1
|
Kajihara KT, Yuan M, Amend AS, Cetraro N, Darcy JL, Fraiola KMS, Frank K, McFall-Ngai M, Medeiros MCI, Nakayama KK, Nelson CE, Rollins RL, Sparagon WJ, Swift SOI, Téfit MA, Yew JY, Yogi D, Hynson NA. Diversity, connectivity and negative interactions define robust microbiome networks across land, stream, and sea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631746. [PMID: 39829850 PMCID: PMC11741383 DOI: 10.1101/2025.01.07.631746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In this era of rapid global change, factors influencing the stability of ecosystems and their functions have come into the spotlight. For decades the relationship between stability and complexity has been investigated in modeled and empirical systems, yet results remain largely context dependent. To overcome this we leverage a multiscale inventory of fungi and bacteria ranging from single sites along an environmental gradient, to habitats inclusive of land, sea and stream, to an entire watershed. We use networks to assess the relationship between microbiome complexity and robustness and identify fundamental principles of stability. We demonstrate that while some facets of complexity are positively associated with robustness, others are not. Beyond positive biodiversity x robustness relationships we find that the number of "gatekeeper" species or those that are highly connected and central within their networks, and the proportion of predicted negative interactions are universal indicators of robust microbiomes. With the potential promise of microbiome engineering to address global challenges ranging from human to ecosystem health we identify properties of microbiomes for future experimental studies that may enhance their stability. We emphasize that features beyond biodiversity and additional characteristics beyond stability such as adaptability should be considered in these efforts.
Collapse
|
2
|
Li P, Bez C, Zhang Y, Deng Y, Venturi V. N-acyl homoserine lactone cell-cell diffusible signalling in the Ralstonia solanacearum species complex. MOLECULAR PLANT PATHOLOGY 2024; 25:e13467. [PMID: 39099210 PMCID: PMC11298618 DOI: 10.1111/mpp.13467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 08/06/2024]
Abstract
Ralstonia solanacearum species complex (RSSC) includes soilborne bacterial plant pathogens with worldwide distribution and wide host ranges. Virulence factors are regulated via four hierarchically organized cell-cell contact independent quorum-sensing (QS) signalling systems: the Phc, which uses as signals (R)-methyl 3-hydroxypalmitate [(R)-3-OH PAME] or (R)-methyl 3-hydroxymyristate [(R)-3-OH MAME], the N-acyl homoserine lactone (AHL)-dependent RasI/R and SolI/R systems, and the recently identified anthranilic acid-dependent system. The unique Phc QS system has been extensively studied; however, the role of the two AHL QS systems has only recently been addressed. In this microreview, we present and discuss current data of the SolI/R and RasI/R QS systems in the RSSC. We also present the distribution and frequency of these AHL QS systems in the RSSC, discuss possible ecological roles and evolutive implications. The complex QS hierarchical networks emphasizes the crucial role of cell-cell signalling in the virulence of the RSSC.
Collapse
Affiliation(s)
- Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Cristina Bez
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Yong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSouthwest UniversityChongqingChina
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen University, Sun Yatsen UniversityShenzhenChina
| | - Vittorio Venturi
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
- African Genome Center, University Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| |
Collapse
|
3
|
Pawlowska TE. Symbioses between fungi and bacteria: from mechanisms to impacts on biodiversity. Curr Opin Microbiol 2024; 80:102496. [PMID: 38875733 PMCID: PMC11323152 DOI: 10.1016/j.mib.2024.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024]
Abstract
Symbiotic interactions between fungi and bacteria range from positive to negative. They are ubiquitous in free-living as well as host-associated microbial communities worldwide. Yet, the impact of fungal-bacterial symbioses on the organization and dynamics of microbial communities is uncertain. There are two reasons for this uncertainty: (1) knowledge gaps in the understanding of the genetic mechanisms underpinning fungal-bacterial symbioses and (2) prevailing interpretations of ecological theory that favor antagonistic interactions as drivers stabilizing biological communities despite the existence of models emphasizing contributions of positive interactions. This review synthesizes information on fungal-bacterial symbioses common in the free-living microbial communities of the soil as well as in host-associated polymicrobial biofilms. The interdomain partnerships are considered in the context of the relevant community ecology models, which are discussed critically.
Collapse
Affiliation(s)
- Teresa E Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Ren W, Penttilä R, Kasanen R, Asiegbu FO. Interkingdom and intrakingdom interactions in the microbiome of Heterobasidion fruiting body and associated decayed woody tissues. Appl Environ Microbiol 2023; 89:e0140623. [PMID: 38014962 PMCID: PMC10734517 DOI: 10.1128/aem.01406-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/06/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE We applied macro- (forest stand and forest management) and micro-scale (bacterial and fungal community) analyses for a better understanding of the Heterobasidion pathosystem and associated wood decay process. The core microbiome, as defined by hierarchy analysis and a consistent model, and environmental factors correlation with the community assembly were found to be novel.
Collapse
Affiliation(s)
- Wenzi Ren
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Reijo Penttilä
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Risto Kasanen
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Fred O. Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Cailleau G, Hanson BT, Cravero M, Zhioua S, Hilpish P, Ruiz C, Robinson AJ, Kelliher JM, Morales D, Gallegos-Graves LV, Bonito G, Chain PS, Bindschedler S, Junier P. Associated bacterial communities, confrontation studies, and comparative genomics reveal important interactions between Morchella with Pseudomonas spp. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1285531. [PMID: 38155707 PMCID: PMC10753826 DOI: 10.3389/ffunb.2023.1285531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/08/2023] [Indexed: 12/30/2023]
Abstract
Members of the fungal genus Morchella are widely known for their important ecological roles and significant economic value. In this study, we used amplicon and genome sequencing to characterize bacterial communities associated with sexual fruiting bodies from wild specimens, as well as vegetative mycelium and sclerotia obtained from Morchella isolates grown in vitro. These investigations included diverse representatives from both Elata and Esculenta Morchella clades. Unique bacterial community compositions were observed across the various structures examined, both within and across individual Morchella isolates or specimens. However, specific bacterial taxa were frequently detected in association with certain structures, providing support for an associated core bacterial community. Bacteria from the genus Pseudomonas and Ralstonia constituted the core bacterial associates of Morchella mycelia and sclerotia, while other genera (e.g., Pedobacter spp., Deviosa spp., and Bradyrhizobium spp.) constituted the core bacterial community of fruiting bodies. Furthermore, the importance of Pseudomonas as a key member of the bacteriome was supported by the isolation of several Pseudomonas strains from mycelia during in vitro cultivation. Four of the six mycelial-derived Pseudomonas isolates shared 16S rDNA sequence identity with amplicon sequences recovered directly from the examined fungal structures. Distinct interaction phenotypes (antagonistic or neutral) were observed in confrontation assays between these bacteria and various Morchella isolates. Genome sequences obtained from these Pseudomonas isolates revealed intriguing differences in gene content and annotated functions, specifically with respect to toxin-antitoxin systems, cell adhesion, chitinases, and insecticidal toxins. These genetic differences correlated with the interaction phenotypes. This study provides evidence that Pseudomonas spp. are frequently associated with Morchella and these associations may greatly impact fungal physiology.
Collapse
Affiliation(s)
- Guillaume Cailleau
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Buck T. Hanson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Melissa Cravero
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sami Zhioua
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Patrick Hilpish
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Celia Ruiz
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Aaron J. Robinson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Julia M. Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Demosthenes Morales
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, United States
| | | | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Patrick S.G. Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | | | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
6
|
Ren M, Jiang S, Wang Y, Pan X, Pan F, Wei X. Discovery and excavation of lichen bioactive natural products. Front Microbiol 2023; 14:1177123. [PMID: 37138611 PMCID: PMC10149937 DOI: 10.3389/fmicb.2023.1177123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Lichen natural products are a tremendous source of new bioactive chemical entities for drug discovery. The ability to survive in harsh conditions can be directly correlated with the production of some unique lichen metabolites. Despite the potential applications, these unique metabolites have been underutilized by pharmaceutical and agrochemical industries due to their slow growth, low biomass availability, and technical challenges involved in their artificial cultivation. At the same time, DNA sequence data have revealed that the number of encoded biosynthetic gene clusters in a lichen is much higher than in natural products, and the majority of them are silent or poorly expressed. To meet these challenges, the one strain many compounds (OSMAC) strategy, as a comprehensive and powerful tool, has been developed to stimulate the activation of silent or cryptic biosynthetic gene clusters and exploit interesting lichen compounds for industrial applications. Furthermore, the development of molecular network techniques, modern bioinformatics, and genetic tools is opening up a new opportunity for the mining, modification, and production of lichen metabolites, rather than merely using traditional separation and purification techniques to obtain small amounts of chemical compounds. Heterologous expressed lichen-derived biosynthetic gene clusters in a cultivatable host offer a promising means for a sustainable supply of specialized metabolites. In this review, we summarized the known lichen bioactive metabolites and highlighted the application of OSMAC, molecular network, and genome mining-based strategies in lichen-forming fungi for the discovery of new cryptic lichen compounds.
Collapse
Affiliation(s)
- Meirong Ren
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Shuhua Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanyan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xinhua Pan
- Jiangxi Xiankelai Biotechnology Co., Ltd., Jiujiang, China
| | - Feng Pan
- Jiangxi Xiankelai Biotechnology Co., Ltd., Jiujiang, China
| | - Xinli Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Selegato DM, Castro-Gamboa I. Enhancing chemical and biological diversity by co-cultivation. Front Microbiol 2023; 14:1117559. [PMID: 36819067 PMCID: PMC9928954 DOI: 10.3389/fmicb.2023.1117559] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
In natural product research, microbial metabolites have tremendous potential to provide new therapeutic agents since extremely diverse chemical structures can be found in the nearly infinite microbial population. Conventionally, these specialized metabolites are screened by single-strain cultures. However, owing to the lack of biotic and abiotic interactions in monocultures, the growth conditions are significantly different from those encountered in a natural environment and result in less diversity and the frequent re-isolation of known compounds. In the last decade, several methods have been developed to eventually understand the physiological conditions under which cryptic microbial genes are activated in an attempt to stimulate their biosynthesis and elicit the production of hitherto unexpressed chemical diversity. Among those, co-cultivation is one of the most efficient ways to induce silenced pathways, mimicking the competitive microbial environment for the production and holistic regulation of metabolites, and has become a golden methodology for metabolome expansion. It does not require previous knowledge of the signaling mechanism and genome nor any special equipment for cultivation and data interpretation. Several reviews have shown the potential of co-cultivation to produce new biologically active leads. However, only a few studies have detailed experimental, analytical, and microbiological strategies for efficiently inducing bioactive molecules by co-culture. Therefore, we reviewed studies applying co-culture to induce secondary metabolite pathways to provide insights into experimental variables compatible with high-throughput analytical procedures. Mixed-fermentation publications from 1978 to 2022 were assessed regarding types of co-culture set-ups, metabolic induction, and interaction effects.
Collapse
|
8
|
Dose B, Thongkongkaew T, Zopf D, Kim HJ, Bratovanov EV, García‐Altares M, Scherlach K, Kumpfmüller J, Ross C, Hermenau R, Niehs S, Silge A, Hniopek J, Schmitt M, Popp J, Hertweck C. Multimodal Molecular Imaging and Identification of Bacterial Toxins Causing Mushroom Soft Rot and Cavity Disease. Chembiochem 2021; 22:2901-2907. [PMID: 34232540 PMCID: PMC8518961 DOI: 10.1002/cbic.202100330] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 12/29/2022]
Abstract
Soft rot disease of edible mushrooms leads to rapid degeneration of fungal tissue and thus severely affects farming productivity worldwide. The bacterial mushroom pathogen Burkholderia gladioli pv. agaricicola has been identified as the cause. Yet, little is known about the molecular basis of the infection, the spatial distribution and the biological role of antifungal agents and toxins involved in this infectious disease. We combine genome mining, metabolic profiling, MALDI-Imaging and UV Raman spectroscopy, to detect, identify and visualize a complex of chemical mediators and toxins produced by the pathogen during the infection process, including toxoflavin, caryoynencin, and sinapigladioside. Furthermore, targeted gene knockouts and in vitro assays link antifungal agents to prevalent symptoms of soft rot, mushroom browning, and impaired mycelium growth. Comparisons of related pathogenic, mutualistic and environmental Burkholderia spp. indicate that the arsenal of antifungal agents may have paved the way for ancestral bacteria to colonize niches where frequent, antagonistic interactions with fungi occur. Our findings not only demonstrate the power of label-free, in vivo detection of polyyne virulence factors by Raman imaging, but may also inspire new approaches to disease control.
Collapse
Affiliation(s)
- Benjamin Dose
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Tawatchai Thongkongkaew
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - David Zopf
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) JenaMember of the Leibniz Research Alliance – Leibniz Health TechnologiesAlbert-Einstein-Straße 907745JenaGermany
| | - Hak Joong Kim
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Evgeni V. Bratovanov
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - María García‐Altares
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Jana Kumpfmüller
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Claudia Ross
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Ron Hermenau
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Sarah Niehs
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Anja Silge
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
| | - Julian Hniopek
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) JenaMember of the Leibniz Research Alliance – Leibniz Health TechnologiesAlbert-Einstein-Straße 907745JenaGermany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
| | - Jürgen Popp
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) JenaMember of the Leibniz Research Alliance – Leibniz Health TechnologiesAlbert-Einstein-Straße 907745JenaGermany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
9
|
Espinosa-Ortiz EJ, Rene ER, Gerlach R. Potential use of fungal-bacterial co-cultures for the removal of organic pollutants. Crit Rev Biotechnol 2021; 42:361-383. [PMID: 34325585 DOI: 10.1080/07388551.2021.1940831] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungi and bacteria coexist in a wide variety of natural and artificial environments which can lead to their association and interaction - ranging from antagonism to cooperation - that can affect the survival, colonization, spatial distribution and stress resistance of the interacting partners. The use of polymicrobial cultivation approaches has facilitated a more thorough understanding of microbial dynamics in mixed microbial communities, such as those composed of fungi and bacteria, and their influence on ecosystem functions. Mixed (multi-domain) microbial communities exhibit unique associations and interactions that could result in more efficient systems for the degradation and removal of organic pollutants. Several previous studies have reported enhanced biodegradation of certain pollutants when using combined fungal-bacterial treatments compared to pure cultures or communities of either fungi or bacteria (single domain systems). This article reviews: (i) the mechanisms of pollutant degradation that can occur in fungal-bacterial systems (e.g.: co-degradation, production of secondary metabolites, enhancement of degradative enzyme production, and transport of bacteria by fungal mycelia); (ii) case studies using fungal-bacterial co-cultures for the removal of various organic pollutants (synthetic dyes, polycyclic aromatic hydrocarbons, pesticides, and other trace or volatile organic compounds) in different environmental matrices (e.g. water, gas/vapors, soil); (iii) the key aspects of engineering artificial fungal-bacterial co-cultures, and (iv) the current challenges and future perspectives of using fungal-bacterial co-cultures for environmental remediation.
Collapse
Affiliation(s)
- Erika J Espinosa-Ortiz
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.,Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Eldon R Rene
- Department of Water Supply, Sanitary and Environmental Engineering, IHE Delft Institute for Water Education, 2601DA Delft, The Netherlands
| | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.,Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| |
Collapse
|
10
|
Almeida C. A potential third-order role of the host endoplasmic reticulum as a contact site in interkingdom microbial endosymbiosis and viral infection. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:255-271. [PMID: 33559322 DOI: 10.1111/1758-2229.12938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The normal functioning of eukaryotic cells depends on the compartmentalization of metabolic processes within specific organelles. Interactions among organelles, such as those between the endoplasmic reticulum (ER) - considered the largest single structure in eukaryotic cells - and other organelles at membrane contact sites (MCSs) have also been suggested to trigger synergisms, including intracellular immune responses against pathogens. In addition to the ER-endogenous functions and ER-organelle MCSs, we present the perspective of a third-order role of the ER as a host contact site for endosymbiotic microbial non-pathogens and pathogens, from endosymbiont bacteria to parasitic protists and viruses. Although understudied, ER-endosymbiont interactions have been observed in a range of eukaryotic hosts, including protists, plants, algae, and metazoans. Host ER interactions with endosymbionts could be an ER function built from ancient, conserved mechanisms selected for communicating with mutualistic endosymbionts in specific life cycle stages, and they may be exploited by pathogens and parasites. The host ER-'guest' interactome and traits in endosymbiotic biology are briefly discussed. The acknowledgment and understanding of these possible mechanisms might reveal novel evolutionary perspectives, uncover the causes of unexplained cellular disorders and suggest new pharmacological targets.
Collapse
Affiliation(s)
- Celso Almeida
- ENDOBIOS Biotech®, Praceta Progresso Clube n° 6, 2725-110 Mem-Martins, Portugal
| |
Collapse
|
11
|
Minerdi D, Maggini V, Fani R. Volatile organic compounds: from figurants to leading actors in fungal symbiosis. FEMS Microbiol Ecol 2021; 97:6261439. [PMID: 33983430 DOI: 10.1093/femsec/fiab067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Symbiosis involving two (or more) prokaryotic and/or eukaryotic partners is extremely widespread in nature, and it has performed, and is still performing, a key role in the evolution of several biological systems. The interaction between symbiotic partners is based on the emission and perception of a plethora of molecules, including volatile organic compounds (VOCs), synthesized by both prokaryotic and eukaryotic (micro)organisms. VOCs acquire increasing importance since they spread above and below ground and act as infochemicals regulating a very complex network. In this work we review what is known about the VOCs synthesized by fungi prior to and during the interaction(s) with their partners (either prokaryotic or eukaryotic) and their possible role(s) in establishing and maintaining the symbiosis. Lastly, we also describe the potential applications of fungal VOCs from different biotechnological perspectives, including medicinal, pharmaceutical and agronomical.
Collapse
Affiliation(s)
- Daniela Minerdi
- Department of Department of Agricultural, Forestry, and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco (TO), Italy
| | - Valentina Maggini
- Department of Biology, Laboratory of Microbial and Molecular Evolution, University of Florence, Via Madonna del Piano 6, Sesto F.no (FI), Italy
| | - Renato Fani
- Department of Biology, Laboratory of Microbial and Molecular Evolution, University of Florence, Via Madonna del Piano 6, Sesto F.no (FI), Italy
| |
Collapse
|
12
|
Repeated Exposure of Aspergillus niger Spores to the Antifungal Bacterium Collimonas fungivorans Ter331 Selects for Delayed Spore Germination. Appl Environ Microbiol 2021; 87:e0023321. [PMID: 33811027 DOI: 10.1128/aem.00233-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The bacterial strain Collimonas fungivorans Ter331 (CfTer331) inhibits mycelial growth and spore germination in Aspergillus niger N402 (AnN402). The mechanisms underlying this antagonistic bacterial-fungal interaction have been extensively studied, but knowledge on the long-term outcome of this interaction is currently lacking. Here, we used experimental evolution to explore the dynamics of fungal adaptation to recurrent exposure to CfTer331. Specifically, five single-spore isolates (SSIs) of AnN402 were evolved under three selection scenarios in liquid culture, i.e., (i) in the presence of CfTer331 for 80 growth cycles, (ii) in the absence of the bacterium for 80 cycles, and (iii) in the presence of CfTer331 for 40 cycles and then in its absence for 40 cycles. The evolved SSI lineages were then evaluated for phenotypic changes from the founder fungal strain, such as germinability with or without CfTer331. The analysis showed that recurrent exposure to CfTer331 selected for fungal lineages with reduced germinability and slower germination, even in the absence of CfTer331. In contrast, when AnN402 evolved in the absence of the bacteria, lineages with increased germinability and faster germination were favored. SSIs that were first evolved in the presence of CfTer331 and then in its absence showed intermediate phenotypes but overall were more similar to SSIs that evolved in the absence of CfTer331 for 80 cycles. This suggests that traits acquired from exposure to CfTer331 were reversible upon removal of the selection pressure. Overall, our study provides insights into the effects on fungi from the long-term coculture with bacteria. IMPORTANCE The use of antagonistic bacteria for managing fungal diseases is becoming increasingly popular, and thus there is a need to understand the implications of their long-term use against fungi. Most efforts have so far focused on characterizing the antifungal properties and mode of action of the bacterial antagonists, but the possible outcomes of the persisting interaction between antagonistic bacteria and fungi are not well understood. In this study, we used experimental evolution in order to explore the evolutionary aspects of an antagonistic bacterial-fungal interaction, using the antifungal bacterium Collimonas fungivorans and the fungus Aspergillus niger as a model system. We show that evolution in the presence or absence of the bacteria selects for fungal lineages with opposing and conditionally beneficial traits, such as slow and fast spore germination, respectively. Overall, our studies reveal that fungal responses to biotic factors related to antagonism could be to some extent predictable and reversible.
Collapse
|
13
|
Zhang D, Wang F, Yu Y, Ding S, Chen T, Sun W, Liang C, Yu B, Ying H, Liu D, Chen Y. Effect of quorum-sensing molecule 2-phenylethanol and ARO genes on Saccharomyces cerevisiae biofilm. Appl Microbiol Biotechnol 2021; 105:3635-3648. [PMID: 33852023 DOI: 10.1007/s00253-021-11280-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Biofilms are a form of microbial community that can be beneficial for industrial fermentation because of their remarkable environmental resistance. However, the mechanism of biofilm formation in Saccharomyces cerevisiae remains to be fully explored, and this may enable improved industrial applications for this organism. Although quorum-sensing (QS) molecules are known to be involved in bacteria biofilm formation, few studies have been undertaken with these in fungi. 2-phenylethanol (2-PE) is considered a QS molecule in S. cerevisiae. Here, we found that exogenous 2-PE could stimulate biofilm formation at low cell concentrations. ARO8p and ARO9p are responsible for the synthesis of 2-PE and were crucial to the formation of biofilm. Deletion of the ARO8 and ARO9 genes reduced the content of 2-PE in the early stage of fermentation, reduced ethanol yield and decreased biofilm formation. The expression of FLOp, which is involved in cell adhesion, and the content of extracellular polysaccharides of mutant strains ΔARO8 and ΔARO9 were also significantly reduced. These findings indicate that the production of 2-PE had a positive effect on biofilm formation in S. cerevisiae, thereby providing further key details for studying the formation of biofilm mechanism in the future. KEY POINTS: • Quorum-sensing molecule 2-PE positively affects biofilm formation in S. cerevisiae. • 2-PE synthetic genes ARO8 and ARO9 deletion reduced extracellular polysaccharide. • ARO8 and ARO9 deletion reduced the gene expression of the FLO family.
Collapse
Affiliation(s)
- Deli Zhang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Fangjuan Wang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ying Yu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Sai Ding
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Tianpeng Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenjun Sun
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Caice Liang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Bin Yu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Hanjie Ying
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, 450000, China
| | - Dong Liu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China. .,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China. .,School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, 450000, China.
| | - Yong Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China. .,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
14
|
Love E, Furmanek JD, Foote CM, McGuire J, Labbad Z. DNA Sequencing to Evaluate Nail Pathogens: An Investigation into Bacteria and Fungi. J Am Podiatr Med Assoc 2021; 111:464164. [PMID: 33872357 DOI: 10.7547/18-122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND It is well established and accepted that fungi are a major contributing factor in nail dystrophy. It has also been recognized that bacteria play a crucial role in onycholysis. However, the bacteria and fungi that can be grown on culture media in the laboratory are only a small fraction of the total diversity that exists in nature. Contemporary studies have revealed that fungi and bacteria often form physically and metabolically interdependent consortia that harbor properties and pathogenicity distinct from those of their individual components. Metagenomic DNA "shotgun" sequencing has proved useful in determining microbial etiology in clinical samples, effective for not only bacteria but also fungi, archaea, and viruses. METHODS Thirty-nine consecutive nail and subungual debris samples with suspected onychomycosis were sent for laboratory analysis using three examination techniques: DNA sequencing, polymerase chain reaction analysis, and standard fungal culture. The nail plate and surrounding areas were disinfected with an ethyl alcohol swab before nail sampling. Samples from 16 patients were analyzed for suspected onychomycosis with DNA sequencing, searching a database of 25,000 known pathogens. These results were compared with 15 real-time polymerase chain reaction screening assays and eight fungal cultures sampled with the same methods. RESULTS The DNA sequencing detected 32 species of bacteria and 28 species of fungi: 50% were solely bacterial, 6.3% were solely fungal, and 43.7% were mixed communities of bacteria and fungi. CONCLUSIONS Toenails tested with DNA sequencing demonstrated the presence of both bacteria and fungi in many samples. Further work is required to fully investigate its relevance to nail pathology and treatment.
Collapse
|
15
|
Summers KL, Foster Frey J, Arfken AM. Characterization of Kazachstania slooffiae, a Proposed Commensal in the Porcine Gut. J Fungi (Basel) 2021; 7:jof7020146. [PMID: 33671322 PMCID: PMC7922399 DOI: 10.3390/jof7020146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Kazachstania slooffiae is a fungus commonly isolated from the gastrointestinal tract and feces of post-weaning pigs. Studies have implicated its ability to positively alter piglet gut health through potential symbioses with beneficial bacteria, including Lactobacillus and Prevotella, in providing amino acids as an energy source for microbial and piglet growth, and it has been found to be positively correlated with short-chain fatty acids in the piglet gut. However, basic mycological information remains limited, hampering in vitro studies. In this study, we characterized the growth parameters, biofilm formation ability, susceptibility to antimicrobials, and genetic relatedness of K. slooffiae to other fungal isolates. Optimal fungal growth conditions were determined, no antifungal resistance was found against multiple classes of antifungal drugs (azoles, echinocandins, polyenes, or pyrimidine analogues), and dimorphic growth was observed. K. slooffiae produced biofilms that became more complex in the presence of Lactobacillus acidophilus supernatant, suggesting positive interactions with this bacterium in the gut, while Enterococcus faecalis supernatant decreased density, suggesting an antagonistic interaction. This study characterizes the in vitro growth conditions that are optimal for further studies of K. slooffiae, which is an important step in defining the role and interactions of K. slooffiae in the porcine gut environment.
Collapse
|
16
|
Pierce EC, Morin M, Little JC, Liu RB, Tannous J, Keller NP, Pogliano K, Wolfe BE, Sanchez LM, Dutton RJ. Bacterial-fungal interactions revealed by genome-wide analysis of bacterial mutant fitness. Nat Microbiol 2021; 6:87-102. [PMID: 33139882 PMCID: PMC8515420 DOI: 10.1038/s41564-020-00800-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/16/2020] [Indexed: 11/09/2022]
Abstract
Microbial interactions are expected to be major determinants of microbiome structure and function. Although fungi are found in diverse microbiomes, their interactions with bacteria remain largely uncharacterized. In this work, we characterize interactions in 16 different bacterial-fungal pairs, examining the impacts of 8 different fungi isolated from cheese rind microbiomes on 2 bacteria (Escherichia coli and a cheese-isolated Pseudomonas psychrophila). Using random barcode transposon-site sequencing with an analysis pipeline that allows statistical comparisons between different conditions, we observed that fungal partners caused widespread changes in the fitness of bacterial mutants compared to growth alone. We found that all fungal species modulated the availability of iron and biotin to bacterial species, which suggests that these may be conserved drivers of bacterial-fungal interactions. Species-specific interactions were also uncovered, a subset of which suggested fungal antibiotic production. Changes in both conserved and species-specific interactions resulted from the deletion of a global regulator of fungal specialized metabolite production. This work highlights the potential for broad impacts of fungi on bacterial species within microbiomes.
Collapse
Affiliation(s)
- Emily C Pierce
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Manon Morin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jessica C Little
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Roland B Liu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Joanna Tannous
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Food Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | - Laura M Sanchez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Rachel J Dutton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
17
|
Kumari S, Naraian R. Enhanced growth and yield of oyster mushroom by growth-promoting bacteria Glutamicibacter arilaitensis MRC119. J Basic Microbiol 2020; 61:45-54. [PMID: 33347662 DOI: 10.1002/jobm.202000379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/25/2020] [Accepted: 11/28/2020] [Indexed: 11/11/2022]
Abstract
Promotion of mushroom growth by means of biological agents replacing chemicals is an emerging and highly demanded issue in the sector of mushroom cropping. The present study was aimed to search for a novel bacterium potentially able to enhance mushroom growth and yield. A total of 2165 bacterial isolates purified from different samples were scrutinized through various growth-promoting attributes. As a consequence of rigorous screening, 26 isolates found exhibiting positive traits of mushroom growth promotion. Thereafter, in response to the cocultivation (fungus and bacteria), a potent bacterial strain was isolated capable to improve significantly the mycelial growth. In cocultivation the highest radial and linear growth rate was 7.6 and 8.1 mm/day on 10th and 11th days, respectively. The fruitbody yields and biological efficiency (BE) of the inoculated sets were 28% and 58% higher than the uninoculated control sets. The bacterium was molecularly identified based on 16S ribosomal RNA sequencing and confirmed as Glutamicibacter arilaitensis MRC119. Therefore, the bioinoculant of the current bacterium can be potentially useful as an ecofriendly substitute stimulating the production of mushroom fruit bodies with improved BE.
Collapse
Affiliation(s)
- Simpal Kumari
- Department of Biotechnology, Faculty of Science, Mushroom Training and Research Center (MTRC), Veer Bahadur Singh Purvanchal University, Jaunpur, Uttar Pradesh, India
| | - Ram Naraian
- Department of Biotechnology, Faculty of Science, Mushroom Training and Research Center (MTRC), Veer Bahadur Singh Purvanchal University, Jaunpur, Uttar Pradesh, India
| |
Collapse
|
18
|
Song S, Yin W, Sun X, Cui B, Huang L, Li P, Yang L, Zhou J, Deng Y. Anthranilic acid from Ralstonia solanacearum plays dual roles in intraspecies signalling and inter-kingdom communication. THE ISME JOURNAL 2020; 14:2248-2260. [PMID: 32457502 PMCID: PMC7608240 DOI: 10.1038/s41396-020-0682-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 11/25/2022]
Abstract
Quorum sensing (QS) signals are widely utilized by bacteria to regulate biological functions in response to cell population density. Previous studies have demonstrated that Ralstonia solanacearum employs two different types of QS systems. We report here that anthranilic acid controls important biological functions and the production of QS signals in R. solanacearum. It was demonstrated that the biosynthesis of anthranilic acid is mainly performed by TrpEG. The accumulation of anthranilic acid and the transcription of trpEG occur in a cell density-dependent manner in R. solanacearum. Both the anthranilic acid and TrpEG homologues are conserved in various bacterial species. Moreover, we show that Sporisorium scitamineum sexual mating and hypha formation are strongly inhibited by the addition of exogenous anthranilic acid. Our results suggest that anthranilic acid is important for the physiology of bacteria in addition to its role in inter-kingdom communication.
Collapse
Affiliation(s)
- Shihao Song
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenfang Yin
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiuyun Sun
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Binbin Cui
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Lei Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianuan Zhou
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
19
|
Hemmati F, Salehi R, Ghotaslou R, Samadi Kafil H, Hasani A, Gholizadeh P, Nouri R, Ahangarzadeh Rezaee M. Quorum Quenching: A Potential Target for Antipseudomonal Therapy. Infect Drug Resist 2020; 13:2989-3005. [PMID: 32922047 PMCID: PMC7457774 DOI: 10.2147/idr.s263196] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
There has been excessive rate of use of antibiotics to fight Pseudomonas aeruginosa (P. aeruginosa) infections worldwide, which has consequently caused the increased resistance to multiple antibiotics in this pathogen. Due to the widespread resistance and the current poor effect of antibiotics consumed to treat P. aeruginosa infections, finding some novel alternative therapeutic methods are necessary for the treatment of infections. The P. aeruginosa biofilms can cause severe infections leading to the increased antibiotic resistance and mortality rate among the patients. In this regard, there are no approaches that can efficiently manage these infections; therefore, novel and effective antimicrobial and antibiofilm agents are needed to control and treat these bacterial infections. Quorum sensing inhibitors (QSIs) or quorum quenchings (QQs) are now considered as potential therapeutic alternatives and/or adjuvants to the current failing antibiotics, which can control the virulence traits of the pathogens, so as a result, the host immune system can quickly eliminate bacteria. Thus, the aims of this review article were presenting a brief explanation of the research reports on the natural and synthetic QSIs of P. aeruginosa, and the assessment of the current understanding on the QS mechanisms and various QQ strategies in P. aeruginosa.
Collapse
Affiliation(s)
- Fatemeh Hemmati
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Nouri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Dabral S, Saxena SC, Choudhary DK, Bandyopadhyay P, Sahoo RK, Tuteja N, Nath M. Synergistic inoculation of Azotobacter vinelandii and Serendipita indica augmented rice growth. Symbiosis 2020. [DOI: 10.1007/s13199-020-00689-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Microscopic characterization of biofilm in mixed keratitis in a novel murine model. Microb Pathog 2020; 140:103953. [DOI: 10.1016/j.micpath.2019.103953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/17/2019] [Accepted: 12/27/2019] [Indexed: 12/17/2022]
|
22
|
Heydari S, Siavoshi F, Ebrahimi H, Sarrafnejad A, Sharifi AH. Excision of endosymbiotic bacteria from yeast under aging and starvation stresses. INFECTION GENETICS AND EVOLUTION 2019; 78:104141. [PMID: 31839588 DOI: 10.1016/j.meegid.2019.104141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Although infrequent in our laboratory, growth of bacterial colonies has been observed on top of the purified cultures of yeasts. In this study, the likelihood of bacterial excision from yeast under aging and starvation stresses was assessed using 10 gastric and 10 food-borne yeasts. Yeasts were identified as members of Candida or Saccharomyces genus by amplification and sequencing of D1/D2 region of 26S rDNA. For aging stress, yeasts were cultured on brain heart infusion agar supplemented with sheep blood and incubated at 30 °C for 3-4 weeks. For starvation stress, yeasts were inoculated into distilled water and incubated similarly. After seven days, starved yeasts were cultured on yeast extract glucose agar, incubated similarly and examined daily for appearance of bacterial colonies on top of the yeast's growth. Outgrowth of excised bacteria was observed on top of the cultures of 4 yeasts (Y1, Y3, Y13 and Y18) after 3-7 days. The excised bacteria (B1, B3, B13 and B18) were isolated and identified at the genus level according to their biochemical characteristics as well as amplification and sequencing of 16S rDNA. B1 (Arthrobacter) were excised from Y1 (Candida albicans) upon aging and B3 (Staphylococcus), B13 (Cellulomonas) and B18 (Staphylococcus) were excised from their respective yeasts; Y3 (Candida tropicalis), Y13 (Saccharomyces cerevisiae) and Y18 (Candida glabrata) upon starvation. DNA from yeasts was used for detection of 16S rDNA of their intracellular bacteria and sequencing. Amplified products from yeasts showed sequence similarity to those of excised bacteria. Under normal conditions, yeast exerts tight control on multiplication of its intracellular bacteria. However, upon aging and starvation the control is no longer effective and bacterial outgrowth occurs. Unlimited multiplication of excised bacteria might provide yeast with plenty of food in close vicinity. This could be an evolutionary dialogue between yeast and bacteria that ensures the survival of both partners.
Collapse
Affiliation(s)
- Samira Heydari
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran.
| | - Hoda Ebrahimi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Abdolfattah Sarrafnejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Houshang Sharifi
- Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Zhang J, Miao Y, Rahimi MJ, Zhu H, Steindorff A, Schiessler S, Cai F, Pang G, Chenthamara K, Xu Y, Kubicek CP, Shen Q, Druzhinina IS. Guttation capsules containing hydrogen peroxide: an evolutionarily conserved NADPH oxidase gains a role in wars between related fungi. Environ Microbiol 2019; 21:2644-2658. [PMID: 30815928 PMCID: PMC6850483 DOI: 10.1111/1462-2920.14575] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 12/01/2022]
Abstract
When resources are limited, the hypocrealean fungus Trichoderma guizhouense can overgrow another hypocrealean fungus Fusarium oxysporum, cause sporadic cell death and arrest growth. A transcriptomic analysis of this interaction shows that T. guizhouense undergoes a succession of metabolic stresses while F. oxysporum responded relatively neutrally but used the constitutive expression of several toxin‐encoding genes as a protective strategy. Because of these toxins, T. guizhouense cannot approach it is potential host on the substrate surface and attacks F. oxysporum from above. The success of T. guizhouense is secured by the excessive production of hydrogen peroxide (H2O2), which is stored in microscopic bag‐like guttation droplets hanging on the contacting hyphae. The deletion of NADPH oxidase nox1 and its regulator, nor1 in T. guizhouense led to a substantial decrease in H2O2 formation with concomitant loss of antagonistic activity. We envision the role of NOX proteins in the antagonism of T. guizhouense as an example of metabolic exaptation evolved in this fungus because the primary function of these ancient proteins was probably not linked to interfungal relationships. In support of this, F. oxysporum showed almost no transcriptional response to T. guizhouense Δnox1 strain indicating the role of NOX/H2O2 in signalling and fungal communication.
Collapse
Affiliation(s)
- Jian Zhang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Mohammad Javad Rahimi
- Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Hong Zhu
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Andrei Steindorff
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Sabine Schiessler
- Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Feng Cai
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Guan Pang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Komal Chenthamara
- Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Yu Xu
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Christian P Kubicek
- Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria.,Steinschoetelgasse 7,1100, Vienna, Austria
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Irina S Druzhinina
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| |
Collapse
|
24
|
Oh SY, Park MS, Cho HJ, Lim YW. Diversity and effect of Trichoderma isolated from the roots of Pinus densiflora within the fairy ring of pine mushroom (Tricholoma matsutake). PLoS One 2018; 13:e0205900. [PMID: 30403694 PMCID: PMC6221287 DOI: 10.1371/journal.pone.0205900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/03/2018] [Indexed: 02/03/2023] Open
Abstract
Pine mushroom (PM, Tricholoma matsutake) is an important ectomycorrhizal fungus in Asia primarily due to its value as a food delicacy. Recent studies have shown that fairy rings of PM have distinctive fungal communities, which suggests that other fungi influence the growth of PM. Trichoderma is a well-known saprotrophic fungus commonly found in pine roots within PM fairy rings; however, little is known about the diversity of Trichoderma associated with PM and how these species influence PM growth. This study focused on diversity of Trichoderma isolated from pine roots within PM fairy rings and how these species affect the growth of PM isolate. Based on tef1a phylogenetic analyses, nine Trichoderma species (261 isolates) were identified. Trichoderma songyi and T. spirale were the dominant species, and Trichoderma community varied geographically. Growth experiments indicated that metabolites from five Trichoderma species had a significant influence on the growth of PM isolates. Metabolites of two Trichoderma species increased PM growth, while those of three Trichoderma species suppressed the growth. Within the fairy rings, Trichoderma that had a positive or neutral effect comprised the majority of Trichoderma communities. The results of this study suggest that various Trichoderma species co-exist within PM fairy rings and that these species influence PM growth.
Collapse
Affiliation(s)
- Seung-Yoon Oh
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Myung Soo Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Hae Jin Cho
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Young Woon Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Unveiling Concealed Functions of Endosymbiotic Bacteria Harbored in the Ascomycete Stachylidium bicolor. Appl Environ Microbiol 2018; 84:AEM.00660-18. [PMID: 29858203 DOI: 10.1128/aem.00660-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023] Open
Abstract
Among the plethora of unusual secondary metabolites isolated from Stachylidium bicolor are the tetrapeptidic endolides A and B. Both tetrapeptides contain 3-(3-furyl)-alanine residues, previously proposed to originate from bacterial metabolism. Inspired by this observation, we aimed to identify the presence of endosymbiotic bacteria in S. bicolor and to discover the true producer of the endolides. The endobacterium Burkholderia contaminans was initially detected by 16S rRNA gene amplicon sequencing from the fungal metagenome and was subsequently isolated. It was confirmed that the tetrapeptides were produced by the axenic B. contaminans only when in latency. Fungal colonies unable to produce conidia and the tetrapeptides were isolated and confirmed to be free of B. contaminans A second endosymbiont identified as related to Sphingomonas leidyi was also isolated. In situ imaging of the mycelium supported an endosymbiotic relationship between S. bicolor and the two endobacteria. Besides the technical novelty, our in situ analyses revealed that the two endobacteria are compartmentalized in defined fungal cells, prevailing mostly in latency when in symbiosis. Within the emerging field of intracellular bacterial symbioses, fungi are the least studied eukaryotic hosts. Our study further supports the Fungi as a valuable model for understanding endobacterial symbioses in eukaryotes.IMPORTANCE The discovery of two bacterial endosymbionts harbored in Stachylidium bicolor mycelium, Burkholderia contaminans and Sphingomonas leidyi, is described here. Production of tetrapeptides inside the mycelium is ensured by B. contaminans, and fungal sporulation is influenced by the endosymbionts. Here, we illustrate the bacterial endosymbiotic origin of secondary metabolites in an Ascomycota host.
Collapse
|
26
|
Padder SA, Prasad R, Shah AH. Quorum sensing: A less known mode of communication among fungi. Microbiol Res 2018; 210:51-58. [PMID: 29625658 DOI: 10.1016/j.micres.2018.03.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/21/2018] [Accepted: 03/17/2018] [Indexed: 02/08/2023]
Abstract
Quorum sensing (QS), a density-dependent signaling mechanism of microbial cells, involves an exchange and sense of low molecular weight signaling compounds called autoinducers. With the increase in population density, the autoinducers accumulate in the extracellular environment and once their concentration reaches a threshold, many genes are either expressed or repressed. This cell density-dependent signaling mechanism enables single cells to behave as multicellular organisms and regulates different microbial behaviors like morphogenesis, pathogenesis, competence, biofilm formation, bioluminescence, etc guided by environmental cues. Initially, QS was regarded to be a specialized system of certain bacteria. The discovery of filamentation control in pathogenic polymorphic fungus Candida albicans by farnesol revealed the phenomenon of QS in fungi as well. Pathogenic microorganisms primarily regulate the expression of virulence genes using QS systems. The indirect role of QS in the emergence of multiple drug resistance (MDR) in microbial pathogens necessitates the finding of alternative antimicrobial therapies that target QS and inhibit the same. A related phenomenon of quorum sensing inhibition (QSI) performed by small inhibitor molecules called quorum sensing inhibitors (QSIs) has an ability for efficient reduction of gene expression regulated by quorum sensing. In the present review, recent advancements in the study of different fungal quorum sensing molecules (QSMs) and quorum sensing inhibitors (QSIs) of fungal origin along with their mechanism of action and/or role/s are discussed.
Collapse
Affiliation(s)
- Sajad Ahmad Padder
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Rajendra Prasad
- Amity Institute of Integrative Sciences and Health and Amity Institute of Biotechnology, Amity University Haryana, Amity Education Valley, Gurgaon 122413, HR, India
| | - Abdul Haseeb Shah
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India.
| |
Collapse
|
27
|
Sharmin D, Guo Y, Nishizawa T, Ohshima S, Sato Y, Takashima Y, Narisawa K, Ohta H. Comparative Genomic Insights into Endofungal Lifestyles of Two Bacterial Endosymbionts, Mycoavidus cysteinexigens and Burkholderia rhizoxinica. Microbes Environ 2018. [PMID: 29540638 PMCID: PMC5877345 DOI: 10.1264/jsme2.me17138] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endohyphal bacteria (EHB), dwelling within fungal hyphae, markedly affect the growth and metabolic potential of their hosts. To date, two EHB belonging to the family Burkholderiaceae have been isolated and characterized as new taxa, Burkholderia rhizoxinica (HKI 454T) and Mycoavidus cysteinexigens (B1-EBT), in Japan. Metagenome sequencing was recently reported for Mortierella elongata AG77 together with its endosymbiont M. cysteinexigens (Mc-AG77) from a soil/litter sample in the USA. In the present study, we elucidated the complete genome sequence of B1-EBT and compared it with those of Mc-AG77 and HKI 454T. The genomes of B1-EBT and Mc-AG77 contained a higher level of prophage sequences and were markedly smaller than that of HKI 454T. Although the B1-EBT and Mc-AG77 genomes lacked the chitinolytic enzyme genes responsible for invasion into fungal cells, they contained several predicted toxin-antitoxin systems including an insecticidal toxin complex and PIN domain imposing an addiction-like mechanism essential for endohyphal growth control during host colonization. Despite the different host fungi, the alignment of amino acid sequences showed that the HKI 454T genome consisted of 1,265 (32.6%) and 1,221 (31.5%) orthologous coding sequences (CDSs) with those of B1-EBT and Mc-AG77, respectively. This comparative study of three phylogenetically associated endosymbionts has provided insights into their origin and evolution, and suggests the later bacterial invasion and adaptation of B1-EBT to its host metabolism.
Collapse
Affiliation(s)
- Dilruba Sharmin
- Ibaraki University College of Agriculture, Department of Bioresource Science
| | - Yong Guo
- Ibaraki University College of Agriculture, Department of Bioresource Science
| | - Tomoyasu Nishizawa
- Ibaraki University College of Agriculture, Department of Bioresource Science.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Shoko Ohshima
- Ibaraki University College of Agriculture, Department of Bioresource Science
| | - Yoshinori Sato
- Center for Conservation and Restoration Techniques, Tokyo National Research Institute for Cultural Properties
| | - Yusuke Takashima
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Kazuhiko Narisawa
- Ibaraki University College of Agriculture, Department of Bioresource Science.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Hiroyuki Ohta
- Ibaraki University College of Agriculture, Department of Bioresource Science.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| |
Collapse
|
28
|
Khalid S, Baccile JA, Spraker JE, Tannous J, Imran M, Schroeder FC, Keller NP. NRPS-Derived Isoquinolines and Lipopetides Mediate Antagonism between Plant Pathogenic Fungi and Bacteria. ACS Chem Biol 2018; 13:171-179. [PMID: 29182847 DOI: 10.1021/acschembio.7b00731] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacterial-fungal interactions are presumed to be mediated chiefly by small-molecule signals; however, little is known about the signaling networks that regulate antagonistic relationships between pathogens. Here, we show that the ralstonins, lipopeptides produced by the plant pathogenic bacteria Ralstonia solanacearum, interfere with germination of the plant-pathogenic fungus Aspergillus flavus by down-regulating expression of a cryptic biosynthetic gene cluster (BGC), named imq. Comparative metabolomic analysis of overexpression strains of the transcription factor ImqK revealed imq-dependent production of a family of tripeptide-derived alkaloids, the imizoquins. These alkaloids are produced via a nonribosomal peptide synthetase- (NRPS-)derived tripeptide and contain an unprecedented tricyclic imidazo[2,1-a]isoquinoline ring system. We show that the imizoquins serve a protective role against oxidative stress that is essential for normal A. flavus germination. Supplementation of purified imizoquins restored wildtype germination to a ΔimqK A. flavus strain and protected the fungus from ROS damage. Whereas the bacterial ralstonins retarded A. flavus germination and suppressed expression of the imq cluster, the fungal imizoquins in turn suppressed growth of R. solanacearum. We suggest such reciprocal small-molecule-mediated antagonism is a common feature in microbial encounters affecting pathogenicity and survival of the involved species.
Collapse
Affiliation(s)
- Saima Khalid
- Departments
of Bacteriology, Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, United States
- Department
of Microbiology, Qauid-i-Azam University, Islamabad, Pakistan
| | - Joshua A. Baccile
- Boyce
Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States
| | - Joseph E. Spraker
- Department
of Plant Pathology, University of Wisconsin—Madison, Madison, Wisconsin, United States
| | - Joanna Tannous
- Departments
of Bacteriology, Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, United States
| | - Muhammad Imran
- Department
of Microbiology, Qauid-i-Azam University, Islamabad, Pakistan
| | - Frank C. Schroeder
- Boyce
Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States
| | - Nancy P. Keller
- Departments
of Bacteriology, Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, United States
| |
Collapse
|
29
|
Keilhofer N, Nachtigall J, Kulik A, Ecke M, Hampp R, Süssmuth RD, Fiedler HP, Schrey SD. Streptomyces AcH 505 triggers production of a salicylic acid analogue in the fungal pathogen Heterobasidion abietinum that enhances infection of Norway spruce seedlings. Antonie Van Leeuwenhoek 2018; 111:691-704. [DOI: 10.1007/s10482-018-1017-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/11/2018] [Indexed: 03/19/2023]
|
30
|
Jung B, Park J, Kim N, Li T, Kim S, Bartley LE, Kim J, Kim I, Kang Y, Yun K, Choi Y, Lee HH, Ji S, Lee KS, Kim BY, Shon JC, Kim WC, Liu KH, Yoon D, Kim S, Seo YS, Lee J. Cooperative interactions between seed-borne bacterial and air-borne fungal pathogens on rice. Nat Commun 2018; 9:31. [PMID: 29295978 PMCID: PMC5750236 DOI: 10.1038/s41467-017-02430-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 11/30/2017] [Indexed: 11/23/2022] Open
Abstract
Bacterial-fungal interactions are widely found in distinct environments and contribute to ecosystem processes. Previous studies of these interactions have mostly been performed in soil, and only limited studies of aerial plant tissues have been conducted. Here we show that a seed-borne plant pathogenic bacterium, Burkholderia glumae (Bg), and an air-borne plant pathogenic fungus, Fusarium graminearum (Fg), interact to promote bacterial survival, bacterial and fungal dispersal, and disease progression on rice plants, despite the production of antifungal toxoflavin by Bg. We perform assays of toxoflavin sensitivity, RNA-seq analyses, lipid staining and measures of triacylglyceride content to show that triacylglycerides containing linolenic acid mediate resistance to reactive oxygen species that are generated in response to toxoflavin in Fg. As a result, Bg is able to physically attach to Fg to achieve rapid and expansive dispersal to enhance disease severity.
Collapse
Affiliation(s)
- Boknam Jung
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Namgyu Kim
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Taiying Li
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Soyeon Kim
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Laura E Bartley
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Jinnyun Kim
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Inyoung Kim
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Yoonhee Kang
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Kihoon Yun
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Younghae Choi
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Hyun-Hee Lee
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Sungyeon Ji
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Kwang Sik Lee
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Bo Yeon Kim
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Jong Cheol Shon
- BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Won Cheol Kim
- BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Dahye Yoon
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46269, Korea
| | - Suhkman Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46269, Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan, 46269, Korea.
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea.
| |
Collapse
|
31
|
Ishaq SL, AlZahal O, Walker N, McBride B. An Investigation into Rumen Fungal and Protozoal Diversity in Three Rumen Fractions, during High-Fiber or Grain-Induced Sub-Acute Ruminal Acidosis Conditions, with or without Active Dry Yeast Supplementation. Front Microbiol 2017; 8:1943. [PMID: 29067009 PMCID: PMC5641310 DOI: 10.3389/fmicb.2017.01943] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/21/2017] [Indexed: 01/08/2023] Open
Abstract
Sub-acute ruminal acidosis (SARA) is a gastrointestinal functional disorder in livestock characterized by low rumen pH, which reduces rumen function, microbial diversity, host performance, and host immune function. Dietary management is used to prevent SARA, often with yeast supplementation as a pH buffer. Almost nothing is known about the effect of SARA or yeast supplementation on ruminal protozoal and fungal diversity, despite their roles in fiber degradation. Dairy cows were switched from a high-fiber to high-grain diet abruptly to induce SARA, with and without active dry yeast (ADY, Saccharomyces cerevisiae) supplementation, and sampled from the rumen fluid, solids, and epimural fractions to determine microbial diversity using the protozoal 18S rRNA and the fungal ITS1 genes via Illumina MiSeq sequencing. Diet-induced SARA dramatically increased the number and abundance of rare fungal taxa, even in fluid fractions where total reads were very low, and reduced protozoal diversity. SARA selected for more lactic-acid utilizing taxa, and fewer fiber-degrading taxa. ADY treatment increased fungal richness (OTUs) but not diversity (Inverse Simpson, Shannon), but increased protozoal richness and diversity in some fractions. ADY treatment itself significantly (P < 0.05) affected the abundance of numerous fungal genera as seen in the high-fiber diet: Lewia, Neocallimastix, and Phoma were increased, while Alternaria, Candida Orpinomyces, and Piromyces spp. were decreased. Likewise, for protozoa, ADY itself increased Isotricha intestinalis but decreased Entodinium furca spp. Multivariate analyses showed diet type was most significant in driving diversity, followed by yeast treatment, for AMOVA, ANOSIM, and weighted UniFrac. Diet, ADY, and location were all significant factors for fungi (PERMANOVA, P = 0.0001, P = 0.0452, P = 0.0068, Monte Carlo correction, respectively, and location was a significant factor (P = 0.001, Monte Carlo correction) for protozoa. Diet-induced SARA shifts diversity of rumen fungi and protozoa and selects against fiber-degrading species. Supplementation with ADY mitigated this reduction in protozoa, presumptively by triggering microbial diversity shifts (as seen even in the high-fiber diet) that resulted in pH stabilization. ADY did not recover the initial community structure that was seen in pre-SARA conditions.
Collapse
Affiliation(s)
| | | | | | - Brian McBride
- Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
32
|
Velmourougane K, Prasanna R, Singh SB, Kumar R, Saha S. Sequence of inoculation influences the nature of extracellular polymeric substances and biofilm formation in Azotobacter chroococcum and Trichoderma viride. FEMS Microbiol Ecol 2017; 93:3814244. [DOI: 10.1093/femsec/fix066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/10/2017] [Indexed: 11/13/2022] Open
|
33
|
Velmourougane K, Prasanna R, Saxena AK. Agriculturally important microbial biofilms: Present status and future prospects. J Basic Microbiol 2017; 57:548-573. [PMID: 28407275 DOI: 10.1002/jobm.201700046] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 11/07/2022]
Abstract
Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau Nath Bhanjan, Uttar Pradesh, India
| |
Collapse
|
34
|
Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment. J Allergy Clin Immunol 2016; 140:63-75. [PMID: 27838347 DOI: 10.1016/j.jaci.2016.08.055] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/02/2016] [Accepted: 08/12/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Compositional differences in the bronchial bacterial microbiota have been associated with asthma, but it remains unclear whether the findings are attributable to asthma, to aeroallergen sensitization, or to inhaled corticosteroid treatment. OBJECTIVES We sought to compare the bronchial bacterial microbiota in adults with steroid-naive atopic asthma, subjects with atopy but no asthma, and nonatopic healthy control subjects and to determine relationships of the bronchial microbiota to phenotypic features of asthma. METHODS Bacterial communities in protected bronchial brushings from 42 atopic asthmatic subjects, 21 subjects with atopy but no asthma, and 21 healthy control subjects were profiled by using 16S rRNA gene sequencing. Bacterial composition and community-level functions inferred from sequence profiles were analyzed for between-group differences. Associations with clinical and inflammatory variables were examined, including markers of type 2-related inflammation and change in airway hyperresponsiveness after 6 weeks of fluticasone treatment. RESULTS The bronchial microbiome differed significantly among the 3 groups. Asthmatic subjects were uniquely enriched in members of the Haemophilus, Neisseria, Fusobacterium, and Porphyromonas species and the Sphingomonodaceae family and depleted in members of the Mogibacteriaceae family and Lactobacillales order. Asthma-associated differences in predicted bacterial functions included involvement of amino acid and short-chain fatty acid metabolism pathways. Subjects with type 2-high asthma harbored significantly lower bronchial bacterial burden. Distinct changes in specific microbiota members were seen after fluticasone treatment. Steroid responsiveness was linked to differences in baseline compositional and functional features of the bacterial microbiome. CONCLUSION Even in subjects with mild steroid-naive asthma, differences in the bronchial microbiome are associated with immunologic and clinical features of the disease. The specific differences identified suggest possible microbiome targets for future approaches to asthma treatment or prevention.
Collapse
|
35
|
Perazzolli M, Herrero N, Sterck L, Lenzi L, Pellegrini A, Puopolo G, Van de Peer Y, Pertot I. Transcriptomic responses of a simplified soil microcosm to a plant pathogen and its biocontrol agent reveal a complex reaction to harsh habitat. BMC Genomics 2016; 17:838. [PMID: 27784266 PMCID: PMC5081961 DOI: 10.1186/s12864-016-3174-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Soil microorganisms are key determinants of soil fertility and plant health. Soil phytopathogenic fungi are one of the most important causes of crop losses worldwide. Microbial biocontrol agents have been extensively studied as alternatives for controlling phytopathogenic soil microorganisms, but molecular interactions between them have mainly been characterised in dual cultures, without taking into account the soil microbial community. We used an RNA sequencing approach to elucidate the molecular interplay of a soil microbial community in response to a plant pathogen and its biocontrol agent, in order to examine the molecular patterns activated by the microorganisms. RESULTS A simplified soil microcosm containing 11 soil microorganisms was incubated with a plant root pathogen (Armillaria mellea) and its biocontrol agent (Trichoderma atroviride) for 24 h under controlled conditions. More than 46 million paired-end reads were obtained for each replicate and 28,309 differentially expressed genes were identified in total. Pathway analysis revealed complex adaptations of soil microorganisms to the harsh conditions of the soil matrix and to reciprocal microbial competition/cooperation relationships. Both the phytopathogen and its biocontrol agent were specifically recognised by the simplified soil microcosm: defence reaction mechanisms and neutral adaptation processes were activated in response to competitive (T. atroviride) or non-competitive (A. mellea) microorganisms, respectively. Moreover, activation of resistance mechanisms dominated in the simplified soil microcosm in the presence of both A. mellea and T. atroviride. Biocontrol processes of T. atroviride were already activated during incubation in the simplified soil microcosm, possibly to occupy niches in a competitive ecosystem, and they were not further enhanced by the introduction of A. mellea. CONCLUSIONS This work represents an additional step towards understanding molecular interactions between plant pathogens and biocontrol agents within a soil ecosystem. Global transcriptional analysis of the simplified soil microcosm revealed complex metabolic adaptation in the soil environment and specific responses to antagonistic or neutral intruders.
Collapse
Affiliation(s)
- Michele Perazzolli
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige, Italy.
| | - Noemí Herrero
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige, Italy
- Present Address: Institute of Entomology, Biology Centre-The Czech Academy of Sciences, Branišovská 31/1160, České Budějovice, 37005, Czech Republic
| | - Lieven Sterck
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9000, Ghent, Belgium
| | - Luisa Lenzi
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige, Italy
| | - Alberto Pellegrini
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige, Italy
| | - Gerardo Puopolo
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige, Italy
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9000, Ghent, Belgium
- Department of Genetics, Genomics Research Institute, University of Pretoria, Hatfield Campus, 0028, Pretoria, South Africa
| | - Ilaria Pertot
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige, Italy
| |
Collapse
|
36
|
Braga RM, Dourado MN, Araújo WL. Microbial interactions: ecology in a molecular perspective. Braz J Microbiol 2016; 47 Suppl 1:86-98. [PMID: 27825606 PMCID: PMC5156507 DOI: 10.1016/j.bjm.2016.10.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/07/2016] [Indexed: 02/06/2023] Open
Abstract
The microorganism–microorganism or microorganism–host interactions are the key strategy to colonize and establish in a variety of different environments. These interactions involve all ecological aspects, including physiochemical changes, metabolite exchange, metabolite conversion, signaling, chemotaxis and genetic exchange resulting in genotype selection. In addition, the establishment in the environment depends on the species diversity, since high functional redundancy in the microbial community increases the competitive ability of the community, decreasing the possibility of an invader to establish in this environment. Therefore, these associations are the result of a co-evolution process that leads to the adaptation and specialization, allowing the occupation of different niches, by reducing biotic and abiotic stress or exchanging growth factors and signaling. Microbial interactions occur by the transference of molecular and genetic information, and many mechanisms can be involved in this exchange, such as secondary metabolites, siderophores, quorum sensing system, biofilm formation, and cellular transduction signaling, among others. The ultimate unit of interaction is the gene expression of each organism in response to an environmental (biotic or abiotic) stimulus, which is responsible for the production of molecules involved in these interactions. Therefore, in the present review, we focused on some molecular mechanisms involved in the microbial interaction, not only in microbial–host interaction, which has been exploited by other reviews, but also in the molecular strategy used by different microorganisms in the environment that can modulate the establishment and structuration of the microbial community.
Collapse
Affiliation(s)
- Raíssa Mesquita Braga
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Manuella Nóbrega Dourado
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Welington Luiz Araújo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil.
| |
Collapse
|
37
|
Halsey JA, de Cássia Pereira E Silva M, Andreote FD. Bacterial selection by mycospheres of Atlantic Rainforest mushrooms. Antonie van Leeuwenhoek 2016; 109:1353-65. [PMID: 27411813 DOI: 10.1007/s10482-016-0734-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/05/2016] [Indexed: 01/12/2023]
Abstract
This study focuses on the selection exerted on bacterial communities in the mycospheres of mushrooms collected in the Brazilian Atlantic Rainforest. A total of 24 paired samples (bulk soil vs. mycosphere) were assessed to investigate potential interactions between fungi and bacteria present in fungal mycospheres. Prevalent fungal families were identified as Marasmiaceae and Lepiotaceae (both Basidiomycota) based on ITS partial sequencing. We used culture-independent techniques to analyze bacterial DNA from soil and mycosphere samples. Bacterial communities in the samples were distinguished based on overall bacterial, alphaproteobacterial, and betaproteobacterial PCR-DGGE patterns, which were different in fungi belonging to different taxa. These results were confirmed by pyrosequencing the V4 region of the 16S rRNA gene (based on five bulk soil vs. mycosphere pairs), which revealed the most responsive bacterial families in the different conditions generated beneath the mushrooms, identified as Bradyrhizobiaceae, Burkholderiaceae, and Pseudomonadaceae. The bacterial families Acetobacteraceae, Chrhoniobacteraceae, Planctomycetaceae, Conexibacteraceae, and Burkholderiaceae were found in all mycosphere samples, composing the core mycosphere microbiome. Similarly, some bacterial groups identified as Koribacteriaceae, Acidobacteria (Solibacteriaceae) and an unclassified group of Acidobacteria were preferentially present in the bulk soil samples (found in all of them). In this study we depict the mycosphere effect exerted by mushrooms inhabiting the Brazilian Atlantic Rainforest, and identify the bacteria with highest response to such a specific niche, possibly indicating the role bacteria play in mushroom development and dissemination within this yet-unexplored environment.
Collapse
Affiliation(s)
- Joshua Andrew Halsey
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Avenida Pádua Dias, 11, Piracicaba, SP, CEP 13418-900, Brazil
| | - Michele de Cássia Pereira E Silva
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Avenida Pádua Dias, 11, Piracicaba, SP, CEP 13418-900, Brazil.
| | - Fernando Dini Andreote
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Avenida Pádua Dias, 11, Piracicaba, SP, CEP 13418-900, Brazil
| |
Collapse
|
38
|
Arendt KR, Hockett KL, Araldi-Brondolo SJ, Baltrus DA, Arnold AE. Isolation of Endohyphal Bacteria from Foliar Ascomycota and In Vitro Establishment of Their Symbiotic Associations. Appl Environ Microbiol 2016; 82:2943-2949. [PMID: 26969692 PMCID: PMC4959084 DOI: 10.1128/aem.00452-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/03/2016] [Indexed: 12/16/2022] Open
Abstract
Endohyphal bacteria (EHB) can influence fungal phenotypes and shape the outcomes of plant-fungal interactions. Previous work has suggested that EHB form facultative associations with many foliar fungi in the Ascomycota. These bacteria can be isolated in culture, and fungi can be cured of EHB using antibiotics. Here, we present methods for successfully introducing EHB into axenic mycelia of strains representing two classes of Ascomycota. We first establish in vitro conditions favoring reintroduction of two strains of EHB (Luteibacter sp.) into axenic cultures of their original fungal hosts, focusing on fungi isolated from healthy plant tissue as endophytes: Microdiplodia sp. (Dothideomycetes) and Pestalotiopsis sp. (Sordariomycetes). We then demonstrate that these EHB can be introduced into a novel fungal host under the same conditions, successfully transferring EHB between fungi representing different classes. Finally, we manipulate conditions to optimize reintroduction in a focal EHB-fungal association. We show that EHB infections were initiated and maintained more often under low-nutrient culture conditions and when EHB and fungal hyphae were washed with MgCl2 prior to reassociation. Our study provides new methods for experimental assessment of the effects of EHB on fungal phenotypes and shows how the identity of the fungal host and growth conditions can define the establishment of these widespread and important symbioses.
Collapse
Affiliation(s)
- Kayla R Arendt
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Kevin L Hockett
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | | | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - A Elizabeth Arnold
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
39
|
Spraker JE, Sanchez LM, Lowe TM, Dorrestein PC, Keller NP. Ralstonia solanacearum lipopeptide induces chlamydospore development in fungi and facilitates bacterial entry into fungal tissues. ISME JOURNAL 2016; 10:2317-30. [PMID: 26943626 PMCID: PMC4989320 DOI: 10.1038/ismej.2016.32] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 01/14/2023]
Abstract
Ralstonia solanacearum is a globally distributed soil-borne plant pathogenic bacterium, which shares a broad ecological range with many plant- and soil-associated fungi. We sought to determine if R. solanacearum chemical communication directs symbiotic development of polymicrobial consortia. R. solanacearum produced a diffusible metabolite that induced conserved morphological differentiation in 34 species of fungi across three diverse taxa (Ascomycetes, Basidiomycetes and Zygomycetes). Fungi exposed to this metabolite formed chlamydospores, survival structures with thickened cell walls. Some chlamydospores internally harbored R. solanacearum, indicating a newly described endofungal lifestyle for this important plant pathogen. Using imaging mass spectrometry and peptidogenomics, we identified an undescribed lipopeptide, ralsolamycin, produced by an R. solanacearum non-ribosomal peptide synthetase-polyketide synthase hybrid. Inactivation of the hybrid non-ribosomal peptide synthetase-polyketide synthase gene, rmyA, abolished ralsolamycin synthesis. R. solanacearum mutants lacking ralsolamycin no longer induced chlamydospore development in fungal coculture and invaded fungal hyphae less well than wild-type. We propose that ralsolamycin contributes to the invasion of fungal hyphae and that the formation of chlamydospores may provide not only a specific niche for bacterial colonization but also enhanced survival for the partnering fungus.
Collapse
Affiliation(s)
- Joseph E Spraker
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura M Sanchez
- Departments of Pharmacology, Chemistry and Biochemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, CA, USA
| | - Tiffany M Lowe
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Pieter C Dorrestein
- Departments of Pharmacology, Chemistry and Biochemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, CA, USA.,Collaborative Mass Spectrometry Innovation Center, University of California-San Diego, La Jolla, CA, USA
| | - Nancy P Keller
- Departments of Bacteriology, Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
40
|
Deveau A. How does the tree root microbiome assemble? Influence of ectomycorrhizal species on P
inus sylvestris
root bacterial communities. Environ Microbiol 2016; 18:1303-5. [DOI: 10.1111/1462-2920.13214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aurélie Deveau
- INRA; UMR1136, «Interactions Arbres - Microorganismes»; F-54280 Champenoux France
- Université de Lorraine; UMR1136, «Interactions Arbres - Microorganismes»; F-54500 Vandoeuvre-lès-Nancy France
| |
Collapse
|
41
|
Diverse bacterial symbionts of insect-pathogentic fungi and possible impact on the maintenance of virulence during infection. Symbiosis 2015. [DOI: 10.1007/s13199-015-0371-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Lanzén A, Epelde L, Garbisu C, Anza M, Martín-Sánchez I, Blanco F, Mijangos I. The Community Structures of Prokaryotes and Fungi in Mountain Pasture Soils are Highly Correlated and Primarily Influenced by pH. Front Microbiol 2015; 6:1321. [PMID: 26640462 PMCID: PMC4661322 DOI: 10.3389/fmicb.2015.01321] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/10/2015] [Indexed: 12/04/2022] Open
Abstract
Traditionally, conservation and management of mountain pastures has been managed solely on the basis of visible biota. However, microorganisms play a vital role for the functioning of the soil ecosystem and, hence, pasture sustainability. Here, we studied the links between soil microbial (belowground) community structure (using amplicon sequencing of prokaryotes and fungi), other soil physicochemical and biological properties and, finally, a variety of pasture management practices. To this aim, during two consecutive years, we studied 104 environmental sites characterized by contrasting elevation, habitats, bedrock, and pasture management; located in or near Gorbeia Natural Park (Basque Country/Spain). Soil pH was found to be one of the most important factors in structuring soil microbial diversity. Interestingly, we observed a striking correlation between prokaryotic, fungal and macrofauna diversity, likely caused by interactions between these life forms. Further studies are needed to better understand such interactions and target the influence of different management practices on the soil microbial community, in face of the significant heterogeneity present. However, clearing of bushes altered microbial community structure, and in sites with calcareous bedrock also the use of herbicide vs. mechanical clearing of ferns.
Collapse
Affiliation(s)
- Anders Lanzén
- Soil Microbial Ecology Group, Department of Conservation of Natural Resources, NEIKER-Tecnalia Derio, Spain
| | - Lur Epelde
- Soil Microbial Ecology Group, Department of Conservation of Natural Resources, NEIKER-Tecnalia Derio, Spain
| | - Carlos Garbisu
- Soil Microbial Ecology Group, Department of Conservation of Natural Resources, NEIKER-Tecnalia Derio, Spain
| | - Mikel Anza
- Soil Microbial Ecology Group, Department of Conservation of Natural Resources, NEIKER-Tecnalia Derio, Spain
| | - Iker Martín-Sánchez
- Soil Microbial Ecology Group, Department of Conservation of Natural Resources, NEIKER-Tecnalia Derio, Spain
| | - Fernando Blanco
- Soil Microbial Ecology Group, Department of Conservation of Natural Resources, NEIKER-Tecnalia Derio, Spain
| | - Iker Mijangos
- Soil Microbial Ecology Group, Department of Conservation of Natural Resources, NEIKER-Tecnalia Derio, Spain
| |
Collapse
|
43
|
Arias AA, Lambert S, Martinet L, Adam D, Tenconi E, Hayette MP, Ongena M, Rigali S. Growth of desferrioxamine-deficientStreptomycesmutants through xenosiderophore piracy of airborne fungal contaminations. FEMS Microbiol Ecol 2015; 91:fiv080. [DOI: 10.1093/femsec/fiv080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2015] [Indexed: 11/14/2022] Open
|
44
|
Straightforward bacterial-fungal fermentation between Lactobacillus plantarum and Pleurotus eryngii for synergistic improvement of bioactivity. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0079-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
45
|
Netzker T, Fischer J, Weber J, Mattern DJ, König CC, Valiante V, Schroeckh V, Brakhage AA. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol 2015; 6:299. [PMID: 25941517 PMCID: PMC4403501 DOI: 10.3389/fmicb.2015.00299] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/26/2015] [Indexed: 11/22/2022] Open
Abstract
Microorganisms form diverse multispecies communities in various ecosystems. The high abundance of fungal and bacterial species in these consortia results in specific communication between the microorganisms. A key role in this communication is played by secondary metabolites (SMs), which are also called natural products. Recently, it was shown that interspecies “talk” between microorganisms represents a physiological trigger to activate silent gene clusters leading to the formation of novel SMs by the involved species. This review focuses on mixed microbial cultivation, mainly between bacteria and fungi, with a special emphasis on the induced formation of fungal SMs in co-cultures. In addition, the role of chromatin remodeling in the induction is examined, and methodical perspectives for the analysis of natural products are presented. As an example for an intermicrobial interaction elucidated at the molecular level, we discuss the specific interaction between the filamentous fungi Aspergillus nidulans and Aspergillus fumigatus with the soil bacterium Streptomyces rapamycinicus, which provides an excellent model system to enlighten molecular concepts behind regulatory mechanisms and will pave the way to a novel avenue of drug discovery through targeted activation of silent SM gene clusters through co-cultivations of microorganisms.
Collapse
Affiliation(s)
- Tina Netzker
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute , Jena, Germany ; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena , Jena, Germany
| | - Juliane Fischer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute , Jena, Germany ; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena , Jena, Germany
| | - Jakob Weber
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute , Jena, Germany ; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena , Jena, Germany
| | - Derek J Mattern
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute , Jena, Germany ; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena , Jena, Germany
| | - Claudia C König
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute , Jena, Germany ; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena , Jena, Germany
| | - Vito Valiante
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute , Jena, Germany
| | - Volker Schroeckh
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute , Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute , Jena, Germany ; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena , Jena, Germany
| |
Collapse
|
46
|
Draft Genome Sequence of Streptomyces sp. Strain 150FB, a Mushroom Mycoparasite Antagonist. GENOME ANNOUNCEMENTS 2015; 3:3/2/e01441-14. [PMID: 25838499 PMCID: PMC4384503 DOI: 10.1128/genomea.01441-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptomyces sp. strain 150FB, isolated from the cap surface of a bolete mushroom, inhibits the growth of the mycoparasitic Sepedonium species. Functional annotation of the strain 150FB draft genome identified 22 putative secondary metabolite biosynthetic gene clusters and genes encoding secreted proteins, which may contribute to the inhibition of the mycoparasite.
Collapse
|
47
|
Novel Endosymbioses as a Catalyst of Fast Speciation. INTERDISCIPLINARY EVOLUTION RESEARCH 2015. [DOI: 10.1007/978-3-319-16345-1_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
48
|
Candida albicans: Molecular interactions with Pseudomonas aeruginosa and Staphylococcus aureus. FUNGAL BIOL REV 2014. [DOI: 10.1016/j.fbr.2014.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
49
|
Inhibition of bacterial quorum sensing by extracts from aquatic fungi: first report from marine endophytes. Mar Drugs 2014; 12:5503-26. [PMID: 25415350 PMCID: PMC4245542 DOI: 10.3390/md12115503] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 11/17/2022] Open
Abstract
In our search for quorum-sensing (QS) disrupting molecules, 75 fungal isolates were recovered from reef organisms (endophytes), saline lakes and mangrove rhizosphere. Their QS inhibitory activity was evaluated in Chromobacterium violaceum CVO26. Four strains of endophytic fungi stood out for their potent activity at concentrations from 500 to 50 μg mL−1. The molecular characterization, based on the internal transcribed spacer (ITS) region sequences (ITS1, 5.8S and ITS2) between the rRNA of 18S and 28S, identified these strains as belonging to four genera: Sarocladium (LAEE06), Fusarium (LAEE13), Epicoccum (LAEE14), and Khuskia (LAEE21). Interestingly, three came from coral species and two of them came from the same organism, the coral Diploria strigosa. Metabolic profiles obtained by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) suggest that a combination of fungal secondary metabolites and fatty acids could be the responsible for the observed activities. The LC-HRMS analysis also revealed the presence of potentially new secondary metabolites. This is, to the best of our knowledge, the first report of QS inhibition by marine endophytic fungi.
Collapse
|
50
|
Benoit I, van den Esker MH, Patyshakuliyeva A, Mattern DJ, Blei F, Zhou M, Dijksterhuis J, Brakhage AA, Kuipers OP, de Vries RP, Kovács ÁT. Bacillus subtilis attachment to Aspergillus niger hyphae results in mutually altered metabolism. Environ Microbiol 2014; 17:2099-113. [PMID: 25040940 DOI: 10.1111/1462-2920.12564] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 07/06/2014] [Indexed: 02/06/2023]
Abstract
Interaction between microbes affects the growth, metabolism and differentiation of members of the microbial community. While direct and indirect competition, like antagonism and nutrient consumption have a negative effect on the interacting members of the population, microbes have also evolved in nature not only to fight, but in some cases to adapt to or support each other, while increasing the fitness of the community. The presence of bacteria and fungi in soil results in various interactions including mutualism. Bacilli attach to the plant root and form complex communities in the rhizosphere. Bacillus subtilis, when grown in the presence of Aspergillus niger, interacts similarly with the fungus, by attaching and growing on the hyphae. Based on data obtained in a dual transcriptome experiment, we suggest that both fungi and bacteria alter their metabolism during this interaction. Interestingly, the transcription of genes related to the antifungal and putative antibacterial defence mechanism of B. subtilis and A. niger, respectively, are decreased upon attachment of bacteria to the mycelia. Analysis of the culture supernatant suggests that surfactin production by B. subtilis was reduced when the bacterium was co-cultivated with the fungus. Our experiments provide new insights into the interaction between a bacterium and a fungus.
Collapse
Affiliation(s)
- Isabelle Benoit
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.,Microbiology, Utrecht University, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentations, Netherlands Genomics Initiative/Netherlands Organization for Scientific Research, Delf, The Netherlands
| | - Marielle H van den Esker
- Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Aleksandrina Patyshakuliyeva
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Derek J Mattern
- Molecular and Applied Microbiology Department, Leibniz Institute for Natural Product Research and Infection Biology - HKI, Jena, Germany.,Department of Microbiology and Molecular Biology, Friedrich Schiller University of Jena, Jena, Germany
| | - Felix Blei
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Miaomiao Zhou
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Jan Dijksterhuis
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Axel A Brakhage
- Molecular and Applied Microbiology Department, Leibniz Institute for Natural Product Research and Infection Biology - HKI, Jena, Germany.,Department of Microbiology and Molecular Biology, Friedrich Schiller University of Jena, Jena, Germany
| | - Oscar P Kuipers
- Kluyver Centre for Genomics of Industrial Fermentations, Netherlands Genomics Initiative/Netherlands Organization for Scientific Research, Delf, The Netherlands.,Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentations, Netherlands Genomics Initiative/Netherlands Organization for Scientific Research, Delf, The Netherlands
| | - Ákos T Kovács
- Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.,Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|