1
|
Lei S, Li G, Jiang D, Yuan F, Zheng Y, Cao B, Zhang H. Definition and regulatory analysis of the SUMOylation system in Caixin (Brassica rapa var. Parachinensis) during pectobacterium carotovorum infection. BMC PLANT BIOLOGY 2024; 24:1192. [PMID: 39701969 DOI: 10.1186/s12870-024-05807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND The modification of protein substrates by small ubiquitin-related modifier (SUMO) plays a vital role in plants subjected to biotic and abiotic stresses. However, its role in the stress responses of Brassica plants remains poorly understood. RESULTS A genome-wide analysis revealed the presence of 30 SUMOylation genes in the Caixin genome. These results demonstrated that the Caixin genome contains all the necessary components for SUMOylation. Analysis of the cis-acting elements revealed that the promoters of SUMOylation genes presented diverse combinations of developmental and stress-related cis-regulatory elements. The RNA-seq data indicated that 23 SUMOylation genes presented relatively high expression levels under normal conditions and exhibited a notable decrease in expression following Pectobacterium carotovorum subsp. carotovorum (Pcc) infection. Additionally, dynamic alterations in SUMO conjugates were observed in response to Pcc infection. CONCLUSIONS The Caixin genome contains genes involved in SUMOylation. The majority of these genes presented multiple copies, and analyses of their transcription and protein profiles indicate that they may play a role in the response to Pcc infection.
Collapse
Affiliation(s)
- Shikang Lei
- Guangzhou Academy of Agricultural Sciences, Guangzhou, 510335, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Guangguang Li
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China
| | - Ding Jiang
- Guangzhou Academy of Agricultural Sciences, Guangzhou, 510335, China
| | - Fanchong Yuan
- Guangzhou Academy of Agricultural Sciences, Guangzhou, 510335, China
| | - Yansong Zheng
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China
| | - Bihao Cao
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Hua Zhang
- Guangzhou Academy of Agricultural Sciences, Guangzhou, 510335, China.
| |
Collapse
|
2
|
Pandey P, Patil M, Priya P, Senthil-Kumar M. When two negatives make a positive: the favorable impact of the combination of abiotic stress and pathogen infection on plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:674-688. [PMID: 37864841 DOI: 10.1093/jxb/erad413] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/20/2023] [Indexed: 10/23/2023]
Abstract
Combined abiotic and biotic stresses modify plant defense signaling, leading to either the activation or suppression of defense responses. Although the majority of combined abiotic and biotic stresses reduce plant fitness, certain abiotic stresses reduce the severity of pathogen infection in plants. Remarkably, certain pathogens also improve the tolerance of some plants to a few abiotic stresses. While considerable research focuses on the detrimental impact of combined stresses on plants, the upside of combined stress remains hidden. This review succinctly discusses the interactions between abiotic stresses and pathogen infection that benefit plant fitness. Various factors that govern the positive influence of combined abiotic stress and pathogen infection on plant performance are also discussed. In addition, we provide a brief overview of the role of pathogens, mainly viruses, in improving plant responses to abiotic stresses. We further highlight the critical nodes in defense signaling that guide plant responses during abiotic stress towards enhanced resistance to pathogens. Studies on antagonistic interactions between abiotic and biotic stressors can uncover candidates in host plant defense that may shield plants from combined stresses.
Collapse
Affiliation(s)
- Prachi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Mahesh Patil
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Piyush Priya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| |
Collapse
|
3
|
Leisner CP, Potnis N, Sanz-Saez A. Crosstalk and trade-offs: Plant responses to climate change-associated abiotic and biotic stresses. PLANT, CELL & ENVIRONMENT 2023; 46:2946-2963. [PMID: 36585762 DOI: 10.1111/pce.14532] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
As sessile organisms, plants are constantly challenged by a dynamic growing environment. This includes fluctuations in temperature, water availability, light levels, and changes in atmospheric constituents such as carbon dioxide (CO2 ) and ozone (O3 ). In concert with changes in abiotic conditions, plants experience changes in biotic stress pressures, including plant pathogens and herbivores. Human-induced increases in atmospheric CO2 levels have led to alterations in plant growth environments that impact their productivity and nutritional quality. Additionally, it is predicted that climate change will alter the prevalence and virulence of plant pathogens, further challenging plant growth. A knowledge gap exists in the complex interplay between plant responses to biotic and abiotic stress conditions. Closing this gap is crucial for developing climate resilient crops in the future. Here, we briefly review the physiological responses of plants to elevated CO2 , temperature, tropospheric O3 , and drought conditions, as well as the interaction of these abiotic stress factors with plant pathogen pressure. Additionally, we describe the crosstalk and trade-offs involved in plant responses to both abiotic and biotic stress, and outline targets for future work to develop a more sustainable future food supply considering future climate change.
Collapse
Affiliation(s)
- Courtney P Leisner
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Alvaro Sanz-Saez
- Department of Crop, Soil and Environmental Science, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
4
|
Zarattini M, Farjad M, Launay A, Cannella D, Soulié MC, Bernacchia G, Fagard M. Every cloud has a silver lining: how abiotic stresses affect gene expression in plant-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1020-1033. [PMID: 33188434 PMCID: PMC7904152 DOI: 10.1093/jxb/eraa531] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/10/2020] [Indexed: 05/03/2023]
Abstract
Current environmental and climate changes are having a pronounced influence on the outcome of plant-pathogen interactions, further highlighting the fact that abiotic stresses strongly affect biotic interactions at various levels. For instance, physiological parameters such as plant architecture and tissue organization together with primary and specialized metabolism are affected by environmental constraints, and these combine to make an individual plant either a more or less suitable host for a given pathogen. In addition, abiotic stresses can affect the timely expression of plant defense and pathogen virulence. Indeed, several studies have shown that variations in temperature, and in water and mineral nutrient availability affect the expression of plant defense genes. The expression of virulence genes, known to be crucial for disease outbreak, is also affected by environmental conditions, potentially modifying existing pathosystems and paving the way for emerging pathogens. In this review, we summarize our current knowledge on the impact of abiotic stress on biotic interactions at the transcriptional level in both the plant and the pathogen side of the interaction. We also perform a metadata analysis of four different combinations of abiotic and biotic stresses, which identifies 197 common modulated genes with strong enrichment in Gene Ontology terms related to defense . We also describe the multistress-specific responses of selected defense-related genes.
Collapse
Affiliation(s)
- Marco Zarattini
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- PhotoBioCatalysis Unit – Crop Production and Biostimulation Lab (CPBL), Interfaculty School of Bioengineers, Université Libre de Bruxelles (ULB), CP150, Avenue F.D. Roosevelt 50, Brussels, Belgium
| | - Mahsa Farjad
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Alban Launay
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - David Cannella
- PhotoBioCatalysis Unit – Crop Production and Biostimulation Lab (CPBL), Interfaculty School of Bioengineers, Université Libre de Bruxelles (ULB), CP150, Avenue F.D. Roosevelt 50, Brussels, Belgium
| | - Marie-Christine Soulié
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Sorbonne Universités, UPMC Univ. Paris 06, UFR 927, 4 place Jussieu, Paris, France
| | - Giovanni Bernacchia
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, Ferrara, Italy
| | - Mathilde Fagard
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
5
|
Jee S, Choi JG, Lee YG, Kwon M, Hwang I, Heu S. Distribution of Pectobacterium Species Isolated in South Korea and Comparison of Temperature Effects on Pathogenicity. THE PLANT PATHOLOGY JOURNAL 2020; 36:346-354. [PMID: 32788893 PMCID: PMC7403519 DOI: 10.5423/ppj.oa.09.2019.0235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Pectobacterium, which causes soft rot disease, is divided into 18 species based on the current classification. A total of 225 Pectobacterium strains were isolated from 10 main cultivation regions of potato (Solanum tuberosum), napa cabbage (Brassica rapa subsp. pekinensis), and radish (Raphanus sativus) in South Korea; 202 isolates (90%) were from potato, 18 from napa cabbage, and five from radish. Strains were identified using the Biolog test and phylogenetic analysis. The pathogenicity and swimming motility were tested at four different temperatures. Pectolytic activity and plant cell-wall degrading enzyme (PCWDE) activity were evaluated for six species (P. carotovorum subsp. carotovorum, Pcc; P. odoriferum, Pod; P. brasiliense, Pbr; P. versatile, Pve; P. polaris, Ppo; P. parmentieri, Ppa). Pod, Pcc, Pbr, and Pve were the most prevalent species. Although P. atrosepticum is a widespread pathogen in other countries, it was not found here. This is the first report of Ppo, Ppa, and Pve in South Korea. Pectobacterium species showed stronger activity at 28°C and 32°C than at 24°C, and showed weak activity at 37°C. Pectolytic activity decreased with increasing temperature. Activity of pectate lyase was not significantly affected by temperature. Activity of protease, cellulase, and polygalacturonase decreased with increasing temperature. The inability of isolated Pectobacterium to soften host tissues at 37°C may be a consequence of decreased motility and PCWDE activity. These data suggest that future increases in temperature as a result of climate change may affect the population dynamics of Pectobacterium.
Collapse
Affiliation(s)
- Samnyu Jee
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Jang-Gyu Choi
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Young-Gyu Lee
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Min Kwon
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Sunggi Heu
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| |
Collapse
|
6
|
Peixoto RS, Rosado PM, Leite DCDA, Rosado AS, Bourne DG. Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience. Front Microbiol 2017; 8:341. [PMID: 28326066 PMCID: PMC5339234 DOI: 10.3389/fmicb.2017.00341] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
The symbiotic association between the coral animal and its endosymbiotic dinoflagellate partner Symbiodinium is central to the success of corals. However, an array of other microorganisms associated with coral (i.e., Bacteria, Archaea, Fungi, and viruses) have a complex and intricate role in maintaining homeostasis between corals and Symbiodinium. Corals are sensitive to shifts in the surrounding environmental conditions. One of the most widely reported responses of coral to stressful environmental conditions is bleaching. During this event, corals expel Symbiodinium cells from their gastrodermal tissues upon experiencing extended seawater temperatures above their thermal threshold. An array of other environmental stressors can also destabilize the coral microbiome, resulting in compromised health of the host, which may include disease and mortality in the worst scenario. However, the exact mechanisms by which the coral microbiome supports coral health and increases resilience are poorly understood. Earlier studies of coral microbiology proposed a coral probiotic hypothesis, wherein a dynamic relationship exists between corals and their symbiotic microorganisms, selecting for the coral holobiont that is best suited for the prevailing environmental conditions. Here, we discuss the microbial-host relationships within the coral holobiont, along with their potential roles in maintaining coral health. We propose the term BMC (Beneficial Microorganisms for Corals) to define (specific) symbionts that promote coral health. This term and concept are analogous to the term Plant Growth Promoting Rhizosphere (PGPR), which has been widely explored and manipulated in the agricultural industry for microorganisms that inhabit the rhizosphere and directly or indirectly promote plant growth and development through the production of regulatory signals, antibiotics and nutrients. Additionally, we propose and discuss the potential mechanisms of the effects of BMC on corals, suggesting strategies for the use of this knowledge to manipulate the microbiome, reversing dysbiosis to restore and protect coral reefs. This may include developing and using BMC consortia as environmental "probiotics" to improve coral resistance after bleaching events and/or the use of BMC with other strategies such as human-assisted acclimation/adaption to shifting environmental conditions.
Collapse
Affiliation(s)
- Raquel S. Peixoto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Museu Aquário Marinho do Rio de Janeiro-AquaRio (IMAM/AquaRio) – Rio de Janeiro Marine Aquarium Research CenterRio de Janeiro, Brazil
| | - Phillipe M. Rosado
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Museu Aquário Marinho do Rio de Janeiro-AquaRio (IMAM/AquaRio) – Rio de Janeiro Marine Aquarium Research CenterRio de Janeiro, Brazil
| | | | - Alexandre S. Rosado
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Museu Aquário Marinho do Rio de Janeiro-AquaRio (IMAM/AquaRio) – Rio de Janeiro Marine Aquarium Research CenterRio de Janeiro, Brazil
| | - David G. Bourne
- College of Science and Engineering, James Cook University, TownsvilleQLD, Australia
- Australian Institute of Marine Science, TownsvilleQLD, Australia
| |
Collapse
|