1
|
Dort EN, Hamelin RC. Heterogeneity in establishment of polyethylene glycol-mediated plasmid transformations for five forest pathogenic Phytophthora species. PLoS One 2024; 19:e0306158. [PMID: 39255283 PMCID: PMC11386421 DOI: 10.1371/journal.pone.0306158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Plasmid-mediated DNA transformation is a foundational molecular technique and the basis for most CRISPR-Cas9 gene editing systems. While plasmid transformations are well established for many agricultural Phytophthora pathogens, development of this technique in forest Phytophthoras is lacking. Given our long-term research objective to develop CRISPR-Cas9 gene editing in a forest pathogenic Phytophthora species, we sought to establish the functionality of polyethylene glycol (PEG)-mediated plasmid transformation in five species: P. cactorum, P. cinnamomi, P. cryptogea, P. ramorum, and P. syringae. We used the agricultural pathogen P. sojae, a species for which PEG-mediated transformations are well-established, as a transformation control. Using a protocol previously optimized for P. sojae, we tested transformations in the five forest Phytophthoras with three different plasmids: two developed for CRISPR-Cas9 gene editing and one developed for fluorescent protein tagging. Out of the five species tested, successful transformation, as indicated by stable growth of transformants on a high concentration of antibiotic selective growth medium and diagnostic PCR, was achieved only with P. cactorum and P. ramorum. However, while transformations in P. cactorum were consistent and stable, transformations in P. ramorum were highly variable and yielded transformants with very weak mycelial growth and abnormal morphology. Our results indicate that P. cactorum is the best candidate to move forward with CRISPR-Cas9 protocol development and provide insight for future optimization of plasmid transformations in forest Phytophthoras.
Collapse
Affiliation(s)
- Erika N Dort
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Richard C Hamelin
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
- Département des Sciences du bois et de la Forêt, Faculté de Foresterie et Géographie, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
2
|
Kharel A, Rookes J, Ziemann M, Cahill D. Viable protoplast isolation, organelle visualization and transformation of the globally distributed plant pathogen Phytophthora cinnamomi. PROTOPLASMA 2024; 261:1073-1092. [PMID: 38702562 PMCID: PMC11358197 DOI: 10.1007/s00709-024-01953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/11/2024] [Indexed: 05/06/2024]
Abstract
Phytophthora cinnamomi is an oomycete plant pathogen with a host range of almost 5000 plant species worldwide and therefore poses a serious threat to biodiversity. Omics technology has provided significant progress in our understanding of oomycete biology, however, transformation studies of Phytophthora for gene functionalisation are still in their infancy. Only a limited number of Phytophthora species have been successfully transformed and gene edited to elucidate the role of particular genes. There is a need to escalate our efforts to understand molecular processes, gene regulation and infection mechanisms of the pathogen to enable us to develop new disease management strategies. The primary obstacle hindering the advancement of transformation studies in Phytophthora is their challenging and unique nature, coupled with our limited comprehension of why they remain such an intractable system to work with. In this study, we have identified some of the key factors associated with the recalcitrant nature of P. cinnamomi. We have incorporated fluorescence microscopy and flow cytometry along with the organelle-specific dyes, fluorescein diacetate, Hoechst 33342 and MitoTracker™ Red CMXRos, to assess P. cinnamomi-derived protoplast populations. This approach has also provided valuable insights into the broader cell biology of Phytophthora. Furthermore, we have optimized the crucial steps that allow transformation of P. cinnamomi and have generated transformed isolates that express a cyan fluorescent protein, with a transformation efficiency of 19.5%. We therefore provide a platform for these methodologies to be applied for the transformation of other Phytophthora species and pave the way for future gene functionalisation studies.
Collapse
Affiliation(s)
- Aayushree Kharel
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia
| | - James Rookes
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia
| | - Mark Ziemann
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia
- Burnet Institute, Melbourne, Australia
| | - David Cahill
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
3
|
Fletcher K, Michelmore R. Genome-Enabled Insights into Downy Mildew Biology and Evolution. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:165-183. [PMID: 37268005 DOI: 10.1146/annurev-phyto-021622-103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Oomycetes that cause downy mildew diseases are highly specialized, obligately biotrophic phytopathogens that can have major impacts on agriculture and natural ecosystems. Deciphering the genome sequence of these organisms provides foundational tools to study and deploy control strategies against downy mildew pathogens (DMPs). The recent telomere-to-telomere genome assembly of the DMP Peronospora effusa revealed high levels of synteny with distantly related DMPs, higher than expected repeat content, and previously undescribed architectures. This provides a road map for generating similar high-quality genome assemblies for other oomycetes. This review discusses biological insights made using this and other assemblies, including ancestral chromosome architecture, modes of sexual and asexual variation, the occurrence of heterokaryosis, candidate gene identification, functional validation, and population dynamics. We also discuss future avenues of research likely to be fruitful in studies of DMPs and highlight resources necessary for advancing our understanding and ability to forecast and control disease outbreaks.
Collapse
Affiliation(s)
- Kyle Fletcher
- The Genome Center, University of California, Davis, California, USA
| | - Richard Michelmore
- The Genome Center, University of California, Davis, California, USA
- Department of Plant Sciences; Department of Molecular and Cellular Biology; Department of Medical Microbiology and Immunology, University of California, Davis, California, USA;
| |
Collapse
|
4
|
Wang L, Zhao F, Liu H, Chen H, Zhang F, Li S, Sun T, Nekrasov V, Huang S, Dong S. A modified Agrobacterium-mediated transformation for two oomycete pathogens. PLoS Pathog 2023; 19:e1011346. [PMID: 37083862 PMCID: PMC10156060 DOI: 10.1371/journal.ppat.1011346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 05/03/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023] Open
Abstract
Oomycetes are a group of filamentous microorganisms that include some of the biggest threats to food security and natural ecosystems. However, much of the molecular basis of the pathogenesis and the development in these organisms remains to be learned, largely due to shortage of efficient genetic manipulation methods. In this study, we developed modified transformation methods for two important oomycete species, Phytophthora infestans and Plasmopara viticola, that bring destructive damage in agricultural production. As part of the study, we established an improved Agrobacterium-mediated transformation (AMT) method by prokaryotic expression in Agrobacterium tumefaciens of AtVIP1 (VirE2-interacting protein 1), an Arabidopsis bZIP gene required for AMT but absent in oomycetes genomes. Using the new method, we achieved an increment in transformation efficiency in two P. infestans strains. We further obtained a positive GFP transformant of P. viticola using the modified AMT method. By combining this method with the CRISPR/Cas12a genome editing system, we successfully performed targeted mutagenesis and generated loss-of-function mutations in two P. infestans genes. We edited a MADS-box transcription factor-encoding gene and found that a homozygous mutation in MADS-box results in poor sporulation and significantly reduced virulence. Meanwhile, a single-copy avirulence effector-encoding gene Avr8 in P. infestans was targeted and the edited transformants were virulent on potato carrying the cognate resistance gene R8, suggesting that loss of Avr8 led to successful evasion of the host immune response by the pathogen. In summary, this study reports on a modified genetic transformation and genome editing system, providing a potential tool for accelerating molecular genetic studies not only in oomycetes, but also other microorganisms.
Collapse
Affiliation(s)
- Luyao Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Plant Pathology and Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Fei Zhao
- Department of Plant Pathology and Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Haohao Liu
- Department of Plant Pathology and Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Han Chen
- Department of Plant Pathology and Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Fan Zhang
- Department of Plant Pathology and Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Suhua Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tongjun Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Vladimir Nekrasov
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, United Kingdom
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Suomeng Dong
- Department of Plant Pathology and Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Ghimire B, Saraiva M, Andersen CB, Gogoi A, Saleh M, Zic N, van West P, Brurberg MB. Transformation systems, gene silencing and gene editing technologies in oomycetes. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Evangelisti E, Yunusov T, Shenhav L, Schornack S. N-acetyltransferase AAC(3)-I confers gentamicin resistance to Phytophthora palmivora and Phytophthora infestans. BMC Microbiol 2019; 19:265. [PMID: 31775609 PMCID: PMC6882347 DOI: 10.1186/s12866-019-1642-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background Oomycetes are pathogens of mammals, fish, insects and plants, and the potato late blight agent Phytophthora infestans and the oil palm and cocoa infecting pathogen Phytophthora palmivora cause economically impacting diseases on a wide range of crop plants. Increasing genomic and transcriptomic resources and recent advances in oomycete biology demand new strategies for genetic modification of oomycetes. Most oomycete transformation procedures rely on geneticin-based selection of transgenic strains. Results We established N-acetyltransferase AAC(3)-I as a gentamicin-based selectable marker for oomycete transformation without interference with existing geneticin resistance. Strains carrying gentamicin resistance are fully infectious in plants. We further demonstrate the usefulness of this new antibiotic selection to super-transform well-characterized, already fluorescently-labelled P. palmivora strains and provide a comprehensive protocol for maintenance and zoospore electro-transformation of Phytophthora strains to aid in plant-pathogen research. Conclusions N-acetyltransferase AAC(3)-I is functional in Phytophthora oomycetes. In addition, the substrate specificity of the AAC(3)-I enzyme allows for re-transformation of geneticin-resistant strains. Our findings and resources widen the possibilities to study oomycete cell biology and plant-oomycete interactions.
Collapse
Affiliation(s)
| | - Temur Yunusov
- Sainsbury Laboratory Cambridge University (SLCU), Cambridge, UK
| | - Liron Shenhav
- Sainsbury Laboratory Cambridge University (SLCU), Cambridge, UK
| | | |
Collapse
|
7
|
Wang W, Xue Z, Miao J, Cai M, Zhang C, Li T, Zhang B, Tyler BM, Liu X. PcMuORP1, an Oxathiapiprolin-Resistance Gene, Functions as a Novel Selection Marker for Phytophthora Transformation and CRISPR/Cas9 Mediated Genome Editing. Front Microbiol 2019; 10:2402. [PMID: 31708886 PMCID: PMC6821980 DOI: 10.3389/fmicb.2019.02402] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
Phytophthora, a genus of oomycetes, contains many devastating plant pathogens, which cause substantial economic losses worldwide. Recently, CRISPR/Cas9-based genome editing tool was introduced into Phytophthora to delineate the functionality of individual genes. The available selection markers for Phytophthora transformation, however, are limited, which can restrain transgenic manipulation in some cases. We hypothesized that PcMuORP1, an endogenous fungicide resistance gene from P. capsici that confers resistance to the fungicide oxathiapiprolin via an altered target site in the ORP1 protein, could be used as an alternative marker. To test this hypothesis, the gene PcMuORP1 was introduced into the CRISPR/Cas9 system and complementation of a deleted gene in P. capsici was achieved using it as a selection marker. All of the oxathiapiprolin-resistant transformants were confirmed to contain the marker gene, indicating that the positive screening rate was 100%. The novel selection marker could also be used in other representative Phytophthora species including P. sojae and P. litchii, also with 100% positive screening rate. Furthermore, comparative studies indicated that use of PcMuORP1 resulted in a much higher efficiency of screening compared to the conventional selection marker NPT II, especially in P. capsici. Successive subculture and asexual reproduction in the absence of selective pressure were found to result in the loss of the selection marker from the transformants, which indicates that the PcMuORP1 gene would have little long term influence on the fitness of transformants and could be reused as the selection marker in subsequent projects. Thus, we have created an alternative selection marker for Phytophthora transformation by using a fungicide resistance gene, which would accelerate functional studies of genes in these species.
Collapse
Affiliation(s)
- Weizhen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhaolin Xue
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Meng Cai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Can Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tengjiao Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Borui Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Vu AL, Leesutthiphonchai W, Ah-Fong AMV, Judelson HS. Defining Transgene Insertion Sites and Off-Target Effects of Homology-Based Gene Silencing Informs the Application of Functional Genomics Tools in Phytophthora infestans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:915-927. [PMID: 30811313 DOI: 10.1094/mpmi-09-18-0265-ta] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DNA transformation and homology-based transcriptional silencing are frequently used to assess gene function in Phytophthora spp. Since unplanned side-effects of these tools are not well-characterized, we used P. infestans to study plasmid integration sites and whether knockdowns caused by homology-dependent silencing spread to other genes. Insertions occurred both in gene-dense and gene-sparse regions but disproportionately near the 5' ends of genes, which disrupted native coding sequences. Microhomology at the recombination site between plasmid and chromosome was common. Studies of transformants silenced for 12 different gene targets indicated that neighbors within 500 nt were often cosilenced, regardless of whether hairpin or sense constructs were employed and the direction of transcription of the target. However, this cis spreading of silencing did not occur in all transformants obtained with the same plasmid. Genome-wide studies indicated that unlinked genes with partial complementarity with the silencing-inducing transgene were not usually down-regulated. We learned that hairpin or sense transgenes were not cosilenced with the target in all transformants, which informs how screens for silencing should be performed. We conclude that transformation and gene silencing can be reliable tools for functional genomics in Phytophthora spp. but must be used carefully, especially by testing for the spread of silencing to genes flanking the target.
Collapse
Affiliation(s)
- Andrea L Vu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | | | - Audrey M V Ah-Fong
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| |
Collapse
|
9
|
Ochoa JC, Herrera M, Navia M, Romero HM. Visualization of Phytophthora palmivora Infection in Oil Palm Leaflets with Fluorescent Proteins and Cell Viability Markers. THE PLANT PATHOLOGY JOURNAL 2019; 35:19-31. [PMID: 30828276 PMCID: PMC6385658 DOI: 10.5423/ppj.oa.02.2018.0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 06/09/2023]
Abstract
Bud rot (BR) is the most devastating disease affecting oil palm (Elaeis guineensis) crops in Colombia. Its causal agent, Phytophthora palmivora, initiates the infection in immature oil palm leaflets producing necrotic lesions, followed by colonization of opportunistic necrotrophs, which increases disease damage. To improve the characterization of the disease, we transformed P. palmivora using Agrobacterium tumefaciens-mediated transformation (ATMT) to include the fluorescent proteins CFP-SKL (peroxisomal localization), eGFP and mRFP1 (cytoplasmic localization). The stability of some transformants was confirmed by Southern blot analysis and single zoospore cultures; additionally, virulence and in vitro growth were compared to the wild-type isolate to select transformants with the greatest resemblance to the WT isolate. GFP-tagged P. palmivora was useful to identify all of the infective structures that are commonly formed by hemibiotrophic oomycetes, including apoplastic colonization and haustorium formation. Finally, we detected cell death responses associated with immature oil palm tissues that showed reduced susceptibility to P. palmivora infection, indicating that these tissues could exhibit age-related resistance. The aim of this research is to improve the characterization of the initial disease stages and generate cell biology tools that may be useful for developing methodologies for early identification of oil palm materials resistant or susceptible to BR.
Collapse
Affiliation(s)
- Juan C. Ochoa
- Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center (CENIPALMA), Bogotá,
Colombia
| | - Mariana Herrera
- Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center (CENIPALMA), Bogotá,
Colombia
| | - Mónica Navia
- Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center (CENIPALMA), Bogotá,
Colombia
| | - Hernán Mauricio Romero
- Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center (CENIPALMA), Bogotá,
Colombia
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá,
Colombia
| |
Collapse
|
10
|
Wu D, Navet N, Liu Y, Uchida J, Tian M. Establishment of a simple and efficient Agrobacterium-mediated transformation system for Phytophthora palmivora. BMC Microbiol 2016; 16:204. [PMID: 27599726 PMCID: PMC5012004 DOI: 10.1186/s12866-016-0825-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As an agriculturally important oomycete genus, Phytophthora contains a large number of destructive plant pathogens that severely threaten agricultural production and natural ecosystems. Among them is the broad host range pathogen P. palmivora, which infects many economically important plant species. An essential way to dissect their pathogenesis mechanisms is genetic modification of candidate genes, which requires effective transformation systems. Four methods were developed for transformation of Phytophthora spp., including PEG(polyethylene glycol)/CaCl2 mediated protoplast transformation, electroporation of zoospores, microprojectile bombardment and Agrobacterium-mediated transformation (AMT). Among them, AMT has many advantages over the other methods such as easy handling and mainly generating single-copy integration in the genome. An AMT method previously reported for P. infestans and P. palmivora has barely been used in oomycete research due to low success and low reproducibility. RESULTS In this study, we report a simple and efficient AMT system for P. palmivora. Using this system, we were able to reproducibly generate over 40 transformants using zoospores collected from culture grown in a single 100 mm-diameter petri dish. The generated GFP transformants constitutively expressed GFP readily detectable using a fluorescence microscope. All of the transformants tested using Southern blot analysis contained a single-copy T-DNA insertion. CONCLUSIONS This system is highly effective and reproducible for transformation of P. palmivora and expected to be adaptable for transformation of additional Phytophthora spp. and other oomycetes. Its establishment will greatly accelerate their functional genomic studies.
Collapse
Affiliation(s)
- Dongliang Wu
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, 3190 Maile Way, St. John 317, Honolulu, HI 96822 USA
| | - Natasha Navet
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, 3190 Maile Way, St. John 317, Honolulu, HI 96822 USA
| | - Yingchao Liu
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, 3190 Maile Way, St. John 317, Honolulu, HI 96822 USA
- Present Address: College of Plant Protection, Agricultural University of Hebei, Baoding, China
| | - Janice Uchida
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, 3190 Maile Way, St. John 317, Honolulu, HI 96822 USA
| | - Miaoying Tian
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, 3190 Maile Way, St. John 317, Honolulu, HI 96822 USA
| |
Collapse
|
11
|
Dong L, Zhu X, Cui H, Ojika M, Wang R, Liu H. Establishment of the straightforward electro-transformation system for Phytophthora infestans and its comparison with the improved PEG/CaCl₂ transformation. J Microbiol Methods 2015; 112:83-6. [PMID: 25783995 DOI: 10.1016/j.mimet.2015.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
Abstract
Phytophthora infestans is the most devastating pathogen of potato. For the biology study of P. infestans at the molecular level, one of the difficulties is the technique for the genetic transformation. In this study, the straightforward electro-transformation system was established for P. infestans with a green fluorescent protein expression vector and compared with the improved PEG/CaCl2 mediated protoplast transformation system. The results showed that the straightforward electro-transformation could work in P. infestans and 32 positive transformants were obtained per about 1.10×10(6) zoospores. The transformants per μg of vector DNA were 1.08. The transformation efficiency of the straightforward electro-transformation was approximately 2 times higher than that of the improved PEG/CaCl2 mediated protoplast transformation (17 positive transformants per about 1.05×10(6) protoplasts, 0.58 transformants per μg of vector DNA) according to the reported procedures. Furthermore, compared with the improved PEG/CaCl2 transformation, the straightforward electroporation is simpler and requires less starting materials and operating time from collecting material to obtaining the resistant transformants. Our work will lay a foundation for the biology study of P. infestans in the future.
Collapse
Affiliation(s)
- Lei Dong
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, Inner Mongolia, China
| | - Xiangyuan Zhu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, Inner Mongolia, China
| | - Haichen Cui
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, Inner Mongolia, China
| | - Makoto Ojika
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ruigang Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, Inner Mongolia, China
| | - Huirong Liu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, Inner Mongolia, China.
| |
Collapse
|
12
|
Gamboa-Meléndez H, Judelson HS. Development of a bipartite ecdysone-responsive gene switch for the oomycete Phytophthora infestans and its use to manipulate transcription during axenic culture and plant infection. MOLECULAR PLANT PATHOLOGY 2015; 16:83-91. [PMID: 24871323 PMCID: PMC6638397 DOI: 10.1111/mpp.12161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Conditional expression systems have been proven to be useful tools for the elucidation of gene function in many taxa. Here, we report the development of the first useful inducible promoter system for an oomycete, based on an ecdysone receptor (EcR) and the ecdysone analogue methoxyfenozide. In Phytophthora infestans, the potato late blight pathogen, a monopartite transactivator containing the VP16 activation domain from herpes simplex virus, the GAL4 DNA-binding domain from yeast and the EcR receptor domain from the spruce budworm enabled high levels of expression of a β-glucuronidase (GUS) reporter gene, but unacceptable basal activity in the absence of the methoxyfenozide inducer. Greatly improved performance was obtained using a bipartite system in which transcription is activated by a heterodimer between a chimera of VP16 and the migratory locust retinoid X receptor, and a separate EcR-DNA-binding domain chimera. Transformants were obtained that exhibited >100-fold activation of the reporter by methoxyfenozide, with low basal levels of expression and induced activity approaching that of the strong ham34 promoter. Performance varied between transformants, probably as a result of position effects. The addition of methoxyfenozide enabled strong induction during hyphal growth, zoosporogenesis and colonization of tomato. No significant effects of the inducer or transactivators on growth, development or pathogenicity were observed. The technology should therefore be a useful addition to the arsenal of methods for the study of oomycete plant pathogens.
Collapse
Affiliation(s)
- Heber Gamboa-Meléndez
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA
| | | |
Collapse
|
13
|
Meng Y, Zhang Q, Ding W, Shan W. Phytophthora parasitica: a model oomycete plant pathogen. Mycology 2014; 5:43-51. [PMID: 24999436 PMCID: PMC4066925 DOI: 10.1080/21501203.2014.917734] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/12/2014] [Indexed: 11/21/2022] Open
Abstract
Oomycetes are eukaryotic microorganisms morphologically similar to but phylogenetically distant from true fungi. Most species in the genus Phytophthora of oomycetes are devastating plant pathogens, causing damages to both agricultural production and natural ecosystems. Tremendous progress has been achieved in recent years in diversity, evolution and lifestyles of oomycete plant pathogens, as well as on the understanding of genetic and molecular basis of oomycete-plant interactions. Phytophthora parasitica is a soilborne pathogen with a wide range of host plants and represents most species in the genus Phytophthora. In this review, we present some recent progress of P. parasitica research by highlighting important features that make it emerge as a model species of oomycete pathogens. The emerged model pathogen will facilitate improved understanding of oomycete biology and pathology that are crucial to the development of novel disease-control strategies and improved disease-control measures.
Collapse
Affiliation(s)
- Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Qiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Wei Ding
- College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
14
|
Orłowska E, Fiil A, Kirk HG, Llorente B, Cvitanich C. Differential gene induction in resistant and susceptible potato cultivars at early stages of infection by Phytophthora infestans. PLANT CELL REPORTS 2012; 31:187-203. [PMID: 21965005 DOI: 10.1007/s00299-011-1155-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/09/2011] [Accepted: 09/15/2011] [Indexed: 05/09/2023]
Abstract
Sarpo Mira, a potato variety with high resistance against the late blight pathogen Phytophthora infestans, is being used in breeding programs to increase late blight resistance in commercial varieties. Discovering genes that are important for P. infestans resistance will assist in the development of molecular markers for the selection of new resistant cultivars and the use of resistant varieties will reduce the environmental, health and financial costs associated with the use of pesticides. Using complementary DNA amplified fragment length polymorphism analyses, differentially expressed genes involved in the potato-P. infestans interaction were identified in the susceptible Bintje and in the resistant Sarpo Mira potato cultivars. Forty-eight differentially expressed transcript derived fragments (TDFs) were cloned and sequenced. The expression profiles of some of these genes were analyzed in detail using quantitative RT-PCR at seven time points: 1, 4, 17, 24, 30, 41 and 65 hours after inoculation (hai). We found that five transcripts with homologies to pathogenesis/defense-related genes and two TDFs with homology to transcription factors were significantly induced to higher levels in the resistant cultivar at very early stages of the infection (1 hai). Interestingly, most of these genes showed different expression profiles throughout the whole infection process between both cultivars. Particularly during its biotrophic growth phase, P. infestans triggered the down-regulation of infection responsive genes in the susceptible but not in the resistance cultivar. Our results suggest that these newly identified early-induced transcripts may be good candidates for conferring Sarpo Mira's resistance to late blight and they could be useful molecular markers for the selection of new resistant cultivars.
Collapse
Affiliation(s)
- Elżbieta Orłowska
- Department of Molecular Biology, Aarhus University, Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
15
|
Reverse genetics for functional genomics of phytopathogenic fungi and oomycetes. Comp Funct Genomics 2009:380719. [PMID: 19830245 PMCID: PMC2760151 DOI: 10.1155/2009/380719] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/30/2009] [Accepted: 07/07/2009] [Indexed: 11/23/2022] Open
Abstract
Sequencing of over 40 fungal and oomycete genomes has been completed. The next major challenge in modern fungal/oomycete biology is now to translate this plethora of genome sequence information into biological functions. Reverse genetics has emerged as a seminal tool for functional genomics investigations. Techniques utilized for reverse genetics like targeted gene disruption/replacement, gene silencing, insertional mutagenesis, and targeting induced local lesions in genomes will contribute greatly to the understanding of gene function of fungal and oomycete pathogens. This paper provides an overview on high-throughput reverse genetics approaches to decode fungal/oomycete genomes.
Collapse
|
16
|
Ah-Fong AM, Bormann-Chung CA, Judelson HS. Optimization of transgene-mediated silencing in Phytophthora infestans and its association with small-interfering RNAs. Fungal Genet Biol 2008; 45:1197-205. [DOI: 10.1016/j.fgb.2008.05.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/18/2008] [Accepted: 05/19/2008] [Indexed: 11/30/2022]
|
17
|
Abstract
Phytophthora infestans remains a problem to production agriculture. Historically there have been many controversies concerning its biology and pathogenicity, some of which remain today. Advances in molecular biology and genomics promise to reveal fascinating insight into its pathogenicity and biology. However, the plasticity of its genome as revealed in population diversity and in the abundance of putative effectors means that this oomycete remains a formidable foe.
Collapse
Affiliation(s)
- William Fry
- Cornell University, Department of Plant Pathology, Ithaca, NY 14853, USA.
| |
Collapse
|
18
|
Gaulin E, Jacquet C, Bottin A, Dumas B. Root rot disease of legumes caused by Aphanomyces euteiches. MOLECULAR PLANT PATHOLOGY 2007; 8:539-48. [PMID: 20507520 DOI: 10.1111/j.1364-3703.2007.00413.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
UNLABELLED The Oomycete genus Aphanomyces houses plant and animal pathogens found in both terrestrial and aquatic habitats. Aphanomyces euteiches Drechs. causes seedling damping off and root rot diseases on many legumes. It is the most devastating pea (Pisum sativum) disease in several countries, causing up to 80% losses each year. This strictly soil-borne pathogen may survive many years in soil and no efficient chemical control is currently available. The only way to control the disease is to avoid cultivating legumes in infested fields for up to 10 years. Although huge research effort has been devoted to the Oomycete genus Phytophthora during the last decade, A. euteiches has received little attention and mechanisms by which it infects its hosts are still unclear. A. euteiches is nevertheless an interesting parasite to study plant-oomycete interactions as it is pathogenic on the model legume Medicago truncatula. This review summarizes knowledge about the main characteristics of A. euteiches and presents research currently developed to find new strategies to control this pathogen and to gain insight into its pathogenicity. TAXONOMY Aphanomyces euteiches Drechs belongs to a kingdom of diverse eukaryotic protists named Chromista or Straminipila. It is a member of the class Oomycetes (syn. Peronosporomycetes), which gathers organisms resembling fungi through morphological and physiological traits, but are phylogenically related to diatoms, chromophyte algae and other heterokont protists. The genus Aphanomyces is classified within the order Saprolegniales, family Saprolegniaceae s.l. or Leptolegniaceae. HOST RANGE Several legumes were found to be hosts for A. euteiches and this pathogen was isolated from field-grown pea, alfalfa, snap bean, vetch, clover, sweet clover and several weed species. DISEASE SYMPTOMS The disease begins with the yellowing of root tissue. At a later stage, infected roots become brown and the hypocotyl darkens at the soil line. The pathogen infects the cortex of primary and lateral roots and oospores are formed within the root tissues. USEFUL WEBSITES http://www.indexfungorum.org/Names/Names.asp (links to taxonomy data), http://www.eugrainlegumes.org/; http://www.medicago.org/ (links to the European Union 'Grain Legume' Integrated Project).
Collapse
Affiliation(s)
- Elodie Gaulin
- UMR 5546 CNRS-Université Paul Sabatier Toulouse III, Pôle de Biotechnologie Végétale, 24 Chemin de Borde-Rouge, Castanet-Tolosan, France.
| | | | | | | |
Collapse
|
19
|
Gaulin E, Haget N, Khatib M, Herbert C, Rickauer M, Bottin A. Transgenic sequences are frequently lost in Phytophthora parasitica transformants without reversion of the transgene-induced silenced state. Can J Microbiol 2007; 53:152-7. [PMID: 17496962 DOI: 10.1139/w06-090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little data exist on the mechanism and stability of transformation in Phytophthora parasitica, a major oomycete parasite of plants. Here, we studied the stability of drug-resistant protoplast transformants by analyzing single-zoospore derivatives. We show that the transgenic sequences are not stably integrated into the chromosomes, resulting in the loss of drug resistance in single-zoospore derivatives. However, in strains where the P. parasitica gene encoding the CBEL elicitor was silenced by transformation with sense or antisense constructs, silencing is not reversed when the transgenic sequences are lost. This suggests that instability of P. parasitica transformants is not an obstacle for loss-of-function studies in this organism.
Collapse
Affiliation(s)
- Elodie Gaulin
- UMR5546 CNRS-Université Paul Sabatier, Castanet-Tolosan, France
| | | | | | | | | | | |
Collapse
|
20
|
Judelson HS, Narayan R, Fong AMVA, Tani S, Kim KS. Performance of a tetracycline-responsive transactivator system for regulating transgenes in the oomycete Phytophthora infestans. Curr Genet 2007; 51:297-307. [PMID: 17377792 DOI: 10.1007/s00294-007-0125-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/23/2007] [Accepted: 02/24/2007] [Indexed: 11/27/2022]
Abstract
The oomycete genus Phytophthora includes many important plant pathogens for which extensive genome data exist, but lacking is an inducible expression system to study contributions of their genes to growth and pathogenicity. Here the adaptation of the reverse tetracycline transactivator (rtTA) system to P. infestans is described. Vectors were developed containing rtTA expressed from an oomycete promoter, and beta-glucuronidase (GUS) controlled by TetR binding sites fused to a minimal oomycete promoter. Transformants were obtained in which GUS was expressed in a dose-dependent manner by the rtTA inducer doxycycline, indicating that the gene switch functions in P. infestans. However, toxicity of rtTA hindered the isolation of transformants if expressed on the same plasmid as the nptII selection marker. Better results were obtained by cotransforming those genes on separate plasmids, with 92% of transformants acquiring both DNAs although only 4% expressed rtTA at detectable levels. Low levels of reporter activity were measured in such transformants, suggesting that rtTA activated transcription weakly. Also, significant variation in the sensitivity of isolates to doxycycline and tetracycline was observed. These results are useful both in terms of developing tools for functional genomics and understanding the fate of DNA during Phytophthora transformation.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology, University of California, Riverside, CA 92521, USA.
| | | | | | | | | |
Collapse
|
21
|
Judelson HS. Genomics of the plant pathogenic oomycete Phytophthora: insights into biology and evolution. ADVANCES IN GENETICS 2007; 57:97-141. [PMID: 17352903 DOI: 10.1016/s0065-2660(06)57003-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The genus Phytophthora includes many destructive pathogens of plants. Although having "fungus-like" appearances, Phytophthora species reside in a eukaryotic kingdom separate from that of true fungi. Distinct strategies are therefore required to study and defend against Phytophthora. Large sequence databases have recently been developed for several species, and tools for functional genomics have been enhanced. This chapter will review current progress in understanding the genome and transcriptome of Phytophthora, and provide examples of how genomics resources are advancing molecular studies of pathogenesis, development, transcription, and evolution. A better understanding of these remarkable pathogens should lead to new approaches for managing their diseases.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
22
|
Tyler BM. Phytophthora sojae: root rot pathogen of soybean and model oomycete. MOLECULAR PLANT PATHOLOGY 2007; 8:1-8. [PMID: 20507474 DOI: 10.1111/j.1364-3703.2006.00373.x] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
UNLABELLED SUMMARY Phytophthora sojae is an oomycete pathogen of soybean, classified in the kingdom Stramenopiles. It causes 'damping off' of seedlings and root rot of older plants, with an annual cost worldwide of $1-2 billion. Owing to its economic importance, this species, along with P. infestans, has been developed as a model species for the study of oomycete plant pathogens. It is readily transformed with DNA enabling over-expression and silencing of selected genes, genetic maps have been constructed and large expressed sequence tag sequence libraries have been developed. A draft genome sequence has recently been completed. This review briefly summarizes current information about the pathogenicity, evolution, molecular biology and genomics of P. sojae. TAXONOMY Phytophthora sojae (Kaufman & Gerdman): superkingdom Eukaryota; kingdom Stramenopila; phylum Oomycota; class Peronosporomycetidae; order Pythiales; family Pythiaceae; genus Phytophthora. HOST RANGE Soybean is the only economically important host. Several species of lupins have also been reported as hosts. Disease symptoms and signs: All parts of the soybean plant are susceptible to infection by P. sojae, from germinating seedlings to mature plants. In the field, P. sojae causes damping off of soybean seedlings and a root and stem rot of established plants. Leaves can be infected in the field as a result of rain splash or by deliberate inoculation in the laboratory. Damping off can affect germinating seeds or emerged seedlings and is most severe when the spring is very wet and warm (25-30 degrees C). Established plants can become infected when the soil is wet for extended periods, especially if the soil is poorly drained. Both the cortex and the vascular tissue are colonized by P. sojae, and the infection can spread rapidly along the vascular tissues in susceptible cultivars. USEFUL WEBSITES http://pmgn.vbi.vt.edu, http://phytophthora.vbi.vt.edu, http://www.jgi.doe.gov/Psojae, http://www.jgi.doe.gov/Pramorum, http://www.pfgd.org, http://pamgo.vbi.vt.edu, http://soy.vbi.vt.edu, https://www.vbi.vt.edu/article/articleview/78, http://plantpath.osu.edu/faculty/dorrance.php.
Collapse
Affiliation(s)
- Brett M Tyler
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0477, USA
| |
Collapse
|
23
|
Lamour KH, Finley L, Hurtado-Gonzales O, Gobena D, Tierney M, Meijer HJG. Targeted gene mutation in Phytophthora spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1359-67. [PMID: 17153920 DOI: 10.1094/mpmi-19-1359] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The genus Phytophthora belongs to the oomycetes and is composed of plant pathogens. Currently, there are no strategies to mutate specific genes for members of this genus. Whole genome sequences are available or being prepared for Phytophthora sojae, P. ramorum, P. infestans, and P. capsici and the development of molecular biological techniques for functional genomics is encouraged. This article describes the adaptation of the reverse-genetic strategy of targeting induced local lesions in genomes (TILLING) to isolate gene-specific mutants in Phytophthora spp. A genomic library of 2,400 ethylnitrosourea (ENU) mutants of P. sojae was created and screened for induced point mutations in the genes encoding a necrosisinducing protein (PsojNIP) and a Phytophthora-specific phospholipase D (PsPXTM-PLD). Mutations were detected in single individuals and included silent, missense, and nonsense changes. Homozygous mutant isolates carrying a potentially deleterious missense mutation in PsojNIP and a premature stop codon in PsPXTM-PLD were identified. No phenotypic effect has yet been found for the homozygous mutant of PsojNIP. For those of PsPXTM-PLD, a reduction in growth rate and an appressed mycelial growth was observed. This demonstrates the feasibility of target-selected gene disruption for Phytophthora spp. and adds an important tool for functional genomic investigation.
Collapse
Affiliation(s)
- Kurt H Lamour
- Department of Entomology and Plant Pathology, The University of Tennessee, Rm 205 Ellington Plant Science, 2431 Joe Johnson Dr., Knoxville 37996, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Govers F, Gijzen M. Phytophthora genomics: the plant destroyers' genome decoded. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1295-301. [PMID: 17153913 DOI: 10.1094/mpmi-19-1295] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The year 2004 was an exciting one for the Phytophthora research community. The United States Department of Energy Joint Genome Institute (JGI) completed the draft genome sequence of two Phytophthora species, Phytophthora sojae and Phytophthora ramorum. In August of that year over 50 people gathered at JGI in Walnut Creek, California, for an annotation jamboree and searched for the secrets and surprises that the two genomes have in petto. This culminated in a paper in Science in September of this year describing the highlights of the sequencing project and emphasizing the power of having the genome sequences of two closely related organisms. This MPMI Focus issue on Phytophthora genomics contains a number of more specialized manuscripts centered on gene annotation and genome organization, and complemented with manuscripts that rely on genomics resources.
Collapse
Affiliation(s)
- Francine Govers
- Laboratory of Phytopathology, Plant Sciences Group, Wageningen University, Binnenhaven 5, NL-6709 PD Wageningen, The Netherlands.
| | | |
Collapse
|
25
|
Lee HB, Kim Y, Kim JC, Choi GJ, Park SH, Kim CJ, Jung HS. Activity of some aminoglycoside antibiotics against true fungi, Phytophthora and Pythium species. J Appl Microbiol 2006; 99:836-43. [PMID: 16162234 DOI: 10.1111/j.1365-2672.2005.02684.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the in vitro antifungal and antioomycete activities of some aminoglycosides against true fungi and Phytophthora and Pythium species and to evaluate the potential of the antibiotics against Phytophthora late blight on plants. METHODS AND RESULTS Antifungal and antioomycete activities of aminoglycoside antibiotics (neomycin, paromomycin, ribostamycin and streptomycin) and a paromomycin-producing strain (Streptomyces sp. AMG-P1) against Phytophthora and Pythium species and 10 common fungi were measured in potato dextrose broth (PDB) and on seedlings in pots. Paromomycin was the most active against Phytophthora and Pythium species with a minimal inhibitory concentration of 1-10 microg ml(-1) in PDB, but displayed low to moderate activities towards other common fungi at the same concentration. Paromomycin also showed potent in vivo activity against red pepper and tomato late blight diseases with 80 and 99% control value, respectively, at 100 microg ml(-1). In addition, culture broth of Streptomyces sp. AMG-P1 as a paromomycin producer exhibited high in vivo activity against late blight at 500 microg freeze-dried weight per millilitre. CONCLUSIONS Among tested aminoglycoside antibiotics, paromomycin was the most active against oomycetes both in vitro and in vivo. SIGNIFICANCE AND IMPACT OF THE STUDY Data from this study show that aminoglycoside antibiotics have in vitro and in vivo activities against oomycetes, suggesting that Streptomyces sp. AMG-P1 may be used as a biocontrol agent against oomycete diseases.
Collapse
Affiliation(s)
- H B Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea.
| | | | | | | | | | | | | |
Collapse
|
26
|
Weld RJ, Plummer KM, Carpenter MA, Ridgway HJ. Approaches to functional genomics in filamentous fungi. Cell Res 2006; 16:31-44. [PMID: 16467874 DOI: 10.1038/sj.cr.7310006] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The study of gene function in filamentous fungi is a field of research that has made great advances in very recent years. A number of transformation and gene manipulation strategies have been developed and applied to a diverse and rapidly expanding list of economically important filamentous fungi and oomycetes. With the significant number of fungal genomes now sequenced or being sequenced, functional genomics promises to uncover a great deal of new information in coming years. This review discusses recent advances that have been made in examining gene function in filamentous fungi and describes the advantages and limitations of the different approaches.
Collapse
Affiliation(s)
- Richard J Weld
- National Centre for Advanced Bio-Protection Technologies, PO Box 84, Lincoln University, Canterbury 8150, New Zealand.
| | | | | | | |
Collapse
|
27
|
Abstract
Members of the genus Phytophthora are among the most serious threats to agriculture and food production, causing devastating diseases in hundreds of plant hosts. These fungus-like eukaryotes, which are taxonomically classified as oomycetes, generate asexual and sexual spores with characteristics that greatly contribute to their pathogenic success. The spores include survival and dispersal structures, and potent infectious propagules capable of actively locating hosts. Genetic tools and genomic resources developed over the past decade are now allowing detailed analysis of these important stages in the Phytophthora life cycle.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology and Center for Plant Cell Biology, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
28
|
Abstract
Fungi and Oomycetes are the two most important groups of eukaryotic plant pathogens. Fungi form a separate kingdom and are evolutionarily related to animals. Oomycetes are classified in the kingdom Protoctista and are related to heterokont, biflagellate, golden-brown algae. Fundamental differences in physiology, biochemistry and genetics between fungi and Oomycetes have been described previously. These differences are also reflected in the large variations observed in sensitivity to conventional fungicides. Recently, more pronounced differences have been revealed by genomics approaches. However, in this review we compare the mode of colonization of the two taxonomically distinct groups and show that their strategies have much in common.
Collapse
Affiliation(s)
- Maita Latijnhouwers
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD, Wageningen, Netherlands
| | | | | |
Collapse
|
29
|
Vijn I, Govers F. Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. MOLECULAR PLANT PATHOLOGY 2003; 4:459-467. [PMID: 20569405 DOI: 10.1046/j.1364-3703.2003.00191.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Agrobacterium tumefaciens is widely used for plant DNA transformation and, more recently, has also been used to transform yeast and filamentous fungi. Here we present a protocol for Agrobacterium-mediated DNA transformation of the oomycete Phytophthora infestans, the causal agent of potato late blight. Binary T-DNA vectors containing neomycin phosphotransferase (npt) and beta-glucuronidase (gus) fused to oomycete transcriptional regulatory sequences were constructed. Seven days of co-cultivation followed by transfer to a selective medium containing cefotaxim to kill Agrobacterium and geneticin to select for transformants, resulted in geneticin resistant colonies. Under optimal conditions with Agrobacterium supplemented with a ternary plasmid carrying a constitutive virG gene and in the presence of acetosyringone as inducer, up to 30 transformants per 10(7) zoospores could be obtained. The majority of these transformants contained a single T-DNA copy randomly integrated at a chromosomal locus. Using a similar protocol, geneticin resistant transformants of two other oomycetes species were obtained, Phytophthora palmivora and Pythium ultimum.
Collapse
Affiliation(s)
- Irma Vijn
- Laboratory of Phytopathology, Wageningen University, and Graduate School Experimental Plant Sciences, Binnenhaven 5, NL-6709 PD Wageningen, the Netherlands
| | | |
Collapse
|
30
|
Cvitanich C, Judelson HS. A gene expressed during sexual and asexual sporulation in Phytophthora infestans is a member of the Puf family of translational regulators. EUKARYOTIC CELL 2003; 2:465-73. [PMID: 12796291 PMCID: PMC161445 DOI: 10.1128/ec.2.3.465-473.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A gene from Phytophthora infestans that was previously identified as being induced during the development of sexual spores was also found to be active during asexual sporulation. The gene, M90, was expressed as a 3.1-kb primary transcript containing two introns and was predicted to encode a member of the Puf family of translational regulators. The protein showed up to 51% amino acid identity to other Puf proteins within its 353-amino-acid RNA-binding domain. Little similarity extended beyond this region, as noted for other members of the family. Expression of M90 was measured by using RNA blots and transformants of P. infestans expressing a fusion between the M90 promoter and the beta-glucuronidase (GUS) gene. A 1.3-kb promoter fragment conferred the normal M90 pattern of expression to the GUS reporter in transformants. In matings, expression was first detected in male and female gametangial initials and persisted in mature oospores. Expression was also observed in hyphal tips just prior to asexual sporulation, in sporangiophores, in mature sporangia, and in zoospores. The signal quickly disappeared once spores made the transition to hyphae after germination. Nutrient limitation did not induce the gene. Potential roles for a translational regulator during both sexual development and asexual sporulation are discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Genes, Regulator
- Genes, Reporter
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Hyphae/metabolism
- Molecular Sequence Data
- Phytophthora/genetics
- Phytophthora/growth & development
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- RNA, Fungal/genetics
- Reproduction/genetics
- Sequence Homology, Amino Acid
- Spores, Fungal/physiology
- Transformation, Genetic
Collapse
Affiliation(s)
- Cristina Cvitanich
- Department of Plant Pathology, University of California, Riverside, California 92521, USA
| | | |
Collapse
|