadh, Gujarat, 362001, India.
- ICAR-Directorate of Medicinal and Aromatic Plants Research (DMAPR), Boriavi, Anand, Gujarat, 387 310, India.
| | - Debarati Bhaduri
- ICAR-Directorate of Groundnut Research, Junagadh, Gujarat, 362001, India
| | - Ashvin Pipariya
- ICAR-Directorate of Groundnut Research, Junagadh, Gujarat, 362001, India
| | - N K Jain
- ICAR-Directorate of Groundnut Research, Junagadh, Gujarat, 362001, India
| |
Collapse
|
8
|
Rajput MS, Iyer B, Pandya M, Jog R, G NK, Rajkumar S. Derepression of Mineral Phosphate Solubilization Phenotype by Insertional Inactivation of iclR in Klebsiella pneumoniae. PLoS One 2015; 10:e0138235. [PMID: 26381651 PMCID: PMC4575152 DOI: 10.1371/journal.pone.0138235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/26/2015] [Indexed: 11/24/2022] Open
Abstract
The mode of succinate mediated repression of mineral phosphate solubilization and the role of repressor in suppressing phosphate solubilization phenotype of two free-living nitrogen fixing Klebsiella pneumoniae strains was studied. Organic acid mediated mineral phosphate solubilization phenotype of oxalic acid producing Klebsiella pneumoniae SM6 and SM11 were transcriptionally repressed by IclR in presence of succinate as carbon source. Oxalic acid production and expression of genes of the glyoxylate shunt (aceBAK) was found only in glucose but not in succinate- and glucose+succinate-grown cells. IclR, repressor of aceBAK operon, was inactivated using an allelic exchange system resulting in derepressed mineral phosphate solubilization phenotype through constitutive expression of the glyoxylate shunt. Insertional inactivation of iclR resulted in increased activity of the glyoxylate shunt enzymes even in succinate-grown cells. An augmented phosphate solubilization up to 54 and 59% soluble phosphate release was attained in glucose+succinate-grown SM6Δ and SM11Δ strains respectively, compared to glucose-grown cells, whereas phosphate solubilization was absent or negligible in wildtype cells grown in glucose+succinate. Both wildtype and iclR deletion strains showed similar indole-3-acetic acid production. Wheat seeds inoculated with wildtype SM6 and SM11 improved both root and shoot length by 1.2 fold. However, iclR deletion SM6Δ and SM11Δ strains increased root and shoot length by 1.5 and 1.4 folds, respectively, compared to uninoculated controls. The repressor inactivated phosphate solubilizers better served the purpose of constitutive phosphate solubilization in pot experiments, where presence of other carbon sources (e.g., succinate) might repress mineral phosphate solubilization phenotype of wildtype strains.
Collapse
Affiliation(s)
| | - Bhagya Iyer
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Maharshi Pandya
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Rahul Jog
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
- Environmental Molecular Biology Laboratory, Division of Biosphere, Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naresh Kumar G
- Molecular Microbial Biochemistry Laboratory, Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Shalini Rajkumar
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
9
|
Das AC, Das R, Bhowmick S. Non-symbiotic N2-fixation and phosphate-solubility in Gangetic alluvial soil as influenced by pre-emergence herbicide residues. CHEMOSPHERE 2015; 135:202-207. [PMID: 25957139 DOI: 10.1016/j.chemosphere.2015.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 02/13/2015] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
An experiment has been conducted under laboratory conditions to investigate the effect of two pre-emergence herbicides viz., thiobencarb (at 1.5 and 4.5 kg a.i. ha(-1)) and pretilachlor (at 0.5 and 1.5 kg a.i. ha(-1)), on the changes of growth and activities of aerobic non-symbiotic N2-fixing bacteria and phosphate-solubilizing microorganisms in relation to availability of mineral nitrogen and soluble phosphorus in the Gangetic alluvial soil (Typic Haplustept) of West Bengal, India. Application of herbicides, in general, significantly increased growth and activities of microorganisms, resulting in greater release of available nitrogen and soluble phosphorus in soil; and the stimulation was more pronounced when the herbicides were applied at their lower concentrations (recommended field application rates), more so with thiobencarb, as compared to pretilachlor. As compared to untreated control, application of thiobencarb at lower concentration increased the proliferation of aerobic non-symbiotic N2-fixing bacteria, phosphate-solubilizing microorganisms and non-symbiotic N2-fixing capacity of soil to the extent of 54.0, 44.6 and 31.7%, respectively; and accumulated the highest amount of available nitrogen (37.8%) and phosphorus (54.5%) in soil, while pretilachlor at field application rate highly induced (37.2%) phosphate-solubilizing capacity of soil. At higher concentration, pretilachlor was superior to thiobencarb in augmenting the growth and activities of phosphate-solubilizers. The results of the present study also indicated that gradual increase in concentration of the herbicides over their recommended field application rates was not much conducive for growth and activities of microorganisms, and subsequent release of nutrients in soil.
Collapse
Affiliation(s)
- Amal Chandra Das
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal 741252, India.
| | - Ritwika Das
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal 741252, India
| | - Sourav Bhowmick
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal 741252, India
| |
Collapse
|
10
|
Ahemad M. Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 Biotech 2015; 5:111-121. [PMID: 28324572 PMCID: PMC4362741 DOI: 10.1007/s13205-014-0206-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/24/2014] [Indexed: 11/27/2022] Open
Abstract
Heavy metal pollution of soils is of great concern. The presence of the toxic metal species above critical concentration not only harmfully affects human health but also the environment. Among existing strategies to remediate metal contaminates in soils, phytoremediation approach using metal accumulating plants is much convincing in terms of metal removal efficiency, but it has many limitations because of slow plant growth and decreased biomass owing to metal-induced stress. In addition, constrain of metal bioavailability in soils is the prime factor to restrict its applicability. Phytoremediation of metals in association with phosphate-solubilizing bacteria (PSB) considerably overcomes the practical drawbacks imposed by metal stress on plants. This review is an effort to describe mechanism of PSB in supporting and intensifying phytoremediation of heavy metals in soils and to address the developmental status of the current trend in application of PSB in this context.
Collapse
Affiliation(s)
- Munees Ahemad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India.
| |
Collapse
|
11
|
Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK, Arora DK. Isolation and characterization of siderophore producing antagonistic rhizobacteria againstRhizoctonia solani. J Basic Microbiol 2013; 54:585-97. [DOI: 10.1002/jobm.201200564] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 01/19/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Manoj Kumar Solanki
- National Bureau of Agriculturally Important Microorganisms; Mau Uttar Pradesh India
| | - Rajesh Kumar Singh
- National Bureau of Agriculturally Important Microorganisms; Mau Uttar Pradesh India
| | - Supriya Srivastava
- National Bureau of Agriculturally Important Microorganisms; Mau Uttar Pradesh India
| | - Sudheer Kumar
- National Bureau of Agriculturally Important Microorganisms; Mau Uttar Pradesh India
| | - Prem Lal Kashyap
- National Bureau of Agriculturally Important Microorganisms; Mau Uttar Pradesh India
| | - Alok K. Srivastava
- National Bureau of Agriculturally Important Microorganisms; Mau Uttar Pradesh India
| | - Dilip K. Arora
- National Bureau of Agriculturally Important Microorganisms; Mau Uttar Pradesh India
| |
Collapse
|
12
|
Sofo A, Scopa A, Dumontet S, Mazzatura A, Pasquale V. Toxic effects of four sulphonylureas herbicides on soil microbial biomass. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2012; 47:653-659. [PMID: 22560027 DOI: 10.1080/03601234.2012.669205] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The effect of four triazinyl-sulfonylurea herbicides (cinosulfuron, prosulfuron, thifensulfuron methyl, triasulfuron) on soil microbial biomass, soil respiration, metabolic activity, metabolic quotient, and some enzymatic activities (acid and alkaline phosphatase, β-glucosidase, arylsulphatase, and fluorescein diacetate hydrolysis) were monitored under controlled conditions over 30 days. The herbicides were applied at the normal field dose (FD) and at ten-fold (10 FD) the field dose, in order to mimic a long term toxic effect. The measured soil microbial parameters showed that the FD had slight effects on soil microflora, while at 10 FD the tested herbicides exerted a stronger detrimental effect on soil microbial biomass and its biochemical activities.
Collapse
Affiliation(s)
- Adriano Sofo
- Department of Agriculture, Forestry and Environment, University of Basilicata, Potenza, Italy
| | | | | | | | | |
Collapse
|
13
|
Ahemad M, . MSK. Functional Aspects of Plant Growth Promoting Rhizobacteria: Recent Advancements. ACTA ACUST UNITED AC 2011. [DOI: 10.5567/imicro-ik.2011.39.54] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|