1
|
Wang ZW, Zhao J, Li GY, Hu D, Wang ZG, Ye C, Wang JJ. The endosymbiont Serratia symbiotica improves aphid fitness by disrupting the predation strategy of ladybeetle larvae. INSECT SCIENCE 2024; 31:1555-1568. [PMID: 38196174 DOI: 10.1111/1744-7917.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
Aphids, the important global agricultural pests, harbor abundant resources of symbionts that can improve the host adaptability to environmental conditions, also control the interactions between host aphid and natural enemy, resulting in a significant decrease in efficiency of biological control. The facultative symbiont Serratia symbiotica has a strong symbiotic association with its aphid hosts, a relationship that is known to interfere with host-parasitoid interactions. We hypothesized that Serratia may also influence other trophic interactions by interfering with the physiology and behavior of major predators to provide host aphid defense. To test this hypothesis, we investigated the effects of Serratia on the host aphid Acyrthosiphon pisum and its predator, the ladybeetle Propylaea japonica. First, the prevalence of Serratia in different A. pisum colonies was confirmed by amplicon sequencing. We then showed that harboring Serratia improved host aphid growth and fecundity but reduced longevity. Finally, our research demonstrated that Serratia defends aphids against P. japonica by impeding the predator's development and predation capacity, and modulating its foraging behavior. Our findings reveal that facultative symbiont Serratia improves aphid fitness by disrupting the predation strategy of ladybeetle larvae, offering new insight into the interactions between aphids and their predators, and providing the basis of a new biological control strategy for aphid pests involving the targeting of endosymbionts.
Collapse
Affiliation(s)
- Zheng-Wu Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Southwest University, Chongqing, China
| | - Jin Zhao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Southwest University, Chongqing, China
| | - Guang-Yun Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Southwest University, Chongqing, China
| | - Die Hu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Southwest University, Chongqing, China
| | - Zi-Guo Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Southwest University, Chongqing, China
| | - Chao Ye
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Gu X, Ross PA, Yang Q, Gill A, Umina PA, Hoffmann AA. Influence of genetic and environmental factors on the success of endosymbiont transfers in pest aphids. Environ Microbiol 2024; 26:e16704. [PMID: 39358981 DOI: 10.1111/1462-2920.16704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
There is increasing interest in exploring how endosymbionts could be useful in pest control, including in aphids, which can carry a diversity of endosymbionts. Endosymbionts often have a large impact on host traits, and their presence can be self-sustaining. Identifying useful host-endosymbiont combinations for pest control is facilitated by the transfer of specific endosymbionts into target species, particularly if the species lacks the endosymbiont. Here, we complete a comprehensive literature review, which included 56 relevant papers on endosymbiont transfer experiments in aphids, to uncover factors that might influence transfer success. We then report on our own microinjection attempts of diverse facultative endosymbionts from a range of donor species into three agriculturally important aphid species as recipients: the green peach aphid (Myzus persicae), bird cherry-oat aphid (Rhopalosiphum padi), and Russian wheat aphid (Diuraphis noxia). Combining this information, we consider reasons that impact the successful establishment of lines carrying transferred endosymbionts. These include a lack of stability in donors, deleterious effects on host fitness, the absence of plant-based (versus vertical) transmission, high genetic variation in the endosymbiont, and susceptibility of an infection to environmental factors. Taking these factors into account should help in increasing success rates in future introductions.
Collapse
Affiliation(s)
- Xinyue Gu
- Pest and Environmental Adaptation Research Group, School of biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, School of biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, School of biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Alex Gill
- Pest and Environmental Adaptation Research Group, School of biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Paul A Umina
- Pest and Environmental Adaptation Research Group, School of biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
- Cesar Australia, Brunswick, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Maeda GP, Kelly MK, Sundar A, Moran NA. Intracellular defensive symbiont is culturable and capable of transovarial, vertical transmission. mBio 2024; 15:e0325323. [PMID: 38712948 PMCID: PMC11237597 DOI: 10.1128/mbio.03253-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
Insects frequently form heritable associations with beneficial bacteria that are vertically transmitted from parent to offspring. Long-term vertical transmission has repeatedly resulted in genome reduction and gene loss, rendering many such bacteria incapable of establishment in axenic culture. Among aphids, heritable endosymbionts often provide context-specific benefits to their hosts. Although these associations have large impacts on host phenotypes, experimental approaches are often limited by an inability to cultivate these microbes. Here, we report the axenic culture of Candidatus Fukatsuia symbiotica strain WIR, a heritable bacterial endosymbiont of the pea aphid, Acyrthosiphon pisum. Whole-genome sequencing revealed similar genomic features and high sequence similarity to previously described strains, suggesting that the cultivation techniques used here may be applicable to Ca. F. symbiotica strains from distantly related aphids. Microinjection of cultured Ca. F. symbiotica into uninfected aphids revealed that it can reinfect developing embryos and that infections are maintained in subsequent generations via transovarial maternal transmission. Artificially infected aphids exhibit phenotypic and life history traits similar to those observed for native infections. Our results show that Ca. F. symbiotica may be a useful tool for experimentally probing the molecular mechanisms underlying host-symbiont interactions in a heritable symbiosis. IMPORTANCE Diverse eukaryotic organisms form stable, symbiotic relationships with bacteria that provide benefits to their hosts. While these associations are often biologically important, they can be difficult to probe experimentally because intimately host-associated bacteria are difficult to access within host tissues, and most cannot be cultured. This is especially true for the intracellular, maternally inherited bacteria associated with many insects, including aphids. Here, we demonstrate that a pea aphid-associated strain of the heritable endosymbiont, Candidatus Fukatsuia symbiotica, can be grown outside of its host using standard microbiology techniques and can readily re-establish infection that is maintained across host generations. These artificial infections recapitulate the effects of native infections, making this host-symbiont pair a useful experimental system.
Collapse
Affiliation(s)
- Gerald P. Maeda
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Mary Katherine Kelly
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Aadhunik Sundar
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
4
|
Chirgwin E, Yang Q, Umina PA, Thia JA, Gill A, Song W, Gu X, Ross PA, Wei SJ, Hoffmann AA. Barley Yellow Dwarf Virus Influences Its Vector's Endosymbionts but Not Its Thermotolerance. Microorganisms 2023; 12:10. [PMID: 38276179 PMCID: PMC10819152 DOI: 10.3390/microorganisms12010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The barley yellow dwarf virus (BYDV) of cereals is thought to substantially increase the high-temperature tolerance of its aphid vector, Rhopalosiphum padi, which may enhance its transmission efficiency. This is based on experiments with North American strains of BYDV and R. padi. Here, we independently test these by measuring the temperature tolerance, via Critical Thermal Maximum (CTmax) and knockdown time, of Australian R. padi infected with a local BYDV isolate. We further consider the interaction between BYDV transmission, the primary endosymbiont of R. padi (Buchnera aphidicola), and a transinfected secondary endosymbiont (Rickettsiella viridis) which reduces the thermotolerance of other aphid species. We failed to find an increase in tolerance to high temperatures in BYDV-infected aphids or an impact of Rickettsiella on thermotolerance. However, BYDV interacted with R. padi endosymbionts in unexpected ways, suppressing the density of Buchnera and Rickettsiella. BYDV density was also fourfold higher in Rickettsiella-infected aphids. Our findings indicate that BYDV does not necessarily increase the temperature tolerance of the aphid transmission vector to increase its transmission potential, at least for the genotype combinations tested here. The interactions between BYDV and Rickettsiella suggest new ways in which aphid endosymbionts may influence how BYDV spreads, which needs further testing in a field context.
Collapse
Affiliation(s)
- Evatt Chirgwin
- Cesar Australia, 95 Albert Street, Brunswick, VIC 3056, Australia;
| | - Qiong Yang
- PEARG Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 2052, Australia; (J.A.T.); (A.G.); (X.G.); (P.A.R.); (A.A.H.)
| | - Paul A. Umina
- Cesar Australia, 95 Albert Street, Brunswick, VIC 3056, Australia;
- PEARG Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 2052, Australia; (J.A.T.); (A.G.); (X.G.); (P.A.R.); (A.A.H.)
| | - Joshua A. Thia
- PEARG Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 2052, Australia; (J.A.T.); (A.G.); (X.G.); (P.A.R.); (A.A.H.)
| | - Alex Gill
- PEARG Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 2052, Australia; (J.A.T.); (A.G.); (X.G.); (P.A.R.); (A.A.H.)
| | - Wei Song
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (W.S.); (S.-J.W.)
| | - Xinyue Gu
- PEARG Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 2052, Australia; (J.A.T.); (A.G.); (X.G.); (P.A.R.); (A.A.H.)
| | - Perran A. Ross
- PEARG Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 2052, Australia; (J.A.T.); (A.G.); (X.G.); (P.A.R.); (A.A.H.)
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (W.S.); (S.-J.W.)
| | - Ary A. Hoffmann
- PEARG Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 2052, Australia; (J.A.T.); (A.G.); (X.G.); (P.A.R.); (A.A.H.)
| |
Collapse
|
5
|
Maeda GP, Kelly MK, Sundar A, Moran NA. Intracellular defensive symbiont is culturable and capable of transovarial, vertical transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570145. [PMID: 38106215 PMCID: PMC10723312 DOI: 10.1101/2023.12.05.570145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Insects frequently form heritable associations with beneficial bacteria that are vertically transmitted from parent to offspring. Long term vertical transmission has repeatedly resulted in genome reduction and gene loss rendering many such bacteria incapable of independent culture. Among aphids, heritable endosymbionts often provide a wide range of context-specific benefits to their hosts. Although these associations have large impacts on host phenotypes, experimental approaches are often limited by an inability to independently cultivate these microbes. Here, we report the axenic culture of Candidatus Fukatsuia symbiotica strain WIR, a heritable bacterial endosymbiont of the pea aphid, Acyrthosiphon pisum . Whole genome sequencing revealed similar genomic features and high sequence similarity to previously described strains, suggesting the cultivation techniques used here may be applicable to Ca . F. symbiotica strains from distantly related aphids. Microinjection of the isolated strain into uninfected aphids revealed that it can reinfect developing embryos, and is maintained in subsequent generations via transovarial maternal transmission. Artificially infected aphids exhibit similar phenotypic and life history traits compared to native infections, including protective effects against an entomopathogenic Fusarium species. Overall, our results show that Ca . F. symbiotica may be a useful tool for experimentally probing the molecular mechanisms underlying heritable symbioses and antifungal defense in the pea aphid system. IMPORTANCE Diverse eukaryotic organisms form stable, symbiotic relationships with bacteria that provide benefits to their hosts. While these associations are often biologically important, they can be difficult to probe experimentally, because intimately host-associated bacteria are difficult to access within host tissues, and most cannot be cultured. This is especially true of the intracellular, maternally inherited bacteria associated with many insects, including aphids. Here, we demonstrate that a pea aphid-associated strain of the heritable endosymbiont, Candidatus Fukatsuia symbiotica, can be grown outside of its host using standard microbiology techniques, and can readily re-establish infection that is maintained across host generations. These artificial infections recapitulate the effects of native infections making this host-symbiont pair a useful experimental system. Using this system, we demonstrate that Ca . F. symbiotica infection reduces host fitness under benign conditions, but protects against a previously unreported fungal pathogen.
Collapse
|
6
|
Li T, Wei Y, Zhao C, Li S, Gao S, Zhang Y, Wu Y, Lu C. Facultative symbionts are potential agents of symbiont-mediated RNAi in aphids. Front Microbiol 2022; 13:1020461. [PMID: 36504780 PMCID: PMC9727308 DOI: 10.3389/fmicb.2022.1020461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Aphids are major crop pests, and they can be controlled through the application of the promising RNA interference (RNAi) techniques. However, chemical synthesis yield of dsRNA for RNAi is low and costly. Another sustainable aphid pest control strategy takes advantage of symbiont-mediated RNAi (SMR), which can generate dsRNA by engineered microbes. Aphid host the obligate endosymbiont Buchnera aphidicola and various facultative symbionts that not only have a wide host range but are also vertically and horizontally transmitted. Thus, we described the potential of facultative symbionts in aphid pest control by SMR. We summarized the community and host range of these facultative symbionts, and then reviewed their probable horizontal transmitted routes and ecological functions. Moreover, recent advances in the cultivation and genetic engineering of aphid facultative symbionts were discussed. In addition, current legislation of dsRNA-based pest control strategies and their safety assessments were reviewed.
Collapse
Affiliation(s)
- Tong Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| | - Chenchen Zhao
- Henan International Laboratory for Green Pest Control /College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shaojian Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Suxia Gao
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuanchen Zhang
- College of Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chuantao Lu
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China,Chuantao Lu
| |
Collapse
|
7
|
Chirgwin E, Yang Q, Umina PA, Gill A, Soleimannejad S, Gu X, Ross P, Hoffmann AA. Fungicides have transgenerational effects on Rhopalosiphum padi but not their endosymbionts. PEST MANAGEMENT SCIENCE 2022; 78:4709-4718. [PMID: 35866313 DOI: 10.1002/ps.7091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND While several agricultural fungicides are known to directly affect invertebrate pests, including aphids, the mechanisms involved are often unknown. One hypothesis is that fungicides with antibacterial activity suppress bacterial endosymbionts present in aphids which are important for aphid survival. Endosymbiont-related effects are expected to be transgenerational, given that these bacteria are maternally inherited. Here, we test for these associations using three fungicides (chlorothalonil, pyraclostrobin and trifloxystrobin) against the bird cherry-oat aphid, Rhopalosiphum padi, using a microinjected strain that carried both the primary endosymbiont Buchnera and the secondary endosymbiont Rickettsiella. RESULTS We show that the fungicide chlorothalonil did not cause an immediate effect on aphid survival, whereas both strobilurin fungicides (pyraclostrobin and trifloxystrobin) decreased survival after 48 h exposure. However, chlorothalonil substantially reduced the lifespan and fecundity of the F1 generation. Trifloxystrobin also reduced the lifespan and fecundity of F1 offspring, however, pyraclostrobin did not affect these traits. None of the fungicides consistently altered the density of Buchnera or Rickettsiella in whole aphids. CONCLUSIONS Our results suggest fungicides have sublethal impacts on R. padi that are not fully realized until the generation after exposure, and these sublethal impacts are not associated with the density of endosymbionts harbored by R. padi. However, we cannot rule out other effects of fungicides on endosymbionts that might influence fitness, like changes in their tissue distribution. We discuss these results within the context of fungicidal effects on aphid suppression across generations and point to potential field applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Qiong Yang
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Paul A Umina
- Cesar Australia, Victoria, Australia
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Alex Gill
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | | | - Xinyue Gu
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Perran Ross
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Ary A Hoffmann
- School of BioSciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Higuita Palacio MF, Montoya OI, Saldamando CI, García-Bonilla E, Junca H, Cadavid-Restrepo GE, Moreno-Herrera CX. Dry and Rainy Seasons Significantly Alter the Gut Microbiome Composition and Reveal a Key Enterococcus sp. (Lactobacillales: Enterococcaceae) Core Component in Spodoptera frugiperda (Lepidoptera: Noctuidae) Corn Strain From Northwestern Colombia. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6420650. [PMID: 34734290 PMCID: PMC8567080 DOI: 10.1093/jisesa/ieab076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 06/13/2023]
Abstract
Spodoptera frugiperda is a polyphagous pest of several crops of economic importance. Nowadays, the insect is broadly distributed in America and, recently, in Africa, Asia, and Australia. The species has diverged into corn and rice strains. The role of the gut microbiota in insect physiology is relevant due to its participation in crucial functions. However, knowledge of seasonal variations that alter the gut microbiome in pests is limited. Gut microbiome composition between the dry and rainy seasons was analyzed with cultured and uncultured approaches in S. frugiperda corn strain larvae collected at Northwest Colombia, as seasonal microbiome changes might fluctuate due to environmental changes. On the basis of culture-dependent methods, results show well-defined microbiota with bacterial isolates belonging to Enterococcus, Klebsiella (Enterobacteriales: Enterobacteriaceae), Enterobacter (Enterobacterales: Enterobacteriaceae), and Bacillus (Bacillales: Bacillaceae) genera. The community composition displayed a low bacterial diversity across all samples. The core community detected with uncultured methods was composed of Enterococcus, Erysipelatoclostridium (Erysipelotrichales: Erysipelotrichaceae), Rasltonia (Burkholderiales: Burkholderiaceae), and Rhizobium (Hyphomicrobiales: Rhizobiaceae) genera, and Enterobacteriaceae family members. Significant differences in microbiome diversity were observed between the two seasons. The relative abundance of Erysipelatoclostridium was high in the dry season, while in the phylotype ZOR0006 (Erysipelotrichales: Erysipelotrichaceae) and Tyzzerella (Lachnospirales: Lachnospiraceae) genus, the relative abundance was high in the rainy season. The overall low gut bacterial diversity observed in the S. frugiperda corn strain suggests a strong presence of antagonist activity as a selection factor possibly arising from the host, the dominant bacterial types, or the material ingested. Targeting the stability and predominance of this core microbiome could be an additional alternative to pest control strategies, particularly in this moth.
Collapse
Affiliation(s)
- Marlon Felipe Higuita Palacio
- Grupo de Microbiodiversidad y Bioprospección, Facultad de Ciencias, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia Sede Medellín, Calle 59 A No. 63-20, 050003 Medellín, Colombia
| | - Olga I Montoya
- Grupo de Microbiodiversidad y Bioprospección, Facultad de Ciencias, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia Sede Medellín, Calle 59 A No. 63-20, 050003 Medellín, Colombia
| | - Clara I Saldamando
- Grupo de Biotecnología Vegetal UNALMED-CIB, Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Calle 59A No. 63-20, Medellín, Colombia
| | - Erika García-Bonilla
- RG Microbial Ecology: Metabolism, Genomics & Evolution, Division of Ecogenomics & Holobionts, Microbiomas Foundation, LT11A, 250008 Chía, Colombia
| | - Howard Junca
- RG Microbial Ecology: Metabolism, Genomics & Evolution, Division of Ecogenomics & Holobionts, Microbiomas Foundation, LT11A, 250008 Chía, Colombia
| | - Gloria E Cadavid-Restrepo
- Grupo de Microbiodiversidad y Bioprospección, Facultad de Ciencias, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia Sede Medellín, Calle 59 A No. 63-20, 050003 Medellín, Colombia
| | - Claudia Ximena Moreno-Herrera
- Grupo de Microbiodiversidad y Bioprospección, Facultad de Ciencias, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia Sede Medellín, Calle 59 A No. 63-20, 050003 Medellín, Colombia
| |
Collapse
|
9
|
Carpenter M, Peng L, Smith AH, Joffe J, O’Connor M, Oliver KM, Russell JA. Frequent Drivers, Occasional Passengers: Signals of Symbiont-Driven Seasonal Adaptation and Hitchhiking in the Pea Aphid, Acyrthosiphon pisum. INSECTS 2021; 12:805. [PMID: 34564245 PMCID: PMC8466206 DOI: 10.3390/insects12090805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/25/2022]
Abstract
Insects harbor a variety of maternally inherited bacterial symbionts. As such, variation in symbiont presence/absence, in the combinations of harbored symbionts, and in the genotypes of harbored symbiont species provide heritable genetic variation of potential use in the insects' adaptive repertoires. Understanding the natural importance of symbionts is challenging but studying their dynamics over time can help to elucidate the potential for such symbiont-driven insect adaptation. Toward this end, we studied the seasonal dynamics of six maternally transferred bacterial symbiont species in the multivoltine pea aphid (Acyrthosiphon pisum). Our sampling focused on six alfalfa fields in southeastern Pennsylvania, and spanned 14 timepoints within the 2012 growing season, in addition to two overwintering periods. To test and generate hypotheses on the natural relevance of these non-essential symbionts, we examined whether symbiont dynamics correlated with any of ten measured environmental variables from the 2012 growing season, including some of known importance in the lab. We found that five symbionts changed prevalence across one or both overwintering periods, and that the same five species underwent such frequency shifts across the 2012 growing season. Intriguingly, the frequencies of these dynamic symbionts showed robust correlations with a subset of our measured environmental variables. Several of these trends supported the natural relevance of lab-discovered symbiont roles, including anti-pathogen defense. For a seventh symbiont-Hamiltonella defensa-studied previously across the same study periods, we tested whether a reported correlation between prevalence and temperature stemmed not from thermally varying host-level fitness effects, but from selection on co-infecting symbionts or on aphid-encoded alleles associated with this bacterium. In general, such "hitchhiking" effects were not evident during times with strongly correlated Hamiltonella and temperature shifts. However, we did identify at least one time period in which Hamiltonella spread was likely driven by selection on a co-infecting symbiont-Rickettsiella viridis. Recognizing the broader potential for such hitchhiking, we explored selection on co-infecting symbionts as a possible driver behind the dynamics of the remaining six species. Out of twelve examined instances of symbiont dynamics unfolding across 2-week periods or overwintering spans, we found eight in which the focal symbiont underwent parallel frequency shifts under single infection and one or more co-infection contexts. This supported the idea that phenotypic variation created by the presence/absence of individual symbionts is a direct target for selection, and that symbiont effects can be robust under co-habitation with other symbionts. Contrastingly, in two cases, we found that selection may target phenotypes emerging from symbiont co-infections, with specific species combinations driving overall trends for the focal dynamic symbionts, without correlated change under single infection. Finally, in three cases-including the one described above for Hamiltonella-our data suggested that incidental co-infection with a (dis)favored symbiont could lead to large frequency shifts for "passenger" symbionts, conferring no apparent cost or benefit. Such hitchhiking has rarely been studied in heritable symbiont systems. We propose that it is more common than appreciated, given the widespread nature of maternally inherited bacteria, and the frequency of multi-species symbiotic communities across insects.
Collapse
Affiliation(s)
- Melissa Carpenter
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, 3250 Chestnut St., Philadelphia, PA 19104, USA; (M.C.); (A.H.S.); (M.O.)
| | - Linyao Peng
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA 19104, USA; (L.P.); (J.J.)
| | - Andrew H. Smith
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, 3250 Chestnut St., Philadelphia, PA 19104, USA; (M.C.); (A.H.S.); (M.O.)
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA 19104, USA; (L.P.); (J.J.)
| | - Jonah Joffe
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA 19104, USA; (L.P.); (J.J.)
| | - Michael O’Connor
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, 3250 Chestnut St., Philadelphia, PA 19104, USA; (M.C.); (A.H.S.); (M.O.)
| | - Kerry M. Oliver
- Department of Entomology, University of Georgia, 120 Cedar St., Athens, GA 30602, USA;
| | - Jacob A. Russell
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, 3250 Chestnut St., Philadelphia, PA 19104, USA; (M.C.); (A.H.S.); (M.O.)
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA 19104, USA; (L.P.); (J.J.)
| |
Collapse
|
10
|
Intraspecific variation in immune gene expression and heritable symbiont density. PLoS Pathog 2021; 17:e1009552. [PMID: 33901257 PMCID: PMC8102006 DOI: 10.1371/journal.ppat.1009552] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/06/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Host genetic variation plays an important role in the structure and function of heritable microbial communities. Recent studies have shown that insects use immune mechanisms to regulate heritable symbionts. Here we test the hypothesis that variation in symbiont density among hosts is linked to intraspecific differences in the immune response to harboring symbionts. We show that pea aphids (Acyrthosiphon pisum) harboring the bacterial endosymbiont Regiella insecticola (but not all other species of symbionts) downregulate expression of key immune genes. We then functionally link immune expression with symbiont density using RNAi. The pea aphid species complex is comprised of multiple reproductively-isolated host plant-adapted populations. These ‘biotypes’ have distinct patterns of symbiont infections: for example, aphids from the Trifolium biotype are strongly associated with Regiella. Using RNAseq, we compare patterns of gene expression in response to Regiella in aphid genotypes from multiple biotypes, and we show that Trifolium aphids experience no downregulation of immune gene expression while hosting Regiella and harbor symbionts at lower densities. Using F1 hybrids between two biotypes, we find that symbiont density and immune gene expression are both intermediate in hybrids. We propose that in this system, Regiella symbionts are suppressing aphid immune mechanisms to increase their density, but that some hosts have adapted to prevent immune suppression in order to control symbiont numbers. This work therefore suggests that antagonistic coevolution can play a role in host-microbe interactions even when symbionts are transmitted vertically and provide a clear benefit to their hosts. The specific immune mechanisms that we find are downregulated in the presence of Regiella have been previously shown to combat pathogens in aphids, and thus this work also highlights the immune system’s complex dual role in interacting with both beneficial and harmful microbes. Insects frequently form beneficial partnerships with heritable microbes that are passed from mothers to offspring. Natural populations exhibit a great deal of variation in the frequency of heritable microbes and in the within-host density of these infections. Uncovering the mechanisms underlying variation in host-microbe interactions is key to understanding how they evolve. We study a model host-microbe interaction: the pea aphid and a heritable bacterium that makes aphids resistant to fungal pathogens. We show that aphids harboring bacteria show sharply reduced expression of innate immune system genes, and that this leads to increased densities of symbionts. We further show that populations of aphids that live on different species of plants vary in differential immune gene expression and in the density of their symbiont infections. This study contributes to our mechanistic understanding of an important model of host-microbe symbiosis and suggests that hosts and heritable microbes are evolving antagonistically. This work also sheds light on how invertebrate immune systems evolve to manage the complex task of combatting harmful pathogens while accommodating potentially beneficial microbes.
Collapse
|
11
|
Abstract
Insects have evolved various mechanisms to reliably transmit their beneficial bacterial symbionts to the next generation. Sap-sucking insects, including aphids, transmit symbionts by endocytosis of the symbiont into cells of the early embryo within the mother’s body. Many insects possess beneficial bacterial symbionts that occupy specialized host cells and are maternally transmitted. As a consequence of their host-restricted lifestyle, these symbionts often possess reduced genomes and cannot be cultured outside hosts, limiting their study. The bacterial species Serratia symbiotica was originally characterized as noncultured strains that live as mutualistic symbionts of aphids and are vertically transmitted through transovarial endocytosis within the mother’s body. More recently, culturable strains of S. symbiotica were discovered that retain a larger set of ancestral Serratia genes, are gut pathogens in aphid hosts, and are principally transmitted via a fecal-oral route. We find that these culturable strains, when injected into pea aphids, replicate in the hemolymph and are pathogenic. Unexpectedly, they are also capable of maternal transmission via transovarial endocytosis: using green fluorescent protein (GFP)-tagged strains, we observe that pathogenic S. symbiotica strains, but not Escherichia coli, are endocytosed into early embryos. Furthermore, pathogenic S. symbiotica strains are compartmentalized into specialized aphid cells in a fashion similar to that of mutualistic S. symbiotica strains during later stages of embryonic development. However, infected embryos do not appear to develop properly, and offspring infected by a transovarial route are not observed. Thus, cultured pathogenic strains of S. symbiotica have the latent capacity to transition to lifestyles as mutualistic symbionts of aphid hosts, but persistent vertical transmission is blocked by their pathogenicity. To transition into stably inherited symbionts, culturable S. symbiotica strains may need to adapt to regulate their titer, limit their pathogenicity, and/or provide benefits to aphids that outweigh their cost.
Collapse
|
12
|
Xu T, Chen J, Jiang L, Qiao G. Diversity of bacteria associated with Hormaphidinae aphids (Hemiptera: Aphididae). INSECT SCIENCE 2021; 28:165-179. [PMID: 31840419 PMCID: PMC7818174 DOI: 10.1111/1744-7917.12746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/07/2019] [Accepted: 12/01/2019] [Indexed: 05/29/2023]
Abstract
Bacteria are ubiquitous inhabitants of animals. Hormaphidinae is a particular aphid group exhibiting very diverse life history traits. However, the microbiota in this group is poorly known. In the present study, using high-throughput sequencing of bacterial 16S ribosomal RNA gene amplicons, we surveyed the bacterial flora in hormaphidine aphids and explored whether the aphid tribe, host plant and geographical distribution are associated with the distribution of secondary symbionts. The most dominant bacteria detected in hormaphidine species are heritable symbionts. As expected, the primary endosymbiont Buchnera aphidicola is the most abundant symbiont across all species and has cospeciated with its host aphids. Six secondary symbionts were detected in Hormaphidinae. Arsenophonus is widespread in Hormaphidinae species, suggesting the possibility of ancient acquisition of this symbiont. Ordination analyses and statistical tests show that the symbiont composition does not seem to relate to any of the aphid tribes, host plants or geographical distributions, which indicate that horizontal transfers might occur for these symbionts in Hormaphidinae. Correlation analysis exhibits negative interference between Buchnera and coexisting secondary symbionts, while the interactions between different secondary symbionts are complicated. These findings display a comprehensive picture of the microbiota in Hormaphidinae and may be helpful in understanding the symbiont diversity within a group of aphids.
Collapse
Affiliation(s)
- Ting‐Ting Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Li‐Yun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Ge‐Xia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
13
|
Qin M, Chen J, Xu S, Jiang L, Qiao G. Microbiota associated with Mollitrichosiphum aphids (Hemiptera: Aphididae: Greenideinae): diversity, host species specificity and phylosymbiosis. Environ Microbiol 2021; 23:2184-2198. [PMID: 33415800 PMCID: PMC8248049 DOI: 10.1111/1462-2920.15391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/11/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022]
Abstract
Symbiotic association is universal in nature, and an array of symbionts play a crucial part in host life history. Aphids and their diverse symbionts have become a good model system to study insect‐symbiont interactions. Previous symbiotic diversity surveys have mainly focused on a few aphid clades, and the relative importance of different factors regulating microbial community structure is not well understood. In this study, we collected 65 colonies representing eight species of the aphid genus Mollitrichosiphum from different regions and plants in southern China and Nepal and characterized their microbial compositions using Illumina sequencing of the V3 − V4 hypervariable region of the 16S rRNA gene. We evaluated how microbiota varied across aphid species, geography and host plants and the correlation between microbial community structure and host aphid phylogeny. Heritable symbionts dominated the microbiota associated with Mollitrichosiphum, and multiple infections of secondary symbionts were prevalent. Ordination analyses and statistical tests highlighted the contribution of aphid species in shaping the structures of bacterial, symbiont and secondary symbiont communities. Moreover, we observed a significant correlation between Mollitrichosiphum aphid phylogeny and microbial community composition, providing evidence for a pattern of phylosymbiosis between natural aphid populations and their microbial associates.
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shifen Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Kaech H, Vorburger C. Horizontal Transmission of the Heritable Protective Endosymbiont Hamiltonella defensa Depends on Titre and Haplotype. Front Microbiol 2021; 11:628755. [PMID: 33519791 PMCID: PMC7840887 DOI: 10.3389/fmicb.2020.628755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Secondary endosymbionts of aphids have an important ecological and evolutionary impact on their host, as they provide resistance to natural enemies but also reduce the host's lifespan and reproduction. While secondary symbionts of aphids are faithfully transmitted from mother to offspring, they also have some capacity to be transmitted horizontally between aphids. Here we explore whether 11 isolates from 3 haplotypes of the secondary endosymbiont Hamiltonella defensa differ in their capacity for horizontal transmission. These isolates vary in the protection they provide against parasitoid wasps as well as the costs they inflict on their host, Aphis fabae. We simulated natural horizontal transmission through parasitoid wasps by stabbing aphids with a thin needle and assessed horizontal transmission success of the isolates from one shared donor clone into three different recipient clones. Specifically, we asked whether potentially costly isolates reaching high cell densities in aphid hosts are more readily transmitted through this route. This hypothesis was only partially supported. While transmissibility increased with titre for isolates from two haplotypes, isolates of the H. defensa haplotype 1 were transmitted with greater frequency than isolates of other haplotypes with comparable titres. Thus, it is not sufficient to be merely frequent-endosymbionts might have to evolve specific adaptations to transmit effectively between hosts.
Collapse
Affiliation(s)
- Heidi Kaech
- Department Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Switzerland.,Department of Environmental Systems Science, Institute of Integrative Biology, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland
| | - Christoph Vorburger
- Department Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Switzerland.,Department of Environmental Systems Science, Institute of Integrative Biology, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Li Y, Schal C, Pan X, Huang Y, Zhang F. Effects of Antibiotics on the Dynamic Balance of Bacteria and Fungi in the Gut of the German Cockroach. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2666-2678. [PMID: 32968762 DOI: 10.1093/jee/toaa205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The German cockroach, Blattella germanica (L.) (Blattaria: Blattidae) harbored diverse microorganisms in the digestive tract, including bacteria, fungi, viruses, archaea, and protozoa. This diverse community maintains a relatively stable balance. Some bacteria have been confirmed to play crucial roles in the insect's physiology, biochemistry, and behavior. Antibiotics can effectively eliminate bacteria and disrupt the balance of gut microbiota, but the time-course of this process, the structure of the new microbial community, and the dynamics of re-assemblage of a bacterial community after antibiotic treatment have not been investigated. In the present study, antibiotic (levofloxacin and gentamicin) ingestion reduced bacterial diversity and abundance in the cockroach gut. Within 14 d of discontinuing antibiotic treatment, the number of culturable gut bacteria returned to its original level. However, the composition of the new bacterial community with greater abundance of antibiotic-resistant Enterococcus and Dysgonomonas was significantly different from the original community. Network analysis showed that antibiotic treatment made the interaction between bacteria and fungi closer and stronger in the cockroach gut during the recovery of gut microorganisms. The study on the composition change, recovery rules, and interaction dynamics between gut bacteria and fungi after antibiotic treatment are helpful to explore gut microbes' colonization and interaction with insects, which contributes to the selection of stable core gut bacteria as biological carriers of paratransgenesis for controlling Blattella germanica.
Collapse
Affiliation(s)
- Yaru Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People of Republic of China
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Xiaoyuan Pan
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People of Republic of China
| | - Yanhong Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, 41 Jiefang Road, People's Republic of China
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People of Republic of China
| |
Collapse
|
16
|
Xu S, Jiang L, Qiao G, Chen J. The Bacterial Flora Associated with the Polyphagous Aphid Aphis gossypii Glover (Hemiptera: Aphididae) Is Strongly Affected by Host Plants. MICROBIAL ECOLOGY 2020; 79:971-984. [PMID: 31802184 PMCID: PMC7198476 DOI: 10.1007/s00248-019-01435-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Aphids live in symbiosis with a variety of bacteria, including the obligate symbiont Buchnera aphidicola and diverse facultative symbionts. The symbiotic associations for one aphid species, especially for polyphagous species, often differ across populations. In the present study, by using high-throughput 16S rRNA sequencing, we surveyed in detail the microbiota in natural populations of the cotton aphid Aphis gossypii in China and assessed differences in bacterial diversity with respect to host plant and geography. The microbial community of A. gossypii was dominated by a few heritable symbionts. Arsenophonus was the most dominant secondary symbiont, and Spiroplasma was detected for the first time. Statistical tests and ordination analyses showed that host plants rather than geography seemed to have shaped the associated symbiont composition. Special symbiont communities inhabited the Cucurbitaceae-feeding populations, which supported the ecological specialization of A. gossypii on cucurbits from the viewpoint of symbiotic bacteria. Correlation analysis suggested antagonistic interactions between Buchnera and coexisting secondary symbionts and more complicated interactions between different secondary symbionts. Our findings lend further support to an important role of the host plant in structuring symbiont communities of polyphagous aphids and will improve our understanding of the interactions among phytophagous insects, symbionts, and environments.
Collapse
Affiliation(s)
- Shifen Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
17
|
Xu TT, Jiang LY, Chen J, Qiao GX. Host Plants Influence the Symbiont Diversity of Eriosomatinae (Hemiptera: Aphididae). INSECTS 2020; 11:E217. [PMID: 32244698 PMCID: PMC7240687 DOI: 10.3390/insects11040217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/16/2020] [Accepted: 03/28/2020] [Indexed: 01/13/2023]
Abstract
Eriosomatinae is a particular aphid group with typically heteroecious holocyclic life cycle, exhibiting strong primary host plant specialization and inducing galls on primary host plants. Aphids are frequently associated with bacterial symbionts, which can play fundamental roles in the ecology and evolution of their host aphids. However, the bacterial communities in Eriosomatinae are poorly known. In the present study, using high-throughput sequencing of the bacterial 16S ribosomal RNA gene, we surveyed the bacterial flora of eriosomatines and explored the associations between symbiont diversity and aphid relatedness, aphid host plant and geographical distribution. The microbiota of Eriosomatinae is dominated by the heritable primary endosymbiont Buchnera and several facultative symbionts. The primary endosymbiont Buchnera is expectedly the most abundant symbiont across all species. Six facultative symbionts were identified. Regiella was the most commonly identified facultative symbiont, and multiple infections of facultative symbionts were detected in the majority of the samples. Ordination analyses and statistical tests show that the symbiont community of aphids feeding on plants from the family Ulmaceae were distinguishable from aphids feeding on other host plants. Species in Eriosomatinae feeding on different plants are likely to carry different symbiont compositions. The symbiont distributions seem to be not related to taxonomic distance and geographical distance. Our findings suggest that host plants can affect symbiont maintenance, and will improve our understanding of the interactions between aphids, their symbionts and ecological conditions.
Collapse
Affiliation(s)
- Ting-Ting Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (T.-T.X.); (L.-Y.J.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Yun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (T.-T.X.); (L.-Y.J.)
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (T.-T.X.); (L.-Y.J.)
| | - Ge-Xia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (T.-T.X.); (L.-Y.J.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Heyworth ER, Smee MR, Ferrari J. Aphid Facultative Symbionts Aid Recovery of Their Obligate Symbiont and Their Host After Heat Stress. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
More Is Not Always Better: Coinfections with Defensive Symbionts Generate Highly Variable Outcomes. Appl Environ Microbiol 2020; 86:AEM.02537-19. [PMID: 31862723 DOI: 10.1128/aem.02537-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/12/2019] [Indexed: 11/20/2022] Open
Abstract
Animal-associated microbes are highly variable, contributing to a diverse set of symbiont-mediated phenotypes. Given that host and symbiont genotypes, and their interactions, can impact symbiont-based phenotypes across environments, there is potential for extensive variation in fitness outcomes. Pea aphids, Acyrthosiphon pisum, host a diverse assemblage of heritable facultative symbionts (HFS) with characterized roles in host defense. Protective phenotypes have been largely studied as single infections, but pea aphids often carry multiple HFS species, and particular combinations may be enriched or depleted compared to expectations based on chance. Here, we examined the consequences of single infection versus coinfection with two common HFS exhibiting variable enrichment, the antiparasitoid Hamiltonella defensa and the antipathogen Regiella insecticola, across three host genotypes and environments. As expected, single infections with either H. defensa or R. insecticola raised defenses against their respective targets. Single infections with protective H. defensa lowered aphid fitness in the absence of enemy challenge, while R. insecticola was comparatively benign. However, as a coinfection, R. insecticola ameliorated H. defensa infection costs. Coinfected aphids continued to receive antiparasitoid protection from H. defensa, but protection was weakened by R. insecticola in two clones. Notably, H. defensa eliminated survival benefits conferred after pathogen exposure by coinfecting R. insecticola Since pathogen sporulation was suppressed by R. insecticola in coinfected aphids, the poor performance likely stemmed from H. defensa-imposed costs rather than weakened defenses. Our results reveal a complex set of coinfection outcomes which may partially explain natural infection patterns and suggest that symbiont-based phenotypes may not be easily predicted based solely on infection status.IMPORTANCE The hyperdiverse arthropods often harbor maternally transmitted bacteria that protect against natural enemies. In many species, low-diversity communities of heritable symbionts are common, providing opportunities for cooperation and conflict among symbionts, which can impact the defensive services rendered. Using the pea aphid, a model for defensive symbiosis, we show that coinfections with two common defensive symbionts, the antipathogen Regiella and the antiparasite Hamiltonella, produce outcomes that are highly variable compared to single infections, which consistently protect against designated enemies. Compared to single infections, coinfections often reduced defensive services during enemy challenge yet improved aphid fitness in the absence of enemies. Thus, infection with multiple symbionts does not necessarily create generalist aphids with "Swiss army knife" defenses against numerous enemies. Instead, particular combinations of symbionts may be favored for a variety of reasons, including their abilities to lessen the costs of other defensive symbionts when enemies are not present.
Collapse
|
20
|
Mathé‐Hubert H, Kaech H, Hertaeg C, Jaenike J, Vorburger C. Nonrandom associations of maternally transmitted symbionts in insects: The roles of drift versus biased cotransmission and selection. Mol Ecol 2019; 28:5330-5346. [DOI: 10.1111/mec.15206] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/29/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Hugo Mathé‐Hubert
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | - Heidi Kaech
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Institute of Integrative Biology Department of Environmental Systems Science ETH Zürich Zürich Switzerland
| | - Corinne Hertaeg
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Institute of Agricultural Sciences Department of Environmental Systems Science ETH Zürich Zürich Switzerland
| | - John Jaenike
- Department of Biology University of Rochester Rochester NY USA
| | - Christoph Vorburger
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Institute of Integrative Biology Department of Environmental Systems Science ETH Zürich Zürich Switzerland
| |
Collapse
|
21
|
Bacterial communities of Aphis gossypii and Myzus persicae (Hemiptera: Aphididae) from pepper crops (Capsicum sp.). Sci Rep 2019; 9:5766. [PMID: 30962510 PMCID: PMC6453963 DOI: 10.1038/s41598-019-42232-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/21/2019] [Indexed: 11/09/2022] Open
Abstract
Insects harbor a wide variety of microorganisms that form complex and changing communities and play an important role in the biology and evolution of their hosts. Aphids have been used as model organisms to study microorganism-insect interactions. Almost all aphids are infected with the obligate endosymbiont Buchnera aphidicola and can host different bacteria that allow them to acquire traits of agronomic importance, such as resistance to high temperatures and/or defense against natural enemies. However, the bacterial communities of most aphid species remain poorly characterized. In this study, we used high-throughput DNA sequencing to characterize the bacterial communities of Aphis gossypii and Myzus persicae from two cultivable pepper species, Capsicum frutescens (Tabasco variety) and C. annuum (Cayenne variety), in four localities of southwestern Colombia. In addition, we evaluated the dynamics of A. gossypii-associated microorganisms on a seasonal basis. Our results show that the bacterial communities of A. gossypii and M. persicae are dominated by the primary endosymbiont B. aphidicola, while the presence of the facultative symbiont Arsenophonus sp. was only detected in one A. gossypii population from cayenne pepper. In addition to these two known symbionts, eight bacterial OTUs were identified that presented a frequency of 1% or more in at least one of the analyzed populations. The results show that the bacterial communities of aphids associated with pepper crops appears to be structured according to the host aphid species and the geographical location, while no differences were observed in the diversity of bacteria between host plants. Finally, the diversity and abundance of the A. gossypii bacterial community was variable among the four sampling points evaluated over the year and showed a relation with the aphid’s population dynamics. This study represents the first approach to the knowledge of the bacterial community present in chili pepper aphids from Colombia. Nevertheless, more in-depth studies, including replicates, are required to confirm the patterns observed in the microbial communities of aphids from pepper crops.
Collapse
|
22
|
Fakhour S, Ambroise J, Renoz F, Foray V, Gala JL, Hance T. A large-scale field study of bacterial communities in cereal aphid populations across Morocco. FEMS Microbiol Ecol 2019; 94:4810747. [PMID: 29346623 DOI: 10.1093/femsec/fiy003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
Insects are frequently associated with bacteria that can have significant ecological and evolutionary impacts on their hosts. To date, few studies have examined the influence of environmental factors to microbiome composition of aphids. The current work assessed the diversity of bacterial communities of five cereal aphid species (Sitobion avenae, Rhopalosiphum padi, R. maidis, Sipha maydis and Diuraphis noxia) collected across Morocco, covering a wide range of environmental conditions. We aimed to test whether symbiont combinations are host or environment specific. Deep 16S rRNA sequencing enabled us to identify 17 bacterial operational taxonomic units (OTUs). The obligate symbiont Buchnera aphidicola was represented by five OTUs with multiple haplotypes in many single samples. Facultative endosymbionts were presented by a high prevalence of Regiella insecticola and Serratia symbiotica in S. avenae and Si. maydis, respectively. In addition to these symbiotic partners, Pseudomonas, Acinetobacter, Pantoea, Erwinia and Staphyloccocus were also identified in aphids, suggesting that the aphid microbiome is not limited to the presence of endosymbiotic bacteria. Beside a significant association between host species and bacterial communities, an inverse correlation was also found between altitude and α-diversity. Overall, our results support that symbiont combinations are mainly host specific.
Collapse
Affiliation(s)
- Samir Fakhour
- National Institute of Agronomic Research (INRA), Km 18, 23000 Béni-Mellal, Morocco.,Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - François Renoz
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | - Vincent Foray
- Centre de Recherche de Biologie cellulaire de Montpellier, (CRBM), UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, Cedex 5, Montpellier 34293, France
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - Thierry Hance
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| |
Collapse
|
23
|
Cavazos BR, Bohner TF, Donald ML, Sneck ME, Shadow A, Omacini M, Rudgers JA, Miller TEX. Testing the roles of vertical transmission and drought stress in the prevalence of heritable fungal endophytes in annual grass populations. THE NEW PHYTOLOGIST 2018; 219:1075-1084. [PMID: 29786864 DOI: 10.1111/nph.15215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/08/2018] [Indexed: 05/22/2023]
Abstract
Beneficial inherited symbionts are expected to reach high prevalence in host populations, yet many are observed at intermediate prevalence. Theory predicts that a balance of fitness benefits and efficiency of vertical transmission may interact to stabilize intermediate prevalence. We established populations of grass hosts (Lolium multiflorum) that varied in prevalence of a heritable fungal endophyte (Epichloё occultans), allowing us to infer long-term equilibria by tracking change in prevalence over one generation. We manipulated an environmental stressor (elevated precipitation), which we hypothesized would reduce the fitness benefits of symbiosis, and altered the efficiency of vertical transmission by replacing endophyte-positive seeds with endophyte-free seeds. Endophytes and elevated precipitation both increased host fitness, but symbiont effects were not stronger in the drier treatment, suggesting that benefits of symbiosis were unrelated to drought tolerance. Reduced transmission suppressed the inferred equilibrium prevalence from 42.6% to 11.7%. However, elevated precipitation did not modify prevalence, consistent with the result that it did not modify fitness benefits. Our results demonstrate that failed transmission can influence the prevalence of heritable microbes and that intermediate prevalence can be a stable equilibrium due to forces that allow symbionts to increase (fitness benefits) but prevent them from reaching fixation (failed transmission).
Collapse
Affiliation(s)
- Brittany R Cavazos
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, 77005, USA
| | - Teresa F Bohner
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, 77005, USA
| | - Marion L Donald
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, 77005, USA
| | - Michelle E Sneck
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, 77005, USA
| | - Alan Shadow
- USDA NRCS East Texas Plant Materials Center, 6598 FM 2782, Nacogdoches, TX, 75964, USA
| | - Marina Omacini
- IFEVA - Facultad de Agronomıa, Universidad de Buenos Aires, CONICET, Av. San Martın 4453, Buenos Aires, C1417DSE, Argentina
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Tom E X Miller
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
24
|
Rock DI, Smith AH, Joffe J, Albertus A, Wong N, O'Connor M, Oliver KM, Russell JA. Context-dependent vertical transmission shapes strong endosymbiont community structure in the pea aphid, Acyrthosiphon pisum. Mol Ecol 2018; 27:2039-2056. [PMID: 29215202 DOI: 10.1111/mec.14449] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 01/11/2023]
Abstract
Animal-associated microbiomes are often comprised of structured, multispecies communities, with particular microbes showing trends of co-occurrence or exclusion. Such structure suggests variable community stability, or variable costs and benefits-possibilities with implications for symbiont-driven host adaptation. In this study, we performed systematic screening for maternally transmitted, facultative endosymbionts of the pea aphid, Acyrthosiphon pisum. Sampling across six locales, with up to 5 years of collection in each, netted significant and consistent trends of community structure. Co-infections between Serratia symbiotica and Rickettsiella viridis were more common than expected, while Rickettsia and X-type symbionts colonized aphids with Hamiltonella defensa more often than expected. Spiroplasma co-infected with other endosymbionts quite rarely, showing tendencies to colonize as a single species monoculture. Field estimates of maternal transmission rates help to explain our findings: while Serratia and Rickettsiella improved each other's transmission, Spiroplasma reduced transmission rates of co-infecting endosymbionts. In summary, our findings show that North American pea aphids harbour recurring combinations of facultative endosymbionts. Common symbiont partners play distinct roles in pea aphid biology, suggesting the creation of "generalist" aphids receiving symbiont-based defence against multiple ecological stressors. Multimodal selection, at the host level, may thus partially explain our results. But more conclusively, our findings show that within-host microbe interactions, and their resulting impacts on transmission rates, are an important determinant of community structure. Widespread distributions of heritable symbionts across plants and invertebrates hint at the far-reaching implications for these findings, and our work further shows the benefits of symbiosis research within a natural context.
Collapse
Affiliation(s)
- Danielle I Rock
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Andrew H Smith
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Jonah Joffe
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Amie Albertus
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Narayan Wong
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | | | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
25
|
Guidolin AS, Cataldi TR, Labate CA, Francis F, Cônsoli FL. Spiroplasma affects host aphid proteomics feeding on two nutritional resources. Sci Rep 2018; 8:2466. [PMID: 29410456 PMCID: PMC5802742 DOI: 10.1038/s41598-018-20497-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 01/21/2018] [Indexed: 12/25/2022] Open
Abstract
Bacterial symbionts are broadly distributed among insects, influencing their bioecology to different degrees. Aphids carry a number of secondary symbionts that can influence aphid physiology and fitness attributes. Spiroplasma is seldom reported as an aphid symbiont, but a high level of infection has been observed in one population of the tropical aphid Aphis citricidus. We used sister isolines of Spiroplasma-infected (Ac-BS) and Spiroplasma-free (Ac-B) aphids reared on sweet orange (optimum host) and orange jasmine (suboptimum host) to demonstrate the effects of Spiroplasma infection in the aphid proteome profile. A higher number of proteins were differently abundant in aphids feeding on orange jasmine, indicating an impact of host plant quality. In both host plants, the majority of proteins affected by Spiroplasma infection were heat shock proteins, proteins linked to cell function and structure, and energy metabolism. Spiroplasma also induced changes in proteins involved in antimicrobial activity, carbohydrate processing and metabolism, amino acid synthesis and metabolism in aphids feeding on orange jasmine. We discuss on how the aphid host proteome is differentially affected by Spiroplasma infection when the host is exploiting host plants with different nutritional values.
Collapse
Affiliation(s)
- Aline Sartori Guidolin
- Insect Interactions Laboratory, Department of Entomology and Acarology, ESALQ, University of São Paulo, Av. Pádua Dias 11, 13418-900, Piracicaba, São Paulo, Brazil
| | - Thaís Regiani Cataldi
- Max Feffer Laboratory of Plant Genetics, Department of Genetics, ESALQ, University of São Paulo, Av. Pádua Dias 11, 13418-900, Piracicaba, São Paulo, Brazil
| | - Carlos Alberto Labate
- Max Feffer Laboratory of Plant Genetics, Department of Genetics, ESALQ, University of São Paulo, Av. Pádua Dias 11, 13418-900, Piracicaba, São Paulo, Brazil
| | - Frederic Francis
- Entomologie Fonctionnelle et Evolutive, Gembloux Agro-Bio Tech, Université de Liège, 2 Passage des Déportés, 5030, Gembloux, Belgium
| | - Fernando Luis Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, ESALQ, University of São Paulo, Av. Pádua Dias 11, 13418-900, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
26
|
Morella NM, Koskella B. The Value of a Comparative Approach to Understand the Complex Interplay between Microbiota and Host Immunity. Front Immunol 2017; 8:1114. [PMID: 28959258 PMCID: PMC5603614 DOI: 10.3389/fimmu.2017.01114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/24/2017] [Indexed: 01/17/2023] Open
Abstract
The eukaryote immune system evolved and continues to evolve within a microbial world, and as such is critically shaped by-and in some cases even reliant upon-the presence of host-associated microbial species. There are clear examples of adaptations that allow the host to simultaneously tolerate and/or promote growth of symbiotic microbiota while protecting itself against pathogens, but the relationship between immunity and the microbiome reaches far beyond simple recognition and includes complex cross talk between host and microbe as well as direct microbiome-mediated protection against pathogens. Here, we present a broad but brief overview of how the microbiome is controlled by and interacts with diverse immune systems, with the goal of identifying questions that can be better addressed by taking a comparative approach across plants and animals and different types of immunity. As two key examples of such an approach, we focus on data examining the importance of early exposure on microbiome tolerance and immune system development and function, and the importance of transmission among hosts in shaping the potential coevolution between, and long-term stability of, host-microbiome associations. Then, by comparing existing evidence across short-lived plants, mouse model systems and humans, and insects, we highlight areas of microbiome research that are strong in some systems and absent in others with the hope of guiding future research that will allow for broad-scale comparisons moving forward. We argue that such an approach will not only help with identification of generalities in host-microbiome-immune interactions but also improve our understanding of the role of the microbiome in host health.
Collapse
Affiliation(s)
- Norma M. Morella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
27
|
Handique G, Phukan A, Bhattacharyya B, Baruah AALH, Rahman SW, Baruah R. Characterization of cellulose degrading bacteria from the larval gut of the white grub beetle Lepidiota mansueta (Coleoptera: Scarabaeidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 94:e21370. [PMID: 28094878 DOI: 10.1002/arch.21370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The goal of this study is to identify and characterize the cellulose degrading microorganisms in the larval gut of the white grub beetle, Lepidiota mansueta. Thirty bacterial strains were isolated and tested for cellulolytic activity using soluble carboxymethyl cellulose (CMC) degrading assays. Of these strains, five (FGB1, FB2, MB1, MB2, and HB1) degrade cellulose. Cellulolytic activity was determined based on formation of clear zone and cellulolytic index on CMC plate media. The highest cellulolytic index (2.14) was found in FGB1. Partial 16S rDNA sequencing, morphological, and biochemical tests were used to identify and characterize the five isolates, all Citrobacter sp. (Enterobacteriaceae). This study identifies new cellulose degrading microorganisms from the larval gut of L. mansueta. The significance of identifying these strains lies in possible application in cellulose degradation.
Collapse
Affiliation(s)
- Gautam Handique
- Department of Entomology, Assam Agricultural University, Jorhat, Assam, India
| | - Amrita Phukan
- Department of Soil Science, Assam Agricultural University, Jorhat, Assam, India
| | - Badal Bhattacharyya
- Department of Entomology, Assam Agricultural University, Jorhat, Assam, India
| | | | - Syed Wasifur Rahman
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Rajen Baruah
- Department of Soil Science, Assam Agricultural University, Jorhat, Assam, India
| |
Collapse
|
28
|
Luo C, Luo K, Meng L, Wan B, Zhao H, Hu Z. Ecological impact of a secondary bacterial symbiont on the clones of Sitobion avenae (Fabricius) (Hemiptera: Aphididae). Sci Rep 2017; 7:40754. [PMID: 28094341 PMCID: PMC5240142 DOI: 10.1038/srep40754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/09/2016] [Indexed: 11/17/2022] Open
Abstract
Many insects harbor heritable endosymbionts, whether obligatory or facultative, and the role of facultative endosymbionts in shaping the phenotype of these species has become increasingly important. However, little is known about whether micro-injected endosymbionts can have any effects on aphid clones, which was measured using various ecological parameters. We examined the effects between symbiotic treatments and the vital life history traits generated by Regiella insecticola on the life table parameters of Sitobion avenae. The results showed that R. insecticola can decrease the intrinsic rate of increase (r), the finite rate of increase (λ) and birth rate and can increase the mean generation times (T) of S. avenae clones, suggesting that R. insecticola may decelerate the normal development of the hosts. No significant differences of these parameters were observed between the examined Sitobion avenae clones, and the symbiont treatment by genotype interaction affected only the net reproduction rate R0, pre-adult duration and total longevity but not the other parameters. Additionally, a population projection showed that R. insecticola decelerated the growth of the S. avenae clones. The evocable effects of R. insecticola on the S. avenae clones may have significant ramifications for the control of S. avenae populations under field/natural conditions.
Collapse
Affiliation(s)
- Chen Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China.,INRA (French National Institute for Agricultural Research), Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - Kun Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Linqin Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Bin Wan
- INRA (French National Institute for Agricultural Research), Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - Huiyan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zuqing Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
29
|
|
30
|
Manzano-Marín A, Latorre A. Snapshots of a shrinking partner: Genome reduction in Serratia symbiotica. Sci Rep 2016; 6:32590. [PMID: 27599759 PMCID: PMC5013485 DOI: 10.1038/srep32590] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/11/2016] [Indexed: 11/24/2022] Open
Abstract
Genome reduction is pervasive among maternally-inherited endosymbiotic organisms, from bacteriocyte- to gut-associated ones. This genome erosion is a step-wise process in which once free-living organisms evolve to become obligate associates, thereby losing non-essential or redundant genes/functions. Serratia symbiotica (Gammaproteobacteria), a secondary endosymbiont present in many aphids (Hemiptera: Aphididae), displays various characteristics that make it a good model organism for studying genome reduction. While some strains are of facultative nature, others have established co-obligate associations with their respective aphid host and its primary endosymbiont (Buchnera). Furthermore, the different strains hold genomes of contrasting sizes and features, and have strikingly disparate cell shapes, sizes, and tissue tropism. Finally, genomes from closely related free-living Serratia marcescens are also available. In this study, we describe in detail the genome reduction process (from free-living to reduced obligate endosymbiont) undergone by S. symbiotica, and relate it to the stages of integration to the symbiotic system the different strains find themselves in. We establish that the genome reduction patterns observed in S. symbiotica follow those from other dwindling genomes, thus proving to be a good model for the study of the genome reduction process within a single bacterial taxon evolving in a similar biological niche (aphid-Buchnera).
Collapse
Affiliation(s)
- Alejandro Manzano-Marín
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva - Universitat de València, Genética Evolutiva, Paterna, 46980, Spain
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva - Universitat de València, Genética Evolutiva, Paterna, 46980, Spain
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Communitat Valenciana (FISABIO), Genómica y Salud, València, 46020, Spain
| |
Collapse
|
31
|
Comparison of fitness traits and their plasticity on multiple plants for Sitobion avenae infected and cured of a secondary endosymbiont. Sci Rep 2016; 6:23177. [PMID: 26979151 PMCID: PMC4793262 DOI: 10.1038/srep23177] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/01/2016] [Indexed: 12/13/2022] Open
Abstract
Regiella insecticola has been found to enhance the performance of host aphids on certain plants, but its functional role in adaptation of host aphids to plants is still controversial. Here we evaluate the impacts of R. insecticola infections on vital life-history traits of Sitobion avenae (Fabricius), and their underlying genetic variation and phenotypic plasticity on three plants. It was shown that effects of R. insecticola on S. avenae’s fitness (i.e., developmental time and fecundity) were neutral on oat or wheat, but negative on rye. Infections of R. insecticola modified genetic variation that underlies S. avenae’s life-history traits. This was demonstrated by comparing life-history trait heritabilities between aphid lines with and without R. insecticola. Moreover, there were enhanced negative genetic correlations between developmental time and fecundity for R. insecticola infected lines, and structural differences in G-matrices of life-history traits for the two types of aphid lines. In R. insecticola-infected aphid lines, there were increases in plasticities for developmental times of first and second instar nymphs and for fecundity, showing novel functional roles of bacterial symbionts in plant-insect interactions. The identified effects of R. insecticola infections could have significant implications for the ecology and evolution of its host populations in natural conditions.
Collapse
|
32
|
Diverse Bacteriophage Roles in an Aphid-Bacterial Defensive Mutualism. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Polin S, Le Gallic JF, Simon JC, Tsuchida T, Outreman Y. Conditional Reduction of Predation Risk Associated with a Facultative Symbiont in an Insect. PLoS One 2015; 10:e0143728. [PMID: 26618776 PMCID: PMC4664394 DOI: 10.1371/journal.pone.0143728] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/08/2015] [Indexed: 11/19/2022] Open
Abstract
Symbionts are widespread among eukaryotes and their impacts on the ecology and evolution of their hosts are meaningful. Most insects harbour obligate and facultative symbiotic bacteria that can influence their phenotype. In the pea aphid Acyrthosiphon pisum, an astounding symbiotic-mediated phenotype has been recently observed: when infected with the symbiotic bacteria Rickettsiella viridis, young red aphid larvae become greener at adulthood and even darker green when co-infected with Rickettsiella viridis and Hamiltonella defensa. As body colour affects the susceptibility towards natural enemies in aphids, the influence of the colour change due to these facultative symbionts on the host survival in presence of predators was tested. Our results suggested that the Rickettsiella viridis infection may impact positively host survival by reducing predation risk. Due to results from uninfected aphids (i.e., more green ones attacked), the main assumption is that this symbiotic infection would deter the predatory ladybird feeding by reducing the profitability of their hosts rather than decreasing host detection through body colour change. Aphids co-infected with Rickettsiella viridis and Hamiltonella defensa were, however, more exposed to predation suggesting an ecological cost associated with multiple infections. The underlying mechanisms and ecological consequences of these symbiotic effects are discussed.
Collapse
Affiliation(s)
- Sarah Polin
- UMR 1349 IGEPP, Agrocampus Ouest, 35042, Rennes, France
| | | | | | - Tsutomu Tsuchida
- Frontier Research Core for Life Sciences, University of Toyama, Toyama, 930–8555, Japan
| | - Yannick Outreman
- UMR 1349 IGEPP, Agrocampus Ouest, 35042, Rennes, France
- Université Européenne de Bretagne, Rennes, France
- * E-mail:
| |
Collapse
|
34
|
Zytynska SE, Meyer ST, Sturm S, Ullmann W, Mehrparvar M, Weisser WW. Secondary bacterial symbiont community in aphids responds to plant diversity. Oecologia 2015; 180:735-47. [DOI: 10.1007/s00442-015-3488-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/17/2015] [Indexed: 10/22/2022]
|
35
|
Elimination of Gut Microbes with Antibiotics Confers Resistance to Bacillus thuringiensis Toxin Proteins in Helicoverpa armigera (Hubner). Appl Biochem Biotechnol 2015; 177:1621-37. [DOI: 10.1007/s12010-015-1841-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022]
|
36
|
Smith AH, Łukasik P, O'Connor MP, Lee A, Mayo G, Drott MT, Doll S, Tuttle R, Disciullo RA, Messina A, Oliver KM, Russell JA. Patterns, causes and consequences of defensive microbiome dynamics across multiple scales. Mol Ecol 2015; 24:1135-49. [DOI: 10.1111/mec.13095] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Andrew H. Smith
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| | - Piotr Łukasik
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| | | | - Amanda Lee
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| | - Garrett Mayo
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| | - Milton T. Drott
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| | - Steven Doll
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| | - Robert Tuttle
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| | | | - Andrea Messina
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| | - Kerry M. Oliver
- Department of Entomology; University of Georgia; Athens GA 30602 USA
| | - Jacob A. Russell
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| |
Collapse
|
37
|
Paramasiva I, Shouche Y, Kulkarni GJ, Krishnayya PV, Akbar SM, Sharma HC. Diversity in gut microflora of Helicoverpa armigera populations from different regions in relation to biological activity of Bacillus thuringiensis δ-endotoxin Cry1Ac. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 87:201-213. [PMID: 25195523 DOI: 10.1002/arch.21190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Transgenic crops expressing toxin proteins from Bacillus thuringiensis (Bt) have been deployed on a large scale for management of Helicoverpa armigera. Resistance to Bt toxins has been documented in several papers, and therefore, we examined the role of midgut microflora of H. armigera in its susceptibility to Bt toxins. The susceptibility of H. armigera to Bt toxin Cry1Ac was assessed using Log-dose-Probit analysis, and the microbial communities were identified by 16S rRNA sequencing. The H. armigera populations from nine locations harbored diverse microbial communities, and had some unique bacteria, suggesting a wide geographical variation in microbial community in the midgut of the pod borer larvae. Phylotypes belonging to 32 genera were identified in the H. armigera midgut in field populations from nine locations. Bacteria belonging to Enterobacteriaceae (Order Bacillales) were present in all the populations, and these may be the common members of the H. armigera larval midgut microflora. Presence and/or absence of certain species were linked to H. armigera susceptibility to Bt toxins, but there were no clear trends across locations. Variation in susceptibility of F1 neonates of H. armigera from different locations to the Bt toxin Cry1Ac was found to be 3.4-fold. These findings support the idea that insect migut microflora may influence the biological activity of Bt toxins.
Collapse
Affiliation(s)
- Inakarla Paramasiva
- Department of Entomology, Agricultural College, Acharya N.G. Ranga Agriculture University, Bapatla, Andhra Pradesh, India; Entomology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | | | | | | | | | | |
Collapse
|
38
|
Dubreuil G, Deleury E, Crochard D, Simon JC, Coustau C. Diversification of MIF immune regulators in aphids: link with agonistic and antagonistic interactions. BMC Genomics 2014. [PMID: 25193628 DOI: 10.1186/1471.2164.15.762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND The widespread use of genome sequencing provided evidences for the high degree of conservation in innate immunity signalling pathways across animal phyla. However, the functioning and evolutionary history of immune-related genes remains unknown for most invertebrate species. A striking observation coming from the analysis of the pea aphid Acyrthosiphon pisum genome is the absence of important conserved genes known to be involved in the antimicrobial responses of other insects. This reduction in antibacterial immune defences is thought to be related to their long-term association with beneficial symbiotic bacteria and to facilitate symbiont maintenance. An additional possibility to avoid elimination of mutualistic symbionts is a fine-tuning of the host immune response. To explore this hypothesis we investigated the existence and potential involvement of immune regulators in aphid agonistic and antagonistic interactions. RESULTS In contrast to the limited antibacterial arsenal, we showed that the pea aphid Acyrthosiphon pisum expresses 5 members of Macrophage Migration Inhibitory Factors (ApMIF), known to be key regulators of the innate immune response. In silico searches for MIF members in insect genomes followed by phylogenetic reconstruction suggest that evolution of MIF genes in hemipteran species has been shaped both by differential losses and serial duplications, raising the question of the functional importance of these genes in aphid immune responses. Expression analyses of ApMIFs revealed reduced expression levels in the presence, or during the establishment of secondary symbionts. By contrast, ApMIFs expression levels significantly increased upon challenge with a parasitoid or a Gram-negative bacteria. This increased expression in the presence of a pathogen/parasitoid was reduced or missing, in the presence of facultative symbiotic bacteria. CONCLUSIONS This work provides evidence that while aphid's antibacterial arsenal is reduced, other immune genes widely absent from insect genomes are present, diversified and differentially regulated during antagonistic or agonistic interactions.
Collapse
Affiliation(s)
| | | | | | | | - Christine Coustau
- Sophia Agrobiotech Institute, INRA-CNRS-UNS, UMR 7254, 400 Route des Chappes, 06 903 Sophia Antipolis, France.
| |
Collapse
|
39
|
Diversification of MIF immune regulators in aphids: link with agonistic and antagonistic interactions. BMC Genomics 2014; 15:762. [PMID: 25193628 PMCID: PMC4169804 DOI: 10.1186/1471-2164-15-762] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/18/2014] [Indexed: 12/03/2022] Open
Abstract
Background The widespread use of genome sequencing provided evidences for the high degree of conservation in innate immunity signalling pathways across animal phyla. However, the functioning and evolutionary history of immune-related genes remains unknown for most invertebrate species. A striking observation coming from the analysis of the pea aphid Acyrthosiphon pisum genome is the absence of important conserved genes known to be involved in the antimicrobial responses of other insects. This reduction in antibacterial immune defences is thought to be related to their long-term association with beneficial symbiotic bacteria and to facilitate symbiont maintenance. An additional possibility to avoid elimination of mutualistic symbionts is a fine-tuning of the host immune response. To explore this hypothesis we investigated the existence and potential involvement of immune regulators in aphid agonistic and antagonistic interactions. Results In contrast to the limited antibacterial arsenal, we showed that the pea aphid Acyrthosiphon pisum expresses 5 members of Macrophage Migration Inhibitory Factors (ApMIF), known to be key regulators of the innate immune response. In silico searches for MIF members in insect genomes followed by phylogenetic reconstruction suggest that evolution of MIF genes in hemipteran species has been shaped both by differential losses and serial duplications, raising the question of the functional importance of these genes in aphid immune responses. Expression analyses of ApMIFs revealed reduced expression levels in the presence, or during the establishment of secondary symbionts. By contrast, ApMIFs expression levels significantly increased upon challenge with a parasitoid or a Gram-negative bacteria. This increased expression in the presence of a pathogen/parasitoid was reduced or missing, in the presence of facultative symbiotic bacteria. Conclusions This work provides evidence that while aphid’s antibacterial arsenal is reduced, other immune genes widely absent from insect genomes are present, diversified and differentially regulated during antagonistic or agonistic interactions. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-762) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Paramasiva I, Sharma HC, Krishnayya PV. Antibiotics influence the toxicity of the delta endotoxins of Bacillus thuringiensis towards the cotton bollworm, Helicoverpa armigera. BMC Microbiol 2014; 14:200. [PMID: 25059716 PMCID: PMC4222728 DOI: 10.1186/1471-2180-14-200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cotton bollworm, Helicoverpa armigera is one of the most important crop pests worldwide. It has developed high levels of resistance to synthetic insecticides, and hence, Bacillus thuringiensis (Bt) formulations are used as a safer pesticide and the Bt genes have been deployed in transgenic crops for controlling this pest. There is an apprehension that H. armigera might develop resistance to transgenic crops in future. Therefore, we studied the role of gut microbes by eliminating them with antibiotics in H. armigera larvae on the toxicity of Bt toxins against this pest. RESULTS Commercial formulation of Bt (Biolep®) and the pure Cry1Ab and Cry1Ac toxin proteins were evaluated at ED50, LC50, and LC90 dosages against the H. armigera larvae with and without antibiotics (which removed the gut microbes). Lowest H. armigera larval mortality due to Bt formulation and the Bt toxins Cry1Ab and Cry1Ac was recorded in insects reared on diets with 250 and 500 μg ml-1 diet of each of the four antibiotics (gentamicin, penicillin, rifampicin, and streptomycin), while the highest larval mortality was recorded in insects reared on diets without the antibiotics. Mortality of H. armigera larvae fed on diets with Bt formulation and the δ-endotoxins Cry1Ab and Cry1Ac was inversely proportional to the concentration of antibiotics in the artificial diet. Nearly 30% reduction in larval mortality was observed in H. armigera larvae from F1 to F3 generation when the larvae were reared on diets without antibiotics (with gut microbes) and fed on 0.15% Bt or 12 μg Cry1Ab or Cry1Ac ml-1 diet, indicating development of resistance to Bt in the presence of gut microflora. However, there were no differences in larval mortality due to Bt, Cry1Ab or Cry1Ac across generations in insects when they were reared on diets with 250 μg of each antibiotic ml-1 diet (without gut microflora). CONCLUSIONS The results suggested that antibiotics which eliminated gut microflora influenced the toxicity of Bt towards H. armigera, and any variation in diversity and abundance of gut microflora will have a major bearing on development of resistance to Bt toxins applied as foliar sprays or deployed in transgenic crops for pest management.
Collapse
Affiliation(s)
| | - Hari C Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324 Andhra Pradesh, India.
| | | |
Collapse
|
41
|
Vorburger C. The evolutionary ecology of symbiont-conferred resistance to parasitoids in aphids. INSECT SCIENCE 2014; 21:251-264. [PMID: 24167113 DOI: 10.1111/1744-7917.12067] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/21/2013] [Indexed: 06/02/2023]
Abstract
Aphids may harbor a wide variety of facultative bacterial endosymbionts. These symbionts are transmitted maternally with high fidelity and they show horizontal transmission as well, albeit at rates too low to enable infectious spread. Such symbionts need to provide a net fitness benefit to their hosts to persist and spread. Several symbionts have achieved this by evolving the ability to protect their hosts against parasitoids. Reviewing empirical work and some models, I explore the evolutionary ecology of symbiont-conferred resistance to parasitoids in order to understand how defensive symbiont frequencies are maintained at the intermediate levels observed in aphid populations. I further show that defensive symbionts alter the reciprocal selection between aphids and parasitoids by augmenting the heritable variation for resistance, by increasing the genetic specificity of the host-parasitoid interaction, and by inducing environment-dependent trade-offs. These effects are conducive to very dynamic, symbiont-mediated coevolution that is driven by frequency-dependent selection. Finally I argue that defensive symbionts represent a problem for biological control of pest aphids, and I propose to mitigate this problem by exploiting the parasitoids' demonstrated ability to rapidly evolve counteradaptations to symbiont-conferred resistance.
Collapse
Affiliation(s)
- Christoph Vorburger
- Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, 8092 Zürich; EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
42
|
De Clerck C, Tsuchida T, Massart S, Lepoivre P, Francis F, Jijakli MH. Combination of genomic and proteomic approaches to characterize the symbiotic population of the banana aphid (Hemiptera: Aphididae). ENVIRONMENTAL ENTOMOLOGY 2014; 43:29-36. [PMID: 24472200 DOI: 10.1603/en13107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Aphids are known to live in symbiosis with specific bacteria called endosymbionts that have positive or negative impacts on their hosts. In this study, six banana aphid (Pentalonia nigronervosa Coquerel) strains from various geographical origins (Gabon, Madagascar, and Burundi) were screened to determine their symbiotic content, using complementary genomic (16S rDNA sequencing and specific polymerase chain reaction) and proteomic (two-dimensional difference gel electrophoresis coupled with protein identification by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry) approaches. Despite the geographical heterogeneity, the combined methods allowed us to identify the same two symbionts in the six aphids strains tested: Buchnera aphidicola and Wolbachia. Although B. aphidicola is found in almost all aphid species, the systematic presence of Wolbachia in banana aphids is particularly interesting, as this bacterium usually has a low prevalence in aphid species. Phylogenetic analyses showed that the Wolbachia sp. strain found in P. nigronervosa was very similar to the strain present in aphids of the genus Cinara, known to have developed a strong and long-term symbiotic association with Wolbachia. The high level of asexual reproduction in P. nigronervosa could be linked to the presence of Wolbachia, but its prevalence also suggests that this symbiotic bacterium could play a more essential role in its aphid host.
Collapse
Affiliation(s)
- C De Clerck
- Plant Pathology Laboratory, Liege University, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium
| | | | | | | | | | | |
Collapse
|
43
|
Laughton AM, Fan MH, Gerardo NM. The combined effects of bacterial symbionts and aging on life history traits in the pea aphid, Acyrthosiphon pisum. Appl Environ Microbiol 2014; 80:470-7. [PMID: 24185857 PMCID: PMC3911086 DOI: 10.1128/aem.02657-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/30/2013] [Indexed: 12/16/2022] Open
Abstract
While many endosymbionts have beneficial effects on hosts under specific ecological conditions, there can also be associated costs. In order to maximize their own fitness, hosts must facilitate symbiont persistence while preventing symbiont exploitation of resources, which may require tight regulation of symbiont populations. As a host ages, the ability to invest in such mechanisms may lessen or be traded off with demands of other life history traits, such as survival and reproduction. Using the pea aphid, Acyrthosiphon pisum, we measured survival, lifetime fecundity, and immune cell counts (hemocytes, a measure of immune capacity) in the presence of facultative secondary symbionts. Additionally, we quantified the densities of the obligate primary bacterial symbiont, Buchnera aphidicola, and secondary symbionts across the host's lifetime. We found life history costs to harboring some secondary symbiont species. Secondary symbiont populations were found to increase with host age, while Buchnera populations exhibited a more complicated pattern. Immune cell counts peaked at the midreproductive stage before declining in the oldest aphids. The combined effects of immunosenescence and symbiont population growth may have important consequences for symbiont transmission and maintenance within a host population.
Collapse
Affiliation(s)
- Alice M. Laughton
- Biology Department, Emory University, Atlanta, Georgia, USA
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Maretta H. Fan
- Biology Department, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
44
|
Oliver KM, Smith AH, Russell JA. Defensive symbiosis in the real world - advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12133] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kerry M. Oliver
- Department of Entomology; University of Georgia; Athens GA 30602 USA
| | - Andrew H. Smith
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| | - Jacob A. Russell
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| |
Collapse
|
45
|
The diversity and fitness effects of infection with facultative endosymbionts in the grain aphid, Sitobion avenae. Oecologia 2013; 173:985-96. [DOI: 10.1007/s00442-013-2660-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 04/11/2013] [Indexed: 12/31/2022]
|
46
|
Li Y, Fu K, Gao S, Wu Q, Fan L, Li Y, Chen J. Impact on bacterial community in midguts of the Asian corn borer larvae by transgenic Trichoderma strain overexpressing a heterologous chit42 gene with chitin-binding domain. PLoS One 2013; 8:e55555. [PMID: 23457472 PMCID: PMC3574091 DOI: 10.1371/journal.pone.0055555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 12/27/2012] [Indexed: 12/31/2022] Open
Abstract
This paper is the first report of the impact on the bacterial community in the midgut of the Asian corn borer (Ostrinia furnacalis) by the chitinase from the transgenic Trichoderma strain. In this study, we detected a change of the bacterial community in the midgut of the fourth instar larvae by using a culture-independent method. Results suggested that Proteobacteria and Firmicutes were the most highly represented phyla, being present in all the midgut bacterial communities. The observed species richness was simple, ranging from four to five of all the 16S rRNA clone libraries. When using Trichoderma fermentation liquids as additives, the percentages of the dominant flora in the total bacterial community in larval midgut changed significantly. The community of the genus Ochrobactrum in the midgut decreased significantly when the larvae were fed with the fermentation liquids of the transgenic Trichoderma strain Mc4. However, the Enterococcus community increased and then occupied the vacated niche of the Ochrobactrum members. Furthermore, the Shannon-Wiener (H) and the Simpson (1-D) indexes of the larval midgut bacterial library treated by feeding fermentation liquids of the transgenic Trichoderma strain Mc4 was the lowest compared with the culture medium, fermentation liquids of the wild type strain T30, and the sterile artificial diet. The Enterococcus sp. strain was isolated and characterized from the healthy larvae midgut of the Asian corn borer. An infection study of the Asian corn borer larvae using Enterococcus sp. ACB-1 revealed that a correlation existed between the increased Enterococcus community in the larval midgut and larval mortality. These results demonstrated that the transgenic Trichoderma strain could affect the composition of the midgut bacterial community. The change of the midgut bacterial community might be viewed as one of the factors resulting in the increased mortality of the Asian corn borer larvae.
Collapse
Affiliation(s)
- Yingying Li
- Department of Resource and Environmental Science, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, China
| | - Kehe Fu
- Department of Resource and Environmental Science, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, China
| | - Shigang Gao
- Department of Resource and Environmental Science, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, China
| | - Qiong Wu
- Department of Resource and Environmental Science, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, China
| | - Lili Fan
- Department of Resource and Environmental Science, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, China
| | - Yaqian Li
- Department of Resource and Environmental Science, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, China
| | - Jie Chen
- Department of Resource and Environmental Science, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, China
| |
Collapse
|
47
|
Vorburger C, Ganesanandamoorthy P, Kwiatkowski M. Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids. Ecol Evol 2013; 3:706-13. [PMID: 23533102 PMCID: PMC3605857 DOI: 10.1002/ece3.491] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 12/28/2012] [Accepted: 01/08/2013] [Indexed: 12/02/2022] Open
Abstract
Host defenses against parasites do not come for free. The evolution of increased resistance can be constrained by constitutive costs associated with possessing defense mechanisms, and by induced costs of deploying them. These two types of costs are typically considered with respect to resistance as a genetically determined trait, but they may also apply to resistance provided by ‘helpers’ such as bacterial endosymbionts. We investigated the costs of symbiont-conferred resistance in the black bean aphid, Aphis fabae (Scopoli), which receives strong protection against the parasitoid Lysiphlebus fabarum from the defensive endosymbiont Hamiltonella defensa. Aphids infected with H. defensa were almost ten times more resistant to L. fabarum than genetically identical aphids without this symbiont, but in the absence of parasitoids, they had strongly reduced lifespans, resulting in lower lifetime reproduction. This is evidence for a substantial constitutive cost of harboring H. defensa. We did not observe any induced cost of symbiont-conferred resistance. On the contrary, symbiont-protected aphids that resisted a parasitoid attack enjoyed increased longevity and lifetime reproduction compared with unattacked controls, whereas unprotected aphids suffered a reduction of longevity and reproduction after resisting an attack. This surprising result suggests that by focusing exclusively on the protection, we might underestimate the selective advantage of infection with H. defensa in the presence of parasitoids.
Collapse
Affiliation(s)
- Christoph Vorburger
- Institute of Integrative Biology, ETH Zürich Universitätstrasse 16, 8092, Zürich, Switzerland ; EAWAG, Swiss Federal Institute of Aquatic Science and Technology Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | | | | |
Collapse
|
48
|
Russell JA, Weldon S, Smith AH, Kim KL, Hu Y, Łukasik P, Doll S, Anastopoulos I, Novin M, Oliver KM. Uncovering symbiont-driven genetic diversity across North American pea aphids. Mol Ecol 2013; 22:2045-59. [DOI: 10.1111/mec.12211] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/04/2012] [Accepted: 12/11/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Jacob A. Russell
- Department of Biology; Drexel University; 3245 Chestnut St Philadelphia PA 19104 USA
| | - Stephanie Weldon
- Department of Entomology; University of Georgia; 413 Biological Sciences Building Athens GA 30602 USA
| | - Andrew H. Smith
- Department of Biology; Drexel University; 3245 Chestnut St Philadelphia PA 19104 USA
| | - Kyungsun L. Kim
- Department of Entomology; University of Georgia; 413 Biological Sciences Building Athens GA 30602 USA
| | - Yi Hu
- Department of Biology; Drexel University; 3245 Chestnut St Philadelphia PA 19104 USA
| | - Piotr Łukasik
- Department of Biology; Drexel University; 3245 Chestnut St Philadelphia PA 19104 USA
| | - Steven Doll
- Department of Biology; Drexel University; 3245 Chestnut St Philadelphia PA 19104 USA
| | - Ioannis Anastopoulos
- Department of Biology; Drexel University; 3245 Chestnut St Philadelphia PA 19104 USA
| | - Matthew Novin
- Department of Biology; Drexel University; 3245 Chestnut St Philadelphia PA 19104 USA
| | - Kerry M. Oliver
- Department of Entomology; University of Georgia; 413 Biological Sciences Building Athens GA 30602 USA
| |
Collapse
|
49
|
Kikuchi Y. Endosymbiotic bacteria in insects: their diversity and culturability. Microbes Environ 2012; 24:195-204. [PMID: 21566374 DOI: 10.1264/jsme2.me09140s] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many animals and plants possess symbiotic microorganisms inside their body, wherein intimate interactions occur between the partners. The Insecta, often rated as the most diverse animal group, show various types of endosymbiotic associations, ranging from obligate mutualism to facultative parasitism. Although technological advancements in culture-independent molecular techniques, such as quantitative PCR, molecular phylogeny and in situ hybridization, as well as genomic and metagenomic analyses, have allowed us to directly observe endosymbiotic associations in vivo, the molecular mechanisms underlying insect-microbe interactions are not well understood, because most of these insect endosymbionts are neither culturable nor genetically manipulatable. However, recent studies have succeeded in the isolation of several facultative symbionts by using insect cell lines or axenic media, revolutionizing studies of insect endosymbiosis. This article reviews the amazing diversity of bacterial endosymbiosis in insects, focusing on several model systems with culturable endosymbionts, which provide a new perspective towards understanding how intimate symbiotic associations may have evolved and how they are maintained within insects.
Collapse
Affiliation(s)
- Yoshitomo Kikuchi
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
50
|
Tang X, Freitak D, Vogel H, Ping L, Shao Y, Cordero EA, Andersen G, Westermann M, Heckel DG, Boland W. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS One 2012; 7:e36978. [PMID: 22815679 PMCID: PMC3398904 DOI: 10.1371/journal.pone.0036978] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/10/2012] [Indexed: 01/14/2023] Open
Abstract
Background The gut of most insects harbours nonpathogenic microorganisms. Recent work suggests that gut microbiota not only provide nutrients, but also involve in the development and maintenance of the host immune system. However, the complexity, dynamics and types of interactions between the insect hosts and their gut microbiota are far from being well understood. Methods/Principal Findings To determine the composition of the gut microbiota of two lepidopteran pests, Spodoptera littoralis and Helicoverpa armigera, we applied cultivation-independent techniques based on 16S rRNA gene sequencing and microarray. The two insect species were very similar regarding high abundant bacterial families. Different bacteria colonize different niches within the gut. A core community, consisting of Enterococci, Lactobacilli, Clostridia, etc. was revealed in the insect larvae. These bacteria are constantly present in the digestion tract at relatively high frequency despite that developmental stage and diet had a great impact on shaping the bacterial communities. Some low-abundant species might become dominant upon loading external disturbances; the core community, however, did not change significantly. Clearly the insect gut selects for particular bacterial phylotypes. Conclusions Because of their importance as agricultural pests, phytophagous Lepidopterans are widely used as experimental models in ecological and physiological studies. Our results demonstrated that a core microbial community exists in the insect gut, which may contribute to the host physiology. Host physiology and food, nevertheless, significantly influence some fringe bacterial species in the gut. The gut microbiota might also serve as a reservoir of microorganisms for ever-changing environments. Understanding these interactions might pave the way for developing novel pest control strategies.
Collapse
Affiliation(s)
- Xiaoshu Tang
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dalial Freitak
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
- * E-mail: (HV); (LP); (WB)
| | - Liyan Ping
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- * E-mail: (HV); (LP); (WB)
| | - Yongqi Shao
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Erika Arias Cordero
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Gary Andersen
- Center for Environmental Biology and Molecular Microbial Ecology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Martin Westermann
- Centre of Electron Microscopy, The University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - David G. Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- * E-mail: (HV); (LP); (WB)
| |
Collapse
|