1
|
DeTar RA, Chustecki JM, Martinez-Hottovy A, Ceriotti LF, Broz AK, Lou X, Sanchez-Puerta MV, Elowsky C, Christensen AC, Sloan DB. Photosynthetic demands on translational machinery drive retention of redundant tRNA metabolism in plant organelles. Proc Natl Acad Sci U S A 2024; 121:e2421485121. [PMID: 39693336 DOI: 10.1073/pnas.2421485121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Eukaryotic nuclear genomes often encode distinct sets of translation machinery for function in the cytosol vs. organelles (mitochondria and plastids). This raises questions about why multiple translation systems are maintained even though they are capable of comparable functions and whether they evolve differently depending on the compartment where they operate. These questions are particularly interesting in plants because translation machinery, including aminoacyl-transfer RNA (tRNA) synthetases (aaRS), is often dual-targeted to the plastids and mitochondria. These organelles have different functions, with much higher rates of translation in plastids to supply the abundant, rapid-turnover proteins required for photosynthesis. Previous studies have indicated that plant organellar aaRS evolve more slowly compared to mitochondrial aaRS in eukaryotes that lack plastids. Thus, we investigated the evolution of nuclear-encoded organellar and cytosolic aaRS and tRNA maturation enzymes across a broad sampling of angiosperms, including nonphotosynthetic (heterotrophic) plant species with reduced plastid gene expression, to test the hypothesis that translational demands associated with photosynthesis constrain the evolution of enzymes involved in organellar tRNA metabolism. Remarkably, heterotrophic plants exhibited wholesale loss of many organelle-targeted aaRS and other enzymes, even though translation still occurs in their mitochondria and plastids. These losses were often accompanied by apparent retargeting of cytosolic enzymes and tRNAs to the organelles, sometimes preserving aaRS-tRNA charging relationships but other times creating surprising mismatches between cytosolic aaRS and mitochondrial tRNA substrates. Our findings indicate that the presence of a photosynthetic plastid drives the retention of specialized systems for organellar tRNA metabolism.
Collapse
Affiliation(s)
- Rachael A DeTar
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Joanna M Chustecki
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Ana Martinez-Hottovy
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Luis Federico Ceriotti
- Instituto de Biología Agrícola de Mendoza, Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Agrarias, Chacras de Coria, Mendoza M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Ciudad de Mendoza, Mendoza M5502JMA, Argentina
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Xiaorui Lou
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - M Virginia Sanchez-Puerta
- Instituto de Biología Agrícola de Mendoza, Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Agrarias, Chacras de Coria, Mendoza M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Ciudad de Mendoza, Mendoza M5502JMA, Argentina
| | - Christian Elowsky
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Alan C Christensen
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
2
|
Ali NA, Song W, Huang J, Wu D, Zhao X. Recent advances and biotechnological applications of RNA metabolism in plant chloroplasts and mitochondria. Crit Rev Biotechnol 2024; 44:1552-1573. [PMID: 38238104 DOI: 10.1080/07388551.2023.2299789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 11/20/2024]
Abstract
The chloroplast and mitochondrion are semi-autonomous organelles that play essential roles in cell function. These two organelles are embellished with prokaryotic remnants and contain many new features emerging from the co-evolution of organelles and the nucleus. A typical plant chloroplast or mitochondrion genome encodes less than 100 genes, and the regulation of these genes' expression is remarkably complex. The regulation of chloroplast and mitochondrion gene expression can be achieved at multiple levels during development and in response to environmental cues, in which, RNA metabolism, including: RNA transcription, processing, translation, and degradation, plays an important role. RNA metabolism in plant chloroplasts and mitochondria combines bacterial-like traits with novel features evolved in the host cell and is regulated by a large number of nucleus-encoded proteins. Among these, pentatricopeptide repeat (PPR) proteins are deeply involved in multiple aspects of the RNA metabolism of organellar genes. Research over the past decades has revealed new insights into different RNA metabolic events in plant organelles, such as the composition of chloroplast and mitochondrion RNA editosomes. We summarize and discuss the most recent knowledge and biotechnological implications of various RNA metabolism processes in plant chloroplasts and mitochondria, with a focus on the nucleus-encoded factors supporting them, to gain a deeper understanding of the function and evolution of these two organelles in plant cells. Furthermore, a better understanding of the role of nucleus-encoded factors in chloroplast and mitochondrion RNA metabolism will motivate future studies on manipulating the plant gene expression machinery with engineered nucleus-encoded factors.
Collapse
Affiliation(s)
- Nadia Ahmed Ali
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenjian Song
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianyan Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants of Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaobo Zhao
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Han Z, Zhang J, Su Y, Zhou Z, Wang Y, Xu S, Zhao Y, He S, Wang R. Identification of oxidative phosphorylation-related genes in moyamoya disease by combining bulk RNA-sequencing analysis and machine learning. Front Genet 2024; 15:1417329. [PMID: 38919950 PMCID: PMC11197386 DOI: 10.3389/fgene.2024.1417329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction: Moyamoya disease (MMD) is a chronic cerebrovascular disease that can lead to ischemia and hemorrhagic stroke. The relationship between oxidative phosphorylation (OXPHOS) and MMD pathogenesis remains unknown. Methods: The gene expression data of 60 participants were acquired from three Gene Expression Omnibus (GEO) datasets, including 36 and 24 in the MMD and control groups. Differentially expressed genes (DEGs) between MMD patients MMD and control groups were identified. Machine learning was used to select the key OXPHOS-related genes associated with MMD from the intersection of DEGs and OXPHOS-related gene sets. Gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), gene set enrichment analysis (GSEA), Immune infiltration and microenvironments analysis were used to analyze the function of key genes. Machine learning selected four key OXPHOS-related genes associated with MMD: CSK, NARS2, PTPN6 and SMAD2 (PTPN6 was upregulated and the other three were downregulated). Results: Functional enrichment analysis showed that these genes were mainly enriched in the Notch signaling pathway, GAP junction, and RNA degradation, which are related to several biological processes, including angiogenesis, proliferation of vascular smooth muscle and endothelial cells, and cytoskeleton regulation. Immune analysis revealed immune infiltration and microenvironment in these MMD samples and their relationships with four key OXPHOS-related genes. APC co-inhibition (p = 0.032), HLA (p = 0.001), MHC I (p = 0.013), T cellco- inhibition (p = 0.032) and Type I IFN responses (p < 0.001) were significantly higher in the MMD groups than those in the control groups. The CSK positively correlated with APC co-inhibition and T cell-co-inhibition. The NARS2 negatively correlated with Type I IFN response. The SMAD2 negatively correlated with APC co-inhibition and Type I IFN response. The PTPN6 positively correlated with HLA, MHC I and Type I IFN responses. Discussion: This study provides a comprehensive understanding of the role of OXPHOS in MMD and will contribute to the development of new treatment methods and exploration of MMD pathogenesis.
Collapse
Affiliation(s)
- Zhiguang Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junze Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutao Su
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, The 82nd Group Army Hospital, Baoding, China
| | - Zhenyu Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanru Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaoqi Xu
- Suzhou Vocational Health College, Suzhou, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shihao He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Dulic M, Godinic-Mikulcic V, Kekez M, Evic V, Rokov-Plavec J. Protein-Protein Interactions of Seryl-tRNA Synthetases with Emphasis on Human Counterparts and Their Connection to Health and Disease. Life (Basel) 2024; 14:124. [PMID: 38255739 PMCID: PMC10817482 DOI: 10.3390/life14010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Seryl-tRNA synthetases (SerRSs), members of the aminoacyl-tRNA synthetase family, interact with diverse proteins, enabling SerRSs to enhance their role in the translation of the genetic message or to perform alternative functions in cellular processes beyond translation. Atypical archaeal SerRS interacts with arginyl-tRNA synthetase and proteins of the ribosomal P-stalk to optimize translation through tRNA channeling. The complex between yeast SerRS and peroxin Pex21p provides a connection between translation and peroxisome function. The partnership between Arabidopsis SerRS and BEN1 indicates a link between translation and brassinosteroid metabolism and may be relevant in plant stress response mechanisms. In Drosophila, the unusual heterodimeric mitochondrial SerRS coordinates mitochondrial translation and replication via interaction with LON protease. Evolutionarily conserved interactions of yeast and human SerRSs with m3C32 tRNA methyltransferases indicate coordination between tRNA modification and aminoacylation in the cytosol and mitochondria. Human cytosolic SerRS is a cellular hub protein connecting translation to vascular development, angiogenesis, lipogenesis, and telomere maintenance. When translocated to the nucleus, SerRS acts as a master negative regulator of VEGFA gene expression. SerRS alone or in complex with YY1 and SIRT2 competes with activating transcription factors NFκB1 and c-Myc, resulting in balanced VEGFA expression important for proper vascular development and angiogenesis. In hypoxia, SerRS phosphorylation diminishes its binding to the VEGFA promoter, while the lack of nutrients triggers SerRS glycosylation, reducing its nuclear localization. Additionally, SerRS binds telomeric DNA and cooperates with the shelterin protein POT1 to regulate telomere length and cellular senescence. As an antitumor and antiangiogenic factor, human cytosolic SerRS appears to be a promising drug target and therapeutic agent for treating cancer, cardiovascular diseases, and possibly obesity and aging.
Collapse
Affiliation(s)
| | | | | | | | - Jasmina Rokov-Plavec
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (M.D.); (V.G.-M.); (M.K.); (V.E.)
| |
Collapse
|
5
|
Sloan DB, DeTar RA, Warren JM. Aminoacyl-tRNA Synthetase Evolution within the Dynamic Tripartite Translation System of Plant Cells. Genome Biol Evol 2023; 15:evad050. [PMID: 36951086 PMCID: PMC10098043 DOI: 10.1093/gbe/evad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
Eukaryotes maintain separate protein translation systems for nuclear and organellar genes, including distinct sets of tRNAs and aminoacyl-tRNA synthetases (aaRSs). In animals, mitochondrial-targeted aaRSs are expressed at lower levels and are less conserved in sequence than cytosolic aaRSs involved in translation of nuclear mRNAs, likely reflecting lower translational demands in mitochondria. In plants, translation is further complicated by the presence of plastids, which share most aaRSs with mitochondria. In addition, plant mitochondrial tRNA pools have a dynamic history of gene loss and functional replacement by tRNAs from other compartments. To investigate the consequences of these distinctive features of translation in plants, we analyzed sequence evolution in angiosperm aaRSs. In contrast to previously studied eukaryotic systems, we found that plant organellar and cytosolic aaRSs exhibit only a small difference in expression levels, and organellar aaRSs are slightly more conserved than cytosolic aaRSs. We hypothesize that these patterns result from high translational demands associated with photosynthesis in mature chloroplasts. We also investigated aaRS evolution in Sileneae, an angiosperm lineage with extensive mitochondrial tRNA replacement and aaRS retargeting. We predicted positive selection for changes in aaRS sequence resulting from these recent changes in subcellular localization and tRNA substrates but found little evidence for accelerated sequence divergence. Overall, the complex tripartite translation system in plant cells appears to have imposed more constraints on the long-term evolutionary rates of organellar aaRSs compared with other eukaryotic lineages, and plant aaRS protein sequences appear largely robust to more recent perturbations in subcellular localization and tRNA interactions.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins
| | - Rachael A DeTar
- Department of Biology, Colorado State University, Fort Collins
| | - Jessica M Warren
- Center for Mechanisms of Evolution, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe
| |
Collapse
|
6
|
Peng L, Ge X, Shi F, Wang L, Zang H, Sun C, Wang B. New Mitogenome Features of Philopotamidae (Insecta: Trichoptera) with Two New Species of Gunungiella. INSECTS 2022; 13:1101. [PMID: 36555011 PMCID: PMC9784110 DOI: 10.3390/insects13121101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
A total of 14 individuals of Philopotamidae, from China, were examined. Six species in four genera, including two new species of the genus Gunungiella, were recognized. Their COI barcode sequences were extracted, mitogenomes were sequenced, assembled and analyzed. All of these sequences were used to further reveal the phylogenetic relationships of the family Philopotamidae. In addition, two new species: Gunungiella wangi n. sp., Gunungiella flabellata n. sp. were described and illustrated.
Collapse
Affiliation(s)
- Lang Peng
- Laboratory of Insect Taxonomy & Aquatic Insects, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Ge
- Laboratory of Insect Taxonomy & Aquatic Insects, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Faxian Shi
- Laboratory of Insect Taxonomy & Aquatic Insects, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Haoming Zang
- Laboratory of Insect Taxonomy & Aquatic Insects, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhai Sun
- Laboratory of Insect Taxonomy & Aquatic Insects, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Beixin Wang
- Laboratory of Insect Taxonomy & Aquatic Insects, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Yu T, Zhang Y, Zheng WQ, Wu S, Li G, Zhang Y, Li N, Yao R, Fang P, Wang J, Zhou XL. Selective degradation of tRNASer(AGY) is the primary driver for mitochondrial seryl-tRNA synthetase-related disease. Nucleic Acids Res 2022; 50:11755-11774. [PMID: 36350636 PMCID: PMC9723649 DOI: 10.1093/nar/gkac1028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
Mitochondrial translation is of high significance for cellular energy homeostasis. Aminoacyl-tRNA synthetases (aaRSs) are crucial translational components. Mitochondrial aaRS variants cause various human diseases. However, the pathogenesis of the vast majority of these diseases remains unknown. Here, we identified two novel SARS2 (encoding mitochondrial seryl-tRNA synthetase) variants that cause a multisystem disorder. c.654-14T > A mutation induced mRNA mis-splicing, generating a peptide insertion in the active site; c.1519dupC swapped a critical tRNA-binding motif in the C-terminus due to stop codon readthrough. Both mutants exhibited severely diminished tRNA binding and aminoacylation capacities. A marked reduction in mitochondrial tRNASer(AGY) was observed due to RNA degradation in patient-derived induced pluripotent stem cells (iPSCs), causing impaired translation and comprehensive mitochondrial function deficiencies. These impairments were efficiently rescued by wild-type SARS2 overexpression. Either mutation caused early embryonic fatality in mice. Heterozygous mice displayed reduced muscle tissue-specific levels of tRNASers. Our findings elucidated the biochemical and cellular consequences of impaired translation mediated by SARS2, suggesting that reduced abundance of tRNASer(AGY) is a key determinant for development of SARS2-related diseases.
Collapse
Affiliation(s)
| | | | - Wen-Qiang Zheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Siqi Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guoqiang Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Yong Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jian Wang
- Correspondence may also be addressed to Jian Wang. Tel: +86 21 3808 7371;
| | - Xiao-Long Zhou
- To whom correspondence should be addressed. Tel: +86 21 5492 1247; Fax: +86 21 5492 1011;
| |
Collapse
|
8
|
Yarus M. A crescendo of competent coding (c3) contains the Standard Genetic Code. RNA (NEW YORK, N.Y.) 2022; 28:1337-1347. [PMID: 35868841 PMCID: PMC9479743 DOI: 10.1261/rna.079275.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The Standard Genetic Code (SGC) can arise by fusion of partial codes evolved in different individuals, perhaps for differing prior tasks. Such code fragments can be unified into an SGC after later evolution of accurate third-position Crick wobble. Late wobble advent fills in the coding table, leaving only later development of translational initiation and termination to reach the SGC in separated domains of life. This code fusion mechanism is computationally implemented here. Late Crick wobble after C3 fusion (c3-lCw) is tested for its ability to evolve the SGC. Compared with previously studied isolated coding tables, or with increasing numbers of parallel, but nonfusing codes, c3-lCw reaches the SGC sooner, is successful in a smaller population, and presents accurate and complete codes more frequently. Notably, a long crescendo of SGC-like codes is exposed for selection of superior translation. c3-lCw also effectively suppresses varied disordered assignments, thus converging on a unified code. Such merged codes closely approach the SGC, making its selection plausible. For example: Under routine conditions, ≈1 of 22 c3-lCw environments evolves codes with ≥20 assignments and ≤3 differences from the SGC, notably including codes identical to the Standard Genetic Code.
Collapse
Affiliation(s)
- Michael Yarus
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| |
Collapse
|
9
|
Yan L, Hou Z, Ma J, Wang H, Gao J, Zeng C, Chen Q, Yue B, Zhang X. Complete mitochondrial genome of Episymploce splendens (Blattodea: Ectobiidae): A large intergenic spacer and lacking of two tRNA genes. PLoS One 2022; 17:e0268064. [PMID: 35653382 PMCID: PMC9162313 DOI: 10.1371/journal.pone.0268064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
The complete mitochondrial genome of Episymploce splendens, 15,802 bp in length, was determined and annotated in this study. The mito-genome included 13 PCGs, 20 tRNAs and 2 rRNAs. Unlike most typical mito-genomes with conservative gene arrangement and exceptional economic organization, E. splendens mito-genome has two tRNAs (tRNA-Gln and tRNA-Met) absence and a long intergenic spacer sequence (93 bp) between tRNA-Val and srRNA, showing the diversified features of insect mito-genomes. This is the first report of the tRNAs deletion in blattarian mito-genomes and we supported the duplication/random loss model as the origin mechanism of the long intergenic spacer. Two Numts, Numt-1 (557 bp) and Numt-2 (975 bp) transferred to the nucleus at about 14.15 Ma to 22.34 Ma, and 19.19 Ma to 24.06 Ma respectively, were found in E. splendens. They can be used as molecular fossils in insect phylogenetic relationship inference. Our study provided useful data for further studies on the evolution of insect mito-genome.
Collapse
Affiliation(s)
- Lin Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenzhen Hou
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinnan Ma
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jie Gao
- Sichuan Key Laboratory of Medicinal Periplaneta Americana, Sichuan Gooddoctor Pharmaceutical Group, Chengdu, China
| | - Chenjuan Zeng
- Sichuan Key Laboratory of Medicinal Periplaneta Americana, Sichuan Gooddoctor Pharmaceutical Group, Chengdu, China
| | - Qin Chen
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
10
|
Zhang Y, Zhao X, Xu Y, Chen L, Li N, Yao R, Wang X, Wang J, Yu T. Study of novel NARS2 variants in patient of combined oxidative phosphorylation deficiency 24. Transl Pediatr 2022; 11:448-457. [PMID: 35558980 PMCID: PMC9085945 DOI: 10.21037/tp-21-570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/24/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND NARS2 catalyzes the attachment of asparagine amino acids to mitochondrial tRNAAsn and is critical for efficient mitochondrial protein synthesis. Biallelic variants in NARS2 are associated with combined oxidative phosphorylation deficiency 24 (COXPD24) and autosomal recessive deafness-94. METHODS Patient information was obtained after recruitment. Genetic tests were performed using whole exome sequencing (WES) and Sanger sequencing. Structure prediction was based on the RaptorX and SWISS-MODEL platforms. The mRNA analysis of paternal variant was performed. Expression levels and dimerization of wild-type (WT) and mutant NARS2 were detected in human embryonic kidney (HEK) 293T cells. Mitochondrial localization of NARS2 variants was determined using immunofluorescence staining. RESULTS The patient presented early onset generalized epilepsy, myoclonic seizures, severe bilateral hearing impairment and affected liver and heart. WES identified two compound heterozygous variants in NARS2: c.1141A>G/p.Asn381Asp and c.1290G>C/p.Trp430Cys. In silico analysis predicted that both variants would cause significant and pathogenic changes in secondary structure. NARS2 c.1290G>C is a variant at the first nucleotide of an exon, a location thought to affect mRNA splicing. Although transcriptional experiments did not identify aberrant splicing, we observed a lower proportion of transcripts from the NARS2 c.1290G>C variant. An in vitro experiment showed that both variants impaired NARS2 expression, while mitochondrial localization and dimerization remained unaffected. CONCLUSIONS The patient was diagnosed with COXPD24 caused by novel NARS2 variations. The cardiac dysfunction is identified for the first time. In vitro study revealed impairment of variants on NARS2 expression. These data enrich our knowledge regarding the phenotypic and genotypic spectra of NARS2.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyue Zhao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lina Chen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Forner J, Kleinschmidt D, Meyer EH, Fischer A, Morbitzer R, Lahaye T, Schöttler MA, Bock R. Targeted introduction of heritable point mutations into the plant mitochondrial genome. NATURE PLANTS 2022; 8:245-256. [PMID: 35301443 PMCID: PMC8940627 DOI: 10.1038/s41477-022-01108-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/10/2022] [Indexed: 05/05/2023]
Abstract
The development of technologies for the genetic manipulation of mitochondrial genomes remains a major challenge. Here we report a method for the targeted introduction of mutations into plant mitochondrial DNA (mtDNA) that we refer to as transcription activator-like effector nuclease (TALEN) gene-drive mutagenesis (GDM), or TALEN-GDM. The method combines TALEN-induced site-specific cleavage of the mtDNA with selection for mutations that confer resistance to the TALEN cut. Applying TALEN-GDM to the tobacco mitochondrial nad9 gene, we isolated a large set of mutants carrying single amino acid substitutions in the Nad9 protein. The mutants could be purified to homochondriomy and stably inherited their edited mtDNA in the expected maternal fashion. TALEN-GDM induces both transitions and transversions, and can access most nucleotide positions within the TALEN binding site. Our work provides an efficient method for targeted mitochondrial genome editing that produces genetically stable, homochondriomic and fertile plants with specific point mutations in their mtDNA.
Collapse
Affiliation(s)
- Joachim Forner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Dennis Kleinschmidt
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Etienne H Meyer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
- Institut für Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Axel Fischer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Robert Morbitzer
- ZMBP, Allgemeine Genetik, Universität Tübingen, Tübingen, Germany
| | - Thomas Lahaye
- ZMBP, Allgemeine Genetik, Universität Tübingen, Tübingen, Germany
| | - Mark A Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| |
Collapse
|
12
|
Emser SV, Schaschl H, Millesi E, Steinborn R. Extension of Mitogenome Enrichment Based on Single Long-Range PCR: mtDNAs and Putative Mitochondrial-Derived Peptides of Five Rodent Hibernators. Front Genet 2021; 12:685806. [PMID: 35027919 PMCID: PMC8749263 DOI: 10.3389/fgene.2021.685806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Enriching mitochondrial DNA (mtDNA) for sequencing entire mitochondrial genomes (mitogenomes) can be achieved by single long-range PCR. This avoids interference from the omnipresent nuclear mtDNA sequences (NUMTs). The approach is currently restricted to the use of samples collected from humans and ray-finned fishes. Here, we extended the use of single long-range PCR by introducing back-to-back oligonucleotides that target a sequence of extraordinary homology across vertebrates. The assay was applied to five hibernating rodents, namely alpine marmot, Arctic and European ground squirrels, and common and garden dormice, four of which have not been fully sequenced before. Analysis of the novel mitogenomes focussed on the prediction of mitochondrial-derived peptides (MDPs) providing another level of information encoded by mtDNA. The comparison of MOTS-c, SHLP4 and SHLP6 sequences across vertebrate species identified segments of high homology that argue for future experimentation. In addition, we evaluated four candidate polymorphisms replacing an amino acid in mitochondrially encoded subunits of the oxidative phosphorylation (OXPHOS) system that were reported in relation to cold-adaptation. No obvious pattern was found for the diverse sets of mammalian species that either apply daily or multiday torpor or otherwise cope with cold. In summary, our single long-range PCR assay applying a pair of back-to-back primers that target a consensus sequence motif of Vertebrata has potential to amplify (intact) mitochondrial rings present in templates from a taxonomically diverse range of vertebrates. It could be promising for studying novel mitogenomes, mitotypes of a population and mitochondrial heteroplasmy in a sensitive, straightforward and flexible manner.
Collapse
Affiliation(s)
- Sarah V. Emser
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Helmut Schaschl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
13
|
Warren JM, Salinas-Giegé T, Triant DA, Taylor DR, Drouard L, Sloan DB. Rapid shifts in mitochondrial tRNA import in a plant lineage with extensive mitochondrial tRNA gene loss. Mol Biol Evol 2021; 38:5735-5751. [PMID: 34436590 PMCID: PMC8662596 DOI: 10.1093/molbev/msab255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In most eukaryotes, transfer RNAs (tRNAs) are one of the very few classes of genes remaining in the mitochondrial genome, but some mitochondria have lost these vestiges of their prokaryotic ancestry. Sequencing of mitogenomes from the flowering plant genus Silene previously revealed a large range in tRNA gene content, suggesting rapid and ongoing gene loss/replacement. Here, we use this system to test longstanding hypotheses about how mitochondrial tRNA genes are replaced by importing nuclear-encoded tRNAs. We traced the evolutionary history of these gene loss events by sequencing mitochondrial genomes from key outgroups (Agrostemma githago and Silene [=Lychnis] chalcedonica). We then performed the first global sequencing of purified plant mitochondrial tRNA populations to characterize the expression of mitochondrial-encoded tRNAs and the identity of imported nuclear-encoded tRNAs. We also confirmed the utility of high-throughput sequencing methods for the detection of tRNA import by sequencing mitochondrial tRNA populations in a species (Solanum tuberosum) with known tRNA trafficking patterns. Mitochondrial tRNA sequencing in Silene revealed substantial shifts in the abundance of some nuclear-encoded tRNAs in conjunction with their recent history of mt-tRNA gene loss and surprising cases where tRNAs with anticodons still encoded in the mitochondrial genome also appeared to be imported. These data suggest that nuclear-encoded counterparts are likely replacing mitochondrial tRNAs even in systems with recent mitochondrial tRNA gene loss, and the redundant import of a nuclear-encoded tRNA may provide a mechanism for functional replacement between translation systems separated by billions of years of evolutionary divergence.
Collapse
Affiliation(s)
- Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | - Thalia Salinas-Giegé
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg, F-67084, France
| | - Deborah A Triant
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Douglas R Taylor
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg, F-67084, France
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| |
Collapse
|
14
|
Ceriotti LF, Roulet ME, Sanchez-Puerta MV. Plastomes in the holoparasitic family Balanophoraceae: Extremely high AT content, severe gene content reduction, and two independent genetic code changes. Mol Phylogenet Evol 2021; 162:107208. [PMID: 34029719 DOI: 10.1016/j.ympev.2021.107208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022]
Abstract
The transition to a heterotrophic lifestyle in angiosperms is characterized by convergent evolutionary changes. Plastid genome remodeling includes dramatic functional and physical reductions with the highest degrees observed in fully heterotrophic plants. Genes related to photosynthesis are generally absent or pseudogenized, while a few genes related to other metabolic processes that take place within the plastid are almost invariably maintained. The family Balanophoraceae consists of root holoparasites that present reduced plastid genomes with an extraordinarily elevated AT content and the single genetic code change ever documented in land plant plastomes (the stop codon TAG now codes for tryptophan). Here, we studied the plastomes of Lophophytum leandri and Ombrophytum subterraneum (Balanophoraceae) that showed the remarkable absence of the gene trnE, a highly biased nucleotide composition, and an independent genetic code change (the standard stop codon TGA codes for tryptophan). This is the second genetic code change identified in land plant plastomes. Analysis of the transcriptome of Lophophytum indicated that the entire C5 pathway typical of plants is conserved despite the lack of trnE in its plastome. A hypothetical model of plastome evolution in the Balanophoraceae is presented.
Collapse
Affiliation(s)
- Luis Federico Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina.
| |
Collapse
|
15
|
tRNA-Dependent Import of a Transit Sequence-Less Aminoacyl-tRNA Synthetase (LeuRS2) into the Mitochondria of Arabidopsis. Int J Mol Sci 2021; 22:ijms22083808. [PMID: 33916944 PMCID: PMC8067559 DOI: 10.3390/ijms22083808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022] Open
Abstract
Aminoacyl-tRNA synthetases (AaRS) charge tRNAs with amino acids for protein translation. In plants, cytoplasmic, mitochondrial, and chloroplast AaRS exist that are all coded for by nuclear genes and must be imported from the cytosol. In addition, only a few of the mitochondrial tRNAs needed for translation are encoded in mitochondrial DNA. Despite considerable progress made over the last few years, still little is known how the bulk of cytosolic AaRS and respective tRNAs are transported into mitochondria. Here, we report the identification of a protein complex that ties AaRS and tRNA import into the mitochondria of Arabidopsis thaliana. Using leucyl-tRNA synthetase 2 (LeuRS2) as a model for a mitochondrial signal peptide (MSP)-less precursor, a ≈30 kDa protein was identified that interacts with LeuRS2 during import. The protein identified is identical with a previously characterized mitochondrial protein designated HP30-2 (encoded by At3g49560) that contains a sterile alpha motif (SAM) similar to that found in RNA binding proteins. HP30-2 is part of a larger protein complex that contains with TIM22, TIM8, TIM9 and TIM10 four previously identified components of the translocase for MSP-less precursors. Lack of HP30-2 perturbed mitochondrial biogenesis and function and caused seedling lethality during greening, suggesting an essential role of HP30-2 in planta.
Collapse
|
16
|
Ehrlich R, Davyt M, López I, Chalar C, Marín M. On the Track of the Missing tRNA Genes: A Source of Non-Canonical Functions? Front Mol Biosci 2021; 8:643701. [PMID: 33796548 PMCID: PMC8007984 DOI: 10.3389/fmolb.2021.643701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Cellular tRNAs appear today as a diverse population of informative macromolecules with conserved general elements ensuring essential common functions and different and distinctive features securing specific interactions and activities. Their differential expression and the variety of post-transcriptional modifications they are subject to, lead to the existence of complex repertoires of tRNA populations adjusted to defined cellular states. Despite the tRNA-coding genes redundancy in prokaryote and eukaryote genomes, it is surprising to note the absence of genes coding specific translational-active isoacceptors throughout the phylogeny. Through the analysis of different releases of tRNA databases, this review aims to provide a general summary about those “missing tRNA genes.” This absence refers to both tRNAs that are not encoded in the genome, as well as others that show critical sequence variations that would prevent their activity as canonical translation adaptor molecules. Notably, while a group of genes are universally missing, others are absent in particular kingdoms. Functional information available allows to hypothesize that the exclusion of isodecoding molecules would be linked to: 1) reduce ambiguities of signals that define the specificity of the interactions in which the tRNAs are involved; 2) ensure the adaptation of the translational apparatus to the cellular state; 3) divert particular tRNA variants from ribosomal protein synthesis to other cellular functions. This leads to consider the “missing tRNA genes” as a source of putative non-canonical tRNA functions and to broaden the concept of adapter molecules in ribosomal-dependent protein synthesis.
Collapse
Affiliation(s)
- Ricardo Ehrlich
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay.,Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcos Davyt
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Ignacio López
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Cora Chalar
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Mónica Marín
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
17
|
Lu C, Huang X, Deng J. The challenge of Coccidae (Hemiptera: Coccoidea) mitochondrial genomes: The case of Saissetia coffeae with novel truncated tRNAs and gene rearrangements. Int J Biol Macromol 2020; 158:854-864. [PMID: 32387610 DOI: 10.1016/j.ijbiomac.2020.04.257] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 11/23/2022]
Abstract
There have been few reports of complete mitochondrial genomes (mitogenomes) of scale insects, and it has been indicated that complex and novel structures in their mitogenomes may lead to difficulties in sequencing, assembly and annotation. Transfer RNAs (tRNAs) usually possess typical cloverleaf secondary structures, and truncated tRNAs are rarely found in insect mitogenomes. Here, we report a complete Saissetia coffeae mitogenome (15,389 bp) with high A+T content (84.7%) sequenced by next-generation sequencing (NGS) methods. Genes in the mitogenome were annotated, and nine tRNAs were not found using MITOS. Most of the detected tRNAs were significantly truncated without the dihydrouridine (DHU) arm or the TΨC (T) arm. In addition, the 9 "lost" tRNAs containing mismatched base pairs were retrieved based on the tRNA annotation workflow for Coccidae described in our study. The gene arrangement in the Saissetia coffeae mitogenome was significantly different from that in other hemipteran insects. Additionally, Bayesian and maximum likelihood trees based on the mitochondrial genes showed a long branch of the Saissetia lineage, indicating significant nonsynonymous substitutions or high evolutionary rates in the Saissetia lineage. We provide a reference mitogenome for the assembly and annotation of the Coccidae mitogenome and offer insights into the evolution of scale insects.
Collapse
Affiliation(s)
- Congcong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
18
|
Fang WX, Dong FY, Sun ET, Tao DD, Wang Y, Xu JY, Fang Y, Zhan XB, Ye CJ. De novo sequence of the mitochondrial genome of Tyrophagus putrescentiae (Acari: Sarcoptiformes) including 22 tRNA sequences and the largest non-coding region. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:521-530. [PMID: 32162137 DOI: 10.1007/s10493-020-00477-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
In this study, we de novo sequenced and analyzed the circular mitochondrial genome (mitogenome) of Tyrophagus putrescentiae. It was 14,156 bp long and contained a complete set of 37 genes, contrary to the initial published sequences; it included 22 tRNA sequences and the largest non-coding region. The mtDNA gene order of T. putrescentiae was found to be identical to that of Aleuroglyphus ovatus, Caloglyphus berlesei, and Rhizoglyphus robini (all Acaroidea). Most tRNAs of T. putrescentiae lack at least a D-arm or T-arm. Tyrophagus putrescentiae tRNAs also shared considerable structural and sequence similarity with the tRNAs of other reported Acaroidea species that have the full set of tRNAs. The largest non-coding region was located between trnF and trnS1, and it contained a microsatellite-like (AT)n sequence, short palindromic sequences, and several hairpin loops, as observed in other reported Acaroidea species (excepting Tyrophagus longior).
Collapse
Affiliation(s)
- Wei-Xi Fang
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, 241002, China
| | - Fang-Yuan Dong
- Department of Pathology, Wannan Medical College, Wuhu, China
| | - En-Tao Sun
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, 241002, China.
| | - Dong-Dong Tao
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, 241002, China
| | - Yan Wang
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, 241002, China
| | - Jiao-Yang Xu
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, 241002, China
| | - Yu Fang
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, 241002, China
| | - Xue-Bing Zhan
- Department of Pathology, Wannan Medical College, Wuhu, China
| | - Chang-Jiang Ye
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, 241002, China
| |
Collapse
|
19
|
Wallace EWJ, Maufrais C, Sales-Lee J, Tuck LR, de Oliveira L, Feuerbach F, Moyrand F, Natarajan P, Madhani HD, Janbon G. Quantitative global studies reveal differential translational control by start codon context across the fungal kingdom. Nucleic Acids Res 2020; 48:2312-2331. [PMID: 32020195 PMCID: PMC7049704 DOI: 10.1093/nar/gkaa060] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic protein synthesis generally initiates at a start codon defined by an AUG and its surrounding Kozak sequence context, but the quantitative importance of this context in different species is unclear. We tested this concept in two pathogenic Cryptococcus yeast species by genome-wide mapping of translation and of mRNA 5' and 3' ends. We observed thousands of AUG-initiated upstream open reading frames (uORFs) that are a major contributor to translation repression. uORF use depends on the Kozak sequence context of its start codon, and uORFs with strong contexts promote nonsense-mediated mRNA decay. Transcript leaders in Cryptococcus and other fungi are substantially longer and more AUG-dense than in Saccharomyces. Numerous Cryptococcus mRNAs encode predicted dual-localized proteins, including many aminoacyl-tRNA synthetases, in which a leaky AUG start codon is followed by a strong Kozak context in-frame AUG, separated by mitochondrial-targeting sequence. Analysis of other fungal species shows that such dual-localization is also predicted to be common in the ascomycete mould, Neurospora crassa. Kozak-controlled regulation is correlated with insertions in translational initiation factors in fidelity-determining regions that contact the initiator tRNA. Thus, start codon context is a signal that quantitatively programs both the expression and the structures of proteins in diverse fungi.
Collapse
Affiliation(s)
- Edward W J Wallace
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, UK
| | - Corinne Maufrais
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
- Institut Pasteur, HUB Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, F-75015 Paris, France
| | - Jade Sales-Lee
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Laura R Tuck
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, UK
| | - Luciana de Oliveira
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
| | - Frank Feuerbach
- Institut Pasteur, Unité Génétique des Interactions Macromoléculaire, Département Génome et Génétique, F-75015 Paris, France
| | - Frédérique Moyrand
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
| | - Prashanthi Natarajan
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Guilhem Janbon
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
| |
Collapse
|
20
|
Warren JM, Sloan DB. Interchangeable parts: The evolutionarily dynamic tRNA population in plant mitochondria. Mitochondrion 2020; 52:144-156. [PMID: 32184120 DOI: 10.1016/j.mito.2020.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 01/31/2023]
Abstract
Transfer RNAs (tRNAs) remain one of the very few classes of genes still encoded in the mitochondrial genome. These key components of the protein translation system must interact with a large enzymatic network of nuclear-encoded gene products to maintain mitochondrial function. Plants have an evolutionarily dynamic mitochondrial tRNA population, including ongoing tRNA gene loss and replacement by both horizontal gene transfer from diverse sources and import of nuclear-expressed tRNAs from the cytosol. Thus, plant mitochondria represent an excellent model for understanding how anciently divergent genes can act as "interchangeable parts" during the evolution of complex molecular systems. In particular, understanding the integration of the mitochondrial translation system with elements of the corresponding machinery used in cytosolic protein synthesis is a key area for eukaryotic cellular evolution. Here, we review the increasingly detailed phylogenetic data about the evolutionary history of mitochondrial tRNA gene loss, transfer, and functional replacement that has created extreme variation in mitochondrial tRNA populations across plant species. We describe emerging tRNA-seq methods with promise for refining our understanding of the expression and subcellular localization of tRNAs. Finally, we summarize current evidence and identify open questions related to coevolutionary changes in nuclear-encoded enzymes that have accompanied turnover in mitochondrial tRNA populations.
Collapse
Affiliation(s)
- Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
21
|
Weitzel CS, Li L, Zhang C, Eilts KK, Bretz NM, Gatten AL, Whitaker RJ, Martinis SA. Duplication of leucyl-tRNA synthetase in an archaeal extremophile may play a role in adaptation to variable environmental conditions. J Biol Chem 2020; 295:4563-4576. [PMID: 32102848 DOI: 10.1074/jbc.ra118.006481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/25/2020] [Indexed: 12/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are ancient enzymes that play a fundamental role in protein synthesis. They catalyze the esterification of specific amino acids to the 3'-end of their cognate tRNAs and therefore play a pivotal role in protein synthesis. Although previous studies suggest that aaRS-dependent errors in protein synthesis can be beneficial to some microbial species, evidence that reduced aaRS fidelity can be adaptive is limited. Using bioinformatics analyses, we identified two distinct leucyl-tRNA synthetase (LeuRS) genes within all genomes of the archaeal family Sulfolobaceae. Remarkably, one copy, designated LeuRS-I, had key amino acid substitutions within its editing domain that would be expected to disrupt hydrolytic editing of mischarged tRNALeu and to result in variation within the proteome of these extremophiles. We found that another copy, LeuRS-F, contains canonical active sites for aminoacylation and editing. Biochemical and genetic analyses of the paralogs within Sulfolobus islandicus supported the hypothesis that LeuRS-F, but not LeuRS-I, functions as an essential tRNA synthetase that accurately charges leucine to tRNALeu for protein translation. Although LeuRS-I was not essential, its expression clearly supported optimal S. islandicus growth. We conclude that LeuRS-I may have evolved to confer a selective advantage under the extreme and fluctuating environmental conditions characteristic of the volcanic hot springs in which these archaeal extremophiles reside.
Collapse
Affiliation(s)
| | - Li Li
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801.,Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801
| | - Changyi Zhang
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801
| | - Kristen K Eilts
- Department of Chemistry, Illinois State University, Normal, Illinois 61761
| | - Nicholas M Bretz
- Department of Chemistry, Illinois State University, Normal, Illinois 61761
| | - Alex L Gatten
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
| | - Rachel J Whitaker
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801
| | - Susan A Martinis
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801.,Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
22
|
Yang YZ, Ding S, Wang Y, Wang HC, Liu XY, Sun F, Xu C, Liu B, Tan BC. PPR20 Is Required for the cis-Splicing of Mitochondrial nad2 Intron 3 and Seed Development in Maize. PLANT & CELL PHYSIOLOGY 2020; 61:370-380. [PMID: 31670803 DOI: 10.1093/pcp/pcz204] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/22/2019] [Indexed: 05/02/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are helical repeat RNA-binding proteins that function in RNA processing by conferring sequence-specific RNA-binding activity. Owing to the lethality of PPR mutants, functions of many PPR proteins remain obscure. In this study, we report the function of PPR20 in intron splicing in mitochondria and its role in maize seed development. PPR20 is a P-type PPR protein targeted to mitochondria. The ppr20 mutants display slow embryo and endosperm development. Null mutation of PPR20 severely reduces the cis-splicing of mitochondrial nad2 intron 3, resulting in reduction in the assembly and activity of mitochondrial complex I. The ppr20-35 allele with a Mu insertion in the N-terminal region shows a much weaker phenotype. Molecular analyses revealed that the mutant produces a truncated transcript, coding for PPR20ΔN120 lacking the N-terminal 120 amino acids. Subcellular localization revealed that PPR20ΔN120:GFP is able to target to mitochondria as well, suggesting the sequence diversity of the mitochondrial targeting peptides. Another mutant zm_mterf15 was also found to be impaired in the splicing of mitochondrial nad2 intron 3. Further analyses are required to identify the exact function of PPR20 and Zm_mTERF15 in the splicing of nad2 intron 3.
Collapse
Affiliation(s)
- Yan-Zhuo Yang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Shuo Ding
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yong Wang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Hong-Chun Wang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xin-Yuan Liu
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Feng Sun
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Chunhui Xu
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Baohui Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Bao-Cai Tan
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
23
|
Yuan M, Zhang L, Zhang Q, Zhang L, Li M, Wang X, Feng R, Tang P. Mitogenome evolution in ladybirds: Potential association with dietary adaptation. Ecol Evol 2020; 10:1042-1053. [PMID: 32015863 PMCID: PMC6988538 DOI: 10.1002/ece3.5971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/26/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Dietary shifts can alter the relative availability of different nutrients and are therefore associated with metabolic adaptation in animals. The Coccinellidae (ladybirds) exhibits three major types of feeding habits and provides a useful model to study the effects of dietary changes on the evolution of mitogenomes, which encode proteins directly involved in energy metabolism. Here, mitogenomes of three coccinellid species were newly sequenced. These data were combined with other ten previously sequenced coccinellid mitogenomes to explore the relationship between mitogenome evolution and diets. Our results indicate that mitogenomic data can be effectively used to resolve phylogenetic relationships of Coccinellidae. Strong codon usage bias in coccinellid mitogenomes was predominantly determined by nucleotide composition. The 13 mitochondrial protein-coding genes (PCGs) globally evolved under negative constraints, with some PCGs showing a stronger purifying selection. Six PCGs (nad3, nad4L, and nad5 from Complex I; cox1 and cox3 from Complex IV; and atp6 from Complex V) displayed signs of positive selection. Of these, adaptive changes in cox3 were potentially associated with metabolic differences resulting from dietary shifts in Coccinellidae. Our results provide insights into the adaptive evolution of coccinellid mitogenomes in response to both dietary shifts and other life history traits.
Collapse
Affiliation(s)
- Ming‐Long Yuan
- State Key Laboratory of Grassland Agro‐EcosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Li‐Jun Zhang
- State Key Laboratory of Grassland Agro‐EcosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Qi‐Lin Zhang
- Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingChina
| | - Li Zhang
- State Key Laboratory of Grassland Agro‐EcosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Min Li
- State Key Laboratory of Grassland Agro‐EcosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Xiao‐Tong Wang
- State Key Laboratory of Grassland Agro‐EcosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Run‐Qiu Feng
- State Key Laboratory of Grassland Agro‐EcosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Pei‐An Tang
- Collaborative Innovation Center for Modern Grain Circulation and SafetyCollege of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
| |
Collapse
|
24
|
Cicada Endosymbionts Have tRNAs That Are Correctly Processed Despite Having Genomes That Do Not Encode All of the tRNA Processing Machinery. mBio 2019; 10:mBio.01950-18. [PMID: 31213566 PMCID: PMC6581868 DOI: 10.1128/mbio.01950-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smallest bacterial genomes, in the range of about 0.1 to 0.5 million base pairs, are commonly found in the nutritional endosymbionts of insects. These tiny genomes are missing genes that encode proteins and RNAs required for the translation of mRNAs, one of the most highly conserved and important cellular processes. In this study, we found that the bacterial endosymbionts of cicadas have genomes which encode incomplete tRNA sets and lack genes required for tRNA processing. Nevertheless, we found that endosymbiont tRNAs are correctly processed at their 5′ and 3′ ends and, surprisingly, that mostly exist as tRNA halves. We hypothesize that the cicada host must supply its symbionts with these missing tRNA processing activities. Gene loss and genome reduction are defining characteristics of endosymbiotic bacteria. The most highly reduced endosymbiont genomes have lost numerous essential genes related to core cellular processes such as replication, transcription, and translation. Computational gene predictions performed for the genomes of the two bacterial symbionts of the cicada Diceroprocta semicincta, “Candidatus Hodgkinia cicadicola” (Alphaproteobacteria) and “Ca. Sulcia muelleri” (Bacteroidetes), have found only 26 and 16 tRNA genes and 15 and 10 aminoacyl tRNA synthetase genes, respectively. Furthermore, the original “Ca. Hodgkinia cicadicola” genome annotation was missing several essential genes involved in tRNA processing, such as those encoding RNase P and CCA tRNA nucleotidyltransferase as well as several RNA editing enzymes required for tRNA maturation. How these cicada endosymbionts perform basic translation-related processes remains unknown. Here, by sequencing eukaryotic mRNAs and total small RNAs, we show that the limited tRNA set predicted by computational annotation of “Ca. Sulcia muelleri” and “Ca. Hodgkinia cicadicola” is likely correct. Furthermore, we show that despite the absence of genes encoding tRNA processing activities in the symbiont genomes, symbiont tRNAs have correctly processed 5′ and 3′ ends and seem to undergo nucleotide modification. Surprisingly, we found that most “Ca. Hodgkinia cicadicola” and “Ca. Sulcia muelleri” tRNAs exist as tRNA halves. We hypothesize that “Ca. Sulcia muelleri” and “Ca. Hodgkinia cicadicola” tRNAs function in bacterial translation but require host-encoded enzymes to do so.
Collapse
|
25
|
Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc Natl Acad Sci U S A 2019; 116:6914-6923. [PMID: 30872488 DOI: 10.1073/pnas.1819976116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The division of life into producers and consumers is blurred by evolution. For example, eukaryotic phototrophs can lose the capacity to photosynthesize, although they may retain vestigial plastids that perform other essential cellular functions. Chrysophyte algae have undergone a particularly large number of photosynthesis losses. Here, we present a plastid genome sequence from a nonphotosynthetic chrysophyte, "Spumella" sp. NIES-1846, and show that it has retained a nearly identical set of plastid-encoded functions as apicomplexan parasites. Our transcriptomic analysis of 12 different photosynthetic and nonphotosynthetic chrysophyte lineages reveals remarkable convergence in the functions of these nonphotosynthetic plastids, along with informative lineage-specific retentions and losses. At one extreme, Cornospumella fuschlensis retains many photosynthesis-associated proteins, although it appears to have lost the reductive pentose phosphate pathway and most plastid amino acid metabolism pathways. At the other extreme, Paraphysomonas lacks plastid-targeted proteins associated with gene expression and all metabolic pathways that require plastid-encoded partners, indicating a complete loss of plastid DNA in this genus. Intriguingly, some of the nucleus-encoded proteins that once functioned in the expression of the Paraphysomonas plastid genome have been retained. These proteins were likely to have been dual targeted to the plastid and mitochondria of the chrysophyte ancestor, and are uniquely targeted to the mitochondria in Paraphysomonas Our comparative analyses provide insights into the process of functional reduction in nonphotosynthetic plastids.
Collapse
|
26
|
Huang J, Liu P, Wang G. Regulation of mitochondrion-associated cytosolic ribosomes by mammalian mitochondrial ribonuclease T2 (RNASET2). J Biol Chem 2018; 293:19633-19644. [PMID: 30385512 PMCID: PMC6314140 DOI: 10.1074/jbc.ra118.005433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/15/2018] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial proteins are encoded in both mitochondrial and nuclear genomes. The expression levels of these two pools of mitochondrial genes are co-regulated and synchronized. Import and assembly of the nucleus-encoded oxidative phosphorylation (OXPHOS) subunits affect protein synthesis in the mitochondrial matrix by engaging the mitochondrial ribosomes. How the ribosomes at the outside of mitochondria are regulated by mitochondria, however, remains mostly unexplored. Here, using an array of biochemical assays and genetic knockdown and overexpression in HEK293 or mouse cells, we show that cytosolic rRNAs that are associated with the mitochondrial outer membrane have very different decay patterns from those of both endoplasmic reticulum–associated and –nonassociated cytosolic rRNAs. Mitochondrial intermembrane space RNase T2 (RNASET2), which has been previously shown to degrade mitochondrial RNAs, is also responsible for selective degradation of the cytosolic rRNAs on the outer membrane. We noted that the degradation activity also has a positive effect on nuclear transcription of rRNAs, suggesting a compensatory feedback mechanism, and affects protein translations in and out of mitochondria. These findings establish a mechanism for the co-regulation of gene expression programs inside and outside of mitochondria in mammalian cells.
Collapse
Affiliation(s)
- Jinliang Huang
- From the Ministry of Education Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peipei Liu
- From the Ministry of Education Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Geng Wang
- From the Ministry of Education Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Sloan DB, Warren JM, Williams AM, Wu Z, Abdel-Ghany SE, Chicco AJ, Havird JC. Cytonuclear integration and co-evolution. Nat Rev Genet 2018; 19:635-648. [PMID: 30018367 PMCID: PMC6469396 DOI: 10.1038/s41576-018-0035-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The partitioning of genetic material between the nucleus and cytoplasmic (mitochondrial and plastid) genomes within eukaryotic cells necessitates coordinated integration between these genomic compartments, with important evolutionary and biomedical implications. Classic questions persist about the pervasive reduction of cytoplasmic genomes via a combination of gene loss, transfer and functional replacement - and yet why they are almost always retained in some minimal form. One striking consequence of cytonuclear integration is the existence of 'chimeric' enzyme complexes composed of subunits encoded in two different genomes. Advances in structural biology and comparative genomics are yielding important insights into the evolution of such complexes, including correlated sequence changes and recruitment of novel subunits. Thus, chimeric cytonuclear complexes provide a powerful window into the mechanisms of molecular co-evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
28
|
Zou H, Jakovlić I, Zhang D, Chen R, Mahboob S, Al-Ghanim KA, Al-Misned F, Li WX, Wang GT. The complete mitochondrial genome of Cymothoa indica has a highly rearranged gene order and clusters at the very base of the Isopoda clade. PLoS One 2018; 13:e0203089. [PMID: 30180209 PMCID: PMC6122833 DOI: 10.1371/journal.pone.0203089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/14/2018] [Indexed: 11/18/2022] Open
Abstract
As a result of great diversity in life histories and a large number of described species, taxonomic and phylogenetic uncertainty permeates the entire crustacean order of Isopoda. Large molecular datasets capable of providing sufficiently high phylogenetic resolution, such as mitochondrial genomes (mitogenomes), are needed to infer their evolutionary history with confidence, but isopod mitogenomes remain remarkably poorly represented in public databases. We sequenced the complete mitogenome of Cymothoa indica, a species belonging to a family from which no mitochondrial genome was sequenced yet, Cymothoidae. The mitogenome (circular, 14484 bp, A+T = 63.8%) is highly compact, appears to be missing two tRNA genes (trnI and trnE), and exhibits a unique gene order with a large number of rearrangements. High compactness and the existence of palindromes indicate that the mechanism behind these rearrangements might be associated with linearization events in its evolutionary history, similar to those proposed for isopods from the Armadillidium genus (Oniscidea). Isopods might present an important model system to study the proposed discontinuity in the dynamics of mitochondrial genomic architecture evolution. Phylogenetic analyses (Bayesian Inference and Maximum Likelihood) conducted using nucleotide sequences of all mitochondrial genes resolved Oniscidea and Cymothoida suborders as paraphyletic. Cymothoa indica was resolved as a sister group (basal) to all remaining isopods, which challenges the accepted isopod phylogeny, where Cymothoida are the most derived, and Phreatoicidea the most basal isopod group. There is growing evidence that Cymothoida suborder might be split into two evolutionary distant clades, with parasitic species being the most basal split in the Isopoda clade, but a much larger amount of molecular resources carrying a high phylogenetic resolution will be needed to infer the remarkably complex evolutionary history of this group of animals with confidence.
Collapse
Affiliation(s)
- Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | | | - Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Rong Chen
- Bio-Transduction Lab, Biolake, Wuhan, P. R. China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Zoology, GC University, Faisalabad, Pakistan
| | | | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wen-Xiang Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| |
Collapse
|
29
|
Sasaki K, Othman MB, Demura M, Watanabe M, Isoda H. Modulation of Neurogenesis through the Promotion of Energy Production Activity Is behind the Antidepressant-Like Effect of Colonial Green Alga, Botryococcus braunii. Front Physiol 2017; 8:900. [PMID: 29176952 PMCID: PMC5686089 DOI: 10.3389/fphys.2017.00900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/24/2017] [Indexed: 12/31/2022] Open
Abstract
Algae have been recognized as important resources providing functional components due to their capacity to exert beneficial effects on health. Therefore, there is increasing interest in investigating the biological activity of algae. In this study, we evaluated the antidepressant-like effect of the administration of 100 mg/kg/day of the ethanol extract of colonial green alga Botryococcus braunii (EEB) for 14 consecutive days in the forced swimming test (FST)-induced depression in imprinting control region (ICR) mice. Imipramine, a commercial antidepressant drug, was used as a positive control. In addition, we investigated the molecular mechanisms underlying the effect of EEB by measuring ATP production and by assessing any change in gene expression at the end of the treatment using real-time polymerase chain reaction (PCR) and microarray assays. We showed that the immobility time in the water-administered control (FST stress) group gradually increased from day 1 to day 14. However, treatment with EEB caused a significant decrease of immobility time in the FST compared with that in the FST stress group. Microarray and real-time PCR results revealed that EEB treatment induced variation in the expression of several genes associated with neurogenesis, energy metabolism, and dopamine synthesis. Interestingly, we revealed that only EEB treatment enhanced the promotion of energy production, while treatment with imipramine was ineffective. Our study provides the first evidence that B. braunii enhances energy production, which may contribute to the modulation of neurogenesis and to the enhancement of dopaminergic function, in turn potentially underlying the antistress- and antidepressant-like effects that we observed.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Mahmoud B Othman
- Alliance for Research on North Africa, University of Tsukuba, Tsukuba, Japan
| | - Mikihide Demura
- Algal Biomass and Energy System R&D Center, University of Tsukuba, Tsukuba, Japan
| | - Makoto Watanabe
- Algal Biomass and Energy System R&D Center, University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research on North Africa, University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
30
|
Zou H, Jakovlić I, Chen R, Zhang D, Zhang J, Li WX, Wang GT. The complete mitochondrial genome of parasitic nematode Camallanus cotti: extreme discontinuity in the rate of mitogenomic architecture evolution within the Chromadorea class. BMC Genomics 2017; 18:840. [PMID: 29096600 PMCID: PMC5669012 DOI: 10.1186/s12864-017-4237-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Complete mitochondrial genomes are much better suited for the taxonomic identification and phylogenetic studies of nematodes than morphology or traditionally-used molecular markers, but they remain unavailable for the entire Camallanidae family (Chromadorea). As the only published mitogenome in the Camallanina suborder (Dracunculoidea superfamily) exhibited a unique gene order, the other objective of this research was to study the evolution of mitochondrial architecture in the Spirurida order. Thus, we sequenced the complete mitogenome of the Camallanus cotti fish parasite and conducted structural and phylogenomic comparative analyses with all available Spirurida mitogenomes. RESULTS The mitogenome is exceptionally large (17,901 bp) among the Chromadorea and, with 46 (pseudo-) genes, exhibits a unique architecture among nematodes. Six protein-coding genes (PCGs) and six tRNAs are duplicated. An additional (seventh) tRNA (Trp) was probably duplicated by the remolding of tRNA-Ser2 (missing). Two pairs of these duplicated PCGs might be functional; three were incomplete and one contained stop codons. Apart from Ala and Asp, all other duplicated tRNAs are conserved and probably functional. Only 19 unique tRNAs were found. Phylogenomic analysis included Gnathostomatidae (Spirurina) in the Camallanina suborder. CONCLUSIONS Within the Nematoda, comparable PCG duplications were observed only in the enoplean Mermithidae family, but those result from mitochondrial recombination, whereas characteristics of the studied mitogenome suggest that likely rearrangement mechanisms are either a series of duplications, transpositions and random loss events, or duplication, fragmentation and subsequent reassembly of the mitogenome. We put forward a hypothesis that the evolution of mitogenomic architecture is extremely discontinuous, and that once a long period of stasis in gene order and content has been punctuated by a rearrangement event, such a destabilised mitogenome is much more likely to undergo subsequent rearrangement events, resulting in an exponentially accelerated evolutionary rate of mitogenomic rearrangements. Implications of this model are particularly important for the application of gene order similarity as an additive source of phylogenetic information. Chromadorean nematodes, and particularly Camallanina clade (with C. cotti as an example of extremely accelerated rate of rearrangements), might be a good model to further study this discontinuity in the dynamics of mitogenomic evolution.
Collapse
Affiliation(s)
- Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075 People’s Republic of China
| | - Rong Chen
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075 People’s Republic of China
| | - Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Jin Zhang
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075 People’s Republic of China
| | - Wen-Xiang Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| |
Collapse
|
31
|
Liu P, Huang J, Zheng Q, Xie L, Lu X, Jin J, Wang G. Mammalian mitochondrial RNAs are degraded in the mitochondrial intermembrane space by RNASET2. Protein Cell 2017; 8:735-749. [PMID: 28730546 PMCID: PMC5636749 DOI: 10.1007/s13238-017-0448-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 10/28/2022] Open
Abstract
Mammalian mitochondrial genome encodes a small set of tRNAs, rRNAs, and mRNAs. The RNA synthesis process has been well characterized. How the RNAs are degraded, however, is poorly understood. It was long assumed that the degradation happens in the matrix where transcription and translation machineries reside. Here we show that contrary to the assumption, mammalian mitochondrial RNA degradation occurs in the mitochondrial intermembrane space (IMS) and the IMS-localized RNASET2 is the enzyme that degrades the RNAs. This provides a new paradigm for understanding mitochondrial RNA metabolism and transport.
Collapse
Affiliation(s)
- Peipei Liu
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinliang Huang
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qian Zheng
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Leiming Xie
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinping Lu
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jie Jin
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Geng Wang
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
32
|
Furukawa R, Nakagawa M, Kuroyanagi T, Yokobori SI, Yamagishi A. Quest for Ancestors of Eukaryal Cells Based on Phylogenetic Analyses of Aminoacyl-tRNA Synthetases. J Mol Evol 2016; 84:51-66. [PMID: 27889804 DOI: 10.1007/s00239-016-9768-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 11/18/2016] [Indexed: 11/28/2022]
Abstract
The three-domain phylogenetic system of life has been challenged, particularly with regard to the position of Eukarya. The recent increase of known genome sequences has allowed phylogenetic analyses of all extant organisms using concatenated sequence alignment of universally conserved genes; these data supported the two-domain hypothesis, which place eukaryal species as ingroups of the Domain Archaea. However, the origin of Eukarya is complicated: the closest archaeal species to Eukarya differs in single-gene phylogenetic analyses depending on the genes. In this report, we performed molecular phylogenetic analyses of 23 aminoacyl-tRNA synthetases (ARS). Cytoplasmic ARSs in 12 trees showed a monophyletic Eukaryotic branch. One ARS originated from TACK superphylum. One ARS originated from Euryarchaeota and three originated from DPANN superphylum. Four ARSs originated from different bacterial species. The other 8 cytoplasmic ARSs were split into two or three groups in respective trees, which suggested that the cytoplasmic ARSs were replaced by secondary ARSs, and the original ARSs have been lost during evolution of Eukarya. In these trees, one original cytoplasmic ARS was derived from Euryarchaeota and three were derived from DPANN superphylum. Our results strongly support the two-domain hypothesis. We discovered that rampant-independent lateral gene transfers from several archaeal species of DPANN superphylum have contributed to the formation of Eukaryal cells. Based on our phylogenetic analyses, we proposed a model for the establishment of Eukarya.
Collapse
Affiliation(s)
- Ryutaro Furukawa
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Mizuho Nakagawa
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Takuya Kuroyanagi
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Shin-Ichi Yokobori
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Akihiko Yamagishi
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan.
| |
Collapse
|
33
|
The Complete Mitochondrial Genome of Aleurocanthus camelliae: Insights into Gene Arrangement and Genome Organization within the Family Aleyrodidae. Int J Mol Sci 2016; 17:ijms17111843. [PMID: 27827992 PMCID: PMC5133843 DOI: 10.3390/ijms17111843] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/27/2016] [Accepted: 11/01/2016] [Indexed: 11/24/2022] Open
Abstract
There are numerous gene rearrangements and transfer RNA gene absences existing in mitochondrial (mt) genomes of Aleyrodidae species. To understand how mt genomes evolved in the family Aleyrodidae, we have sequenced the complete mt genome of Aleurocanthus camelliae and comparatively analyzed all reported whitefly mt genomes. The mt genome of A. camelliae is 15,188 bp long, and consists of 13 protein-coding genes, two rRNA genes, 21 tRNA genes and a putative control region (GenBank: KU761949). The tRNA gene, trnI, has not been observed in this genome. The mt genome has a unique gene order and shares most gene boundaries with Tetraleurodes acaciae. Nineteen of 21 tRNA genes have the conventional cloverleaf shaped secondary structure and two (trnS1 and trnS2) lack the dihydrouridine (DHU) arm. Using ARWEN and homologous sequence alignment, we have identified five tRNA genes and revised the annotation for three whitefly mt genomes. This result suggests that most absent genes exist in the genomes and have not been identified, due to be lack of technology and inference sequence. The phylogenetic relationships among 11 whiteflies and Drosophila melanogaster were inferred by maximum likelihood and Bayesian inference methods. Aleurocanthus camelliae and T. acaciae form a sister group, and all three Bemisia tabaci and two Bemisia afer strains gather together. These results are identical to the relationships inferred from gene order. We inferred that gene rearrangement plays an important role in the mt genome evolved from whiteflies.
Collapse
|
34
|
Chimeric mitochondrial peptides from contiguous regular and swinger RNA. Comput Struct Biotechnol J 2016; 14:283-97. [PMID: 27453772 PMCID: PMC4942731 DOI: 10.1016/j.csbj.2016.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/19/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022] Open
Abstract
Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist. Chimeric peptides are translated from contiguous regular and swinger RNA They are 200x rarer than mitochondrial swinger peptides Chimeric peptides integrated in regular mitochondrial proteins are downregulated Contiguous regular parts are matched positive controls for swinger parts The last point validates results beyond other statistical tests for robustness
Collapse
|
35
|
Seligmann H. Codon expansion and systematic transcriptional deletions produce tetra-, pentacoded mitochondrial peptides. J Theor Biol 2015; 387:154-65. [PMID: 26456204 DOI: 10.1016/j.jtbi.2015.09.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 11/28/2022]
Abstract
Genes include occasionally isolated codons with a fourth (and fifth) silent nucleotide(s). Assuming tetracodons, translated hypothetical peptides align with regular GenBank proteins; predicted tetracodons coevolve with predicted tRNAs with expanded anticodons in each mammal, Drosophila and Lepidosauria mitogenomes, GC contents and with lepidosaurian body temperatures, suggesting that expanded codons are an adaptation of translation to high temperature. Hypothetically, continuous stretches of tetra- and pentacodons code for peptides. Both systematic nucleotide deletions during transcription, and translation by tRNAs with expanded anticodons could produce these peptides. Reanalyses of human nanoLc mass spectrometry peptidome data detect numerous tetra- and pentapeptides translated from the human mitogenome. These map preferentially on (BLAST-detected) human RNAs matching the human mitogenome, assuming systematic mono- and dinucleotide deletions after each third nucleotide (delRNAs). Translation by expanded anticodons is incompatible with silent nucleotides in the midst rather than at codon 3' extremity. More than 1/3 of detected tetra- and pentapeptides assume silent positions at codon extremity, suggesting that both mechanisms, regular translation of delRNAs and translation of regular RNAs by expanded anticodons, produce this peptide subgroup. Results show that systematically deleting polymerization occurs, and confirm serial translation of expanded codons. Non-canonical transcriptions and translations considerably expand the coding potential of DNA and RNA sequences.
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, Faculté de Médecine, URMITE CNRS-IRD 198 UMER 6236, Université de la Méditerranée, 13385 Marseille, France.
| |
Collapse
|
36
|
Doublet V, Ubrig E, Alioua A, Bouchon D, Marcadé I, Maréchal-Drouard L. Large gene overlaps and tRNA processing in the compact mitochondrial genome of the crustacean Armadillidium vulgare. RNA Biol 2015; 12:1159-68. [PMID: 26361137 DOI: 10.1080/15476286.2015.1090078] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
A faithful expression of the mitochondrial DNA is crucial for cell survival. Animal mitochondrial DNA (mtDNA) presents a highly compact gene organization. The typical 16.5 kbp animal mtDNA encodes 13 proteins, 2 rRNAs and 22 tRNAs. In the backyard pillbug Armadillidium vulgare, the rather small 13.9 kbp mtDNA encodes the same set of proteins and rRNAs as compared to animal kingdom mtDNA, but seems to harbor an incomplete set of tRNA genes. Here, we first confirm the expression of 13 tRNA genes in this mtDNA. Then we show the extensive repair of a truncated tRNA, the expression of tRNA involved in large gene overlaps and of tRNA genes partially or fully integrated within protein-coding genes in either direct or opposite orientation. Under selective pressure, overlaps between genes have been likely favored for strong genome size reduction. Our study underlines the existence of unknown biochemical mechanisms for the complete gene expression of A. vulgare mtDNA, and of co-evolutionary processes to keep overlapping genes functional in a compacted mitochondrial genome.
Collapse
Affiliation(s)
- Vincent Doublet
- a Equipe Ecologie Evolution Symbiose; Laboratoire Ecologie et Biologie des Interactions , UMR CNRS 7267, Poitiers , France
| | - Elodie Ubrig
- b Institut de biologie moléculaire des plantes; associated with the University of Strasbourg , Strasbourg , France
| | - Abdelmalek Alioua
- b Institut de biologie moléculaire des plantes; associated with the University of Strasbourg , Strasbourg , France
| | - Didier Bouchon
- a Equipe Ecologie Evolution Symbiose; Laboratoire Ecologie et Biologie des Interactions , UMR CNRS 7267, Poitiers , France
| | - Isabelle Marcadé
- a Equipe Ecologie Evolution Symbiose; Laboratoire Ecologie et Biologie des Interactions , UMR CNRS 7267, Poitiers , France
| | - Laurence Maréchal-Drouard
- b Institut de biologie moléculaire des plantes; associated with the University of Strasbourg , Strasbourg , France
| |
Collapse
|
37
|
Burgess AL, David R, Searle IR. Conservation of tRNA and rRNA 5-methylcytosine in the kingdom Plantae. BMC PLANT BIOLOGY 2015; 15:199. [PMID: 26268215 PMCID: PMC4535395 DOI: 10.1186/s12870-015-0580-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/24/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Post-transcriptional methylation of RNA cytosine residues to 5-methylcytosine (m(5)C) is an important modification that regulates RNA metabolism and occurs in both eukaryotes and prokaryotes. Yet, to date, no transcriptome-wide identification of m(5)C sites has been undertaken in plants. Plants provide a unique comparative system for investigating the origin and evolution of m(5)C as they contain three different genomes, the nucleus, mitochondria and chloroplast. Here we use bisulfite conversion of RNA combined with high-throughput IIlumina sequencing (RBS-seq) to identify single-nucleotide resolution of m(5)C sites in non-coding ribosomal RNAs and transfer RNAs of all three sub-cellular transcriptomes across six diverse species that included, the single-celled algae Nannochloropsis oculata, the macro algae Caulerpa taxifolia and multi-cellular higher plants Arabidopsis thaliana, Brassica rapa, Triticum durum and Ginkgo biloba. RESULTS Using the plant model Arabidopsis thaliana, we identified a total of 39 highly methylated m(5)C sites in predicted structural positions of nuclear tRNAs and 7 m(5)C sites in rRNAs from nuclear, chloroplast and mitochondrial transcriptomes. Both the nucleotide position and percent methylation of tRNAs and rRNAs m(5)C sites were conserved across all species analysed, from single celled algae N. oculata to multicellular plants. Interestingly the mitochondrial and chloroplast encoded tRNAs were devoid of m(5)C in A. thaliana and this is generally conserved across Plantae. This suggests independent evolution of organelle methylation in animals and plants, as animal mitochondrial tRNAs have m(5)C sites. Here we characterize 5 members of the RNA 5-methylcytosine family in Arabidopsis and extend the functional characterization of TRDMT1 and NOP2A/OLI2. We demonstrate that nuclear tRNA methylation requires two evolutionarily conserved methyltransferases, TRDMT1 and TRM4B. trdmt1 trm4b double mutants are hypersensitive to the antibiotic hygromycin B, demonstrating the function of tRNA methylation in regulating translation. Additionally we demonstrate that nuclear large subunit 25S rRNA methylation requires the conserved RNA methyltransferase NSUN5. Our results also suggest functional redundancy of at least two of the NOP2 paralogs in Arabidopsis. CONCLUSIONS Our data demonstrates widespread occurrence and conservation of non-coding RNA methylation in the kingdom Plantae, suggesting important and highly conserved roles of this post-transcriptional modification.
Collapse
Affiliation(s)
- Alice Louise Burgess
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Rakesh David
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Iain Robert Searle
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
- The University of Adelaide and Shanghai Jiao Tong University Joint International Centre for Agriculture and Health, Adelaide, Australia.
| |
Collapse
|
38
|
Sahyoun AH, Hölzer M, Jühling F, Höner zu Siederdissen C, Al-Arab M, Tout K, Marz M, Middendorf M, Stadler PF, Bernt M. Towards a comprehensive picture of alloacceptor tRNA remolding in metazoan mitochondrial genomes. Nucleic Acids Res 2015; 43:8044-56. [PMID: 26227972 PMCID: PMC4783518 DOI: 10.1093/nar/gkv746] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/11/2015] [Indexed: 12/03/2022] Open
Abstract
Remolding of tRNAs is a well-documented process in mitochondrial genomes that changes the identity of a tRNA. It involves a duplication of a tRNA gene, a mutation that changes the anticodon and the loss of the ancestral tRNA gene. The net effect is a functional tRNA that is more closely related to tRNAs of a different alloacceptor family than to tRNAs with the same anticodon in related species. Beyond being of interest for understanding mitochondrial tRNA function and evolution, tRNA remolding events can lead to artifacts in the annotation of mitogenomes and thus in studies of mitogenomic evolution. Therefore, it is important to identify and catalog these events. Here we describe novel methods to detect tRNA remolding in large-scale data sets and apply them to survey tRNA remolding throughout animal evolution. We identify several novel remolding events in addition to the ones previously mentioned in the literature. A detailed analysis of these remoldings showed that many of them are derived from ancestral events.
Collapse
Affiliation(s)
- Abdullah H Sahyoun
- Bioinformatics Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Doctoral School of Science and Technology, AZM Center for Biotechnology Research, Lebanese University, Tripoli, Lebanon RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany Bioinformatics Unit and Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Frank Jühling
- Bioinformatics Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Christian Höner zu Siederdissen
- Bioinformatics Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
| | - Marwa Al-Arab
- Bioinformatics Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Doctoral School of Science and Technology, AZM Center for Biotechnology Research, Lebanese University, Tripoli, Lebanon
| | - Kifah Tout
- Doctoral School of Science and Technology, AZM Center for Biotechnology Research, Lebanese University, Tripoli, Lebanon
| | - Manja Marz
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany Michael Stifel Center Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
| | - Martin Middendorf
- Parallel Computing and Complex Systems Group, Department of Computer Science, Leipzig University, Augustusplatz 10, D-04109 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria Max-Planck-Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany Fraunhofer Institut für Zelltherapie und Immunologie Perlickstraße 1, D-04103 Leipzig, Germany Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg, Denmark Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Matthias Bernt
- Parallel Computing and Complex Systems Group, Department of Computer Science, Leipzig University, Augustusplatz 10, D-04109 Leipzig, Germany
| |
Collapse
|
39
|
Sato Y, Nakamura T, Yamada Y, Akita H, Harashima H. Multifunctional enveloped nanodevices (MENDs). ADVANCES IN GENETICS 2015; 88:139-204. [PMID: 25409606 DOI: 10.1016/b978-0-12-800148-6.00006-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is anticipated that nucleic acid medicines will be in widespread use in the future, since they have the potential to cure diseases based on molecular mechanisms at the level of gene expression. However, intelligent delivery systems are required to achieve nucleic acid therapy, since they can perform their function only when they reach the intracellular site of action. We have been developing a multifunctional envelope-type nanodevice abbreviated as MEND, which consists of functional nucleic acids as a core and lipid envelope, and can control not only biodistribution but also the intracellular trafficking of nucleic acids. In this chapter, we review the development and evolution of the MEND by providing several successful examples, including the R8-MEND, the KALA-MEND, the MITO-Porter, the YSK-MEND, and the PALM.
Collapse
Affiliation(s)
- Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Hidetaka Akita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| |
Collapse
|
40
|
Gile GH, Moog D, Slamovits CH, Maier UG, Archibald JM. Dual Organellar Targeting of Aminoacyl-tRNA Synthetases in Diatoms and Cryptophytes. Genome Biol Evol 2015; 7:1728-42. [PMID: 25994931 PMCID: PMC4494062 DOI: 10.1093/gbe/evv095] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The internal compartmentation of eukaryotic cells not only allows separation of biochemical processes but it also creates the requirement for systems that can selectively transport proteins across the membrane boundaries. Although most proteins function in a single subcellular compartment, many are able to enter two or more compartments, a phenomenon known as dual or multiple targeting. The aminoacyl-tRNA synthetases (aaRSs), which catalyze the ligation of tRNAs to their cognate amino acids, are particularly prone to functioning in multiple subcellular compartments. They are essential for translation, so they are required in every compartment where translation takes place. In diatoms, there are three such compartments, the plastid, the mitochondrion, and the cytosol. In cryptophytes, translation also takes place in the periplastid compartment (PPC), which is the reduced cytoplasm of the plastid’s red algal ancestor and which retains a reduced red algal nucleus. We searched the organelle and nuclear genomes of the cryptophyte Guillardia theta and the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana for aaRS genes and found an insufficient number of genes to provide each compartment with a complete set of aaRSs. We therefore inferred, with support from localization predictions, that many aaRSs are dual targeted. We tested four of the predicted dual targeted aaRSs with green fluorescent protein fusion localizations in P. tricornutum and found evidence for dual targeting to the mitochondrion and plastid in P. tricornutum and G. theta, and indications for dual targeting to the PPC and cytosol in G. theta. This is the first report of dual targeting in diatoms or cryptophytes.
Collapse
Affiliation(s)
- Gillian H Gile
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Moog
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany Present address: Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Uwe-G Maier
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany Laboratory for Cell Biology, Philipps University Marburg, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Furukawa R, Yamada Y, Kawamura E, Harashima H. Mitochondrial delivery of antisense RNA by MITO-Porter results in mitochondrial RNA knockdown, and has a functional impact on mitochondria. Biomaterials 2015; 57:107-15. [PMID: 25913255 DOI: 10.1016/j.biomaterials.2015.04.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Mitochondrial genome-targeting nucleic acids are promising therapeutic candidates for treating mitochondrial diseases. To date, a number of systems for delivering genetic information to the cytosol and the nucleus have been reported, and several successful gene therapies involving gene delivery targeted to the cytosol and the nucleus have been reported. However, much less progress has been made concerning mitochondrial gene delivery systems, and mitochondrial gene therapy has never been achieved. Here, we report on the mitochondrial delivery of an antisense RNA oligonucleotide (ASO) to perform mitochondrial RNA knockdown to regulate mitochondrial function. Mitochondrial delivery of the ASO was achieved using a combination of a MITO-Porter system, which contains mitochondrial fusogenic lipid envelopes for mitochondrial delivery via membrane fusion and D-arm, a mitochondrial import signal of tRNA to the matrix. Mitochondrial delivery of the ASO induces the knockdown of the targeted mitochondria-encoded mRNA and protein, namely cytochrome c oxidase subunit II, a component of the mitochondrial respiratory chain. Furthermore, the mitochondrial membrane potential was depolarized by the down regulation of the respiratory chain as the result of the mitochondrial delivery of ASO. This finding constitutes the first report to demonstrate that the nanocarrier-mediated mitochondrial genome targeting of antisense RNA effects mitochondrial function.
Collapse
Affiliation(s)
- Ryo Furukawa
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuma Yamada
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Eriko Kawamura
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Hideyoshi Harashima
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
42
|
Zhou W, Karcher D, Fischer A, Maximova E, Walther D, Bock R. Multiple RNA processing defects and impaired chloroplast function in plants deficient in the organellar protein-only RNase P enzyme. PLoS One 2015; 10:e0120533. [PMID: 25793367 PMCID: PMC4368725 DOI: 10.1371/journal.pone.0120533] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/23/2015] [Indexed: 01/22/2023] Open
Abstract
Transfer RNA (tRNA) precursors undergo endoribonucleolytic processing of their 5’ and 3’ ends. 5’ cleavage of the precursor transcript is performed by ribonuclease P (RNase P). While in most organisms RNase P is a ribonucleoprotein that harbors a catalytically active RNA component, human mitochondria and the chloroplasts (plastids) and mitochondria of seed plants possess protein-only RNase P enzymes (PRORPs). The plant organellar PRORP (PRORP1) has been characterized to some extent in vitro and by transient gene silencing, but the molecular, phenotypic and physiological consequences of its down-regulation in stable transgenic plants have not been assessed. Here we have addressed the function of the dually targeted organellar PRORP enzyme in vivo by generating stably transformed Arabidopsis plants in which expression of the PRORP1 gene was suppressed by RNA interference (RNAi). PRORP1 knock-down lines show defects in photosynthesis, while mitochondrial respiration is not appreciably affected. In both plastids and mitochondria, the effects of PRORP1 knock-down on the processing of individual tRNA species are highly variable. The drastic reduction in the levels of mature plastid tRNA-Phe(GAA) and tRNA-Arg(ACG) suggests that these two tRNA species limit plastid gene expression in the PRORP1 mutants and, hence, are causally responsible for the mutant phenotype.
Collapse
Affiliation(s)
- Wenbin Zhou
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Axel Fischer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Eugenia Maximova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Dirk Walther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
43
|
Salinas-Giegé T, Giegé R, Giegé P. tRNA biology in mitochondria. Int J Mol Sci 2015; 16:4518-59. [PMID: 25734984 PMCID: PMC4394434 DOI: 10.3390/ijms16034518] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 01/23/2023] Open
Abstract
Mitochondria are the powerhouses of eukaryotic cells. They are considered as semi-autonomous because they have retained genomes inherited from their prokaryotic ancestor and host fully functional gene expression machineries. These organelles have attracted considerable attention because they combine bacterial-like traits with novel features that evolved in the host cell. Among them, mitochondria use many specific pathways to obtain complete and functional sets of tRNAs as required for translation. In some instances, tRNA genes have been partially or entirely transferred to the nucleus and mitochondria require precise import systems to attain their pool of tRNAs. Still, tRNA genes have also often been maintained in mitochondria. Their genetic arrangement is more diverse than previously envisaged. The expression and maturation of mitochondrial tRNAs often use specific enzymes that evolved during eukaryote history. For instance many mitochondria use a eukaryote-specific RNase P enzyme devoid of RNA. The structure itself of mitochondrial encoded tRNAs is also very diverse, as e.g., in Metazoan, where tRNAs often show non canonical or truncated structures. As a result, the translational machinery in mitochondria evolved adapted strategies to accommodate the peculiarities of these tRNAs, in particular simplified identity rules for their aminoacylation. Here, we review the specific features of tRNA biology in mitochondria from model species representing the major eukaryotic groups, with an emphasis on recent research on tRNA import, maturation and aminoacylation.
Collapse
Affiliation(s)
- Thalia Salinas-Giegé
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| | - Richard Giegé
- Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France.
| | - Philippe Giegé
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| |
Collapse
|
44
|
Zhang X, Zuo X, Yang B, Li Z, Xue Y, Zhou Y, Huang J, Zhao X, Zhou J, Yan Y, Zhang H, Guo P, Sun H, Guo L, Zhang Y, Fu XD. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 2015; 158:607-19. [PMID: 25083871 DOI: 10.1016/j.cell.2014.05.047] [Citation(s) in RCA: 361] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 04/15/2014] [Accepted: 05/29/2014] [Indexed: 02/08/2023]
Abstract
MicroRNAs are well known to mediate translational repression and mRNA degradation in the cytoplasm. Various microRNAs have also been detected in membrane-compartmentalized organelles, but the functional significance has remained elusive. Here, we report that miR-1, a microRNA specifically induced during myogenesis, efficiently enters the mitochondria where it unexpectedly stimulates, rather than represses, the translation of specific mitochondrial genome-encoded transcripts. We show that this positive effect requires specific miR:mRNA base-pairing and Ago2, but not its functional partner GW182, which is excluded from the mitochondria. We provide evidence for the direct action of Ago2 in mitochondrial translation by crosslinking immunoprecipitation coupled with deep sequencing (CLIP-seq), functional rescue with mitochondria-targeted Ago2, and selective inhibition of the microRNA machinery in the cytoplasm. These findings unveil a positive function of microRNA in mitochondrial translation and suggest a highly coordinated myogenic program via miR-1-mediated translational stimulation in the mitochondria and repression in the cytoplasm.
Collapse
Affiliation(s)
- Xiaorong Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xinxin Zuo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Bo Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zongran Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yuanchao Xue
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Jie Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiaolu Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jie Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yun Yan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Huiqiong Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Peipei Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Lin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiang-Dong Fu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA.
| |
Collapse
|
45
|
A complex genome-microRNA interplay in human mitochondria. BIOMED RESEARCH INTERNATIONAL 2015; 2015:206382. [PMID: 25695052 PMCID: PMC4324738 DOI: 10.1155/2015/206382] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 10/13/2014] [Accepted: 10/27/2014] [Indexed: 01/10/2023]
Abstract
Small noncoding regulatory RNA exist in wide spectrum of organisms ranging from prokaryote bacteria to humans. In human, a systematic search for noncoding RNA is mainly limited to the nuclear and cytosolic compartments. To investigate whether endogenous small regulatory RNA are present in cell organelles, human mitochondrial genome was also explored for prediction of precursor microRNA (pre-miRNA) and mature miRNA (miRNA) sequences. Six novel miRNA were predicted from the organelle genome by bioinformatics analysis. The structures are conserved in other five mammals including chimp, orangutan, mouse, rat, and rhesus genome. Experimentally, six human miRNA are well accumulated or deposited in human mitochondria. Three of them are expressed less prominently in Northern analysis. To ascertain their presence in human skeletal muscles, total RNA was extracted from enriched mitochondria by an immunomagnetic method. The expression of six novel pre-miRNA and miRNA was confirmed by Northern blot analysis; however, low level of remaining miRNA was found by sensitive Northern analysis. Their presence is further confirmed by real time RT-PCR. The six miRNA find their multiple targets throughout the human genome in three different types of software. The luciferase assay was used to confirm that MT-RNR2 gene was the potential target of hsa-miR-mit3 and hsa-miR-mit4.
Collapse
|
46
|
Kubiszewski-Jakubiak S, Megel C, Ubrig E, Salinas T, Duchêne AM, Maréchal-Drouard L. In vitro RNA uptake studies in plant mitochondria. Methods Mol Biol 2015; 1305:45-60. [PMID: 25910726 DOI: 10.1007/978-1-4939-2639-8_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
During evolution, most of the ancestral genes from the endosymbiotic α-proteobacteria at the origin of mitochondria have been either lost or transferred to the nuclear genome. To allow the comeback of proteins and RNAs [in particular transfer RNA (tRNAs)] into the organelle, macromolecule import systems were universally established. While protein import processes have been studied into details, much less is known about tRNA mitochondrial import. In plants, part of the knowledge on the tRNA import process into mitochondria has been acquired thanks to in vitro import assays. Furthermore, the development of in vitro RNA import strategies allowed the study of plant mitochondrial gene expression. The purpose of this chapter is to provide detailed protocols to perform in vitro RNA uptake into potato (Solanum tuberosum) or Arabidopsis (Arabidopsis thaliana) mitochondria as well as approaches to analyze them.
Collapse
Affiliation(s)
- Szymon Kubiszewski-Jakubiak
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Knie N, Polsakiewicz M, Knoop V. Horizontal gene transfer of chlamydial-like tRNA genes into early vascular plant mitochondria. Mol Biol Evol 2014; 32:629-34. [PMID: 25415968 DOI: 10.1093/molbev/msu324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial genomes of lycophytes are surprisingly diverse, including strikingly different transfer RNA (tRNA) gene complements: No mitochondrial tRNA genes are present in the spikemoss Selaginella moellendorffii, whereas 26 tRNAs are encoded in the chondrome of the clubmoss Huperzia squarrosa. Reinvestigating the latter we found that trnL(gag) and trnS(gga) had never before been identified in any other land plant mitochondrial DNA. Sensitive sequence comparisons showed these two tRNAs as well as trnN(guu) and trnS(gcu) to be very similar to their respective counterparts in chlamydial bacteria. We identified homologs of these chlamydial-type tRNAs also in other lycophyte, fern, and gymnosperm DNAs, suggesting horizontal gene transfer (HGT) into mitochondria in the early vascular plant stem lineages. These findings extend plant mitochondrial HGT to affect individual tRNA genes, to include bacterial donors, and suggest that Chlamydiae on top of their recently proposed key role in primary chloroplast establishment may also have participated in early tracheophyte genome evolution.
Collapse
Affiliation(s)
- Nils Knie
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Bonn, Germany
| | - Monika Polsakiewicz
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Bonn, Germany
| | - Volker Knoop
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Bonn, Germany
| |
Collapse
|
48
|
Xia Y, Zheng Y, Miura I, Wong PBY, Murphy RW, Zeng X. The evolution of mitochondrial genomes in modern frogs (Neobatrachia): nonadaptive evolution of mitochondrial genome reorganization. BMC Genomics 2014; 15:691. [PMID: 25138662 PMCID: PMC4153901 DOI: 10.1186/1471-2164-15-691] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 08/12/2014] [Indexed: 11/25/2022] Open
Abstract
Background Although mitochondrial (mt) gene order is highly conserved among vertebrates, widespread gene rearrangements occur in anurans, especially in neobatrachians. Protein coding genes in the mitogenome experience adaptive or purifying selection, yet the role that selection plays on genomic reorganization remains unclear. We sequence the mitogenomes of three species of Glandirana and hot spots of gene rearrangements of 20 frog species to investigate the diversity of mitogenomic reorganization in the Neobatrachia. By combing these data with other mitogenomes in GenBank, we evaluate if selective pressures or functional constraints act on mitogenomic reorganization in the Neobatrachia. We also look for correlations between tRNA positions and codon usage. Results Gene organization in Glandirana was typical of neobatrachian mitogenomes except for the presence of pseudogene trnS (AGY). Surveyed ranids largely exhibited gene arrangements typical of neobatrachian mtDNA although some gene rearrangements occurred. The correlation between codon usage and tRNA positions in neobatrachians was weak, and did not increase after identifying recurrent rearrangements as revealed by basal neobatrachians. Codon usage and tRNA positions were not significantly correlated when considering tRNA gene duplications or losses. Change in number of tRNA gene copies, which was driven by genomic reorganization, did not influence codon usage bias. Nucleotide substitution rates and dN/dS ratios were higher in neobatrachian mitogenomes than in archaeobatrachians, but the rates of mitogenomic reorganization and mt nucleotide diversity were not significantly correlated. Conclusions No evidence suggests that adaptive selection drove the reorganization of neobatrachian mitogenomes. In contrast, protein-coding genes that function in metabolism showed evidence for purifying selection, and some functional constraints appear to act on the organization of rRNA and tRNA genes. As important nonadaptive forces, genetic drift and mutation pressure may drive the fixation and evolution of mitogenomic reorganizations. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-691) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaomao Zeng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
49
|
Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM. Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation. FEBS Lett 2014; 588:2496-503. [PMID: 24911204 PMCID: PMC4099522 DOI: 10.1016/j.febslet.2014.05.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 12/28/2022]
Abstract
Mitochondrial protein synthesis is essential for all mammals, being responsible for providing key components of the oxidative phosphorylation complexes. Although only thirteen different polypeptides are made, the molecular details of this deceptively simple process remain incomplete. Central to this process is a non-canonical ribosome, the mitoribosome, which has evolved to address its unique mandate. In this review, we integrate the current understanding of the molecular aspects of mitochondrial translation with recent advances in structural biology. We identify numerous key questions that we will need to answer if we are to increase our knowledge of the molecular mechanisms underlying mitochondrial protein synthesis.
Collapse
Affiliation(s)
- Robert N Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Agata Rozanska
- The Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Zofia M Chrzanowska-Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
50
|
Ruck EC, Nakov T, Jansen RK, Theriot EC, Alverson AJ. Serial gene losses and foreign DNA underlie size and sequence variation in the plastid genomes of diatoms. Genome Biol Evol 2014; 6:644-54. [PMID: 24567305 PMCID: PMC3971590 DOI: 10.1093/gbe/evu039] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2014] [Indexed: 11/14/2022] Open
Abstract
Photosynthesis by diatoms accounts for roughly one-fifth of global primary production, but despite this, relatively little is known about their plastid genomes. We report the completely sequenced plastid genomes for eight phylogenetically diverse diatoms and show them to be variable in size, gene and foreign sequence content, and gene order. The genomes contain a core set of 122 protein-coding genes, with 15 additional genes exhibiting complex patterns of 1) gene losses at varying phylogenetic scales, 2) functional transfers to the nucleus, 3) gene duplication, divergence, and differential retention of paralogs, and 4) acquisitions of putatively functional recombinase genes from resident plasmids. The newly sequenced genomes also contain several previously unreported genes, highlighting how poorly characterized diatom plastid genomes are overall. Genome size variation reflects major expansions of the inverted repeat region in some cases but, more commonly, large-scale expansions of intergenic regions, many of which contain unique open reading frames of likely foreign origin. Although many gene clusters are conserved across species, rearrangements appear to be frequent in most lineages.
Collapse
Affiliation(s)
| | - Teofil Nakov
- Department of Integrative Biology, University of Texas at Austin
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | | | | |
Collapse
|