1
|
Nabila, Ahmad M, Althobaiti AT, Ali W, Masood K, Ramadan MF, Chaudhary B, Zafar M, Akhtar MS, Sultana S, Zahmatkesh S, Mehmood T, Azam M, Asif S. Membrane-processed honey samples for pollen characterization with health benefits. CHEMOSPHERE 2023; 319:137994. [PMID: 36720415 DOI: 10.1016/j.chemosphere.2023.137994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/26/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Better processing techniques must be utilized widely due to the rising demand for honey. The most common honey processing techniques are applied to melissopalynomorphs to check the quality and quantity of valuable honey using microporous ultrafiltration membranes. It is essential to have the ability to selectively filter out sugars from honey using ultrafiltration. This study authenticated 24 honey samples using membrane reactors ultrafiltration protocol to describe the pollen spectrum of dominant vegetation. The purpose of this study was also to explore nutritional benefits as well as the active phytochemical constituents of honey samples. Honey samples were collected and labeled Acacia, Eucalyptus, and Ziziphus species based on plant resources provided by local beekeepers. A variety of honeybee flora was collected around the apiaries between 2020 and 2021. Honey analysis revealed that the pollen extraction of 24 bee foraging species belonging to 14 families. The honey membrane technology verified the identities of honey and nectar sources. Also, pollen identified using honey ultrafiltration membranes revealed dominant resources: Acacia spp. (69%), Eucalyptus spp. (52%) and Ziziphus spp. Honey filtration using a membrane technology classified 14 samples as unifloral, represented by six dominant pollen types. The absolute pollen count in the honey sample revealed that 58.33% (n = 14) belong to Maurizio's class I. Scanning ultrasculpturing showed diverse exine patterns: reticulate, psilate, scabrate-verrucate, scabrate-gemmate, granulate, perforate, microechinate, microreticulate, and regulate to fossulate for correct identification of honey pollen types. Honey ultrafiltration should be utilized to validate the botanical sources of honey and trace their biogeographic authenticity. Thus, it is imperative to look at the alternative useful method to identify the botanical origin of filtered honey. It is critical to separate honey from adulteration by a standardized protocol. Membrane technology has yielded significant outcomes in the purification of honey.
Collapse
Affiliation(s)
- Nabila
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Ashwaq T Althobaiti
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Kingdom of Saudi Arabia
| | - Khansa Masood
- School of Professional Advancement, University of Management and Technology, 54770 Lahore, Pakistan
| | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Bisha Chaudhary
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| | - Shazia Sultana
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Puebla, Mexico
| | - Tariq Mehmood
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Mudassar Azam
- Institute of Chemical Engineering & Technology, University of the Punjab, Lahore 54800, Pakistan
| | - Saira Asif
- Faculty of Sciences, Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan.
| |
Collapse
|
2
|
Hesami M, Baiton A, Alizadeh M, Pepe M, Torkamaneh D, Jones AMP. Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis. Int J Mol Sci 2021; 22:5671. [PMID: 34073522 PMCID: PMC8197860 DOI: 10.3390/ijms22115671] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/20/2023] Open
Abstract
For a long time, Cannabis sativa has been used for therapeutic and industrial purposes. Due to its increasing demand in medicine, recreation, and industry, there is a dire need to apply new biotechnological tools to introduce new genotypes with desirable traits and enhanced secondary metabolite production. Micropropagation, conservation, cell suspension culture, hairy root culture, polyploidy manipulation, and Agrobacterium-mediated gene transformation have been studied and used in cannabis. However, some obstacles such as the low rate of transgenic plant regeneration and low efficiency of secondary metabolite production in hairy root culture and cell suspension culture have restricted the application of these approaches in cannabis. In the current review, in vitro culture and genetic engineering methods in cannabis along with other promising techniques such as morphogenic genes, new computational approaches, clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR/Cas9-equipped Agrobacterium-mediated genome editing, and hairy root culture, that can help improve gene transformation and plant regeneration, as well as enhance secondary metabolite production, have been highlighted and discussed.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Austin Baiton
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada;
| | | |
Collapse
|
3
|
Gressel J. Dealing with transgene flow of crop protection traits from crops to their relatives. PEST MANAGEMENT SCIENCE 2015; 71:658-667. [PMID: 24977384 DOI: 10.1002/ps.3850] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/22/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
Genes regularly move within species, to/from crops, as well as to their con- specific progenitors, feral and weedy forms ('vertical' gene flow). Genes occasionally move to/from crops and their distantly related, hardly sexually interbreeding relatives, within a genus or among closely related genera (diagonal gene flow). Regulators have singled out transgene flow as an issue, yet non-transgenic herbicide resistance traits pose equal problems, which cannot be mitigated. The risks are quite different from genes flowing to natural (wild) ecosystems versus ruderal and agroecosystems. Transgenic herbicide resistance poses a major risk if introgressed into weedy relatives; disease and insect resistance less so. Technologies have been proposed to contain genes within crops (chloroplast transformation, male sterility) that imperfectly prevent gene flow by pollen to the wild. Containment does not prevent related weeds from pollinating crops. Repeated backcrossing with weeds as pollen parents results in gene establishment in the weeds. Transgenic mitigation relies on coupling crop protection traits in a tandem construct with traits that lower the fitness of the related weeds. Mitigation traits can be morphological (dwarfing, no seed shatter) or chemical (sensitivity to a chemical used later in a rotation). Tandem mitigation traits are genetically linked and will move together. Mitigation traits can also be spread by inserting them in multicopy transposons which disperse faster than the crop protection genes in related weeds. Thus, there are gene flow risks mainly to weeds from some crop protection traits; risks that can and should be dealt with.
Collapse
|
4
|
Hooftman DAP, Bullock JM, Morley K, Lamb C, Hodgson DJ, Bell P, Thomas J, Hails RS. Seed bank dynamics govern persistence of Brassica hybrids in crop and natural habitats. ANNALS OF BOTANY 2015; 115:147-157. [PMID: 25452253 PMCID: PMC4284111 DOI: 10.1093/aob/mcu213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/26/2014] [Accepted: 09/16/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND AND AIMS Gene flow from crops to their wild relatives has the potential to alter population growth rates and demography of hybrid populations, especially when a new crop has been genetically modified (GM). This study introduces a comprehensive approach to assess this potential for altered population fitness, and uses a combination of demographic data in two habitat types and mathematical (matrix) models that include crop rotations and outcrossing between parental species. METHODS Full life-cycle demographic rates, including seed bank survival, of non-GM Brassica rapa × B. napus F1 hybrids and their parent species were estimated from experiments in both agricultural and semi-natural habitats. Altered fitness potential was modelled using periodic matrices including crop rotations and outcrossing between parent species. KEY RESULTS The demographic vital rates (i.e. for major stage transitions) of the hybrid population were intermediate between or lower than both parental species. The population growth rate (λ) of hybrids indicated decreases in both habitat types, and in a semi-natural habitat hybrids became extinct at two sites. Elasticity analyses indicated that seed bank survival was the greatest contributor to λ. In agricultural habitats, hybrid populations were projected to decline, but with persistence times up to 20 years. The seed bank survival rate was the main driver determining persistence. It was found that λ of the hybrids was largely determined by parental seed bank survival and subsequent replenishment of the hybrid population through outcrossing of B. rapa with B. napus. CONCLUSIONS Hybrid persistence was found to be highly dependent on the seed bank, suggesting that targeting hybrid seed survival could be an important management option in controlling hybrid persistence. For local risk mitigation, an increased focus on the wild parent is suggested. Management actions, such as control of B. rapa, could indirectly reduce hybrid populations by blocking hybrid replenishment.
Collapse
Affiliation(s)
- Danny A P Hooftman
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - James M Bullock
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Kathryn Morley
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Caroline Lamb
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - David J Hodgson
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Philippa Bell
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Jane Thomas
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Rosemary S Hails
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| |
Collapse
|
5
|
Zhang X, Wang D, Zhao S, Shen Z. A double built-in containment strategy for production of recombinant proteins in transgenic rice. PLoS One 2014; 9:e115459. [PMID: 25531447 PMCID: PMC4274026 DOI: 10.1371/journal.pone.0115459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/24/2014] [Indexed: 01/19/2023] Open
Abstract
Using transgenic rice as a bioreactor for mass production of pharmaceutical proteins could potentially reduce the cost of production significantly. However, a major concern over the bioreactor transgenic rice is the risk of its unintended spreading into environment and into food or feed supplies. Here we report a mitigating method to prevent unwanted transgenic rice spreading by a double built-in containment strategy, which sets a selectively termination method and a visual tag technology in the T-DNA for transformation. We created transgenic rice with an inserted T-DNA that harbors a human proinsulin gene fused with the far-red fluorescent protein gene mKate_S158A, an RNAi cassette suppressing the expression of the rice bentazon detoxification enzyme CYP81A6, and an EPSPS gene as the selection marker for transformation. Herbicide spray tests indicated that such transgenic rice plants can be killed selectively by a spray of bentazon at regular field application dosage for rice weed control. Moreover, the transgenic rice seeds were bright red in color due to the fused far-red fluorescent protein, and could be easily visualized under daylight by naked eyes. Thus, the transgenic rice plants reported in this study could be selectively killed by a commonly used herbicide during their growth stage, and their seeds may be detected visually during processing and consumption after harvest. This double built-in containment strategy may greatly enhance the confinement of the transgenic rice.
Collapse
Affiliation(s)
- Xianwen Zhang
- State Key Laboratory of Rice Biology, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dongfang Wang
- State Key Laboratory of Rice Biology, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sinan Zhao
- State Key Laboratory of Rice Biology, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhicheng Shen
- State Key Laboratory of Rice Biology, Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Liu Y, Wei W, Ma K, Li J, Liang Y, Darmency H. Consequences of gene flow between oilseed rape (Brassica napus) and its relatives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 211:42-51. [PMID: 23987810 DOI: 10.1016/j.plantsci.2013.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 07/04/2013] [Accepted: 07/06/2013] [Indexed: 06/02/2023]
Abstract
Numerous studies have focused on the probability of occurrence of gene flow between transgenic crops and their wild relatives and the likelihood of transgene escape, which should be assessed before the commercial release of transgenic crops. This review paper focuses on this issue for oilseed rape, Brassica napus L., a species that produces huge numbers of pollen grains and seeds. We analyze separately the distinct steps of gene flow: (1) pollen and seeds as vectors of gene flow; (2) spontaneous hybridization; (3) hybrid behavior, fitness cost due to hybridization and mechanisms of introgression; (4) and fitness benefit due to transgenes (e.g. herbicide resistance and Bt toxin). Some physical, biological and molecular means of transgene containment are also described. Although hybrids and first generation progeny are difficult to identify in fields and non-crop habitats, the literature shows that transgenes could readily introgress into Brassica rapa, Brassica juncea and Brassica oleracea, while introgression is expected to be rare with Brassica nigra, Hirschfeldia incana and Raphanus raphanistrum. The hybrids grow well but produce less seed than their wild parent. The difference declines with increasing generations. However, there is large uncertainty about the evolution of chromosome numbers and recombination, and many parameters of life history traits of hybrids and progeny are not determined with satisfactory confidence to build generic models capable to really cover the wide diversity of situations. We show that more studies are needed to strengthen and organize biological knowledge, which is a necessary prerequisite for model simulations to assess the practical and evolutionary outputs of introgression, and to provide guidelines for gene flow management.
Collapse
Affiliation(s)
- Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
DNA barcoding, using a short gene sequence from a standardized region of the genome, is a species identification tool which would not only aid species discovery but would also have applications ranging from large-scale biodiversity surveys through to identification of a single fragment of material in forensic contexts. To fulfill this vision a universal, relatively cheap, scalable system needs to be in place. The mitochondrial locus being used for many animal groups and algae is not suitable for use in land plants, and an appropriate alternative is needed.Progress has been made in the selection of two alternative regions for plant DNA barcoding. There are however many challenges in finding a solution that fulfills all the requirements of a successful, universally applicable barcode, and in the short term a pragmatic solution that achieves as much as possible and has payoffs in most areas has been chosen. Research continues in areas ranging from the technicalities of sequencing the regions to data analysis and the potential improvements that may result from the developing technology and data analysis systems.The ultimate success of DNA barcoding as a plant identification tool for all occasions depends on the building of a reference database and it fulfilling the requirements of potential users such that they are able to achieve valid results through its use, that would be more time consuming and costly, and less reliable using other techniques.
Collapse
|
8
|
de Jong TJ, Hesse E. Selection against hybrids in mixed populations of Brassica rapa and Brassica napus: model and synthesis. THE NEW PHYTOLOGIST 2012; 194:1134-1142. [PMID: 22463678 DOI: 10.1111/j.1469-8137.2012.04122.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Pollen of the crop oilseed rape (Brassica napus, AACC) can cross-fertilize ovules of Brassica rapa (AA), which leads to an influx of unpaired C-chromosomes into wild B. rapa populations. The presence of such extra chromosomes is thought to be an indicator of introgression. Backcrosses and F(1) hybrids were found in Danish populations but, surprisingly, only F(1) hybrids were found in the UK and the Netherlands. Here, a model tests how the level of selection and biased vs unbiased transmission affect the population frequency of C-chromosomes. In the biased-transmission scenario the experimental results of the first backcross are extrapolated to estimate survival of gametes with different numbers of C-chromosomes from all crosses in the population. With biased transmission, the frequency of C-chromosomes always rapidly declines to zero. With unbiased transmission, the continued presence of plants with extra C-chromosomes depends on selection in the adult stage and we argue that this is the most realistic option for modeling populations. We suggest that selection in the field against plants with unpaired C-chromosomes is strong in Dutch and UK populations. The model highlights what we do not know and makes suggestions for further research on introgression.
Collapse
Affiliation(s)
- Tom J de Jong
- Plant Ecology & Phytochemistry, Institute of Biology Leiden, Leiden University, PO Box 9516, 2300RA Leiden, the Netherlands
| | - Elze Hesse
- Plant Ecology & Phytochemistry, Institute of Biology Leiden, Leiden University, PO Box 9516, 2300RA Leiden, the Netherlands
| |
Collapse
|
9
|
Haider N, Wilkinson MJ. A set of plastid DNA-specific universal primers for flowering plants. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411090079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Cardi T, Lenzi P, Maliga P. Chloroplasts as expression platforms for plant-produced vaccines. Expert Rev Vaccines 2010; 9:893-911. [PMID: 20673012 DOI: 10.1586/erv.10.78] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Production of recombinant subunit vaccines from genes incorporated in the plastid genome is advantageous because of the attainable expression level due to high transgene copy number and the absence of gene silencing; biocontainment as a consequence of maternal inheritance of plastids and no transgene presence in the pollen; and expression of multiple transgenes in prokaryotic-like operons. We discuss the core technology of plastid transformation in Chlamydomonas reinhardtii, a unicellular alga, and Nicotiana tabacum (tobacco), a flowering plant species, and demonstrate the utility of the technology for the production of recombinant vaccine antigens.
Collapse
Affiliation(s)
- Teodoro Cardi
- CNR-IGV, Institute of Plant Genetics, Portici, Italy.
| | | | | |
Collapse
|
11
|
Allainguillaume J, Harwood T, Ford CS, Cuccato G, Norris C, Allender CJ, Welters R, King GJ, Wilkinson MJ. Rapeseed cytoplasm gives advantage in wild relatives and complicates genetically modified crop biocontainment. THE NEW PHYTOLOGIST 2009; 183:1201-1211. [PMID: 19496946 DOI: 10.1111/j.1469-8137.2009.02877.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biocontainment methods for genetically modified crops closest to commercial reality (chloroplast transformation, male sterility) would be compromised (in absolute terms) by seed-mediated gene flow leading to chloroplast capture. Even in these circumstances, however, it can be argued that biocontainment still represses transgene movement, with the efficacy depending on the relative frequency of seed- and pollen-mediated gene flow. In this study, we screened for crop-specific chloroplast markers from rapeseed (Brassica napus) amongst sympatric and allopatric populations of wild B. oleracea in natural cliff-top populations and B. rapa in riverside and weedy populations. We found only modest crop chloroplast presence in wild B. oleracea and in weedy B. rapa, but a surprisingly high incidence in sympatric (but not in allopatric) riverside B. rapa populations. Chloroplast inheritance models indicate that elevated crop chloroplast acquisition is best explained if crop cytoplasm confers selective advantage in riverside B. rapa populations. Our results therefore imply that chloroplast transformation may slow transgene recruitment in two settings, but actually accelerate transgene spread in a third. This finding suggests that the appropriateness of chloroplast transformation for biocontainment policy depends on both context and geographical location.
Collapse
Affiliation(s)
- J Allainguillaume
- School of Biological Sciences, The University of Reading, Reading, Berkshire RG6 6AS, UK
| | - T Harwood
- Centre for Environmental Policy, Imperial College London, London SL5 7PY, UK
| | - C S Ford
- School of Biological Sciences, The University of Reading, Reading, Berkshire RG6 6AS, UK
| | - G Cuccato
- School of Biological Sciences, The University of Reading, Reading, Berkshire RG6 6AS, UK
| | - C Norris
- National Institute of Agricultural Botany (NIAB), Cambridge, Cambridgeshire CB3 0LE, UK
| | - C J Allender
- Warwick HRI, Wellesbourne, Warwickshire CV35 9EF, UK
| | - R Welters
- Natural Environment Research Council, Swindon, Berkshire SN2 1EU, UK
| | - G J King
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - M J Wilkinson
- School of Biological Sciences, The University of Reading, Reading, Berkshire RG6 6AS, UK
- Present address: Institute of Biological, Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, UK
| |
Collapse
|