1
|
Choi D, Alshannaq AF, Bok Y, Yu JH. Broad-spectrum antimicrobial activities of a food fermentate of Aspergillus oryzae. Microbiol Spectr 2024:e0185424. [PMID: 39436123 DOI: 10.1128/spectrum.01854-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
Amid persistent concerns over microbial foodborne illnesses and escalating antibiotic resistance, we introduce "NP," a novel and effective broad-spectrum natural antimicrobial product derived from the filtered culture broth of Aspergillus oryzae grown in a food-grade liquid medium. NP demonstrates potent bactericidal activity against a range of food-borne and ESKPAE pathogens, including Staphylococcus aureus (including eight distinct drug-resistant methicillin-resistant Staphylococcus aureus strains), Listeria monocytogenes, Salmonella typhimurium, Klebsiella pneumonia, Pseudomonas aeruginosa, and Escherichia coli (including O157:H7) with minimal inhibitory strength ranging from 25% to 100%. In addition, NP exhibits robust antifungal activity against several human pathogenic fungi including Aspergillus fumigatus, Candida albicans, and the prevalent food spoilage mold Penicillium species, arresting spore germination and vegetative cell growth. Mechanistically, NP disrupts the structural integrity of bacterial and fungal cell membranes, increasing membrane permeability and leading to cell death. Furthermore, genome-wide expression analyses of A. fumigatus vegetative cells exposed to NP reveal the downregulation of genes associated with the liveness of the fungal cells including ergosterol biosynthesis, cell wall maintenance, and development, with network analysis highlighting NP's impact on various metabolic pathways. Notably, NP is presumed safe and thermally stable, holding promise for addressing foodborne illnesses and drug-resistant infections through the development and widespread application of a new generation of antimicrobials. IMPORTANCE The development of NP, a potent broad-spectrum antimicrobial, is a significant breakthrough in the ongoing challenge against microbial foodborne illnesses and the growing threat of antibiotic resistance. This food-grade culture broth of Aspergillus oryzae demonstrates exceptional broad-spectrum efficacy against a variety of harmful bacteria and fungi, including drug-resistant strains such as methicillin-resistant Staphylococcus aureus and prevalent food spoilage molds. NP exhibits strong bactericidal activity against various foodborne and ESKAPE pathogens, and strong antifungal activity against Penicillium species, Aspergillus fumigatus, and Candida albicans. The potent bactericidal and antifungal properties of NP are a result of its ability to disrupt microbial cell membranes leading to increased permeability. Furthermore, the genome-wide impact of NP on fungal gene expression and metabolic pathways underscores its comprehensive antimicrobial action, leading to transcriptomic and metabolic changes associated with cell death in A. fumigatus.
Collapse
Affiliation(s)
- Dasol Choi
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ahmad F Alshannaq
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yohan Bok
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jae-Hyuk Yu
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Sen P, Vijay M, Kamboj H, Gupta L, Shankar J, Vijayaraghavan P. cyp51A mutations, protein modeling, and efflux pump gene expression reveals multifactorial complexity towards understanding Aspergillus section Nigri azole resistance mechanism. Sci Rep 2024; 14:6156. [PMID: 38486086 PMCID: PMC10940716 DOI: 10.1038/s41598-024-55237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
Black Aspergillus species are the most common etiological agents of otomycosis, and pulmonary aspergillosis. However, limited data is available on their antifungal susceptibility profiles and associated resistance mechanisms. Here, we determined the azole susceptibility profiles of black Aspergillus species isolated from the Indian environment and explored the potential resistance mechanisms through cyp51A gene sequencing, protein homology modeling, and expression analysis of selected genes cyp51A, cyp51B, mdr1, and mfs based on their role in imparting resistance against antifungal drugs. In this study, we have isolated a total of 161 black aspergilli isolates from 174 agricultural soil samples. Isolates had variable resistance towards medical azoles; approximately 11.80%, 3.10%, and 1.24% of isolates were resistant to itraconazole (ITC), posaconazole (POS), and voriconazole (VRC), respectively. Further, cyp51A sequence analysis showed that non-synonymous mutations were present in 20 azole-resistant Aspergillus section Nigri and 10 susceptible isolates. However, Cyp51A homology modeling indicated insignificant protein structural variations because of these mutations. Most of the isolates showed the overexpression of mdr1, and mfs genes. Hence, the study concluded that azole-resistance in section Nigri cannot be attributed exclusively to the cyp51A gene mutation or its overexpression. However, overexpression of mdr1 and mfs genes may have a potential role in drug resistance.
Collapse
Affiliation(s)
- Pooja Sen
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India
| | - Mukund Vijay
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India
| | - Himanshu Kamboj
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India
| | - Lovely Gupta
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India
| | - Jata Shankar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Pooja Vijayaraghavan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India.
| |
Collapse
|
3
|
Al Mamun MA, Reza MA, Islam MS. Identification of novel proteins regulating lipid droplet biogenesis in filamentous fungi. Mol Microbiol 2023; 120:702-722. [PMID: 37748926 DOI: 10.1111/mmi.15170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Lipid droplets (LDs) are storage organelles for neutral lipids which are critical for lipid homeostasis. Current knowledge of fungal LD biogenesis is largely limited to budding yeast, while LD regulation in multinucleated filamentous fungi which exhibit considerable metabolic activity remains unexplored. In this study, 19 LD-associated proteins were identified in the multinucleated species Aspergillus oryzae using a colocalization screening of a previously established enhanced green fluorescent protein (EGFP) fusion library. Functional screening identified 12 lipid droplet-regulating (LDR) proteins whose loss of function resulted in irregular LD biogenesis, particularly in terms of LD number and size. Bioinformatics analysis, targeted mutagenesis, and microscopy revealed four LDR proteins that localize to LD via the putative amphipathic helices (AHs). Further analysis revealed that LdrA with an Opi1 domain is essential for cytoplasmic and nuclear LD biogenesis involving a novel AH. Phylogenetic analysis demonstrated that the patterns of gene evolution were predominantly based on gene duplication. Our study identified a set of novel proteins involved in the regulation of LD biogenesis, providing unique molecular and evolutionary insights into fungal lipid storage.
Collapse
Affiliation(s)
- Md Abdulla Al Mamun
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - M Abu Reza
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | | |
Collapse
|
4
|
Li Y, Dai M, Lu L, Zhang Y. The C 2H 2-Type Transcription Factor ZfpA, Coordinately with CrzA, Affects Azole Susceptibility by Regulating the Multidrug Transporter Gene atrF in Aspergillus fumigatus. Microbiol Spectr 2023; 11:e0032523. [PMID: 37318356 PMCID: PMC10434176 DOI: 10.1128/spectrum.00325-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
The incidence of invasive aspergillosis caused by Aspergillus fumigatus has risen steadily over the past few decades due to the limited effective treatment options and the emergence of antifungal-resistant isolates. In clinic-isolated A. fumigatus, the azole resistance mechanism is primarily caused by mutations of the drug target and/or overexpression of drug efflux pumps. However, knowledge about how drug efflux pumps are transcriptionally regulated is limited. In this study, we found that loss of a C2H2 transcription factor ZfpA (zinc finger protein) results in the marked upregulation of a series of drug efflux pump-encoding genes, especially atrF, which contributes to azole drug resistance in A. fumigatus. CrzA is a previously identified positive transcription factor for genes of drug efflux pumps, and ZfpA transcriptionally inhibits expressions of drug efflux pumps in a CrzA-dependent way. Under the treatment of azoles, both ZfpA and CrzA transfer to nuclei and coregulate the expression of multidrug transporters and then keep normal drug susceptibility in fungal cells. Findings in this study demonstrated that ZfpA is not only involved in fungal growth and virulence potential but also negatively regulates antifungal drug susceptibility. IMPORTANCE Conserved across all kingdoms of life, ABC transporters comprise one of the largest protein families. They are associated with multidrug resistance, affecting aspects such as resistance to antimicrobials or anticancer drugs. Despite the importance of ABC transporters in multidrug resistance, the understanding of their regulatory network is still limited in A. fumigatus. Here, we found that the loss of the transcription factor ZfpA induces the expression of the ABC transporter gene atrF, altering azole susceptibility in A. fumigatus. ZfpA, coordinately with CrzA, affects the azole susceptibility by regulating the expression of the ABC transporter gene atrF. These findings reveal the regulatory mechanism of the ABC transporter gene atrF in A. fumigatus.
Collapse
Affiliation(s)
- Yeqi Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mengyao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
5
|
Hokken MWJ, Coolen JPM, Steenbreker H, Zoll J, Baltussen TJH, Verweij PE, Melchers WJG. The Transcriptome Response to Azole Compounds in Aspergillus fumigatus Shows Differential Gene Expression across Pathways Essential for Azole Resistance and Cell Survival. J Fungi (Basel) 2023; 9:807. [PMID: 37623579 PMCID: PMC10455693 DOI: 10.3390/jof9080807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
The opportunistic pathogen Aspergillus fumigatus is found on all continents and thrives in soil and agricultural environments. Its ability to readily adapt to novel environments and to produce billions of spores led to the spread of azole-resistant A. fumigatus across the globe, posing a threat to many immunocompromised patients, including critically ill patients with severe influenza or COVID-19. In our study, we sought to compare the adaptational response to azoles from A. fumigatus isolates that differ in azole susceptibility and genetic background. To gain more insight into how short-term adaptation to stressful azole compounds is managed through gene expression, we conducted an RNA-sequencing study on the response of A. fumigatus to itraconazole and the newest clinically approved azole, isavuconazole. We observed many similarities in ergosterol biosynthesis up-regulation across isolates, with the exception of the pan-azole-resistant isolate, which showed very little differential regulation in comparison to other isolates. Additionally, we found differential regulation of membrane efflux transporters, secondary metabolites, iron metabolism, and various stress response and cell signaling mechanisms.
Collapse
Affiliation(s)
- Margriet W. J. Hokken
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Jordy P. M. Coolen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Hilbert Steenbreker
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
| | - Jan Zoll
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Tim J. H. Baltussen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
6
|
Tan J, Zhang H, Sun Y, Gao L. Afu-Emi1 Contributes to Stress Adaptation and Voriconazole Susceptibility in Aspergillus fumigatus. Microbiol Spectr 2023; 11:e0095623. [PMID: 37039674 PMCID: PMC10269808 DOI: 10.1128/spectrum.00956-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
Invasive aspergillosis (IA) is the second most common invasive fungal disease and is associated with high mortality rates. Aspergillus fumigatus is the predominant causal agent of this life-threatening infection. Triazoles are still the cornerstone of antifungal treatment, and voriconazole remains the first-line choice. However, voriconazole resistance has been increasingly reported, which results in significantly higher mortality rates for IA and is particularly problematic. In the present study, we report the identification and functional study of a protein with previously unknown function that is encoded by the gene designated Afu-emi1 (AFUA_1G07360). High-throughput gene replacement technology was applied to construct the knockout ΔAfu-emi1 strain and a revertant strain. The MICs for azoles, including posaconazole, itraconazole, and voriconazole, were evaluated via the broth microdilution method and E-tests, which revealed that disruption of Afu-emi1 resulted in 4-fold increased susceptibility to voriconazole. Colony growth in the presence of oxidants, namely, H2O2 and menadione, and osmotic pressure-altering agents, namely, NaCl and d-sorbitol, was measured. The Afu-emi1 mutant strain exhibited a significant growth defect under oxidative and osmotic stress. The reactive oxygen species (ROS) production levels with or without voriconazole pretreatment were determined, and the Afu-emi1 mutant strain exhibited significantly lower ROS production levels. The effects of Afu-emi1 disruption on voriconazole susceptibility, growth under stress, and ROS production were restored in the revertant strain. In addition, the expression of cyp51A, AfuMDR2, AfuMDR3, AfuMDR4, and cdr1b in the ΔAfu-emi1 strain was significantly reduced. In conclusion, deletion of the gene Afu-emi1 resulted in increased voriconazole susceptibility, attenuated ability for oxidative and osmotic stress adaptation, decreased ROS production, and downregulation of cyp51A, AfuMDR2, AfuMDR3, AfuMDR4, and cdr1b expression, suggesting that Afu-Emi1 is an important regulator of stress adaptation and cyp51A and efflux pump expression in this medically important fungus. IMPORTANCE Voriconazole is the first-line choice for IA, a life-threatening disease. Therefore, voriconazole resistance has become particularly problematic. Disruption of Afu-emi1 resulted in increased susceptibility to voriconazole, a significant growth defect under oxidative and osmotic stress, and downregulation of target enzyme Cyp51A and efflux pump expression, suggesting that Afu-Emi1 is an important regulator of stress adaptation and cyp51A and efflux pump expression in this medically important fungus. Targeting Afu-Emi1 might help to enhance azole therapeutic efficacy and impede azole resistance.
Collapse
Affiliation(s)
- Jufang Tan
- Department of Neonatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, China
| | - Heng Zhang
- Department of Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, China
| | - Yi Sun
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, China
| | - Lujuan Gao
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Dermatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, Fujian Province, China
| |
Collapse
|
7
|
Schoen TJ, Calise DG, Bok JW, Giese MA, Nwagwu CD, Zarnowski R, Andes D, Huttenlocher A, Keller NP. Aspergillus fumigatus transcription factor ZfpA regulates hyphal development and alters susceptibility to antifungals and neutrophil killing during infection. PLoS Pathog 2023; 19:e1011152. [PMID: 37126504 PMCID: PMC10174577 DOI: 10.1371/journal.ppat.1011152] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/11/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023] Open
Abstract
Hyphal growth is essential for host colonization during Aspergillus infection. The transcription factor ZfpA regulates A. fumigatus hyphal development including branching, septation, and cell wall composition. However, how ZfpA affects fungal growth and susceptibility to host immunity during infection has not been investigated. Here, we use the larval zebrafish-Aspergillus infection model and primary human neutrophils to probe how ZfpA affects A. fumigatus pathogenesis and response to antifungal drugs in vivo. ZfpA deletion promotes fungal clearance and attenuates virulence in wild-type hosts and this virulence defect is abrogated in neutrophil-deficient zebrafish. ZfpA deletion also increases susceptibility to human neutrophils ex vivo while overexpression impairs fungal killing. Overexpression of ZfpA confers protection against the antifungal caspofungin by increasing chitin synthesis during hyphal development, while ZfpA deletion reduces cell wall chitin and increases caspofungin susceptibility in neutrophil-deficient zebrafish. These findings suggest a protective role for ZfpA activity in resistance to the innate immune response and antifungal treatment during A. fumigatus infection.
Collapse
Affiliation(s)
- Taylor J. Schoen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dante G. Calise
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Morgan A. Giese
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chibueze D. Nwagwu
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Robert Zarnowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
8
|
Pulmonary Aspergillosis in Humboldt Penguins—Susceptibility Patterns and Molecular Epidemiology of Clinical and Environmental Aspergillus fumigatus Isolates from a Belgian Zoo, 2017–2022. Antibiotics (Basel) 2023; 12:antibiotics12030584. [PMID: 36978451 PMCID: PMC10044460 DOI: 10.3390/antibiotics12030584] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Aspergillus fumigatus is the main causative agent of avian aspergillosis and results in significant health problems in birds, especially those living in captivity. The fungal contamination by A. fumigatus in the environment of Humboldt penguins (Spheniscus humboldti), located in a Belgian zoo, was assessed through the analysis of air, water, sand and nest samples during four non-consecutive days in 2021–2022. From these samples, potential azole-resistant A. fumigatus (ARAF) isolates were detected using a selective culture medium. A total of 28 veterinary isolates obtained after necropsy of Humboldt penguins and other avian species from the zoo were also included. All veterinary and suspected ARAF isolates from the environment were characterized for their azole-resistance profile by broth microdilution. Isolates displaying phenotypic resistance against at least one medical azole were systematically screened for mutations in the cyp51A gene. A total of 14 (13.6%) ARAF isolates were identified from the environment (n = 8) and from Humboldt penguins (n = 6). The TR34/L98H mutation was observed in all resistant environmental strains, and in two resistant veterinary strains. To the best of our knowledge, this is the first description of this mutation in A. fumigatus isolates from Humboldt penguins. During the period 2017–2022, pulmonary aspergillosis was confirmed in 51 necropsied penguins, which reflects a death rate due to aspergillosis of 68.0%, mostly affecting adults. Microsatellite polymorphism analysis revealed a high level of diversity among environmental and veterinary A. fumigatus isolates. However, a cluster was observed between one veterinary isolate and six environmental strains, all resistant to medical azoles. In conclusion, the environment of the Humboldt penguins is a potential contamination source of ARAF, making their management even more complex.
Collapse
|
9
|
Schoen TJ, Calise DG, Bok JW, Nwagwu CD, Zarnowski R, Andes D, Huttenlocher A, Keller NP. Aspergillus fumigatus transcription factor ZfpA regulates hyphal development and alters susceptibility to antifungals and neutrophil killing during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525624. [PMID: 36747761 PMCID: PMC9901008 DOI: 10.1101/2023.01.25.525624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hyphal growth is essential for host colonization during Aspergillus infection. The transcription factor ZfpA regulates A. fumigatus hyphal development including branching, septation, and cell wall composition. However, how ZfpA affects fungal growth and susceptibility to host immunity during infection has not been investigated. Here, we use the larval zebrafish- Aspergillus infection model and primary human neutrophils to probe how ZfpA affects A. fumigatus pathogenesis and response to antifungal drugs in vivo . ZfpA deletion promotes fungal clearance and attenuates virulence in wild-type hosts and this virulence defect is abrogated in neutrophil-deficient zebrafish. ZfpA deletion also increases susceptibility to human neutrophils ex vivo while overexpression impairs fungal killing. Overexpression of ZfpA confers protection against the antifungal caspofungin by increasing chitin synthesis during hyphal development, while ZfpA deletion reduces cell wall chitin and increases caspofungin susceptibility in neutrophil-deficient zebrafish. These findings suggest a protective role for ZfpA activity in resistance to the innate immune response and antifungal treatment during A. fumigatus infection. Author Summary Aspergillus fumigatus is a common environmental fungus that can infect immunocompromised people and cause a life-threatening disease called invasive aspergillosis. An important step during infection is the development of A. fumigatus filaments known as hyphae. A. fumigatus uses hyphae to acquire nutrients and invade host tissues, leading to tissue damage and disseminated infection. In this study we report that a regulator of gene transcription in A. fumigatus called ZfpA is important for hyphal growth during infection. We find that ZfpA activity protects the fungus from being killed by innate immune cells and decreases the efficacy of antifungal drugs during infection by regulating construction of the cell wall, an important protective layer for fungal pathogens. Our study introduces ZfpA as an important genetic regulator of stress tolerance during infection that protects A. fumigatus from the host immune response and antifungal drugs.
Collapse
Affiliation(s)
- Taylor J. Schoen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dante G. Calise
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Robert Zarnowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Brauer VS, Pessoni AM, Freitas MS, Cavalcanti-Neto MP, Ries LNA, Almeida F. Chitin Biosynthesis in Aspergillus Species. J Fungi (Basel) 2023; 9:jof9010089. [PMID: 36675910 PMCID: PMC9865612 DOI: 10.3390/jof9010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 01/11/2023] Open
Abstract
The fungal cell wall (FCW) is a dynamic structure responsible for the maintenance of cellular homeostasis, and is essential for modulating the interaction of the fungus with its environment. It is composed of proteins, lipids, pigments and polysaccharides, including chitin. Chitin synthesis is catalyzed by chitin synthases (CS), and up to eight CS-encoding genes can be found in Aspergillus species. This review discusses in detail the chitin synthesis and regulation in Aspergillus species, and how manipulation of chitin synthesis pathways can modulate fungal growth, enzyme production, virulence and susceptibility to antifungal agents. More specifically, the metabolic steps involved in chitin biosynthesis are described with an emphasis on how the initiation of chitin biosynthesis remains unknown. A description of the classification, localization and transport of CS was also made. Chitin biosynthesis is shown to underlie a complex regulatory network, with extensive cross-talks existing between the different signaling pathways. Furthermore, pathways and recently identified regulators of chitin biosynthesis during the caspofungin paradoxical effect (CPE) are described. The effect of a chitin on the mammalian immune system is also discussed. Lastly, interference with chitin biosynthesis may also be beneficial for biotechnological applications. Even after more than 30 years of research, chitin biosynthesis remains a topic of current interest in mycology.
Collapse
Affiliation(s)
- Veronica S. Brauer
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - André M. Pessoni
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - Mateus S. Freitas
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - Marinaldo P. Cavalcanti-Neto
- Integrated Laboratory of Morphofunctional Sciences, Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Rio de Janeiro 27965-045, Brazil
| | - Laure N. A. Ries
- MRC Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK
- Correspondence: (L.N.A.R.); (F.A.)
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
- Correspondence: (L.N.A.R.); (F.A.)
| |
Collapse
|
11
|
Wei T, Zheng N, Zheng H, Chen Y, Hong P, Liu W, Liu M. Proteomic Perspective of Azole Resistance in Aspergillus fumigatus Biofilm Extracellular Matrix in Response to Itraconazole. Med Mycol 2022; 60:myac084. [PMID: 36243954 DOI: 10.1093/mmy/myac084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Azole-resistant Aspergillus fumigatus makes a major challenge to the chemotherapy for invasive aspergillosis, whereas cyp51A gene mutation is the most dominant mechanism for azole resistance. Moreover, biofilm contributes to drug resistance for A. fumigatus, and extracellular matrix (ECM) is essential to protect live cells from antifungal drugs. Therefore, we performed a comparative proteomic study on the biofilm ECM of both the wild-type and azole-resistant strains of A. fumigatus under azole pressure. In total, 2377 proteins were identified, of which 480 and 604 proteins with differential expression were obtained from the wild-type and azole-resistant A. fumigatus in exposure to itraconazole respectively (fold change > 2 or < 0.5, P-value < 0.05). We found that a high proportion of regulated proteins were located in cytoplasm, nucleus, and mitochondria. Meanwhile, GO and KEGG analyses revealed that metabolic process and ribosome pathway were significantly enriched. Particularly, differentially expressed proteins in response to azole pressure of both the wild-type and resistant strains were further analyzed. Our results indicated that these changes in biofilm ECM proteins were related to ergosterol synthesis, oxidative stress, efflux pumps, DNA repair, DNA replication, and transcription.
Collapse
Affiliation(s)
- Tianqi Wei
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Nan Zheng
- Medical School, Nanjing University, Nanjing, China
| | - Hailin Zheng
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Yuping Chen
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Pianpian Hong
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Weida Liu
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Musang Liu
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| |
Collapse
|
12
|
ATP-Binding Cassette (ABC) Transporters in Fusarium Specific Mycoparasite Sphaerodes mycoparasitica during Biotrophic Mycoparasitism. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent transcriptomic profiling has revealed importance membrane transporters such as ATP-binding cassette (ABC) transporters in fungal necrotrophic mycoparasites. In this study, RNA-Seq allowed rapid detection of ABC transcripts involved in biotrophic mycoparasitism of Sphaerodes mycoparasitica against the phytopathogenic and mycotoxigenic Fusarium graminearum host, the causal agent of Fusarium head blight (FHB). Transcriptomic analyses of highly expressed S. mycoparasitica genes, and their phylogenetic relationships with other eukaryotic fungi, portrayed the ABC transporters’ evolutionary paths towards biotrophic mycoparasitism. Prior to the in silico phylogenetic analyses, transmission electron microscopy (TEM) was used to confirm the formation of appressorium/haustorium infection structures in S. mycoparasitica during early (1.5 d and 3.5 d) stages of mycoparasitism. Transcripts encoding biotrophy-associated secreted proteins did uncover the enrolment of ABC transporter genes in this specific biocontrol mode of action, while tandem ABC and BUB2 (non-ABC) transcripts seemed to be proper for appressorium development. The next-generation HiSeq transcriptomic profiling of the mycoparasitic hypha samples, revealed 81 transcripts annotated to ABC transporters consisting of a variety of ABC-B (14%), ABC-C (22%), and ABC-G (23%), and to ABC-A, ABC-F, aliphatic sulfonates importer (TC 3.A.1.17.2), BtuF, ribose importer (TC 3.A.1.2.1), and unknown families. The most abundant transcripts belonged to the multidrug resistance exporter (TC 3.A.1.201) subfamily of the ABC-B family, the conjugate transporter (TC 3.A.1.208) subfamily of the ABC-C family, and the pleiotropic drug resistance (PDR) (TC 3.A.1.205) subfamily of the ABC-G family. These findings highlight the significance of ABC transporter genes that control cellular detoxification against toxic substances (e.g., chemical pesticides and mycotoxins) in sustaining a virulence of S. mycoparasitica for effective biotrophic mycoparasitism on the F. graminearum host. The findings of this study provide clues to better understand the biotrophic mycoparasitism of S. mycoparasitica interacting with the Fusarium host, which implies that the ABC transporter group of key proteins is involved in the mycoparasite’s virulence and multidrug resistance to toxic substances including cellular detoxification.
Collapse
|
13
|
Coordinated Regulation of Membrane Homeostasis and Drug Accumulation by Novel Kinase STK-17 in Response to Antifungal Azole Treatment. Microbiol Spectr 2022; 10:e0012722. [PMID: 35196787 PMCID: PMC8865411 DOI: 10.1128/spectrum.00127-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The emergence of antifungal resistance, especially to the most widely used azole class of ergosterol biosynthesis inhibitors, makes fungal infections difficult to treat in clinics and agriculture. When exposed to azoles, fungi can make adaptive responses to alleviate azole toxicity and produce azole tolerance. However, except for azole efflux pumps and ergosterol biosynthesis genes, the role of most azole responsive genes in azole resistance is unknown. In this study, STK-17, whose transcription is upregulated by azoles, was characterized as a novel kinase that is required for azole resistance. Deletion or dysfunction of STK-17 led to azole hypersensitivity in Neurospora crassa and to other ergosterol biosynthesis inhibitors such as amorolfine, terbinafine, and amphotericin B, but not fatty acid and ceramide biosynthesis inhibitors. STK-17 was also required for oxidative stress resistance, but this was not connected to azole resistance. RNA-seq results showed that stk-17 deletion affected the basal expression and the response to ketoconazole of some membrane protein genes, indicating functional association of STK-17 with the membrane. Notably, deletion of stk-17 affected the normal response to azoles of erg genes, including the azole target-encoding gene erg11, and erg2, erg6, and erg24, and led to abnormal accumulation of sterols in the presence of azoles. HPLC-MS/MS analysis revealed increased intracellular azole accumulation in the stk-17 mutant, possibly due to enhanced azole influx and reduced azole efflux that was independent of the major efflux pump CDR4. Importantly, STK-17 was widely distributed and functionally conserved among fungi, thus providing a potential antifungal target. IMPORTANCE Antifungal resistance is increasing worldwide, especially to the most widely used azole class of ergosterol biosynthesis inhibitors, making control of fungal infections more challenging. A lot of effort has been expended in elucidating the mechanism of azole resistance and revealing potential antifungal targets. In this study, by analyzing azole-responsive genes in Neurospora crassa, we discovered STK-17, a novel kinase, that is required for azole resistance in several types of fungi. It has a role in regulating membrane homeostasis, responses to azole by ergosterol biosynthesis genes and azole accumulation, thus, deepening our understanding on the mechanism of azole stress response. Additionally, STK-17 is conserved among fungi and plays important roles in fungal development and stress resistance. Kinase inhibitors are broadly used for treating diseases, and our study pinpoints a potential drug target for antifungal development.
Collapse
|
14
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
15
|
Ross BS, Lofgren LA, Ashare A, Stajich JE, Cramer RA. Aspergillus fumigatus In-Host HOG Pathway Mutation for Cystic Fibrosis Lung Microenvironment Persistence. mBio 2021; 12:e0215321. [PMID: 34465017 PMCID: PMC8406193 DOI: 10.1128/mbio.02153-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
The prevalence of Aspergillus fumigatus colonization in individuals with cystic fibrosis (CF) and subsequent fungal persistence in the lung is increasingly recognized. However, there is no consensus for clinical management of A. fumigatus in CF individuals, due largely to uncertainty surrounding A. fumigatus CF pathogenesis and virulence mechanisms. To address this gap in knowledge, a longitudinal series of A. fumigatus isolates from an individual with CF were collected over 4.5 years. Isolate genotypes were defined with whole-genome sequencing that revealed both transitory and persistent A. fumigatus in the lung. Persistent lineage isolates grew most readily in a low-oxygen culture environment, and conidia were more sensitive to oxidative stress-inducing conditions than those from nonpersistent isolates. Closely related persistent isolates harbored a unique allele of the high-osmolarity glycerol (HOG) pathway mitogen-activated protein kinase kinase, Pbs2 (pbs2C2). Data suggest this novel pbs2C2 allele arose in vivo and is necessary for the fungal response to osmotic stress in a low-oxygen environment through hyperactivation of the HOG (SakA) signaling pathway. Hyperactivation of the HOG pathway through pbs2C2 comes at the cost of decreased conidial stress resistance in the presence of atmospheric oxygen levels. These novel findings shed light on pathoadaptive mechanisms of A. fumigatus in CF, lay the foundation for identifying persistent A. fumigatus isolates that may require antifungal therapy, and highlight considerations for successful culture of persistent Aspergillus CF isolates. IMPORTANCE Aspergillus fumigatus infection causes a spectrum of clinical manifestations. For individuals with cystic fibrosis (CF), allergic bronchopulmonary aspergillosis (ABPA) is an established complication, but there is a growing appreciation for A. fumigatus airway persistence in CF disease progression. There currently is little consensus for clinical management of A. fumigatus long-term culture positivity in CF. A better understanding of A. fumigatus pathogenesis mechanisms in CF is expected to yield insights into when antifungal therapies are warranted. Here, a 4.5-year longitudinal collection of A. fumigatus isolates from a patient with CF identified a persistent lineage that harbors a unique allele of the Pbs2 mitogen-activated protein kinase kinase (MAPKK) necessary for unique CF-relevant stress phenotypes. Importantly for A. fumigatus CF patient diagnostics, this allele provides increased fitness under CF lung-like conditions at a cost of reduced in vitro growth under standard laboratory conditions. These data illustrate a molecular mechanism for A. fumigatus CF lung persistence with implications for diagnostics and antifungal therapy.
Collapse
Affiliation(s)
- Brandon S. Ross
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Lotus A. Lofgren
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, USA
| | - Alix Ashare
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
16
|
Valero C, Colabardini AC, de Castro PA, Silva LP, Ries LNA, Pardeshi L, Wang F, Rocha MC, Malavazi I, Silva RN, Martins C, Domingos P, Pereira-Silva C, Bromley MJ, Wong KH, Goldman GH. Aspergillus Fumigatus ZnfA, a Novel Zinc Finger Transcription Factor Involved in Calcium Metabolism and Caspofungin Tolerance. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:689900. [PMID: 37744107 PMCID: PMC10512341 DOI: 10.3389/ffunb.2021.689900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/16/2021] [Indexed: 09/26/2023]
Abstract
Invasive pulmonary aspergillosis is a life-threatening fungal infection especially in the immunocompromised patients. The low diversity of available antifungal drugs coupled with the emergence of antifungal resistance has become a worldwide clinical concern. The echinocandin Caspofungin (CSP) is recommended as a second-line therapy but resistance and tolerance mechanisms have been reported. However, how the fungal cell articulates the response to CSP is not completely understood. This work provides a detailed characterization of ZnfA, a transcription factor (TF) identified in previous screening studies that is involved in the A. fumigatus responses to calcium and CSP. This TF plays an important role in the regulation of iron homeostasis and cell wall organization in response to high CSP concentrations as revealed by Chromatin Immunoprecipitation coupled to DNA sequencing (ChIP-seq) analysis. Furthermore, ZnfA acts collaboratively with the key TF CrzA in modulating the response to calcium as well as cell wall and osmotic stresses. This study therefore describes the existence of an additional, previously unknown TF that bridges calcium signaling and the CSP cellular response and further exposes the complex connections that exist among different pathways which govern stress sensing and signaling in A. fumigatus.
Collapse
Affiliation(s)
- Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Lakhansing Pardeshi
- Faculty of Health Sciences, University of Macau, Macau, China
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Fang Wang
- Faculty of Health Sciences, University of Macau, Macau, China
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Paulo, Brazil
| | | | - Celso Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Patrícia Domingos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Cristina Pereira-Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Michael J. Bromley
- Manchester Fungal Infection Group, Core Technology Facility, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau, China
- Faculty of Health Sciences, Institute of Translational Medicine, University of Macau, Macau, China
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
17
|
Roudbary M, Vahedi-Shahandashti R, Santos ALSD, Roudbar Mohammadi S, Aslani P, Lass-Flörl C, Rodrigues CF. Biofilm formation in clinically relevant filamentous fungi: a therapeutic challenge. Crit Rev Microbiol 2021; 48:197-221. [PMID: 34358430 DOI: 10.1080/1040841x.2021.1950121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biofilms are highly-organized microbial communities attached to a biotic or an abiotic surface, surrounded by an extracellular matrix secreted by the biofilm-forming cells. The majority of fungal pathogens contribute to biofilm formation within tissues or biomedical devices, leading to serious and persistent infections. The clinical significance of biofilms relies on the increased resistance to conventional antifungal therapies and suppression of the host immune system, which leads to invasive and recurrent fungal infections. While different features of yeast biofilms are well-described in the literature, the structural and molecular basis of biofilm formation of clinically related filamentous fungi has not been fully addressed. This review aimed to address biofilm formation in clinically relevant filamentous fungi.
Collapse
Affiliation(s)
- Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - André Luis Souza Dos Santos
- Department of General Microbiology, Microbiology Institute Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | - Peyman Aslani
- Department of Parasitology and Mycology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Célia F Rodrigues
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Yamada T, Yaguchi T, Tamura T, Pich C, Salamin K, Feuermann M, Monod M. Itraconazole resistance of Trichophyton rubrum mediated by the ABC transporter TruMDR2. Mycoses 2021; 64:936-946. [PMID: 33896045 DOI: 10.1111/myc.13286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/28/2021] [Accepted: 04/07/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Dermatophytes showing reduced sensitivity to antifungal agents have emerged in several countries. One terbinafine resistant strain of Trichophyton rubrum, TIMM20092, also showed reduced sensitivity to itraconazole (ITC) and voriconazole (VRC). The expression of two genes (TruMDR2 and TruMDR3) encoding multidrug transporters of the ABC family was found to be highly up-regulated in this strain. Deletion of TruMDR3 in TIMM20092 abolished its resistance to VRC but only slightly reduced its resistance to ITC. OBJECTIVES We examined the potential of T rubrum to develop resistance to ITC by analysing the mechanism of ITC resistance in TIMM20092. METHODS The deletion of TruMDR2 by gene replacement was performed in TIMM20092 and one TruMDR3-lacking mutant (∆TruMDR3) previously generated from TIMM20092. TruMDR2 single and TruMDR2/TruMDR3 double mutants (∆TruMDR2 and ∆TruMDR2/3) were successfully obtained, respectively. RESULTS The suppression of TruMDR2 was shown to abolish resistance to ITC in TIMM20092 and the TruMDR3-lacking mutant, strongly suggesting that TruMDR2 is a major contributor to ITC resistance in TIMM20092. CONCLUSIONS Our study highlights the possible role of the ABC transporter TruMDR2 in ITC resistance of T. rubrum.
Collapse
Affiliation(s)
- Tsuyoshi Yamada
- Teikyo University Institute of Medical Mycology, Tokyo, Japan
- Asia International Institute of Infectious Disease Control, Teikyo University, Tokyo, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Takashi Tamura
- General Medical Education and Research Center, Teikyo University, Tokyo, Japan
| | - Christine Pich
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Karine Salamin
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marc Feuermann
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Michel Monod
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
19
|
Archer M, Xu J. Current Practices for Reference Gene Selection in RT-qPCR of Aspergillus: Outlook and Recommendations for the Future. Genes (Basel) 2021; 12:genes12070960. [PMID: 34202507 PMCID: PMC8307107 DOI: 10.3390/genes12070960] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Aspergillus is a genus of filamentous fungi with vast geographic and ecological distributions. Species within this genus are clinically, agriculturally and biotechnologically relevant, leading to increasing interest in elucidating gene expression dynamics of key metabolic and physiological processes. Reverse-transcription quantitative Polymerase Chain Reaction (RT-qPCR) is a sensitive and specific method of quantifying gene expression. A crucial step for comparing RT-qPCR results between strains and experimental conditions is normalisation to experimentally validated reference gene(s). In this review, we provide a critical analysis of current reference gene selection and validation practices for RT-qPCR gene expression analyses of Aspergillus. Of 90 primary research articles obtained through our PubMed query, 17 experimentally validated the reference gene(s) used. Twenty reference genes were used across the 90 studies, with beta-tubulin being the most used reference gene, followed by actin, 18S rRNA and glyceraldehyde 3-phosphate dehydrogenase. Sixteen of the 90 studies used multiple reference genes for normalisation. Failing to experimentally validate the stability of reference genes can lead to conflicting results, as was the case for four studies. Overall, our review highlights the need to experimentally validate reference genes in RT-qPCR studies of Aspergillus.
Collapse
Affiliation(s)
| | - Jianping Xu
- Correspondence: ; Tel.: +1-905-525-9140 (ext. 27934); Fax: +1-905-522-6066
| |
Collapse
|
20
|
Fan Y, Wang Y, Korfanty GA, Archer M, Xu J. Genome-Wide Association Analysis for Triazole Resistance in Aspergillus fumigatus. Pathogens 2021; 10:701. [PMID: 34199862 PMCID: PMC8227032 DOI: 10.3390/pathogens10060701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Aspergillus fumigatus is a ubiquitous fungus and the main agent of aspergillosis, a common fungal infection in the immunocompromised population. Triazoles such as itraconazole and voriconazole are the common first-line drugs for treating aspergillosis. However, triazole resistance in A. fumigatus has been reported in an increasing number of countries. While most studies of triazole resistance have focused on mutations in the triazole target gene cyp51A, >70% of triazole-resistant strains in certain populations showed no mutations in cyp51A. To identify potential non-cyp51A mutations associated with triazole resistance in A. fumigatus, we analyzed the whole genome sequences and triazole susceptibilities of 195 strains from 12 countries. These strains belonged to three distinct clades. Our genome-wide association study (GWAS) identified a total of six missense mutations significantly associated with itraconazole resistance and 18 missense mutations with voriconazole resistance. In addition, to investigate itraconazole and pan-azole resistance, Fisher's exact tests revealed 26 additional missense variants tightly linked to the top 20 SNPs obtained by GWAS, of which two were consistently associated with triazole resistance. The large number of novel mutations related to triazole resistance should help further investigations into their molecular mechanisms, their clinical importance, and the development of a comprehensive molecular diagnosis toolbox for triazole resistance in A. fumigatus.
Collapse
Affiliation(s)
| | | | | | | | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.F.); (Y.W.); (G.A.K.); (M.A.)
| |
Collapse
|
21
|
Owens RA, Doyle S. Effects of antifungal agents on the fungal proteome: informing on mechanisms of sensitivity and resistance. Expert Rev Proteomics 2021; 18:185-199. [PMID: 33797307 DOI: 10.1080/14789450.2021.1912601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Antifungal agents are essential in the fight against serious fungal disease, however emerging resistance is threatening an already limited collection of therapeutics. Proteomic analyses of effects of antifungal agents can expand our understanding of multifactorial mechanisms of action and have also proven valuable to elucidate proteomic changes associated with antifungal resistance. AREAS COVERED This review covers the application of proteomic techniques to examine sensitivity and resistance to antifungals including commonly used therapeutics, amphotericin B, echinocandins and the azoles, based predominantly on studies involving Aspergillus fumigatus, Candida albicans and Candida glabrata from the last 10 years. In addition, non-clinical antimicrobial agents are also discussed, which highlight the potential of proteomics to identify new antifungal targets. EXPERT COMMENTARY Fungal proteomics has evolved in the last decade with increased genome availability and developments in mass spectrometry. Collectively, these have led to the advancement of proteomic techniques, allowing increased coverage of the proteome. Gel-based proteomics laid the foundation for these types of studies, which has now shifted to the more powerful gel-free proteomics. This has resulted in the identification of key mediators and potential biomarkers of antifungal resistance, as well as elucidating the mechanisms of action of novel and established antifungal agents.
Collapse
Affiliation(s)
- Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
22
|
Xiao C, Wang J, Liao Z, Huang Y, Ji Q, Liu Y, Su F, Xu L, Wei Q, Pan Y, Li K, Bao G. Assessment of the mechanism of drug resistance in Trichophyton mentagrophytes in response to various substances. BMC Genomics 2021; 22:250. [PMID: 33827426 PMCID: PMC8028809 DOI: 10.1186/s12864-021-07520-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Trichophyton mentagrophyte (TM), a zoonotic pathogen, has been endangering public health due to emerging drug resistance. Although increased attention is paid to this issue, there is very limited research available on drug resistance in TM. In this study, we studied the gene and proteomic changes, morphological changes, cellular fat localization, fat content changes, and biofilm of TM treated with different substances. RESULTS The TM growth curve showed a positive correlation with the concentration of Fenarimol (FE), genistein (GE), clotrimazole (KM), and Miconazole nitrate salt (MK). The morphology of TM cells changed in different degrees after treatment with different substances as observed by TEM and SEM. The results showed that under KM and berberine hydrochloride (BB) treatment, a total of 3305 differentially expressed genes were detected, with the highest number in the KM-treated group (578 up-regulated and 615 down-regulated). A total of 847 proteins and 1850 peptides were identified in TM proteomics. Nile red staining showed that the fat content of TM was significantly higher in the BB-, ethidium bromide- (EB), FE-, KM-, Adriamycin hydrochloride- (YA), and MK-treated group compared to the control group. Results of the biofilm thickness showed that it gradually increased under treatment with specific concentrations of KM or BB, which may be related to the up-regulation of ERG25 and CYP related gene proteins. CONCLUSIONS It is suggested that in order to effectively deal with dermatomycosis caused by TM, it is necessary to inhibit the expression of ERG25 and CYP related genes and fat metabolism, which can result in the inhibition of the production of biofilm by the fungus and solve the problem of fungal drug resistance in clinical settings.
Collapse
Affiliation(s)
- Chenwen Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhenfeng Liao
- Central Laboratory of Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yee Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Su
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lijun Xu
- National Clinical Research Center for Infectious Diseases, The Department of Infectious diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Qiang Wei
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yao Pan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Life Sciences, China Metrology University, Hangzhou, China
| | - Ke Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
23
|
Genetic and Phenotypic Characterization of in-Host Developed Azole-Resistant Aspergillus flavus Isolates. J Fungi (Basel) 2021; 7:jof7030164. [PMID: 33668871 PMCID: PMC7996152 DOI: 10.3390/jof7030164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Aspergillus flavus is a pathogenic fungal species that can cause pulmonary aspergillosis, and triazole compounds are used for the treatment of these infections. Prolonged exposure to azoles may select for compensatory mutations in the A. flavus genome, resulting in azole resistance. Here, we characterize a series of 11 isogenic A. flavus strains isolated from a patient with pulmonary aspergillosis. Over a period of three months, the initially azole-susceptible strain developed itraconazole and voriconazole resistance. Short tandem repeat analysis and whole-genome sequencing revealed the high genetic relatedness of all isolates, indicating an infection with one single isolate. In contrast, the isolates were macroscopically highly diverse, suggesting an adaptation to the environment due to (epi)genetic changes. The whole-genome sequencing of susceptible and azole-resistant strains showed a number of mutations that might be associated with azole resistance. The majority of resistant strains contain a Y119F mutation in the Cyp51A gene, which corresponds to the Y121F mutation found in A. fumigatus. One azole-resistant strain demonstrated a divergent set of mutations, including a V99A mutation in a major facilitator superfamily (MSF) multidrug transporter (AFLA 083950).
Collapse
|
24
|
Víglaš J, Olejníková P. An update on ABC transporters of filamentous fungi - from physiological substrates to xenobiotics. Microbiol Res 2021; 246:126684. [PMID: 33529790 DOI: 10.1016/j.micres.2020.126684] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/13/2020] [Accepted: 12/18/2020] [Indexed: 02/02/2023]
Abstract
The superfamily of ATP-binding cassette (ABC) transporters is a large family of proteins with a wide substrate repertoire and range of functions. The main role of these proteins is in the transportation of different molecules across biological membranes. Due to the broad range of substrates, ABC transporters can transport not only natural metabolites but also various xenobiotics, including antifungal compounds, which makes some ABC transporters key players in antifungal resistance. Alternatively, ABC proteins without transport function seem to be essential for fungal cell viability. In this work, we review the individual subfamilies of ABC transporters in filamentous fungi regarding physiological substrates, clinical and agricultural significance. Subfamilies are defined using well-studied transporters in yeast, which may help to clarify their role in filamentous fungi.
Collapse
Affiliation(s)
- Ján Víglaš
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia.
| | - Petra Olejníková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia.
| |
Collapse
|
25
|
Zhao S, Ge W, Watanabe A, Fortwendel JR, Gibbons JG. Genome-Wide Association for Itraconazole Sensitivity in Non-resistant Clinical Isolates of Aspergillus fumigatus. FRONTIERS IN FUNGAL BIOLOGY 2021; 1:617338. [PMID: 37743877 PMCID: PMC10512406 DOI: 10.3389/ffunb.2020.617338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/15/2020] [Indexed: 09/26/2023]
Abstract
Aspergillus fumigatus is a potentially lethal opportunistic pathogen that infects over ~200,000 people and causes ~100,000 deaths per year globally. Treating A. fumigatus infections is particularly challenging because of the recent emergence of azole-resistance. The majority of studies focusing on the molecular mechanisms underlying azole resistance have examined azole-resistant isolates. However, isolates that are susceptible to azoles also display variation in their sensitivity, presenting a unique opportunity to identify genes contributing to azole sensitivity. Here, we used genome-wide association (GWA) analysis to identify loci involved in azole sensitivity by analyzing the association between 68,853 SNPs and itraconazole (ITCZ) minimum inhibitory concentration (MIC) in 76 clinical isolates of A. fumigatus from Japan. Population structure analysis suggests the presence of four distinct populations, with ITCZ MICs distributed relatively evenly across populations. We independently conducted GWA when treating ITCZ MIC as a quantitative trait and a binary trait, and identified two SNPs with strong associations in both analyses. These SNPs fell within the coding regions of Afu2g02220 and Afu2g02140. We functionally validated Afu2g02220 by knocking it out using a CRISPR/Cas9 approach, because orthologs of this gene are involved in sterol modification and ITCZ targets the ergosterol biosynthesis pathway. Knockout strains displayed no difference in growth compared to the parent strain in minimal media, yet a minor but consistent inhibition of growth in the presence of 0.15 μg/ml ITCZ. Our results suggest that GWA paired with efficient gene deletion is a powerful and unbiased strategy for identifying the genetic basis of complex traits in A. fumigatus.
Collapse
Affiliation(s)
- Shu Zhao
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Wenbo Ge
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Akira Watanabe
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Jarrod R. Fortwendel
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, United States
| | - John G. Gibbons
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
26
|
Aspergillosis, Avian Species and the One Health Perspective: The Possible Importance of Birds in Azole Resistance. Microorganisms 2020; 8:microorganisms8122037. [PMID: 33352774 PMCID: PMC7767009 DOI: 10.3390/microorganisms8122037] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
The One Health context considers health based on three pillars: humans, animals, and environment. This approach is a strong ally in the surveillance of infectious diseases and in the development of prevention strategies. Aspergillus spp. are fungi that fit substantially in this context, in view of their ubiquity, as well as their importance as plant pathogens, and potentially fatal pathogens for, particularly, humans and avian species. In addition, the emergence of azole resistance, mainly in Aspergillus fumigatus sensu stricto, and the proven role of fungicides widely used on crops, reinforces the need for a multidisciplinary approach to this problem. Avian species are involved in short and long distance travel between different types of landscapes, such as agricultural fields, natural environments and urban environments. Thus, birds can play an important role in the dispersion of Aspergillus, and of special concern, azole-resistant strains. In addition, some bird species are particularly susceptible to aspergillosis. Therefore, avian aspergillosis could be considered as an environmental health indicator. In this review, aspergillosis in humans and birds will be discussed, with focus on the presence of Aspergillus in the environment. We will relate these issues with the emergence of azole resistance on Aspergillus. These topics will be therefore considered and reviewed from the “One Health” perspective.
Collapse
|
27
|
Fungal oxylipins direct programmed developmental switches in filamentous fungi. Nat Commun 2020; 11:5158. [PMID: 33056992 PMCID: PMC7557911 DOI: 10.1038/s41467-020-18999-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023] Open
Abstract
Filamentous fungi differentiate along complex developmental programs directed by abiotic and biotic signals. Currently, intrinsic signals that govern fungal development remain largely unknown. Here we show that an endogenously produced and secreted fungal oxylipin, 5,8-diHODE, induces fungal cellular differentiation, including lateral branching in pathogenic Aspergillus fumigatus and Aspergillus flavus, and appressorium formation in the rice blast pathogen Magnaporthe grisea. The Aspergillus branching response is specific to a subset of oxylipins and is signaled through G-protein coupled receptors. RNA-Seq profiling shows differential expression of many transcription factors in response to 5,8-diHODE. Screening of null mutants of 33 of those transcription factors identifies three transcriptional regulators that appear to mediate the Aspergillus branching response; one of the mutants is locked in a hypo-branching phenotype, while the other two mutants display a hyper-branching phenotype. Our work reveals an endogenous signal that triggers crucial developmental processes in filamentous fungi, and opens new avenues for research on the morphogenesis of filamentous fungi. Fungi produce oxygenated fatty acids, or oxylipins, of unclear function. Here, Niu et al. show that an Aspergillus oxylipin induces various developmental processes in several fungi, including lateral branching in human pathogenic Aspergillus species, and appressorium formation in the plant pathogen Magnaporthe grisea.
Collapse
|
28
|
Castillo-Castañeda A, Cañas-Duarte SJ, Guevara-Suarez M, Guarro J, Restrepo S, Celis Ramírez AM. Transcriptional response of Fusarium oxysporum and Neocosmospora solani challenged with amphotericin B or posaconazole. MICROBIOLOGY (READING, ENGLAND) 2020; 166:936-946. [PMID: 32644917 PMCID: PMC7660915 DOI: 10.1099/mic.0.000927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023]
Abstract
Some species of fusaria are well-known pathogens of humans, animals and plants. Fusarium oxysporum and Neocosmospora solani (formerly Fusarium solani) cause human infections that range from onychomycosis or keratitis to severe disseminated infections. In general, these infections are difficult to treat due to poor therapeutic responses in immunocompromised patients. Despite that, little is known about the molecular mechanisms and transcriptional changes responsible for the antifungal resistance in fusaria. To shed light on the transcriptional response to antifungals, we carried out the first reported high-throughput RNA-seq analysis for F. oxysporum and N. solani that had been exposed to amphotericin B (AMB) and posaconazole (PSC). We detected significant differences between the transcriptional profiles of the two species and we found that some oxidation-reduction, metabolic, cellular and transport processes were regulated differentially by both fungi. The same was found with several genes from the ergosterol synthesis, efflux pumps, oxidative stress response and membrane biosynthesis pathways. A significant up-regulation of the C-22 sterol desaturase (ERG5), the sterol 24-C-methyltransferase (ERG6) gene, the glutathione S-transferase (GST) gene and of several members of the major facilitator superfamily (MSF) was demonstrated in this study after treating F. oxysporum with AMB. These results offer a good overview of transcriptional changes after exposure to commonly used antifungals, highlights the genes that are related to resistance mechanisms of these fungi, which will be a valuable tool for identifying causes of failure of treatments.
Collapse
Affiliation(s)
- A. Castillo-Castañeda
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
- Laboratorio de Micología y Fitopatología (LAMFU), Facultad de Ingeniería, Universidad de Los Andes, Bogotá, Colombia
| | - S. J. Cañas-Duarte
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Harvard University, Boston, MA, USA
| | - M. Guevara-Suarez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
- Laboratorio de Micología y Fitopatología (LAMFU), Facultad de Ingeniería, Universidad de Los Andes, Bogotá, Colombia
| | - J. Guarro
- Facultat de Medicina I Ciéncies de la Salut, Departament de Ciéncies Médiques Básiques, Unitat de Microbiología. Universitat de Rovira I Virgili, Reus, España
| | - S. Restrepo
- Laboratorio de Micología y Fitopatología (LAMFU), Facultad de Ingeniería, Universidad de Los Andes, Bogotá, Colombia
| | - A. M. Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
29
|
Abstract
Aspergillus fumigatus, one of the most important human-pathogenic fungal species, is able to cause aspergillosis, a heterogeneous group of diseases that presents a wide range of clinical manifestations. Invasive pulmonary aspergillosis is the most serious pathology in terms of patient outcome and treatment, with a high mortality rate ranging from 50% to 95% primarily affecting immunocompromised patients. Azoles have been used for many years as the main antifungal agents to treat and prevent invasive aspergillosis. However, there were several reports of evolution of clinical azole resistance in the last decade. Caspofungin, a noncompetitive β-1,3-glucan synthase inhibitor, has been used against A. fumigatus, but it is fungistatic and is recommended as second-line therapy for invasive aspergillosis. More information about caspofungin tolerance and resistance is necessary in order to refine antifungal strategies that target the fungal cell wall. Here, we screened a transcription factor (TF) deletion library for TFs that can mediate caspofungin tolerance and resistance. We have identified 11 TFs that are important for caspofungin sensitivity and/or for the caspofungin paradoxical effect (CPE). These TFs encode proteins involved in the basal modulation of the RNA polymerase II initiation sites, calcium metabolism or cell wall remodeling, and mitochondrial respiratory function. The study of those genes regulated by TFs identified in this work will provide a better understanding of the signaling pathways that are important for caspofungin tolerance and resistance. Aspergillus fumigatus is the leading cause of pulmonary fungal diseases. Azoles have been used for many years as the main antifungal agents to treat and prevent invasive aspergillosis. However, in the last 10 years there have been several reports of azole resistance in A. fumigatus and new strategies are needed to combat invasive aspergillosis. Caspofungin is effective against other human-pathogenic fungal species, but it is fungistatic only against A. fumigatus. Resistance to caspofungin in A. fumigatus has been linked to mutations in the fksA gene that encodes the target enzyme of the drug β-1,3-glucan synthase. However, tolerance of high caspofungin concentrations, a phenomenon known as the caspofungin paradoxical effect (CPE), is also important for subsequent adaptation and drug resistance evolution. Here, we identified and characterized the transcription factors involved in the response to CPE by screening an A. fumigatus library of 484 null transcription factors (TFs) in CPE drug concentrations. We identified 11 TFs that had reduced CPE and that encoded proteins involved in the basal modulation of the RNA polymerase II initiation sites, calcium metabolism, and cell wall remodeling. One of these TFs, FhdA, was important for mitochondrial respiratory function and iron metabolism. The ΔfhdA mutant showed decreased growth when exposed to Congo red or to high temperature. Transcriptome sequencing (RNA-seq) analysis and further experimental validation indicated that the ΔfhdA mutant showed diminished respiratory capacity, probably affecting several pathways related to the caspofungin tolerance and resistance. Our results provide the foundation to understand signaling pathways that are important for caspofungin tolerance and resistance.
Collapse
|
30
|
van Munster JM, Daly P, Blythe MJ, Ibbett R, Kokolski M, Gaddipati S, Lindquist E, Singan VR, Barry KW, Lipzen A, Ngan CY, Petzold CJ, Chan LJG, Arvas M, Raulo R, Pullan ST, Delmas S, Grigoriev IV, Tucker GA, Simmons BA, Archer DB. Succession of physiological stages hallmarks the transcriptomic response of the fungus Aspergillus niger to lignocellulose. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:69. [PMID: 32313551 PMCID: PMC7155255 DOI: 10.1186/s13068-020-01702-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Understanding how fungi degrade lignocellulose is a cornerstone of improving renewables-based biotechnology, in particular for the production of hydrolytic enzymes. Considerable progress has been made in investigating fungal degradation during time-points where CAZyme expression peaks. However, a robust understanding of the fungal survival strategies over its life time on lignocellulose is thereby missed. Here we aimed to uncover the physiological responses of the biotechnological workhorse and enzyme producer Aspergillus niger over its life time to six substrates important for biofuel production. RESULTS We analysed the response of A. niger to the feedstock Miscanthus and compared it with our previous study on wheat straw, alone or in combination with hydrothermal or ionic liquid feedstock pretreatments. Conserved (substrate-independent) metabolic responses as well as those affected by pretreatment and feedstock were identified via multivariate analysis of genome-wide transcriptomics combined with targeted transcript and protein analyses and mapping to a metabolic model. Initial exposure to all substrates increased fatty acid beta-oxidation and lipid metabolism transcripts. In a strain carrying a deletion of the ortholog of the Aspergillus nidulans fatty acid beta-oxidation transcriptional regulator farA, there was a reduction in expression of selected lignocellulose degradative CAZyme-encoding genes suggesting that beta-oxidation contributes to adaptation to lignocellulose. Mannan degradation expression was wheat straw feedstock-dependent and pectin degradation was higher on the untreated substrates. In the later life stages, known and novel secondary metabolite gene clusters were activated, which are of high interest due to their potential to synthesize bioactive compounds. CONCLUSION In this study, which includes the first transcriptional response of Aspergilli to Miscanthus, we highlighted that life time as well as substrate composition and structure (via variations in pretreatment and feedstock) influence the fungal responses to lignocellulose. We also demonstrated that the fungal response contains physiological stages that are conserved across substrates and are typically found outside of the conditions with high CAZyme expression, as exemplified by the stages that are dominated by lipid and secondary metabolism.
Collapse
Affiliation(s)
- Jolanda M. van Munster
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Manchester Institute of Biotechnology (MIB) & School of Chemistry, The University of Manchester, Manchester, M1 7DN UK
| | - Paul Daly
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Present Address: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Martin J. Blythe
- Deep Seq, Faculty of Medicine and Health Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, NG7 2UH UK
| | - Roger Ibbett
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Matt Kokolski
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Sanyasi Gaddipati
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Erika Lindquist
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598 USA
| | - Vasanth R. Singan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598 USA
| | - Kerrie W. Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598 USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598 USA
| | - Chew Yee Ngan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598 USA
| | | | | | - Mikko Arvas
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT Espoo, Finland
| | - Roxane Raulo
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Steven T. Pullan
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Present Address: Public Health England, National Infection Service, Salisbury, UK
| | - Stéphane Delmas
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Present Address: Laboratory of Computational and Quantitative Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, 75005 Paris, France
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598 USA
| | - Gregory A. Tucker
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | | | - David B. Archer
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
31
|
Esquivel BD, Rybak JM, Barker KS, Fortwendel JR, Rogers PD, White TC. Characterization of the Efflux Capability and Substrate Specificity of Aspergillus fumigatus PDR5-like ABC Transporters Expressed in Saccharomyces cerevisiae. mBio 2020; 11:e00338-20. [PMID: 32209680 PMCID: PMC7157516 DOI: 10.1128/mbio.00338-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022] Open
Abstract
This research analyzed six Aspergillus fumigatus genes encoding putative efflux proteins for their roles as transporters. TheA. fumigatus genes abcA, abcC, abcF, abcG, abcH, and abcI were cloned into plasmids and overexpressed in a Saccharomyces cerevisiae strain in which the highly active endogenous ABC transporter gene PDR5 was deleted. The activity of each transporter was measured by efflux of rhodamine 6G and accumulation of alanine β-naphthylamide. The transporters AbcA, AbcC, and AbcF had the strongest efflux activities of these compounds. All of the strains with plasmid-expressed transporters had more efflux activity than did the PDR5-deleted background strain. We performed broth microdilution drug susceptibility testing and agar spot assays using an array of compounds and antifungal drugs to determine the transporter specificity and drug susceptibility of the strains. The transporters AbcC and AbcF showed the broadest range of substrate specificity, while AbcG and AbcH had the narrowest range of substrates. Strains expressing the AbcA, AbcC, AbcF, or AbcI transporter were more resistant to fluconazole than was the PDR5-deleted background strain. Strains expressing AbcC and AbcF were additionally more resistant to clotrimazole, itraconazole, ketoconazole, and posaconazole than was the background strain. Finally, we analyzed the expression levels of the genes by reverse transcription-quantitative PCR (RT-qPCR) in triazole-susceptible and -resistant A. fumigatus clinical isolates. All of these transporters are expressed at a measurable level, and transporter expression varied significantly between strains, demonstrating the high degree of phenotypic variation, plasticity, and divergence of which this species is capable.IMPORTANCE One mechanism behind drug resistance is altered export out of the cell. This work is a multifaceted analysis of membrane efflux transporters in the human fungal pathogen A. fumigatus Bioinformatics evidence infers that there is a relatively large number of genes in A. fumigatus that encode ABC efflux transporters. However, very few of these transporters have been directly characterized and analyzed for their potential role in drug resistance.Our objective was to determine if these undercharacterized proteins function as efflux transporters and then to better define whether their efflux substrates include antifungal drugs used to treat fungal infections. We chose six A. fumigatus potential plasma membrane ABC transporter genes for analysis and found that all six genes produced functional transporter proteins. We used two fungal systems to look for correlations between transporter function and drug resistance. These transporters have the potential to produce drug-resistant phenotypes in A. fumigatus Continued characterization of these and other transporters may assist in the development of efflux inhibitor drugs.
Collapse
Affiliation(s)
- Brooke D Esquivel
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Jeffrey M Rybak
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Katherine S Barker
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - P David Rogers
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Theodore C White
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
32
|
Zhang T, Cao Q, Li N, Liu D, Yuan Y. Transcriptome analysis of fungicide-responsive gene expression profiles in two Penicillium italicum strains with different response to the sterol demethylation inhibitor (DMI) fungicide prochloraz. BMC Genomics 2020; 21:156. [PMID: 32050894 PMCID: PMC7017498 DOI: 10.1186/s12864-020-6564-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Background Penicillium italicum (blue mold) is one of citrus pathogens causing undesirable citrus fruit decay even at strictly-controlled low temperatures (< 10 °C) during shipping and storage. P. italicum isolates with considerably high resistance to sterol demethylation inhibitor (DMI) fungicides have emerged; however, mechanism(s) underlying such DMI-resistance remains unclear. In contrast to available elucidation on anti-DMI mechanism for P. digitatum (green mold), how P. italicum DMI-resistance develops has not yet been clarified. Results The present study prepared RNA-sequencing (RNA-seq) libraries for two P. italicum strains (highly resistant (Pi-R) versus highly sensitive (Pi-S) to DMI fungicides), with and without prochloraz treatment, to identify prochloraz-responsive genes facilitating DMI-resistance. After 6 h prochloraz-treatment, comparative transcriptome profiling showed more differentially expressed genes (DEGs) in Pi-R than Pi-S. Functional enrichments identified 15 DEGs in the prochloraz-induced Pi-R transcriptome, simultaneously up-regulated in P. italicum resistance. These included ATP-binding cassette (ABC) transporter-encoding genes, major facilitator superfamily (MFS) transporter-encoding genes, ergosterol (ERG) anabolism component genes ERG2, ERG6 and EGR11 (CYP51A), mitogen-activated protein kinase (MAPK) signaling-inducer genes Mkk1 and Hog1, and Ca2+/calmodulin-dependent kinase (CaMK) signaling-inducer genes CaMK1 and CaMK2. Fragments Per Kilobase per Million mapped reads (FPKM) analysis of Pi-R transcrtiptome showed that prochloraz induced mRNA increase of additional 4 unigenes, including the other two ERG11 isoforms CYP51B and CYP51C and the remaining kinase-encoding genes (i.e., Bck1 and Slt2) required for Slt2-MAPK signaling. The expression patterns of all the 19 prochloraz-responsive genes, obtained in our RNA-seq data sets, have been validated by quantitative real-time PCR (qRT-PCR). These lines of evidence in together draw a general portrait of anti-DMI mechanisms for P. italicum species. Intriguingly, some strategies adopted by the present Pi-R were not observed in the previously documented prochloraz-resistant P. digitatum transcrtiptomes. These included simultaneous induction of all major EGR11 isoforms (CYP51A/B/C), over-expression of ERG2 and ERG6 to modulate ergosterol anabolism, and concurrent mobilization of Slt2-MAPK and CaMK signaling processes to overcome fungicide-induced stresses. Conclusions The present findings provided transcriptomic evidence on P. italicum DMI-resistance mechanisms and revealed some diversity in anti-DMI strategies between P. italicum and P. digitatum species, contributing to our knowledge on P. italicum DMI-resistance mechanisms.
Collapse
Affiliation(s)
- Tingfu Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Qianwen Cao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Na Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.,Yunnan Higher Education Institutions, College of Life Science and Technology, Honghe University, Mengzi, 661199, China
| | - Deli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Yongze Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
33
|
Azole resistance mechanisms in Aspergillus: update and recent advances. Int J Antimicrob Agents 2020; 55:105807. [DOI: 10.1016/j.ijantimicag.2019.09.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/05/2019] [Accepted: 09/15/2019] [Indexed: 12/11/2022]
|
34
|
Trichophyton rubrum Azole Resistance Mediated by a New ABC Transporter, TruMDR3. Antimicrob Agents Chemother 2019; 63:AAC.00863-19. [PMID: 31501141 PMCID: PMC6811443 DOI: 10.1128/aac.00863-19] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/17/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of terbinafine resistance in a set of clinical isolates of Trichophyton rubrum have been studied recently. Of these isolates, TIMM20092 also showed reduced sensitivity to azoles. The azole resistance of TIMM20092 could be inhibited by milbemycin oxime, prompting us to examine the potential of T. rubrum to develop resistance through multidrug efflux transporters. The mechanisms of terbinafine resistance in a set of clinical isolates of Trichophyton rubrum have been studied recently. Of these isolates, TIMM20092 also showed reduced sensitivity to azoles. The azole resistance of TIMM20092 could be inhibited by milbemycin oxime, prompting us to examine the potential of T. rubrum to develop resistance through multidrug efflux transporters. The introduction of a T. rubrum cDNA library into Saccharomyces cerevisiae allowed the isolation of one transporter of the major facilitator superfamily (MFS) conferring resistance to azoles (TruMFS1). To identify more azole efflux pumps among 39 ABC and 170 MFS transporters present within the T. rubrum genome, we performed a BLASTp analysis of Aspergillus fumigatus, Candida albicans, and Candida glabrata on transporters that were previously shown to confer azole resistance. The identified candidates were further tested by heterologous gene expression in S. cerevisiae. Four ABC transporters (TruMDR1, TruMDR2, TruMDR3, and TruMDR5) and a second MFS transporter (TruMFS2) proved to be able to operate as azole efflux pumps. Milbemycin oxime inhibited only TruMDR3. Expression analysis showed that both TruMDR3 and TruMDR2 were significantly upregulated in TIMM20092. TruMDR3 transports voriconazole (VRC) and itraconazole (ITC), while TruMDR2 transports only ITC. Disruption of TruMDR3 in TIMM20092 abolished its resistance to VRC and reduced its resistance to ITC. Our study highlights TruMDR3, a newly identified transporter of the ABC family in T. rubrum, which can confer azole resistance if overexpressed. Finally, inhibition of TruMDR3 by milbemycin suggests that milbemycin analogs could be interesting compounds to treat dermatophyte infections in cases of azole resistance.
Collapse
|
35
|
Ballard E, Weber J, Melchers WJG, Tammireddy S, Whitfield PD, Brakhage AA, Brown AJP, Verweij PE, Warris A. Recreation of in-host acquired single nucleotide polymorphisms by CRISPR-Cas9 reveals an uncharacterised gene playing a role in Aspergillus fumigatus azole resistance via a non-cyp51A mediated resistance mechanism. Fungal Genet Biol 2019; 130:98-106. [PMID: 31128273 PMCID: PMC6876285 DOI: 10.1016/j.fgb.2019.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
The human host comprises a range of specific niche environments. In order to successfully persist, pathogens such as Aspergillus fumigatus must adapt to these environments. One key example of in-host adaptation is the development of resistance to azole antifungals. Azole resistance in A. fumigatus is increasingly reported worldwide and the most commonly reported mechanisms are cyp51A mediated. Using a unique series of A. fumigatus isolates, obtained from a patient suffering from persistent and recurrent invasive aspergillosis over 2 years, this study aimed to gain insight into the genetic basis of in-host adaptation. Single nucleotide polymorphisms (SNPs) unique to a single isolate in this series, which had developed multi-azole resistance in-host, were identified. Two nonsense SNPs were recreated using CRISPR-Cas9; these were 213* in svf1 and 167* in uncharacterised gene AFUA_7G01960. Phenotypic analyses including antifungal susceptibility testing, mycelial growth rate assessment, lipidomics analysis and statin susceptibility testing were performed to associate genotypes to phenotypes. This revealed a role for svf1 in A. fumigatus oxidative stress sensitivity. In contrast, recapitulation of 167* in AFUA_7G01960 resulted in increased itraconazole resistance. Comprehensive lipidomics analysis revealed decreased ergosterol levels in strains containing this SNP, providing insight to the observed itraconazole resistance. Decreases in ergosterol levels were reflected in increased resistance to lovastatin and nystatin. Importantly, this study has identified a SNP in an uncharacterised gene playing a role in azole resistance via a non-cyp51A mediated resistance mechanism. This mechanism is of clinical importance, as this SNP was identified in a clinical isolate, which acquired azole resistance in-host.
Collapse
Affiliation(s)
- Eloise Ballard
- MRC Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, UK
| | - Jakob Weber
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Willem J G Melchers
- Centre for Expertise in Mycology and Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Seshu Tammireddy
- Lipidomics Research Facility, Division of Biomedical Sciences, University of the Highlands and Islands, UK
| | - Phillip D Whitfield
- Lipidomics Research Facility, Division of Biomedical Sciences, University of the Highlands and Islands, UK
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Alistair J P Brown
- MRC Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, UK
| | - Paul E Verweij
- Centre for Expertise in Mycology and Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Adilia Warris
- MRC Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, UK.
| |
Collapse
|
36
|
Sharma C, Nelson-Sathi S, Singh A, Radhakrishna Pillai M, Chowdhary A. Genomic perspective of triazole resistance in clinical and environmental Aspergillus fumigatus isolates without cyp51A mutations. Fungal Genet Biol 2019; 132:103265. [PMID: 31465846 DOI: 10.1016/j.fgb.2019.103265] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 11/24/2022]
Abstract
Aspergillus fumigatus is the most common etiologic agent of primarily all clinical manifestations of aspergillosis. A steady increase in the number of azole resistant A. fumigatus (ARAF) isolates from environment and clinical samples leading to therapeutic failures in clinical settings have alarmed the mycologists and clinicians worldwide. Although mutations in azole target cyp51A gene have been implicated in conferring azole resistance in A. fumigatus, recent studies have demonstrated occurrence of azole resistant strains without cyp51A mutations. In this study, next generation sequencing techniques and the expression profiling of transporter genes with single nucleotide polymorphisms (SNPs) in clinical and environmental ARAF isolates with (G54E) and without known cyp51A mutations was undertaken to understand the genetic background and role of transporters in azole resistance. The raw reads of four ARAF strains when mapped to Af293 reference genome (>100X depth) covered at least 93.1% of the reference genome. Among all four strains, a total of 212,711 SNPs was identified with 37,829 were common in at least two isolates. The expression analysis suggested the overexpression of MFS transporter, namely, mfsC in all ARAF isolates. None of the resistant strain showed significant upregulation of cyp51A and cyp51B gene. On the other hand, abcD was upregulated (5-fold) in the isolates with cyp 51A mutation (G54E). The whole genome sequence analysis showed the presence of two previously described amino acid substitutions S269F and F390Y in HMG1 gene in a clinical panazole resistant strain without cyp51A mutations. These mutations have been previously associated with azole resistance in A. fumigatus strains without cyp51A mutations. Further, several punctual mutations and a large-segment deletion among different strains were observed suggesting the involvement of resistance mechanisms other than cyp51A.
Collapse
Affiliation(s)
- Cheshta Sharma
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Shijulal Nelson-Sathi
- Interdiciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Ashutosh Singh
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | | | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.
| |
Collapse
|
37
|
Fabri JHTM, Rocha MC, Malavazi I. Overview of the Interplay Between Cell Wall Integrity Signaling Pathways and Membrane Lipid Biosynthesis in Fungi: Perspectives for Aspergillus fumigatus. Curr Protein Pept Sci 2019; 21:265-283. [PMID: 31284857 DOI: 10.2174/1389203720666190705164203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 11/22/2022]
Abstract
The cell wall (CW) and plasma membrane are fundamental structures that define cell shape and support different cellular functions. In pathogenic fungi, such as Aspegillus fumigatus, they not only play structural roles but are also important for virulence and immune recognition. Both the CW and the plasma membrane remain as attractive drug targets to treat fungal infections, such as the Invasive Pulmonary Aspergillosis (IPA), a disease associated with high morbimortality in immunocompromised individuals. The low efficiency of echinocandins that target the fungal CW biosynthesis, the occurrence of environmental isolates resistant to azoles such as voriconazole and the known drawbacks associated with amphotericin toxicity foster the urgent need for fungal-specific drugable targets and/or more efficient combinatorial therapeutic strategies. Reverse genetic approaches in fungi unveil that perturbations of the CW also render cells with increased susceptibility to membrane disrupting agents and vice-versa. However, how the fungal cells simultaneously cope with perturbation in CW polysaccharides and cell membrane proteins to allow morphogenesis is scarcely known. Here, we focus on current information on how the main signaling pathways that maintain fungal cell wall integrity, such as the Cell Wall Integrity and the High Osmolarity Glycerol pathways, in different species often cross-talk to regulate the synthesis of molecules that comprise the plasma membrane, especially sphingolipids, ergosterol and phospholipids to promote functioning of both structures concomitantly and thus, cell viability. We propose that the conclusions drawn from other organisms are the foundations to point out experimental lines that can be endeavored in A. fumigatus.
Collapse
Affiliation(s)
| | - Marina C Rocha
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
38
|
New Insights into the Cyp51 Contribution to Azole Resistance in Aspergillus Section Nigri. Antimicrob Agents Chemother 2019; 63:AAC.00543-19. [PMID: 31061160 DOI: 10.1128/aac.00543-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/02/2019] [Indexed: 11/20/2022] Open
Abstract
Invasive aspergillosis (IA) is a severe condition mainly caused by Aspergillus fumigatus, although other species of the genus, such as section Nigri members, can also be involved. Voriconazole (VRC) is the recommended treatment for IA; however, the prevalence of azole-resistant Aspergillus isolates has alarmingly increased in recent years, and the underlying resistance mechanisms in non-fumigatus species remain unclear. We have determined the in vitro susceptibility of 36 strains from section Nigri to VRC, posaconazole (POS), and itraconazole (ITC), and we have explored the role of Cyp51A and Cyp51B, both targets of azoles, in azole resistance. The three drugs were highly active; POS displayed the best in vitro activity, while ITC and VRC showed MICs above the established epidemiological cutoff values in 9 and 16% of the strains, respectively. Furthermore, expression studies of cyp51A and cyp51B in control condition and after VRC exposure were performed in 14 strains with different VRC susceptibility. We found higher transcription of cyp51A, which was upregulated upon VRC exposure, but no correlation between MICs and cyp51 transcription levels was observed. In addition, cyp51A sequence analyses revealed nonsynonymous mutations present in both, wild-type and non-wild-type strains of A. niger and A. tubingensis Nevertheless, a few mutations were exclusively present in non-wild-type A. tubingensis strains. Altogether, our results suggest that azole resistance in section Nigri is not clearly explained by Cyp51A protein alteration or by cyp51 gene upregulation, which indicates that other mechanisms might be involved.
Collapse
|
39
|
Shishodia SK, Tiwari S, Shankar J. Resistance mechanism and proteins in Aspergillus species against antifungal agents. Mycology 2019; 10:151-165. [PMID: 31448149 PMCID: PMC6691784 DOI: 10.1080/21501203.2019.1574927] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/22/2019] [Indexed: 02/02/2023] Open
Abstract
Aspergillus species contain pathogenic and opportunistic fungal pathogens which have the potential
to cause mycosis (invasive aspergillosis) in humans. The existing antifungal drugs have
limitation largely due to the development of drug-resistant isolates. To gain insight
into the mechanism of action and antifungal drug resistance in Aspergillus species including biofilm formation, we have reviewed protein
data of Aspergillus species during interaction with
antifungals drugs (polynes, azoles and echinocandin) and phytochemicals (artemisinin,
coumarin and quercetin). Our analyses provided a list of Aspergillus proteins (72 proteins) that were abundant during interaction
with different antifungal agents. On the other hand, there are 26 proteins, expression
level of which is affected by more than two antifungal agents, suggesting the more
general response to the stress induced by the antifungal agents. Our analysis showed
enzymes from cell wall remodelling, oxidative stress response and energy metabolism are
the responsible factors for providing resistance against antifungal drugs in Aspergillus species and could be explored further in clinical
isolates. Also, these findings have clinical importance since the effect of drug
targeting different proteins can be potentiated by combination therapy. We have also
discussed the opportunities ahead to study the functional role of proteins from
environmental and clinical isolates of Aspergillus during
its interaction with the antifungal drugs. Abbreviations IPA: invasive pulmonary aspergillosis; IA: invasive aspergillosis; AmB: Amphotericin B;
CAS: Caspofungin; VRC: Voriconazole; ITC: Itraconazole; POS: Posaconazole; ART:
Artemisinin; QRT: Quercetin; CMR: Coumarin; MIC: minimal inhibitory concentration
Collapse
Affiliation(s)
- Sonia Kumari Shishodia
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Shraddha Tiwari
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
40
|
Hokken MWJ, Zoll J, Coolen JPM, Zwaan BJ, Verweij PE, Melchers WJG. Phenotypic plasticity and the evolution of azole resistance in Aspergillus fumigatus; an expression profile of clinical isolates upon exposure to itraconazole. BMC Genomics 2019; 20:28. [PMID: 30626317 PMCID: PMC6327609 DOI: 10.1186/s12864-018-5255-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/15/2018] [Indexed: 01/26/2023] Open
Abstract
Background The prevalence of azole resistance in clinical and environmental Aspergillus fumigatus isolates is rising over the past decades, but the molecular basis of the development of antifungal drug resistance is not well understood. This study focuses on the role of phenotypic plasticity in the evolution of azole resistance in A. fumigatus. When A. fumigatus is challenged with a new stressful environment, phenotypic plasticity may allow A. fumigatus to adjust their physiology to still enable growth and reproduction, therefore allowing the establishment of genetic adaptations through natural selection on the available variation in the mutational and recombinational gene pool. To investigate these short-term physiological adaptations, we conducted time series transcriptome analyses on three clinical A. fumigatus isolates, during incubation with itraconazole. Results After analysis of expression patterns, we identified 3955, 3430, 1207, and 1101 differentially expressed genes (DEGs), after 30, 60, 120 and 240 min of incubation with itraconazole, respectively. We explored the general functions in these gene groups and we identified 186 genes that were differentially expressed during the whole time series. Additionally, we investigated expression patterns of potential novel drug-efflux transporters, genes involved in ergosterol and phospholipid biosynthesis, and the known MAPK proteins of A. fumigatus. Conclusions Our data suggests that A. fumigatus adjusts its transcriptome quickly within 60 min of exposure to itraconazole. Further investigation of these short-term adaptive phenotypic plasticity mechanisms might enable us to understand how the direct response of A. fumigatus to itraconazole promotes survival of the fungus in the patient, before any “hard-wired” genetic mutations arise. Electronic supplementary material The online version of this article (10.1186/s12864-018-5255-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Margriet W J Hokken
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands. .,Center of Expertise in Mycology Radboudumc/CWZ, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, the Netherlands.
| | - Jan Zoll
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, the Netherlands
| | - Jordy P M Coolen
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, the Netherlands
| | - Bas J Zwaan
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, the Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, the Netherlands
| |
Collapse
|
41
|
Paul RA, Rudramurthy SM, Dhaliwal M, Singh P, Ghosh AK, Kaur H, Varma S, Agarwal R, Chakrabarti A. Magnitude of Voriconazole Resistance in Clinical and Environmental Isolates of Aspergillus flavus and Investigation into the Role of Multidrug Efflux Pumps. Antimicrob Agents Chemother 2018; 62:e01022-18. [PMID: 30126956 PMCID: PMC6201112 DOI: 10.1128/aac.01022-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/10/2018] [Indexed: 11/20/2022] Open
Abstract
The magnitude of azole resistance in Aspergillus flavus and its underlying mechanism is obscure. We evaluated the frequency of azole resistance in a collection of clinical (n = 121) and environmental isolates (n = 68) of A. flavus by the broth microdilution method. Six (5%) clinical isolates displayed voriconazole MIC greater than the epidemiological cutoff value. Two of these isolates with non-wild-type MIC were isolated from same patient and were genetically distinct, which was confirmed by amplified fragment length polymorphism analysis. Mutations associated with azole resistance were not present in the lanosterol 14-α demethylase coding genes (cyp51A, cyp51B, and cyp51C). Basal and voriconazole-induced expression of cyp51A homologs and various efflux pump genes was analyzed in three each of non-wild-type and wild-type isolates. All of the efflux pump genes screened showed low basal expression irrespective of the azole susceptibility of the isolate. However, the non-wild-type isolates demonstrated heterogeneous overexpression of many efflux pumps and the target enzyme coding genes in response to induction with voriconazole (1 μg/ml). The most distinctive observation was approximately 8- to 9-fold voriconazole-induced overexpression of an ortholog of the Candida albicans ATP binding cassette (ABC) multidrug efflux transporter, Cdr1, in two non-wild-type isolates compared to those in the reference strain A. flavus ATCC 204304 and other wild-type strains. Although the dominant marker of azole resistance in A. flavus is still elusive, the current study proposes the possible role of multidrug efflux pumps, especially that of Cdr1B overexpression, in contributing azole resistance in A. flavus.
Collapse
Affiliation(s)
- Raees A Paul
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | | | | | - Pankaj Singh
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - Anup K Ghosh
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - Harsimran Kaur
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - Subhash Varma
- Department of Internal Medicine, PGIMER, Chandigarh, India
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, PGIMER, Chandigarh, India
| | | |
Collapse
|
42
|
Emerging Antifungal Drug Resistance in Aspergillus fumigatus and Among Other Species of Aspergillus. CURRENT FUNGAL INFECTION REPORTS 2018. [DOI: 10.1007/s12281-018-0318-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Miura D, Sugiyama K, Ito A, Ohba-Tanaka A, Tanaka M, Shintani T, Gomi K. The PDR-type ABC transporters AtrA and AtrG are involved in azole drug resistance in Aspergillus oryzae. Biosci Biotechnol Biochem 2018; 82:1840-1848. [PMID: 30011258 DOI: 10.1080/09168451.2018.1497941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
For strain improvement of Aspergillus oryzae, development of the transformation system is essential, wherein dominant selectable markers, including drug-resistant genes, are available. However, A. oryzae generally has a relatively high resistance to many antifungal drugs effective against yeasts and other filamentous fungi. In the course of the study, while investigating azole drug resistance in A. oryzae, we isolated a spontaneous mutant that exhibited high resistance to azole fungicides and found that pleiotropic drug resistance (PDR)-type ATP-binding cassette (ABC) transporter genes were upregulated in the mutant; their overexpression in the wild-type strain increased azole drug resistance. While deletion of the gene designated atrG resulted in increased azole susceptibility, double deletion of atrG and another gene (atrA) resulted in further azole hypersensitivity. Overall, these results indicate that the ABC transporters AtrA and AtrG are involved in azole drug resistance in A. oryzae.
Collapse
Affiliation(s)
- Daisuke Miura
- a Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Kohei Sugiyama
- a Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Atsushi Ito
- a Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Ayumi Ohba-Tanaka
- a Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Mizuki Tanaka
- a Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Takahiro Shintani
- a Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Katsuya Gomi
- a Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan.,b Biomolecular Engineering Laboratory, School of Food and Nutritional Science , University of Shizuoka , Shizuoka , Japan
| |
Collapse
|
44
|
Host-Pathogen Interactions Mediated by MDR Transporters in Fungi: As Pleiotropic as it Gets! Genes (Basel) 2018; 9:genes9070332. [PMID: 30004464 PMCID: PMC6071111 DOI: 10.3390/genes9070332] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 12/12/2022] Open
Abstract
Fungal infections caused by Candida, Aspergillus, and Cryptococcus species are an increasing problem worldwide, associated with very high mortality rates. The successful prevalence of these human pathogens is due to their ability to thrive in stressful host niche colonization sites, to tolerate host immune system-induced stress, and to resist antifungal drugs. This review focuses on the key role played by multidrug resistance (MDR) transporters, belonging to the ATP-binding cassette (ABC), and the major facilitator superfamilies (MFS), in mediating fungal resistance to pathogenesis-related stresses. These clearly include the extrusion of antifungal drugs, with C. albicans CDR1 and MDR1 genes, and corresponding homologs in other fungal pathogens, playing a key role in this phenomenon. More recently, however, clues on the transcriptional regulation and physiological roles of MDR transporters, including the transport of lipids, ions, and small metabolites, have emerged, linking these transporters to important pathogenesis features, such as resistance to host niche environments, biofilm formation, immune system evasion, and virulence. The wider view of the activity of MDR transporters provided in this review highlights their relevance beyond drug resistance and the need to develop therapeutic strategies that successfully face the challenges posed by the pleiotropic nature of these transporters.
Collapse
|
45
|
Sun ZB, Wang Q, Zhang J, Jiang WZ, Wang Q, Li SD, Ma GZ, Sun MH. The transcription factor-encoding gene crtf is involved in Clonostachys chloroleuca mycoparasitism on Sclerotinia sclerotiorum. Microbiol Res 2018; 210:6-11. [PMID: 29625660 DOI: 10.1016/j.micres.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/28/2018] [Accepted: 03/03/2018] [Indexed: 10/17/2022]
Abstract
Clonostachys chloroleuca 67-1 (formerly C. rosea 67-1) is a potential biocontrol fungus active against various fungal plant pathogens. From transcriptome sequencing of 67-1 parasitizing sclerotia of Sclerotinia sclerotiorum, we identified the transcription factor-encoding gene crtf that is significantly up-regulated during mycoparasitism. Transcription factors are widely distributed in fungi and involved in multiple biological processes. However, their role and regulatory mechanisms in mycoparasitism remain poorly understood. In this study, the function of crtf during 67-1 mycoparasitism was verified through gene knockout and complementation. The results showed that deletion of crtf did not influence fungal morphological characteristics, but the ability of the Δcrtf mutant to parasitize sclerotia and suppress soybean Sclerotinia white mold in the greenhouse was markedly diminished compared with the wild type strain. The biocontrol activity of Δcrtf recovered wild type levels when complemented with a plasmid expressing the crtf gene. These findings suggest that crtf plays a crucial role in C. chloroleuca mycoparasitism and provide insight into the molecular mechanisms underlying C. chloroleuca mycoparasitism on plant pathogenic fungi.
Collapse
Affiliation(s)
- Zhan-Bin Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qi Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; School of Marine Science and Technology, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Jun Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei-Zhi Jiang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qi Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shi-Dong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Gui-Zhen Ma
- School of Marine Science and Technology, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Man-Hong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
46
|
Ben Yaakov D, Shadkchan Y, Albert N, Kontoyiannis DP, Osherov N. The quinoline bromoquinol exhibits broad-spectrum antifungal activity and induces oxidative stress and apoptosis in Aspergillus fumigatus. J Antimicrob Chemother 2018; 72:2263-2272. [PMID: 28475687 DOI: 10.1093/jac/dkx117] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
Objectives Over the last 30 years, the number of invasive fungal infections among immunosuppressed patients has increased significantly, while the number of effective systemic antifungal drugs remains low. The aim of this study was to identify and characterize antifungal compounds that inhibit fungus-specific metabolic pathways not conserved in humans. Methods We screened a diverse compound library for antifungal activity in the pathogenic mould Aspergillus fumigatus . We determined the in vitro activity of bromoquinol by MIC determination against a panel of fungi, bacteria and cell lines. The mode of action of bromoquinol was determined by screening an Aspergillus nidulans overexpression genomic library for resistance-conferring genes and by RNAseq analysis in A. fumigatus . In vivo efficacy was tested in Galleria mellonella and murine models of A. fumigatus infection. Results Screening of a diverse chemical library identified three compounds interfering with fungal iron utilization. The most potent, bromoquinol, shows potent wide-spectrum antifungal activity that was blocked in the presence of exogenous iron. Mode-of-action analysis revealed that overexpression of the dba secondary metabolite cluster gene dbaD , encoding a metabolite transporter, confers bromoquinol resistance in A. nidulans , possibly by efflux. RNAseq analysis and subsequent experimental validation revealed that bromoquinol induces oxidative stress and apoptosis in A. fumigatus . Bromoquinol significantly reduced mortality rates of G. mellonella infected with A. fumigatus , but was ineffective in a murine model of infection. Conclusions Bromoquinol is a promising antifungal candidate with a unique mode of action. Its activity is potentiated by iron starvation, as occurs during in vivo growth.
Collapse
Affiliation(s)
- Dafna Ben Yaakov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yana Shadkchan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Nathaniel Albert
- Department of Infectious Diseases, Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
47
|
Hu C, Zhou M, Wang W, Sun X, Yarden O, Li S. Abnormal Ergosterol Biosynthesis Activates Transcriptional Responses to Antifungal Azoles. Front Microbiol 2018; 9:9. [PMID: 29387050 PMCID: PMC5776110 DOI: 10.3389/fmicb.2018.00009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/05/2018] [Indexed: 12/20/2022] Open
Abstract
Fungi transcriptionally upregulate expression of azole efflux pumps and ergosterol biosynthesis pathway genes when exposed to antifungal agents that target ergosterol biosynthesis. To date, these transcriptional responses have been shown to be dependent on the presence of the azoles and/or depletion of ergosterol. Using an inducible promoter to regulate Neurospora crassa erg11, which encodes the major azole target, sterol 14α-demethylase, we were able to demonstrate that the CDR4 azole efflux pump can be transcriptionally activated by ergosterol biosynthesis inhibition even in the absence of azoles. By analyzing ergosterol deficient mutants, we demonstrate that the transcriptional responses by cdr4 and, unexpectedly, genes encoding ergosterol biosynthesis enzymes (erg genes) that are responsive to azoles, are not dependent on ergosterol depletion. Nonetheless, deletion of erg2, which encodes C-8 sterol isomerase, also induced expression of cdr4. Deletion of erg2 also induced the expression of erg24, the gene encoding C-14 sterol reductase, but not other tested erg genes which were responsive to erg11 inactivation. This indicates that inhibition of specific steps of ergosterol biosynthesis can result in different transcriptional responses, which is further supported by our results obtained using different ergosterol biosynthesis inhibitors. Together with the sterol profiles, these results suggest that the transcriptional responses by cdr4 and erg genes are associated with accumulation of specific sterol intermediate(s). This was further supported by the fact that when the erg2 mutant was treated with ketoconazole, upstream inhibition overrode the effects by downstream inhibition on ergosterol biosynthesis pathway. Even though cdr4 expression is associated with the accumulation of sterol intermediates, intra- and extracellular sterol analysis by HPLC-MS indicated that the transcriptional induction of cdr4 did not result in efflux of the accumulated intermediate(s). This study demonstrates, by detailed genetic and chemical analysis, that transcriptional responses by a major efflux pump and genes of the ergosterol biosynthesis pathway to ergosterol biosynthesis inhibitors can be independent of the presence of the drugs and are linked with the accumulation of ergosterol intermediate(s).
Collapse
Affiliation(s)
- Chengcheng Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mi Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xianyun Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shaojie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Vermeulen E, Carpentier S, Kniemeyer O, Sillen M, Maertens J, Lagrou K. Proteomic Differences between Azole-Susceptible and -Resistant <i>Aspergillus fumigatus</i> Strains. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/aim.2018.81007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Guruceaga X, Ezpeleta G, Mayayo E, Sueiro-Olivares M, Abad-Diaz-De-Cerio A, Aguirre Urízar JM, Liu HG, Wiemann P, Bok JW, Filler SG, Keller NP, Hernando FL, Ramirez-Garcia A, Rementeria A. A possible role for fumagillin in cellular damage during host infection by Aspergillus fumigatus. Virulence 2018; 9:1548-1561. [PMID: 30251593 PMCID: PMC6177242 DOI: 10.1080/21505594.2018.1526528] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/10/2018] [Indexed: 01/31/2023] Open
Abstract
Virulence mechanisms of the pathogenic fungus Aspergillus fumigatus are multifactorial and depend on the immune state of the host, but little is known about the fungal mechanism that develops during the process of lung invasion. In this study, microarray technology was combined with a histopathology evaluation of infected lungs so that the invasion strategy followed by the fungus could be described. To achieve this, an intranasal mice infection was performed to extract daily fungal samples from the infected lungs over four days post-infection. The pathological study revealed a heavy fungal progression throughout the lung, reaching the blood vessels on the third day after exposure and causing tissue necrosis. One percent of the fungal genome followed a differential expression pattern during this process. Strikingly, most of the genes of the intertwined fumagillin/pseurotin biosynthetic gene cluster were upregulated as were genes encoding lytic enzymes such as lipases, proteases (DppIV, DppV, Asp f 1 or Asp f 5) and chitinase (chiB1) as well as three genes related with pyomelanin biosynthesis process. Furthermore, we demonstrate that fumagillin is produced in an in vitro pneumocyte cell line infection model and that loss of fumagillin synthesis reduces epithelial cell damage. These results suggest that fumagillin contributes to tissue damage during invasive aspergillosis. Therefore, it is probable that A. fumigatus progresses through the lungs via the production of the mycotoxin fumagillin combined with the secretion of lytic enzymes that allow fungal growth, angioinvasion and the disruption of the lung parenchymal structure.
Collapse
Affiliation(s)
- Xabier Guruceaga
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Guillermo Ezpeleta
- Preventive Medicine and Hospital Hygiene Service, Complejo Hospitalario de Navarra, Pamplona, Spain
- Department of Preventive Medicine and Public Health, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Emilio Mayayo
- Pathology Unit, Medicine and Health Science Faculty, University of Rovira i Virgili, Reus, Tarragona, Spain
| | - Monica Sueiro-Olivares
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ana Abad-Diaz-De-Cerio
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José Manuel Aguirre Urízar
- Department of Stomatology II, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Hong G. Liu
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Fernando L. Hernando
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
50
|
Juvvadi PR, Moseley MA, Hughes CJ, Soderblom EJ, Lennon S, Perkins SR, Thompson JW, Geromanos SJ, Wildgoose J, Richardson K, Langridge JI, Vissers JPC, Steinbach WJ. Scanning Quadrupole Data-Independent Acquisition, Part B: Application to the Analysis of the Calcineurin-Interacting Proteins during Treatment of Aspergillus fumigatus with Azole and Echinocandin Antifungal Drugs. J Proteome Res 2017; 17:780-793. [PMID: 29251506 DOI: 10.1021/acs.jproteome.7b00499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcineurin is a critical cell-signaling protein that orchestrates growth, stress response, virulence, and antifungal drug resistance in several fungal pathogens. Blocking calcineurin signaling increases the efficacy of several currently available antifungals and suppresses drug resistance. We demonstrate the application of a novel scanning quadrupole DIA method for the analysis of changes in the proteins coimmunoprecipitated with calcineurin during therapeutic antifungal drug treatments of the deadly human fungal pathogen Aspergillus fumigatus. Our experimental design afforded an assessment of the precision of the method as demonstrated by peptide- and protein-centric analysis from eight replicates of the study pool QC samples. Two distinct classes of clinically relevant antifungal drugs that are guideline recommended for the treatment of invasive "aspergillosis" caused by Aspergillus fumigatus, the azoles (voriconazole) and the echinocandins (caspofungin and micafungin), which specifically target the fungal plasma membrane and the fungal cell wall, respectively, were chosen to distinguish variations occurring in the proteins coimmunoprecipitated with calcineurin. Novel potential interactors were identified in response to the different drug treatments that are indicative of the possible role for calcineurin in regulating these effectors. Notably, treatment with voriconazole showed increased immunoprecipitation of key proteins involved in membrane ergosterol biosynthesis with calcineurin. In contrast, echinocandin (caspofungin or micafungin) treatments caused increased immunoprecipitation of proteins involved in cell-wall biosynthesis and septation. Furthermore, abundant coimmunoprecipitation of ribosomal proteins with calcineurin occurred exclusively in echinocandins treatment, indicating reprogramming of cellular growth mechanisms during different antifungal drug treatments. While variations in the observed calcineurin immunoprecipitated proteins may also be due to changes in their expression levels under different drug treatments, this study suggests an important role for calcineurin-dependent cellular mechanisms in response to antifungal treatment of A. fumigatus that warrants future studies.
Collapse
Affiliation(s)
- Praveen R Juvvadi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - M Arthur Moseley
- Proteomics and Metabolomics Shared Resource Center for Genomic and Computational Biology, Duke University Medical Center , Durham, North Carolina 27710, United States
| | | | - Erik J Soderblom
- Proteomics and Metabolomics Shared Resource Center for Genomic and Computational Biology, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Sarah Lennon
- Waters Corporation , Wilmslow SK9 4AX, United Kingdom
| | - Simon R Perkins
- Institute of Integrative Biology, University of Liverpool , Liverpool L69 3BX, United Kingdom
| | - J Will Thompson
- Proteomics and Metabolomics Shared Resource Center for Genomic and Computational Biology, Duke University Medical Center , Durham, North Carolina 27710, United States
| | | | | | | | | | | | - William J Steinbach
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center , Durham, North Carolina 27710, United States.,Department of Molecular Genetics and Microbiology, Duke University Medical Center , Durham, North Carolina 27710, United States
| |
Collapse
|