1
|
Sharma S, Dedha A, Gupta MM, Singh N, Gautam A, Kumari A. Green and sustainable technologies for extraction of carotenoids from natural sources: a comprehensive review. Prep Biochem Biotechnol 2024:1-33. [PMID: 39427252 DOI: 10.1080/10826068.2024.2402905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
In recent years, driven by increasing consumer demand for natural and healthy convenient foods, the food industry has been shifting from synthetic to natural products. This shift is also reflected in the growing popularity of non-conventional extraction methods for pigments, which are favored for sustainability and environment-friendliness compared to conventional processes. This review aims to investigate the extraction of carotenoids from a variety of natural sources, including marine sources like fungus, microalgae, and crustaceans, as well as widely studied plants like tomatoes and carrots. Additionally, it delves into the recovery of valuable carotenoids from waste products like pomace and peels, highlighting the nutritional and environmental benefits. The review also emphasizes the role of green solvents such limonene, vegetable oils, ionic liquids, supercritical fluids, and natural deep eutectic solvents in effective and ecologically friendly carotenoid extraction. These technologies support the ideas of a circular and sustainable economy in addition to having a smaller negative impact on the environment. Overall, the present study highlights the crucial importance of green extraction technologies in achieving the dual goals of sustainability and public safety.
Collapse
Affiliation(s)
- Surbhi Sharma
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Anshika Dedha
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Manju M Gupta
- Sri Aurobindo College, Delhi University, Delhi, India
| | - Nahar Singh
- Council of Scientific and Industrial Research-National Physical Laboratory (CSIR-NPL), Delhi, India
| | - Arvind Gautam
- Council of Scientific and Industrial Research-National Physical Laboratory (CSIR-NPL), Delhi, India
| | - Abha Kumari
- Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
2
|
Díaz-Ruiz E, Balbino TR, Dos Santos JC, Kumar V, da Silva SS, Chandel AK. Fermentative Production of β-Carotene from Sugarcane Bagasse Hydrolysate by Rhodotorula glutinis CCT-2186. Appl Biochem Biotechnol 2024; 196:4188-4204. [PMID: 37914962 DOI: 10.1007/s12010-023-04761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
Β-Carotene is a red-orange pigment that serves as a precursor to important pharmaceutical molecules like vitamin A and retinol, making it highly significant in the industrial sector. Consequently, there is an ongoing quest for more sustainable production methods. In this study, glucose and xylose, two primary sugars derived from sugarcane bagasse (SCB), were utilized as substrates for β-carotene production by Rhodotorula glutinis CCT-2186. To achieve this, SCB underwent pretreatment using NaOH, involved different concentrations of total solids (TS) (10%, 15%, and 20%) to remove lignin. Each sample was enzymatically hydrolyzed using two substrate loadings (5% and 10%). The pretreated SCB with 10%, 15%, and 20% TS exhibited glucose hydrolysis yields (%wt) of 93.10%, 91.88%, and 90.77%, respectively. The resulting hydrolysate was employed for β-carotene production under batch fermentation. After 72 h of fermentation, the SCB hydrolysate yielded a β-carotene concentration of 118.56 ± 3.01 mg/L. These findings showcase the robustness of R. glutinis as a biocatalyst for converting SCB into β-carotene.
Collapse
Affiliation(s)
- Erick Díaz-Ruiz
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810, Lorena, SP, Brazil
| | - Thércia R Balbino
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810, Lorena, SP, Brazil
| | - Júlio C Dos Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810, Lorena, SP, Brazil
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Silvio S da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810, Lorena, SP, Brazil
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810, Lorena, SP, Brazil.
| |
Collapse
|
3
|
Huang J, Hu P, Ye L, Shen Z, Chen X, Liu F, Xie Y, Yu J, Fan X, Xiao M, Tsui CKM, Wang W, Li Y, Zhang G, Wong KH, Cai L, Bai FY, Xu Y, Wang L. Pan-drug resistance and hypervirulence in a human fungal pathogen are enabled by mutagenesis induced by mammalian body temperature. Nat Microbiol 2024; 9:1686-1699. [PMID: 38898217 DOI: 10.1038/s41564-024-01720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 05/02/2024] [Indexed: 06/21/2024]
Abstract
The continuing emergence of invasive fungal pathogens poses an increasing threat to public health. Here, through the China Hospital Invasive Fungal Surveillance Net programme, we identified two independent cases of human infection with a previously undescribed invasive fungal pathogen, Rhodosporidiobolus fluvialis, from a genus in which many species are highly resistant to fluconazole and caspofungin. We demonstrate that R. fluvialis can undergo yeast-to-pseudohyphal transition and that pseudohyphal growth enhances its virulence, revealed by the development of a mouse model. Furthermore, we show that mouse infection or mammalian body temperature induces its mutagenesis, allowing the emergence of hypervirulent mutants favouring pseudohyphal growth. Temperature-induced mutagenesis can also elicit the development of pan-resistance to three of the most commonly used first-line antifungals (fluconazole, caspofungin and amphotericin B) in different Rhodosporidiobolus species. Furthermore, polymyxin B was found to exhibit potent activity against the pan-resistant Rhodosporidiobolus mutants. Collectively, by identifying and characterizing a fungal pathogen in the drug-resistant genus Rhodosporidiobolus, we provide evidence that temperature-dependent mutagenesis can enable the development of pan-drug resistance and hypervirulence in fungi, and support the idea that global warming can promote the evolution of new fungal pathogens.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Clinical Laboratory, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengjie Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Leixin Ye
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenghao Shen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinfei Chen
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuyan Xie
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinhan Yu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Meng Xiao
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Clement K M Tsui
- National Centre for Infectious Diseases, Tan Tock Seng Hospital, Novena, Singapore
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Weiping Wang
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yingxing Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ge Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Tyśkiewicz K, Tyśkiewicz R, Konkol M, Gruba M, Kowalski R. Optimization of Antifungal Properties of Hop Cone Carbon Dioxide Extracts Based on Response Surface Methodology. Molecules 2024; 29:2554. [PMID: 38893430 PMCID: PMC11173884 DOI: 10.3390/molecules29112554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Response surface methodology (RSM) was employed to optimize the process parameters of the supercritical carbon dioxide extraction of hop cones in terms of their antifungal properties against Fusarium culmorum and Aspergillus niger. The effects of temperature (40-50 °C), pressure (200-300 bar), and CO2 consumption (25-75 kgCO2/kg) on the extraction yield, content of α- and β-acids, as well as pathogens' growth inhibition were investigated. Both pressure and CO2 consumption had a significant effect on antifungal properties. It was observed that the best results for antifungal properties were obtained when hop cones were extracted with pure carbon dioxide at the temperature of 50 °C, under the pressure of 300 bar with CO2 consumption at the level of 75 kgCO2/kg of feed for extraction. The highest antifungal properties of hop cone supercritical carbon dioxide extracts were analyzed as 100% for Fusarium culmorum and 68% for Aspergillus niger, calculated as the growth inhibition of tested pathogens. The aim of the study was to determine the optimum values of extraction parameters to achieve the maximum response and enable us to investigate the interaction of these parameters on the antifungal properties of hop cone extracts.
Collapse
Affiliation(s)
- Katarzyna Tyśkiewicz
- Supercritical Extraction Research Group, Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland; (M.K.) (M.G.); (R.K.)
| | - Renata Tyśkiewicz
- Analytical Laboratory, Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland;
| | - Marcin Konkol
- Supercritical Extraction Research Group, Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland; (M.K.) (M.G.); (R.K.)
| | - Marcin Gruba
- Supercritical Extraction Research Group, Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland; (M.K.) (M.G.); (R.K.)
| | - Rafał Kowalski
- Supercritical Extraction Research Group, Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland; (M.K.) (M.G.); (R.K.)
| |
Collapse
|
5
|
Jasiewicz J, Piekarczyk J, Stępień Ł, Tkaczuk C, Sosnowska D, Urbaniak M, Ratajkiewicz H. Multidimensional discriminant analysis of species, strains and culture age of closely related entomopathogenic fungi using reflectance spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124135. [PMID: 38508072 DOI: 10.1016/j.saa.2024.124135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
The diversity of fungal strains is influenced by genetic and environmental factors, growth conditions and mycelium age, and the spectral features of fungal mycelia are associated with their biochemical, physiological, and structural traits. This study investigates whether intraspecific differences can be detected in two closely related entomopathogenic species, namely Cordyceps farinosa and Cordyceps fumosorosea, using ultraviolet A to shortwave infrared (UVA-SWIR) reflectance spectra. Phylogenetic analysis of all strains revealed a high degree of uniformity among the populations of both species. The characteristics resulting from variation in the species, as well as those resulting from the age of the cultures were determined. We cultured fungi on PDA medium and measured the reflectance of mycelia in the 350-2500 nm range after 10 and 17 days. We subjected the measurements to quadratic discriminant analysis (QDA) to identify the minimum number of bands containing meaningful information. We found that when the age of the fungal culture was known, species represented by a group of different strains could be distinguished with no more than 3-4 wavelengths, compared to 7-8 wavelengths when the age of the culture was unknown. At least 6-8 bands were required to distinguish cultures of a known species among different age groups. Distinguishing all strains within a species was more demanding: at least 10 bands were required for C. fumosorosea and 21 bands for C. farinosa. In conclusion, fungal differentiation using point reflectance spectroscopy gives reliable results when intraspecific and age variations are taken into account.
Collapse
Affiliation(s)
- Jarosław Jasiewicz
- Adam Mickiewicz University in Poznań, Institute of Geoecology and Geoinformation, ul. Krygowskiego 10, 60-680 Poznań, Poland
| | - Jan Piekarczyk
- Adam Mickiewicz University in Poznań, Institute of Physical Geography and Environmental Planning, ul. Krygowskiego 10, 60-680 Poznań, Poland
| | - Łukasz Stępień
- Plant-Pathogen Interaction Team, Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479 Poznań, Poland
| | - Cezary Tkaczuk
- Institute of Agriculture and Horticulture, University in Siedlce, ul. Prusa 14, 08-110 Siedlce, Poland
| | - Danuta Sosnowska
- Institute of Plant Protection - National Research Institute, Department of Biological Control Methods and Organic Farming, ul. Władysława Węgorka 20, Poznań 60-318, Poland
| | - Monika Urbaniak
- Plant-Pathogen Interaction Team, Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479 Poznań, Poland
| | - Henryk Ratajkiewicz
- Poznan University of Life Sciences, Department of Entomology and Environmental Protection, ul. Dąbrowskiego 159, 60-594 Poznań, Poland.
| |
Collapse
|
6
|
Gaur S, Kaur M, Kalra R, Rene ER, Goel M. Application of microbial resources in biorefineries: Current trend and future prospects. Heliyon 2024; 10:e28615. [PMID: 38628756 PMCID: PMC11019186 DOI: 10.1016/j.heliyon.2024.e28615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
The recent growing interest in sustainable and alternative sources of energy and bio-based products has driven the paradigm shift to an integrated model termed "biorefinery." Biorefinery framework implements the concepts of novel eco-technologies and eco-efficient processes for the sustainable production of energy and value-added biomolecules. The utilization of microbial resources for the production of various value-added products has been documented in the literatures. However, the appointment of these microbial resources in integrated resource management requires a better understanding of their status. The main of aim of this review is to provide an overview on the defined positioning and overall contribution of the microbial resources, i.e., algae, fungi and bacteria, for various bioprocesses and generation of multiple products from a single biorefinery. By utilizing waste material as a feedstock, biofuels can be generated by microalgae while sequestering environmental carbon and producing value added compounds as by-products. In parallel, fungal biorefineries are prolific producers of lignocellulose degrading enzymes along with pharmaceutically important novel products. Conversely, bacterial biorefineries emerge as a preferred platform for the transformation of standard cells into proficient bio-factories, developing chassis and turbo cells for enhanced target compound production. This comprehensive review is poised to offer an intricate exploration of the current trends, obstacles, and prospective pathways of microbial biorefineries, for the development of future biorefineries.
Collapse
Affiliation(s)
- Suchitra Gaur
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Mehak Kaur
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Rishu Kalra
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Eldon R. Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft, 2601DA, the Netherlands
| | - Mayurika Goel
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| |
Collapse
|
7
|
Zhang Z, Zhang H, Wu G, Xu X, Cao R, Wan Q, Xu H, Wang J, Huang T, Wen G. The aggregation characteristics of Aspergillus spores under various conditions and the impact on LPUV inactivation: Comparisons with chlorine-based disinfection. WATER RESEARCH 2024; 253:121323. [PMID: 38377927 DOI: 10.1016/j.watres.2024.121323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Aggregation is the primary step prior to fungal biofilm development. Understanding the attributes of aggregation is of great significance to better control the emergence of waterborne fungi. In this study, the aggregation of Aspergills spores (A. flavus and A. fumigatus) under various salt, culture medium, and humic acid (HA) conditions was investigated for the first time, and the inactivation via low-pressure ultraviolet (LPUV) upon aggregated Aspergillus spores was also presented. The aggregation efficiency and size of aggregates increased over time and at low salt (NaCl and CaCl2) concentration (10 mM) while decreasing with the continuous increase of salt concentration (100 and 200 mM). Increasing the concentration of culture medium and HA promoted the aggregation of fungal spores. Spores became hydrated, swelled, and secreted more viscous substances during the growth period, which accelerated the aggregation process. Results also suggested that fungal spores aggregated more easily in actual water, posing a high risk of biohazard in real-life scenarios. Inactivation efficiency by LPUV decreased with higher aggregation degrees due to the protection from the damaged spores on the outer layer and the shielding of pigments in the cell wall. Compared to chlorine-based disinfection, the aggregation resulted in the extension of shoulder length yet neglectable change of inactivation rate constant under LPUV treatment. Further investigation of cell membrane integrity and intracellular reactive oxygen species was conducted to elucidate the difference in mechanisms between various techniques. This study provides insight into the understanding and controlling of the aggregation of fungal spores.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Huan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Huining Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China.
| |
Collapse
|
8
|
Mykchaylova O, Dubova H, Negriyko A, Lomberg M, Krasinko V, Gregori A, Poyedinok N. Photoregulation of the biosynthetic activity of the edible medicinal mushroom Lentinula edodes in vitro. Photochem Photobiol Sci 2024; 23:435-449. [PMID: 38289457 DOI: 10.1007/s43630-023-00529-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 04/04/2024]
Abstract
The findings of the study demonstrate the impact of low-intensity laser and quasi-monochromatic light on the biosynthetic activity of the edible medicinal fungus L. edodes during submerged cultivation. An artificial lighting installation based on matrices of light-emitting diodes (LED) emitting light at 470 nm (blue), 530 nm (green), 650 nm (red), and argon gas laser (488 nm) was used. Irradiation with blue and red LED and laser led to a shortening of the lag phase by 2 days and an increase in the mycelial mass. Irradiation with laser light resulted in the highest mycelial mass yield (14.1 g/L) on the 8th day of cultivation. Irradiation in all used wavelength ranges caused an increase in the synthesis of both extracellular and intracellular polysaccharides. Laser light at 488 nm and LED at 470 nm proved to be the most effective. Irradiation with red, green, and blue laser light caused an increase in the total amount of fatty acids in the mycelial mass compared to the control. A significant distinction in qualitative composition was observed: short-chain acids C6‒C12 compounds were produced under red light irradiation, whereas long-chain C20‒C24 were formed under green light irradiation. The most significant changes in the aromatic profile of the mycelial mass and culture liquid were recorded upon irradiation with green light. The content of aromatic components increased 24.6 times in the mycelial mass and 38.5 times in the culture liquid. The results suggest the possibility of using low-intensity quasi-monochromatic light for targeted regulation of L. edodes biosynthetic activity.
Collapse
Affiliation(s)
- Oksana Mykchaylova
- Department of Mycology, M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, 2, Tereshchenkivska, Kiev, 01601, Ukraine
- Faculty Biomedical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, 37, Beresteisky Avenue, Kiev, 03056, Ukraine
| | - Halyna Dubova
- Department of Food Technology, Poltava State Agrarian University, 1/3 Skovorody, Poltava, 36003, Ukraine
| | - Anatoliy Negriyko
- Department of Laser Spectroscopy, Institute of Physics of the National Academy of Sciences of Ukraine, 46, Prospect Nauki, Kiev, 03039, Ukraine
| | - Margarita Lomberg
- Department of Mycology, M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, 2, Tereshchenkivska, Kiev, 01601, Ukraine.
| | - Viktoriia Krasinko
- Department of Biotechnology and Microbiology, National University of Food Technologies, 68, Volodymyrska, Kiev, 01601, Ukraine
| | - Andrej Gregori
- Mycomedica Ltd, Podkoren 72, 4280, Kranjska Gora, Slovenia
| | - Natalia Poyedinok
- Faculty Biomedical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, 37, Beresteisky Avenue, Kiev, 03056, Ukraine
| |
Collapse
|
9
|
Gao H, Tang Y, Lv R, Jiang W, Jiang Y, Zhang W, Xin F, Jiang M. Transcriptomic Analysis Reveals the Potential Mechanisms for Improving Carotenoid Production in Rhodosporidium toruloides Z11 under Light Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3793-3799. [PMID: 38327062 DOI: 10.1021/acs.jafc.3c07535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Carotenoids, as a type of tetraterpene compound, have been widely used in food, medical, and health areas owing to their antioxidant, immune enhancement, and disease risk reduction effects. Rhodosporidium toruloides is a promising oleaginous red yeast that can industrially synthesize carotenoids. In this study, the effects of different light exposure times and intervals on carotenoid production by R. toruloides Z11 were first investigated. Results showed that a higher carotenoid content (1.29 mg/g) can be achieved when R. toruloides Z11 was exposed to light for 12 h per day, which was increased by 1.98 times compared with that of dark cultivation. Transcriptome profiling revealed that light stress could effectively promote the gene expression levels of GGPS1 and AL1 in the carotenoid biosynthesis pathway and phr in the DNA photolysis pathway of R. toruloides. This work will provide a molecular foundation to further improve the production efficiency of carotenoids by genetic engineering.
Collapse
Affiliation(s)
- Hao Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Yunhan Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Rui Lv
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, P. R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, P. R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, P. R. China
| |
Collapse
|
10
|
Torres-Haro A, Verdín J, Kirchmayr MR, Arellano-Plaza M. Combined 6-benzylaminopurine and H 2O 2 stimulate the astaxanthin biosynthesis in Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 2024; 108:158. [PMID: 38252271 PMCID: PMC10803577 DOI: 10.1007/s00253-023-12875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 01/23/2024]
Abstract
Astaxanthin is one of the most attractive carotenoids due to its high antioxidant activity and beneficial biological properties, while Xanthophyllomyces dendrorhous is one of its main microbial sources. Since astaxanthin is synthesized as a response to oxidative stress, several oxidative agents have been evaluated to increase X. dendrorhous astaxanthin yields. However, the extent of the stimulation is determined by the cellular damage caused by the applied oxidative agent. Phytohormones have also been reported as stimulants of astaxanthin biosynthesis acting directly on its metabolic pathway and indirectly promoting cellular resistance to reactive oxygen species. We reasoned that both oxidative agents and phytohormones lead to increased astaxanthin synthesis, but the latter could mitigate the drawbacks of the former. Thus, here, the stimulation on astaxanthin biosynthesis, as well as the cellular and transcriptional responses of wild type X. dendrorhous to phytohormones (6-benzylaminopurine, 6-BAP; abscisic acid, ABA; and indole-3-acetic acid, IAA), and oxidative agents (glutamate, menadione, H2O2, and/or Fe2+) were evaluated as a single or combined treatments. ABA and 6-BAP were the best individual stimulants leading to 2.24- and 2.60-fold astaxanthin biosynthesis increase, respectively. Nevertheless, the effect of combined 6-BAP and H2O2 led to a 3.69-fold astaxanthin synthesis increase (0.127 ± 0.018 mg astaxanthin/g biomass). Moreover, cell viability (> 82.75%) and mitochondrial activity (> 82.2%) remained almost intact in the combined treatment (6-BAP + H2O2) compared to control (< 52.17% cell viability; < 85.3% mitochondrial activity). On the other hand, mRNA levels of hmgR, idi, crtYB, crtR, and crtS, genes of the astaxanthin biosynthetic pathway, increased transiently along X. dendrorhous fermentation due to stimulations assayed in this study. KEY POINTS: • Combined 6-BAP and H2O2 is the best treatment to increase astaxanthin yields in X. dendrorhous. • 6-BAP preserves cell integrity under oxidative H2O2 stress conditions. • 6-BAP and H2O2 increase transcriptional responses of hmgR, idi, and crt family genes transiently.
Collapse
Affiliation(s)
- Alejandro Torres-Haro
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Jorge Verdín
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Manuel R Kirchmayr
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Melchor Arellano-Plaza
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico.
| |
Collapse
|
11
|
Sharma N, Shekhar P, Kumar V, Kaur H, Jayasena V. Microbial pigments: Sources, current status, future challenges in cosmetics and therapeutic applications. J Basic Microbiol 2024; 64:4-21. [PMID: 37861279 DOI: 10.1002/jobm.202300214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023]
Abstract
Color serves as the initial attraction and offers a pleasing aspect. While synthetic colorants have been popular for many years, their adverse environmental and health effects cannot be overlooked. This necessitates the search for natural colorants, especially microbial colorants, which have proven and more effective. Pigment-producing microorganisms offer substantial benefits. Natural colors improve product marketability and bestow additional benefits, including antioxidant, antiaging, anticancer, antiviral, antimicrobial, and antitumor properties. This review covers the various types of microbial pigments, the methods to enhance their production, and their cosmetic and therapeutic applications. We also address the challenges faced during the commercial production of microbial pigments and propose potential solutions.
Collapse
Affiliation(s)
- Nitin Sharma
- Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | | | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Harpreet Kaur
- Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | - Vijay Jayasena
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
12
|
Duke SO, Pan Z, Bajsa-Hirschel J, Tamang P, Hammerschmidt R, Lorsbach BA, Sparks TC. Molecular Targets of Herbicides and Fungicides─Are There Useful Overlaps for Fungicide Discovery? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20532-20548. [PMID: 38100716 PMCID: PMC10755756 DOI: 10.1021/acs.jafc.3c07166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
New fungicide modes of action are needed for fungicide resistance management strategies. Several commercial herbicide targets found in fungi that are not utilized by commercial fungicides are discussed as possible fungicide molecular targets. These are acetyl CoA carboxylase, acetolactate synthase, 5-enolpyruvylshikimate-3-phosphate synthase, glutamine synthase, phytoene desaturase, protoporphyrinogen oxidase, long-chain fatty acid synthase, dihydropteroate synthase, hydroxyphenyl pyruvate dioxygenase, and Ser/Thr protein phosphatase. Some of the inhibitors of these herbicide targets appear to be either good fungicides or good leads for new fungicides. For example, some acetolactate synthase and dihydropteroate inhibitors are excellent fungicides. There is evidence that some herbicides have indirect benefits to certain crops due to their effects on fungal crop pathogens. Using a pesticide with both herbicide and fungicide activities based on the same molecular target could reduce the total amount of pesticide used. The limitations of such a product are discussed.
Collapse
Affiliation(s)
- Stephen O. Duke
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University 38667, United States
| | - Zhiqiang Pan
- Natural
Products Utilization Research Unit, United
States Department of Agriculture, University 38667, United States
| | - Joanna Bajsa-Hirschel
- Natural
Products Utilization Research Unit, United
States Department of Agriculture, University 38667, United States
| | - Prabin Tamang
- Natural
Products Utilization Research Unit, United
States Department of Agriculture, University 38667, United States
| | - Raymond Hammerschmidt
- Department
of Plant, Soil and Microbial Sciences, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Beth A. Lorsbach
- Nufarm, 4020 Aerial Center Parkway, Morrisville, North Carolina 27560, United States
| | | |
Collapse
|
13
|
Sokołowska B, Orłowska M, Okrasińska A, Piłsyk S, Pawłowska J, Muszewska A. What can be lost? Genomic perspective on the lipid metabolism of Mucoromycota. IMA Fungus 2023; 14:22. [PMID: 37932857 PMCID: PMC10629195 DOI: 10.1186/s43008-023-00127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
Mucoromycota is a phylum of early diverging fungal (EDF) lineages, of mostly plant-associated terrestrial fungi. Some strains have been selected as promising biotechnological organisms due to their ability to produce polyunsaturated fatty acids and efficient conversion of nutrients into lipids. Others get their lipids from the host plant and are unable to produce even the essential ones on their own. Following the advancement in EDF genome sequencing, we carried out a systematic survey of lipid metabolism protein families across different EDF lineages. This enabled us to explore the genomic basis of the previously documented ability to produce several types of lipids within the fungal tree of life. The core lipid metabolism genes showed no significant diversity in distribution, however specialized lipid metabolic pathways differed in this regard among different fungal lineages. In total 165 out of 202 genes involved in lipid metabolism were present in all tested fungal lineages, while remaining 37 genes were found to be absent in some of fungal lineages. Duplications were observed for 69 genes. For the first time we demonstrate that ergosterol is not being produced by several independent groups of plant-associated fungi due to the losses of different ERG genes. Instead, they possess an ancestral pathway leading to the synthesis of cholesterol, which is absent in other fungal lineages. The lack of diacylglycerol kinase in both Mortierellomycotina and Blastocladiomycota opens the question on sterol equilibrium regulation in these organisms. Early diverging fungi retained most of beta oxidation components common with animals including Nudt7, Nudt12 and Nudt19 pointing at peroxisome divergence in Dikarya. Finally, Glomeromycotina and Mortierellomycotina representatives have a similar set of desaturases and elongases related to the synthesis of complex, polyunsaturated fatty acids pointing at an ancient expansion of fatty acid metabolism currently being explored by biotechnological studies.
Collapse
Affiliation(s)
- Blanka Sokołowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Małgorzata Orłowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Alicja Okrasińska
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Julia Pawłowska
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
14
|
Xu Z, Lin T, Wang T, Hu Y, Shen G, Feng K, Zhang P, He L. Uridine Diphosphate Glycosyltransferases (UGTs) Involved in the Carotenoid-Based Body Color Difference between Tetranychus cinnabarinus (Red) and Tetranychus urticae (Green). INSECTS 2023; 14:823. [PMID: 37887835 PMCID: PMC10607543 DOI: 10.3390/insects14100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
It has long been disputed whether Tetranychus cinnabarinus and Tetranychus urticae belong to the same genus, with T. cinnabarinus regarded as a red form of T. urticae. However, it is unclear why T. urticae and T. cinnabarinus have different body colors. Since carotenoids are responsible for the color of many organisms, the carotenoid profiles of T. cinnabarinus and T. urticae were compared by HPLC. There was no difference in carotenoid type, but T. cinnabarinus contained significantly more neoxanthin, astaxanthin, α-carotene, β-carotene, and γ-carotene, which may contribute to the deep red color. The transcriptome sequencing of both species identified 4079 differentially expressed genes (DEGs), of which 12 were related to carotenoid metabolism. RNA interference (RNAi) experiments demonstrated that silencing seven of these DEGs resulted in the different accumulation of carotenoid compounds in T. cinnabarinus and T. urticae. In addition, the body of T. urticae turned yellow after two days of feeding with UGT double-stranded RNAs and β-UGT small interfering RNAs. In conclusion, differences in the carotenoid profiles of T. urticae and T. cinnabarinus may be responsible for the different body colors.
Collapse
Affiliation(s)
- Zhifeng Xu
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Ting Lin
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Tongyang Wang
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Yuan Hu
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Guangmao Shen
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Kaiyang Feng
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Ping Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Lin He
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Restrepo-Leal JD, Belair M, Fischer J, Richet N, Fontaine F, Rémond C, Fernandez O, Besaury L. Differential carbohydrate-active enzymes and secondary metabolite production by the grapevine trunk pathogen Neofusicoccum parvum Bt-67 grown on host and non-host biomass. Mycologia 2023; 115:579-601. [PMID: 37358885 DOI: 10.1080/00275514.2023.2216122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/17/2023] [Indexed: 06/27/2023]
Abstract
Neofusicoccum parvum is one of the most aggressive Botryosphaeriaceae species associated with grapevine trunk diseases. This species may secrete enzymes capable of overcoming the plant barriers, leading to wood colonization. In addition to their roles in pathogenicity, there is an interest in taking advantage of N. parvum carbohydrate-active enzymes (CAZymes), related to plant cell wall degradation, for lignocellulose biorefining. Furthermore, N. parvum produces toxic secondary metabolites that may contribute to its virulence. In order to increase knowledge on the mechanisms underlying pathogenicity and virulence, as well as the exploration of its metabolism and CAZymes for lignocellulose biorefining, we evaluated the N. parvum strain Bt-67 capacity in producing lignocellulolytic enzymes and secondary metabolites when grown in vitro with two lignocellulosic biomasses: grapevine canes (GP) and wheat straw (WS). For this purpose, a multiphasic study combining enzymology, transcriptomic, and metabolomic analyses was performed. Enzyme assays showed higher xylanase, xylosidase, arabinofuranosidase, and glucosidase activities when the fungus was grown with WS. Fourier transform infrared (FTIR) spectroscopy confirmed the lignocellulosic biomass degradation caused by the secreted enzymes. Transcriptomics indicated that the N. parvum Bt-67 gene expression profiles in the presence of both biomasses were similar. In total, 134 genes coding CAZymes were up-regulated, where 94 of them were expressed in both biomass growth conditions. Lytic polysaccharide monooxygenases (LPMOs), glucosidases, and endoglucanases were the most represented CAZymes and correlated with the enzymatic activities obtained. The secondary metabolite production, analyzed by high-performance liquid chromatography-ultraviolet/visible spectophotometry-mass spectrometry (HPLC-UV/Vis-MS), was variable depending on the carbon source. The diversity of differentially produced metabolites was higher when N. parvum Bt-67 was grown with GP. Overall, these results provide insight into the influence of lignocellulosic biomass on virulence factor expressions. Moreover, this study opens the possibility of optimizing the enzyme production from N. parvum with potential use for lignocellulose biorefining.
Collapse
Affiliation(s)
- Julián D Restrepo-Leal
- AFERE Chair, Fractionnement des Agroressources et Environnement (FARE) UMR A 614, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
- MALDIVE Chair, Résistance Induite et Bioprotection des Plantes (RIBP) USC 1488, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Marie Belair
- AFERE Chair, Fractionnement des Agroressources et Environnement (FARE) UMR A 614, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Jochen Fischer
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Nicolas Richet
- Plateau Technique Mobile de Cytométrie Environnementale (MOBICYTE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne/Institut National de l'Environnement Industriel et des Risques (INERIS), 51100 Reims, France
| | - Florence Fontaine
- MALDIVE Chair, Résistance Induite et Bioprotection des Plantes (RIBP) USC 1488, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Caroline Rémond
- AFERE Chair, Fractionnement des Agroressources et Environnement (FARE) UMR A 614, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Olivier Fernandez
- MALDIVE Chair, Résistance Induite et Bioprotection des Plantes (RIBP) USC 1488, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Ludovic Besaury
- AFERE Chair, Fractionnement des Agroressources et Environnement (FARE) UMR A 614, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
| |
Collapse
|
16
|
McRae AG, Taneja J, Yee K, Shi X, Haridas S, LaButti K, Singan V, Grigoriev IV, Wildermuth MC. Spray-induced gene silencing to identify powdery mildew gene targets and processes for powdery mildew control. MOLECULAR PLANT PATHOLOGY 2023; 24:1168-1183. [PMID: 37340595 PMCID: PMC10423327 DOI: 10.1111/mpp.13361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/22/2023]
Abstract
Spray-induced gene silencing (SIGS) is an emerging tool for crop pest protection. It utilizes exogenously applied double-stranded RNA to specifically reduce pest target gene expression using endogenous RNA interference machinery. In this study, SIGS methods were developed and optimized for powdery mildew fungi, which are widespread obligate biotrophic fungi that infect agricultural crops, using the known azole-fungicide target cytochrome P450 51 (CYP51) in the Golovinomyces orontii-Arabidopsis thaliana pathosystem. Additional screening resulted in the identification of conserved gene targets and processes important to powdery mildew proliferation: apoptosis-antagonizing transcription factor in essential cellular metabolism and stress response; lipid catabolism genes lipase a, lipase 1, and acetyl-CoA oxidase in energy production; and genes involved in manipulation of the plant host via abscisic acid metabolism (9-cis-epoxycarotenoid dioxygenase, xanthoxin dehydrogenase, and a putative abscisic acid G-protein coupled receptor) and secretion of the effector protein, effector candidate 2. Powdery mildew is the dominant disease impacting grapes and extensive powdery mildew resistance to applied fungicides has been reported. We therefore developed SIGS for the Erysiphe necator-Vitis vinifera system and tested six successful targets identified using the G. orontii-A. thaliana system. For all targets tested, a similar reduction in powdery mildew disease was observed between systems. This indicates screening of broadly conserved targets in the G. orontii-A. thaliana pathosystem identifies targets and processes for the successful control of other powdery mildew fungi. The efficacy of SIGS on powdery mildew fungi makes SIGS an exciting prospect for commercial powdery mildew control.
Collapse
Affiliation(s)
- Amanda G. McRae
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Jyoti Taneja
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Kathleen Yee
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Xinyi Shi
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Sajeet Haridas
- US Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Kurt LaButti
- US Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Vasanth Singan
- US Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Igor V. Grigoriev
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- US Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Mary C. Wildermuth
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
17
|
Zhu H, Ren X, Huang Y, Su T, Yang L. Chemical Constituents of Euphorbia stracheyi Boiss (Euphorbiaceae). Metabolites 2023; 13:852. [PMID: 37512559 PMCID: PMC10384431 DOI: 10.3390/metabo13070852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Euphorbia stracheyi Boiss was used for hemostasis, analgesia, and muscular regeneration in traditional Chinese medicine. To study the chemical constituents of E. stracheyi, the ethyl acetate part of the methanol extract of the whole plant was separated by silica gel, sephadex LH-20 column chromatography, and semi-preparative HPLC. The isolation led to the characterization of a new lathyrane type diterpenoid, euphostrachenol A (1), as well as eleven known compounds (2-11), including a lathyrane, three ingenane-type and two abietane-type diterpenoids, two ionones, and two flavonoids. The structures of these compounds were established using 1D- and 2D-NMR experiments, mass spectrometry, and X-ray crystallographic experiments. The MTT method was used to determine the cytotoxic activity of five cancer cell lines (Leukemia HL-60, lung cancer A-549, liver cancer SMMC-7721, breast cancer MCF-7, and colon cancer SW480) on the isolated compounds. However, only compound 4 showed moderate cytotoxicity against these cell lines, with IC50 values ranging from 10.28 to 29.70 μM, while the others were inactive. Our chemical investigation also confirmed the absence of jatrophane-type diterpenoids in the species, which may be related to its special habitat.
Collapse
Affiliation(s)
- Hui Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Enviroment, Nanjing Forestry University, Nanjing 210037, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xiangxiang Ren
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Enviroment, Nanjing Forestry University, Nanjing 210037, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yanbo Huang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Enviroment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| |
Collapse
|
18
|
Luo N, Li Z, Ling J, Zhao J, Li Y, Yang Y, Mao Z, Xie B, Li H, Jiao Y. Establishment of a CRISPR/Cas9-Mediated Efficient Knockout System of Trichoderma hamatum T21 and Pigment Synthesis PKS Gene Knockout. J Fungi (Basel) 2023; 9:jof9050595. [PMID: 37233306 DOI: 10.3390/jof9050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Trichoderma hamatum is a filamentous fungus that serves as a biological control agent for multiple phytopathogens and as an important resource promising for fungicides. However, the lack of adequate knockout technologies has hindered gene function and biocontrol mechanism research of this species. This study obtained a genome assembly of T. hamatum T21, with a 41.4 Mb genome sequence comprising 8170 genes. Based on genomic information, we established a CRISPR/Cas9 system with dual sgRNAs targets and dual screening markers. CRISPR/Cas9 plasmid and donor DNA recombinant plasmid were constructed for disruption of the Thpyr4 and Thpks1 genes. The result indicates the consistency between phenotypic characterization and molecular identification of the knockout strains. The knockout efficiencies of Thpyr4 and Thpks1 were 100% and 89.1%, respectively. Moreover, sequencing revealed fragment deletions between dual sgRNA target sites or GFP gene insertions presented in knockout strains. The situations were caused by different DNA repair mechanisms, nonhomologous end joining (NHEJ), and homologous recombination (HR). Overall, we have successfully constructed an efficient and convenient CRISPR/Cas9 system in T. hamatum for the first time, which has important scientific significance and application value for studies on functional genomics of Trichoderma and other filamentous fungi.
Collapse
Affiliation(s)
- Ning Luo
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zeyu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Ling
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuhong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenchuan Mao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bingyan Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huixia Li
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Jiao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
19
|
Lin L, Zhang T, Xu J. Genetic and Environmental Factors Influencing the Production of Select Fungal Colorants: Challenges and Opportunities in Industrial Applications. J Fungi (Basel) 2023; 9:585. [PMID: 37233296 PMCID: PMC10219082 DOI: 10.3390/jof9050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Natural colorants, mostly of plant and fungal origins, offer advantages over chemically synthetic colorants in terms of alleviating environmental pollution and promoting human health. The market value of natural colorants has been increasing significantly across the globe. Due to the ease of artificially culturing most fungi in the laboratory and in industrial settings, fungi have emerged as the organisms of choice for producing many natural colorants. Indeed, there is a wide variety of colorful fungi and a diversity in the structure and bioactivity of fungal colorants. Such broad diversities have spurred significant research efforts in fungi to search for natural alternatives to synthetic colorants. Here, we review recent research on the genetic and environmental factors influencing the production of three major types of natural fungal colorants: carotenoids, melanins, and polyketide-derived colorants. We highlight how molecular genetic studies and environmental condition manipulations are helping to overcome some of the challenges associated with value-added and large-scale productions of these colorants. We finish by discussing potential future trends, including synthetic biology approaches, in the commercial production of fungal colorants.
Collapse
Affiliation(s)
- Lan Lin
- Key Laboratory of Developmental Genes and Human Diseases (MOE), School of Life Science and Technology, Southeast University, Nanjing 210096, China;
| | - Tong Zhang
- Department of Bioengineering, Medical School, Southeast University, Nanjing 210009, China;
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
20
|
Naz T, Ullah S, Nazir Y, Li S, Iqbal B, Liu Q, Mohamed H, Song Y. Industrially Important Fungal Carotenoids: Advancements in Biotechnological Production and Extraction. J Fungi (Basel) 2023; 9:jof9050578. [PMID: 37233289 DOI: 10.3390/jof9050578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Carotenoids are lipid-soluble compounds that are present in nature, including plants and microorganisms such as fungi, certain bacteria, and algae. In fungi, they are widely present in almost all taxonomic classifications. Fungal carotenoids have gained special attention due to their biochemistry and the genetics of their synthetic pathway. The antioxidant potential of carotenoids may help fungi survive longer in their natural environment. Carotenoids may be produced in greater quantities using biotechnological methods than by chemical synthesis or plant extraction. The initial focus of this review is on industrially important carotenoids in the most advanced fungal and yeast strains, with a brief description of their taxonomic classification. Biotechnology has long been regarded as the most suitable alternative way of producing natural pigment from microbes due to their immense capacity to accumulate these pigments. So, this review mainly presents the recent progress in the genetic modification of native and non-native producers to modify the carotenoid biosynthetic pathway for enhanced carotenoid production, as well as factors affecting carotenoid biosynthesis in fungal strains and yeast, and proposes various extraction methods to obtain high yields of carotenoids in an attempt to find suitable greener extraction methods. Finally, a brief description of the challenges regarding the commercialization of these fungal carotenoids and the solution is also given.
Collapse
Affiliation(s)
- Tahira Naz
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Samee Ullah
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Faculty of Allied Health Sciences, University Institute of Food Science and Technology, The University of Lahore, Lahore 54000, Pakistan
| | - Yusuf Nazir
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Bushra Iqbal
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
21
|
González-Hernández RA, Valdez-Cruz NA, Macías-Rubalcava ML, Trujillo-Roldán MA. Overview of fungal terpene synthases and their regulation. World J Microbiol Biotechnol 2023; 39:194. [PMID: 37169980 PMCID: PMC10175467 DOI: 10.1007/s11274-023-03635-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Terpenes and terpenoids are a group of isoprene-derived molecules that constitute the largest group of natural products and secondary metabolites produced by living things, with more than 25,000 compounds reported. These compounds are synthesized by enzymes called terpene synthases, which include several families of cyclases and enzymes. These are responsible for adding functional groups to cyclized structures. Fungal terpenoids are of great interest for their pharmacological properties; therefore, understanding the mechanisms that regulate their synthesis (regulation of the mevalonate pathway, regulation of gene expression, and availability of cofactors) is essential to direct their production. For this reason, this review addresses the detailed study of the biosynthesis of fungal terpenoids and their regulation by various physiological and environmental factors.
Collapse
Affiliation(s)
- Ricardo A González-Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, C.P. 04510, Ciudad de México, México.
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Norma A Valdez-Cruz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, C.P. 04510, Ciudad de México, México
| | - Martha L Macías-Rubalcava
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Delegación Coyoacán, 04510, Ciudad de México, México
| | - Mauricio A Trujillo-Roldán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, C.P. 04510, Ciudad de México, México.
| |
Collapse
|
22
|
Zhao D, Li C. Effects of TiO2 and H2O2 treatments on the biosynthesis of carotenoids and lipids in oleaginous red yeast Rhodotorula glutinis ZHK. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
23
|
Lautier T, Smith DJ, Yang LK, Chen X, Zhang C, Truan G, Lindley ND. β-Cryptoxanthin Production in Escherichia coli by Optimization of the Cytochrome P450 CYP97H1 Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4683-4695. [PMID: 36888893 DOI: 10.1021/acs.jafc.2c08970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cytochromes P450, forming a superfamily of monooxygenases containing heme as a cofactor, show great versatility in substrate specificity. Metabolic engineering can take advantage of this feature to unlock novel metabolic pathways. However, the cytochromes P450 often show difficulty being expressed in a heterologous chassis. As a case study in the prokaryotic host Escherichia coli, the heterologous synthesis of β-cryptoxanthin was addressed. This carotenoid intermediate is difficult to produce, as its synthesis requires a monoterminal hydroxylation of β-carotene whereas most of the classic carotene hydroxylases are dihydroxylases. This study was focused on the optimization of the in vivo activity of CYP97H1, an original P450 β-carotene monohydroxylase. Engineering the N-terminal part of CYP97H1, identifying the matching redox partners, defining the optimal cellular background and adjusting the culture and induction conditions improved the production by 400 times compared to that of the initial strain, representing 2.7 mg/L β-cryptoxanthin and 20% of the total carotenoids produced.
Collapse
Affiliation(s)
- Thomas Lautier
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
- CNRS@CREATE, 1 Create Way, #08-01 Create Tower, 138602 Singapore
| | - Derek J Smith
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
| | - Lay Kien Yang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Nic D Lindley
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| |
Collapse
|
24
|
Lautier T, Smith DJ, Yang LK, Chen X, Zhang C, Truan G, Lindley ND. Cytochrome P450 Surface Domains Prevent the β-Carotene Monohydroxylase CYP97H1 of Euglena gracilis from Acting as a Dihydroxylase. Biomolecules 2023; 13:biom13020366. [PMID: 36830734 PMCID: PMC9953315 DOI: 10.3390/biom13020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Molecular biodiversity results from branched metabolic pathways driven by enzymatic regioselectivities. An additional complexity occurs in metabolites with an internal structural symmetry, offering identical extremities to the enzymes. For example, in the terpene family, β-carotene presents two identical terminal closed-ring structures. Theses cycles can be hydroxylated by cytochrome P450s from the CYP97 family. Two sequential hydroxylations lead first to the formation of monohydroxylated β-cryptoxanthin and subsequently to that of dihydroxylated zeaxanthin. Among the CYP97 dihydroxylases, CYP97H1 from Euglena gracilis has been described as the only monohydroxylase. This study aims to determine which enzymatic domains are involved in this regioselectivity, conferring unique monohydroxylase activity on a substrate offering two identical sites for hydroxylation. We explored the effect of truncations, substitutions and domain swapping with other CYP97 members and found that CYP97H1 harbours a unique N-terminal globular domain. This CYP97H1 N-terminal domain harbours a hydrophobic patch at the entrance of the substrate channel, which is involved in the monohydroxylase activity of CYP97H1. This domain, at the surface of the enzyme, highlights the role of distal and non-catalytic domains in regulating enzyme specificity.
Collapse
Affiliation(s)
- Thomas Lautier
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
- Toulouse Biotechnolgy Institute, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
- CNRS@CREATE, 1 Create Way, #08-01 Create Tower, Singapore 138602, Singapore
- Correspondence: ; Tel.: +33-(0)-567048813
| | - Derek J. Smith
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Lay Kien Yang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Gilles Truan
- Toulouse Biotechnolgy Institute, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Nic D Lindley
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
- Toulouse Biotechnolgy Institute, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| |
Collapse
|
25
|
Joshi K, Kumar P, Kataria R. Microbial carotenoid production and their potential applications as antioxidants: A current update. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
26
|
Zheng W, Yu S, Zhang W, Zhang S, Fu J, Ying H, Pingcuo G, Liu S, Zhao F, Wu Q, Xu Q, Ma Z, Zeng X. The content and diversity of carotenoids associated with high-altitude adaptation in Tibetan peach fruit. Food Chem 2023; 398:133909. [DOI: 10.1016/j.foodchem.2022.133909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022]
|
27
|
Lin L, Xu J. Production of Fungal Pigments: Molecular Processes and Their Applications. J Fungi (Basel) 2022; 9:44. [PMID: 36675865 PMCID: PMC9866555 DOI: 10.3390/jof9010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
Due to the negative environmental and health effects of synthetic colorants, pigments of natural origins of plants and microbes constitute an abundant source for the food, cosmetic, textile, and pharmaceutical industries. The demands for natural alternatives, which involve natural colorants and natural biological processes for their production, have been growing rapidly in recent decades. Fungi contain some of the most prolific pigment producers, and they excel in bioavailability, yield, cost-effectiveness, and ease of large-scale cell culture as well as downstream processing. In contrast, pigments from plants are often limited by seasonal and geographic factors. Here, we delineate the taxonomy of pigmented fungi and fungal pigments, with a focus on the biosynthesis of four major categories of pigments: carotenoids, melanins, polyketides, and azaphilones. The molecular mechanisms and metabolic bases governing fungal pigment biosynthesis are discussed. Furthermore, we summarize the environmental factors that are known to impact the synthesis of different fungal pigments. Most of the environmental factors that enhance fungal pigment production are related to stresses. Finally, we highlight the challenges facing fungal pigment utilization and future trends of fungal pigment development. This integrated review will facilitate further exploitations of pigmented fungi and fungal pigments for broad applications.
Collapse
Affiliation(s)
- Lan Lin
- Medical School, School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Diseases (MOE), Southeast University, Nanjing 210009, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
28
|
Guo R, Liu T, Guo C, Chen G, Fan J, Zhang Q. Carotenoid biosynthesis is associated with low-temperature adaptation in Rhodosporidium kratochvilovae. BMC Microbiol 2022; 22:319. [PMID: 36564716 PMCID: PMC9789556 DOI: 10.1186/s12866-022-02728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Low temperatures greatly limit the growth of microorganisms. Low-temperature adaptation in microorganisms involves multiple mechanisms. Carotenoids are naturally occurring lipid-soluble pigments that act as antioxidants and protect cells and tissues from the harmful effects of free radicals and singlet oxygen. However, studies on the regulation of carotenoid biosynthesis at low temperatures in microorganisms are limited. In this study, we investigated the correlation between carotenoids and low-temperature adaptation in the cold-adapted strain of Rhodosporidium kratochvilovae YM25235. RESULTS Carotenoid biosynthesis in YM25235 was inhibited by knocking out the bifunctional lycopene cyclase/phytoene synthase gene (RKCrtYB) using the established CRISPR/Cas9 gene-editing system based on endogenous U6 promoters. The carotenoids were extracted with acetone, and the content and composition of the carotenoids were analyzed by spectrophotometry and HPLC. Then, the levels of reactive oxygen species (ROS) and the growth rate in YM25235 were determined at a low temperature. The results indicated that the carotenoid biosynthesis and ROS levels were increased in the YM25235 strain at a low temperature and inhibition of carotenoid biosynthesis was associated with higher ROS levels and a significant decrease in the growth rate of YM25235 at a low temperature. CONCLUSIONS The regulation of carotenoid biosynthesis was associated with low-temperature adaptation in YM25235. Our findings provided a strong foundation for conducting further studies on the mechanism by which YM25235 can adapt to low-temperature stress.
Collapse
Affiliation(s)
- Rui Guo
- grid.218292.20000 0000 8571 108XFaculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| | - Tao Liu
- grid.218292.20000 0000 8571 108XFaculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| | - Caina Guo
- grid.218292.20000 0000 8571 108XFaculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| | - Gongshui Chen
- grid.218292.20000 0000 8571 108XFaculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| | - Jingdie Fan
- grid.218292.20000 0000 8571 108XFaculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| | - Qi Zhang
- grid.218292.20000 0000 8571 108XFaculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| |
Collapse
|
29
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
30
|
Mycelial differentiation linked avermectin production in Streptomyces avermitilis studied with Raman imaging. Appl Microbiol Biotechnol 2022; 107:369-378. [DOI: 10.1007/s00253-022-12314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
|
31
|
Suh DY, Ashton NW. A sporopollenin definition for the genomics age. THE NEW PHYTOLOGIST 2022; 236:2009-2013. [PMID: 36098674 DOI: 10.1111/nph.18484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Dae-Yeon Suh
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Neil W Ashton
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| |
Collapse
|
32
|
Turchetti B, Buzzini P, Baeza M. A genomic approach to analyze the cold adaptation of yeasts isolated from Italian Alps. Front Microbiol 2022; 13:1026102. [DOI: 10.3389/fmicb.2022.1026102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
Microorganisms including yeasts are responsible for mineralization of organic matter in cold regions, and their characterization is critical to elucidate the ecology of such environments on Earth. Strategies developed by yeasts to survive in cold environments have been increasingly studied in the last years and applied to different biotechnological applications, but their knowledge is still limited. Microbial adaptations to cold include the synthesis of cryoprotective compounds, as well as the presence of a high number of genes encoding the synthesis of proteins/enzymes characterized by a reduced proline content and highly flexible and large catalytic active sites. This study is a comparative genomic study on the adaptations of yeasts isolated from the Italian Alps, considering their growth kinetics. The optimal temperature for growth (OTG), growth rate (Gr), and draft genome sizes considerably varied (OTG, 10°C–20°C; Gr, 0.071–0.0726; genomes, 20.7–21.5 Mpb; %GC, 50.9–61.5). A direct relationship was observed between calculated protein flexibilities and OTG, but not for Gr. Putative genes encoding for cold stress response were found, as well as high numbers of genes encoding for general, oxidative, and osmotic stresses. The cold response genes found in the studied yeasts play roles in cell membrane adaptation, compatible solute accumulation, RNA structure changes, and protein folding, i.e., dihydrolipoamide dehydrogenase, glycogen synthase, omega-6 fatty acid, stearoyl-CoA desaturase, ATP-dependent RNA helicase, and elongation of very-long-chain fatty acids. A redundancy for several putative genes was found, higher for P-loop containing nucleoside triphosphate hydrolase, alpha/beta hydrolase, armadillo repeat-containing proteins, and the major facilitator superfamily protein. Hundreds of thousands of small open reading frames (SmORFs) were found in all studied yeasts, especially in Phenoliferia glacialis. Gene clusters encoding for the synthesis of secondary metabolites such as terpene, non-ribosomal peptide, and type III polyketide were predicted in four, three, and two studied yeasts, respectively.
Collapse
|
33
|
Ruger-Herreros M, Nordzieke S, Vega-Álvarez C, Avalos J, Limón MC. Relation between CarS expression and activation of carotenogenesis by stress in Fusarium fujikuroi. Front Bioeng Biotechnol 2022; 10:1000129. [PMID: 36277400 PMCID: PMC9581392 DOI: 10.3389/fbioe.2022.1000129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022] Open
Abstract
Fusarium fujikuroi, a model organism for secondary metabolism in fungi, produces carotenoids, terpenoid pigments with antioxidant activity. Previous results indicate that carotenoid synthesis in F. fujikuroi is stimulated by light or by different stress conditions and downregulated by a RING finger protein encoded by carS gene. Here, we have analyzed the effects of three stressors, nitrogen scarcity, heat shock, and oxidative stress. We compared them with the effect of light in the wild type, a carS mutant that overproduces carotenoids, and its complemented strain. The assayed stressors increase the synthesis of carotenoids in the three strains, but mRNA levels of structural genes of carotenogenesis, carRA and carB, are only enhanced in the presence of a functional carS gene. In the wild-type strain, the four conditions affect in different manners the mRNA levels of carS: greater in the presence of light, without significant changes in nitrogen starvation, and with patent decreases after heat shock or oxidative stress, suggesting different activation mechanisms. The spores of the carS mutant are more resistant to H2O2 than those of the wild type; however, the mutant shows a greater H2O2 sensitivity at the growth level, which may be due to the participation of CarS in the regulation of genes with catalase domains, formerly described. A possible mechanism of regulation by heat stress has been found in the alternative splicing of the intron of the carS gene, located close to its 3' end, giving rise to the formation of a shorter protein. This action could explain the inducing effect of the heat shock, but not of the other inducing conditions, which may involve other mechanisms of action on the CarS regulator, either transcriptionally or post-transcriptionally.
Collapse
Affiliation(s)
| | | | | | | | - M. Carmen Limón
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| |
Collapse
|
34
|
Growth ability, carbon source utilization and biochemical features of the new specie Zalaria obscura. World J Microbiol Biotechnol 2022; 38:229. [PMID: 36149541 PMCID: PMC9508035 DOI: 10.1007/s11274-022-03417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
Abstract
This research investigated the characteristics of Zalaria obscura LS31012019 in terms of growth ability in different media (SDB, YPD and TSB) and temperatures (22, 25 and 37 °C), utilization of several carbon sources (Glucose, Fructose, Lactose, Sucrose, Xylose, Glycerol and Mannitol at 5, 2 and 1%) and several biochemical features (total protein content, Glutathione, pigments), in comparison with those of the phylogenetically related Aureobasidium pullulans ATCC 15233. The best growth of Z. obscura LS31012019 was obtained in YPD at 25 °C with the highest OD value (0.45) after 144 h of incubation, similar to that of A. pullulans ATCC 15233 (0.48). Glucose resulted the preferred carbon source for both the considered yeasts but also sucrose resulted in efficacy supporting the growth of Z. obscura LS31012019 and A. pullulans ATCC 15233, for their ability in converting sucrose to glucose and fructose and the latter into glucose. Interestingly, Z. obscura LS31012019 utilized also glycerol and mannitol. The biochemical analysis showed the similarity of protein profile in Z. obscura LS31012019 and A. pullulans ATCC 15233 (from 90 to 20 kDa) and a reduced GSH content (0.321 and 0.233 µmol/mg). The pigments extraction with hexane generated a yellow oleaginous pellet in both the strains, while a yellow solid matrix more intensely coloured in A. pullulans ATTC 15233 was visible with the following solvent extractions. Overall, our data showed that Z. obscura LS31012019 can grow in different media and temperatures and utilize carbon sources apart from glucose and sucrose, shifting to a non-fermentative metabolism. These results improve the information regarding the characteristics of Z. obscura, opening a new field of investigation for the possible application of new species of black yeasts in human application.
Collapse
|
35
|
Guo Z, Liu Y, Luo Y. Mechanisms of carotenoid intestinal absorption and the regulation of dietary lipids: lipid transporter-mediated transintestinal epithelial pathways. Crit Rev Food Sci Nutr 2022; 64:1791-1816. [PMID: 36069234 DOI: 10.1080/10408398.2022.2119204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dietary lipids are key ingredients during cooking, processing, and seasoning of carotenoid-rich fruits and vegetables, playing vitals in affecting the absorption and utilization of carotenoids for achieving their health benefits. Besides, dietary lipids have also been extensively studied to construct various delivery systems for carotenoids, such as micro/nanoparticles, micro/nanoemulsions, and liposomes. Currently, the efficacies of these techniques on improving carotenoid bioavailability are often evaluated using the micellization rate or "bioaccessibility" based on in vitro models. However, recent studies have found that dietary lipids may also affect the carotenoid uptake via intestinal epithelial cells and the efflux of intracellular chyle particles via lipid transporters. An increasing number of studies reveal the varied impact of different dietary lipids on the absorption of different carotenoids and some lipids may even have an inhibitory effect. Consequently, it is necessary to clarify the relationship between the addition of dietary lipids and the intestinal absorption of carotenoid to fully understand the role of lipids during this process. This paper first introduces the intestinal absorption mechanism of carotenoids, including the effect of bile salts and lipases on mixed micelles, the types and regulation of lipid transporters, intracellular metabolizing enzymes, and the efflux process of chyle particles. Then, the regulatory mechanism of dietary lipids during intestinal carotenoid absorption is further discussed. Finally, the importance of selecting the dietary lipids for the absorption and utilization of different carotenoids and the design of an efficient delivery carrier are emphasized. This review provides suggestions for precise dietary carotenoid supplementation and offere an important reference for constructing efficient transport carriers for liposoluble nutrients.
Collapse
Affiliation(s)
- Zixin Guo
- College of Marine Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Marine Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
36
|
Gil-Sánchez MDM, Cea-Sánchez S, Luque EM, Cánovas D, Corrochano LM. Light regulates the degradation of the regulatory protein VE-1 in the fungus Neurospora crassa. BMC Biol 2022; 20:149. [PMID: 35761233 PMCID: PMC9238092 DOI: 10.1186/s12915-022-01351-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/15/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Fungi use light as an environmental signal to regulate developmental transitions that are key aspects of their biological cycles and that are also relevant for their dispersal and infectivity as plant or animal pathogens. In addition, light regulates the accumulation of photoprotective pigments, like carotenoids, and other secondary metabolites. Most fungal light responses occur after changes in gene transcription and we describe here a novel effect of light in the regulation of degradation of VE-1, a key component of the velvet complex, in the model fungus Neurospora crassa. The velvet complex is a fungal-specific protein complex that coordinates fungal development, secondary metabolism, and light regulation by interacting with other regulators and photoreceptors and modifying gene expression. RESULTS We have characterized the role of VE-1 during conidiation in N. crassa. In vegetative mycelia, VE-1 is localized in the cytoplasm and nuclei and is required for light-dependent transcription but does not interact with the photoreceptor and transcription factor WC-1. VE-1 is more stable in light than in darkness during asexual development (conidiation). We have shown that this light effect requires the blue-light photoreceptor WC-1. We have characterized the role of the proteasome, the COP9 signalosome (CSN), and the adaptor component of cullin-RING ubiquitin ligases, FWD-1, in the degradation of VE-1. CONCLUSIONS We propose that this new effect of light allows the fungal cell to adapt quickly to changes in light exposure by promoting the accumulation of VE-1 for the regulation of genes that participate in the biosynthesis of photoprotective pigments.
Collapse
Affiliation(s)
| | - Sara Cea-Sánchez
- Departamento de Genética, Universidad de Sevilla, Reina Mercedes s/n, 41012, Seville, Spain
| | - Eva M Luque
- Departamento de Genética, Universidad de Sevilla, Reina Mercedes s/n, 41012, Seville, Spain
| | - David Cánovas
- Departamento de Genética, Universidad de Sevilla, Reina Mercedes s/n, 41012, Seville, Spain
| | - Luis M Corrochano
- Departamento de Genética, Universidad de Sevilla, Reina Mercedes s/n, 41012, Seville, Spain.
| |
Collapse
|
37
|
Basiony M, Ouyang L, Wang D, Yu J, Zhou L, Zhu M, Wang X, Feng J, Dai J, Shen Y, Zhang C, Hua Q, Yang X, Zhang L. Optimization of microbial cell factories for astaxanthin production: Biosynthesis and regulations, engineering strategies and fermentation optimization strategies. Synth Syst Biotechnol 2022; 7:689-704. [PMID: 35261927 PMCID: PMC8866108 DOI: 10.1016/j.synbio.2022.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
The global market demand for natural astaxanthin is rapidly increasing owing to its safety, the potential health benefits, and the diverse applications in food and pharmaceutical industries. The major native producers of natural astaxanthin on industrial scale are the alga Haematococcus pluvialis and the yeast Xanthopyllomyces dendrorhous. However, the natural production via these native producers is facing challenges of limited yield and high cost of cultivation and extraction. Alternatively, astaxanthin production via metabolically engineered non-native microbial cell factories such as Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica is another promising strategy to overcome these limitations. In this review we summarize the recent scientific and biotechnological progresses on astaxanthin biosynthetic pathways, transcriptional regulations, the interrelation with lipid metabolism, engineering strategies as well as fermentation process control in major native and non-native astaxanthin producers. These progresses illuminate the prospects of producing astaxanthin by microbial cell factories on industrial scale.
Collapse
Affiliation(s)
- Mostafa Basiony
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Danni Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaming Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mohan Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuyuan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yijie Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chengguo Zhang
- Shandong Jincheng Bio-Pharmaceutical Co., Ltd., No. 117 Qixing River Road, Zibo, 255130, Shandong, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiuliang Yang
- Shandong Jincheng Bio-Pharmaceutical Co., Ltd., No. 117 Qixing River Road, Zibo, 255130, Shandong, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
38
|
Samuel AZ, Horii S, Nakashima T, Shibata N, Ando M, Takeyama H. Raman Microspectroscopy Imaging Analysis of Extracellular Vesicles Biogenesis by Filamentous Fungus Penicilium chrysogenum. Adv Biol (Weinh) 2022; 6:e2101322. [PMID: 35277945 DOI: 10.1002/adbi.202101322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/01/2022] [Indexed: 01/27/2023]
Abstract
The mechanism of production of extracellular vesicles (EVs) and their molecular contents are of great interest due to their diverse roles in biological systems and are far from being completely understood. Even though cellular cargo releases mediated by EVs have been demonstrated in several cases, their role in secondary metabolite production and release remains elusive. In this study, this aspect is investigated in detail using Raman microspectroscopic imaging. Considerable evidence is provided to suggest that the release of antibiotic penicillin by the filamentous fungus Penicillium chrysogenum involves EVs. Further, the study also reveals morphological modifications of the fungal body during biogenesis, changes in cell composition at the locus of biogenesis, and major molecular contents of the released EVs. The results suggest a possible general role of EVs in the release of antibiotics from the producing organisms.
Collapse
Affiliation(s)
- Ashok Zachariah Samuel
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Shumpei Horii
- Department of Advanced Science Engineering, Waseda University, Japan, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Japan, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Takuji Nakashima
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Naoko Shibata
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Masahiro Ando
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Haruko Takeyama
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.,Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Japan, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| |
Collapse
|
39
|
On the remarkable nonlinear optical properties of natural tomato lycopene. Sci Rep 2022; 12:9078. [PMID: 35641580 PMCID: PMC9156756 DOI: 10.1038/s41598-022-12196-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
In line with the renewed interest in developing novel Non Linear Optical (NLO) materials, natural Lycopene’s NLO Properties are reported for the first time within the scientific literature. Correlated to its 1-D conjugated π-electrons linear conformation, it is shown that natural Lycopene exhibits a significantly elevated 3rd order nonlinearity χ(3) as high as 2.65 10−6 esu, the largest value of any investigated natural phyto-compound so far, including β-carotene. In addition to a saturable absorption, the corresponding observed self-defocusing effect in Lycopene seems to be the result of a thermal nonlinearity. The nonlinear response coupled to the observed fluorescence in the Visible spectral range points to a potential photodynamic therapy application as well as the possibility of engineering of novel hybrid Lycopene based NLO nano-materials.
Collapse
|
40
|
Troiano D, Orsat V, Dumont MJ. Solid-state co-culture fermentation of simulated food waste with filamentous fungi for production of bio-pigments. Appl Microbiol Biotechnol 2022; 106:4029-4039. [PMID: 35608668 DOI: 10.1007/s00253-022-11984-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The use of waste stream residues as feedstock for material production simultaneously helps reduce dependence on fossil-based resources and to shift toward a circular economy. This study explores the conversion of food waste into valuable chemicals, namely, bio-pigments. Here, a simulated food waste feedstock was converted into pigments via solid-state fermentation with the filamentous fungus Talaromyces albobiverticillius (NRRL 2120). Pigments including monascorubrin, rubropunctatin, and 7-(2-hydroxyethyl)-monascorubramine were identified as products of the fermentation via ultra-performance liquid chromatography coupled with quadrupole-time-of-flight electrospray ionization mass spectrometry. Pigments were obtained at concentrations of 32.5, 20.9, and 22.4 AU/gram dry substrate for pigments absorbing at 400, 475, and 500 nm, respectively. Pigment production was further enhanced by co-culturing T. albobiverticillius with Trichoderma reesei (NRRL 3652), and ultimately yielded 63.8, 35.6, and 43.6 AU/gds at the same respective wavelengths. This represents the highest reported production of pigments via solid-state fermentation of a non-supplemented waste stream feedstock. KEY POINTS: • Simulated food waste underwent solid-state fermentation via filamentous fungi. • Bio-pigments were obtained from fermentation of the simulated food waste. • Co-culturing multiple fungal species substantially improved pigment production.
Collapse
Affiliation(s)
- Derek Troiano
- Department of Bioresource Engineering, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Valérie Orsat
- Department of Bioresource Engineering, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Marie-Josée Dumont
- Department of Bioresource Engineering, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada.,Deptartment of Chemical Engineering, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
41
|
Insight into the Progress on Natural Dyes: Sources, Structural Features, Health Effects, Challenges, and Potential. Molecules 2022; 27:molecules27103291. [PMID: 35630767 PMCID: PMC9144664 DOI: 10.3390/molecules27103291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Dyes play an important role in food, medicine, textile, and other industries, which make human life more colorful. With the increasing demand for food safety, the development of natural dyes becomes more and more attractive. (2) Methods: The literature was searched using the electronic databases PubMed, Web of Science, and SciFinder and this scoping review was carried out following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). (3) Results: 248 articles were included in this review. This review summarizes the research progress on natural dyes in the last ten years. According to structural features, natural dyes mainly include carotenoids, polyphenols, porphyrins, and alkaloids, and some of the newest dyes are summarized. Some pharmacological activities of carotenoids, anthocyanin, curcumin, and betalains in the last 10 years are summarized, and the biological effects of dyes regarding illumination conditions. The disadvantages of natural dyes, including sources, cost, stability, and poor bioavailability, limit their application. Here, some feasible strategies (potential resources, biotechnology, new extraction and separation strategies, strategies for improving stability) are described, which will contribute to the development and utilization of natural dyes. (4) Conclusion: Natural dyes show health benefits and potential in food additives. However, it is necessary for natural dyes to pass toxicity tests and quality tests and receive many regulatory approvals before their final entry into the market as food colorants or as drugs.
Collapse
|
42
|
Fiorilli V, Forgia M, de Saint Germain A, D’Arrigo G, Cornu D, Le Bris P, Al‐Babili S, Cardinale F, Prandi C, Spyrakis F, Boyer F, Turina M, Lanfranco L. A structural homologue of the plant receptor D14 mediates responses to strigolactones in the fungal phytopathogen Cryphonectria parasitica. THE NEW PHYTOLOGIST 2022; 234:1003-1017. [PMID: 35119708 PMCID: PMC9306968 DOI: 10.1111/nph.18013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 05/27/2023]
Abstract
Strigolactones (SLs) are plant hormones and important signalling molecules required to promote arbuscular mycorrhizal (AM) symbiosis. While in plants an α/β-hydrolase, DWARF14 (D14), was shown to act as a receptor that binds and cleaves SLs, the fungal receptor for SLs is unknown. Since AM fungi are currently not genetically tractable, in this study, we used the fungal pathogen Cryphonectria parasitica, for which gene deletion protocols exist, as a model, as we have previously shown that it responds to SLs. By means of computational, biochemical and genetic analyses, we identified a D14 structural homologue, CpD14. Molecular homology modelling and docking support the prediction that CpD14 interacts with and hydrolyses SLs. The recombinant CpD14 protein shows α/β hydrolytic activity in vitro against the SLs synthetic analogue GR24; its enzymatic activity requires an intact Ser/His/Asp catalytic triad. CpD14 expression in the d14-1 loss-of-function Arabidopsis thaliana line did not rescue the plant mutant phenotype. However, gene inactivation by knockout homologous recombination reduced fungal sensitivity to SLs. These results indicate that CpD14 is involved in SLs responses in C. parasitica and strengthen the role of SLs as multifunctional molecules acting in plant-microbe interactions.
Collapse
Affiliation(s)
- Valentina Fiorilli
- Dipartimento di Scienze della Vita e Biologia dei SistemiUniversità di TorinoViale P.A. Mattioli 25Torino10125Italy
| | - Marco Forgia
- Istituto per la Protezione Sostenibile delle Piante – CNRStrada delle Cacce 7310135TorinoItaly
| | | | - Giulia D’Arrigo
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di Torinovia P. Giuria 1110125TorinoItaly
| | - David Cornu
- CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Université Paris‐Saclay1 Avenue de la Terrasse91198Gif‐sur‐YvetteFrance
| | - Philippe Le Bris
- INRAE, AgroParisTechInstitut Jean‐Pierre Bourgin (IJPB)Université Paris‐Saclay78000VersaillesFrance
| | - Salim Al‐Babili
- Division of Biological and Environmental Science and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Saudi Arabia
| | - Francesca Cardinale
- Dipartimento di Scienze Agrarie, Forestali e AlimentariUniversità di TorinoLargo Braccini 210095GrugliascoItaly
| | - Cristina Prandi
- Dipartimento di ChimicaUniversità di Torinovia P. Giuria 710125TorinoItaly
| | - Francesca Spyrakis
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di Torinovia P. Giuria 1110125TorinoItaly
| | - François‐Didier Boyer
- CNRSInstitut de Chimie des Substances NaturellesUPR 2301Université Paris‐Saclay1 Avenue de la Terrasse91198Gif‐sur‐YvetteFrance
| | - Massimo Turina
- Istituto per la Protezione Sostenibile delle Piante – CNRStrada delle Cacce 7310135TorinoItaly
| | - Luisa Lanfranco
- Dipartimento di Scienze della Vita e Biologia dei SistemiUniversità di TorinoViale P.A. Mattioli 25Torino10125Italy
| |
Collapse
|
43
|
Hanrahan-Tan DG, Henderson L, Kertesz MA, Lilje O. The Effects of Nitrogen and Phosphorus on Colony Growth and Zoospore Characteristics of Soil Chytridiomycota. J Fungi (Basel) 2022; 8:jof8040341. [PMID: 35448572 PMCID: PMC9024642 DOI: 10.3390/jof8040341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 01/03/2023] Open
Abstract
The Chytridiomycota phylum contributes to nutrient cycling and the flow of energy between trophic levels in terrestrial and aquatic ecosystems yet remains poorly described or absent from publications discussing fungal communities in these environments. This study contributes to the understanding of three species of soil chytrids in vitro—Gaertneriomyces semiglobifer, Spizellomyces sp. and Rhizophlyctis rosea—in the presence of elevated concentrations of nitrogen and phosphorus and with different sources of nitrogen. Colony growth was measured after 4 weeks as dry weight and total protein. To determine the impacts on zoospore reproduction, motility, lipid content, and attachment to organic substrates, 4- and 8-week incubation times were investigated. Whilst all isolates were able to assimilate ammonium as a sole source of nitrogen, nitrate was less preferred or even unsuitable as a nutrient source for G. semiglobifer and R. rosea, respectively. Increasing phosphate concentrations led to diverse responses between isolates. Zoospore production was also variable between isolates, and the parameters for zoospore motility appeared only to be influenced by the phosphate concentration for Spizellomyces sp. and R. rosea. Attachment rates increased for G. semiglobifer in the absence of an inorganic nitrogen source. These findings highlight variability between the adaptive responses utilised by chytrids to persist in a range of environments and provide new techniques to study soil chytrid biomass and zoospore motility by total protein quantification and fluorescent imaging respectively.
Collapse
Affiliation(s)
- Deirdre G. Hanrahan-Tan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence: (D.G.H.-T.); (O.L.)
| | - Linda Henderson
- Department of Planning and Environment, Locked Bag 5022, Parramatta, NSW 2124, Australia;
| | - Michael A. Kertesz
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Osu Lilje
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence: (D.G.H.-T.); (O.L.)
| |
Collapse
|
44
|
Carotenoids and Their Biosynthesis in Fungi. Molecules 2022; 27:molecules27041431. [PMID: 35209220 PMCID: PMC8879039 DOI: 10.3390/molecules27041431] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
Carotenoids represent a class of pigmented terpenoids. They are distributed in all taxonomic groups of fungi. Most of the fungal carotenoids differ in their chemical structures to those from other organisms. The general function of carotenoids in heterotrophic organisms is protection as antioxidants against reactive oxygen species generated by photosensitized reactions. Furthermore, carotenoids are metabolized to apocarotenoids by oxidative cleavage. This review presents the current knowledge on fungal-specific carotenoids, their occurrence in different taxonomic groups, and their biosynthesis and conversion into trisporic acids. The outline of the different pathways was focused on the reactions and genes involved in not only the known pathways, but also suggested the possible mechanisms of reactions, which may occur in several non-characterized pathways in different fungi. Finally, efforts and strategies for genetic engineering to enhance or establish pathways for the production of various carotenoids in carotenogenic or non-carotenogenic yeasts were highlighted, addressing the most-advanced producers of each engineered yeast, which offered the highest biotechnological potentials as production systems.
Collapse
|
45
|
Wyka S, Mondo S, Liu M, Nalam V, Broders K. A large accessory genome and high recombination rates may influence global distribution and broad host range of the fungal plant pathogen Claviceps purpurea. PLoS One 2022; 17:e0263496. [PMID: 35143550 PMCID: PMC8830672 DOI: 10.1371/journal.pone.0263496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/20/2022] [Indexed: 11/18/2022] Open
Abstract
Pangenome analyses are increasingly being utilized to study the evolution of eukaryotic organisms. While pangenomes can provide insight into polymorphic gene content, inferences about the ecological and adaptive potential of such organisms also need to be accompanied by additional supportive genomic analyses. In this study we constructed a pangenome of Claviceps purpurea from 24 genomes and examined the positive selection and recombination landscape of an economically important fungal organism for pharmacology and agricultural research. Together, these analyses revealed that C. purpurea has a relatively large accessory genome (~ 38%), high recombination rates (ρ = 0.044), and transposon mediated gene duplication. However, due to observations of relatively low transposable element (TE) content (8.8%) and a lack of variability in genome sizes, prolific TE expansion may be controlled by frequent recombination. We additionally identified that within the ergoline biosynthetic cluster the lpsA1 and lpsA2 were the result of a recombination event. However, the high recombination rates observed in C. purpurea may be influencing an overall trend of purifying selection across the genome. These results showcase the use of selection and recombination landscapes to identify mechanisms contributing to pangenome structure and primary factors influencing the evolution of an organism.
Collapse
Affiliation(s)
- Stephen Wyka
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Stephen Mondo
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, United States of America
- United States Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Miao Liu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Vamsi Nalam
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kirk Broders
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL, United States of America
- Smithsonian Tropical Research Institute, Apartado Panamá, República de Panamá
- * E-mail:
| |
Collapse
|
46
|
Torres‐Haro A, Arellano‐Plaza M, Mateos‐Díaz JC, Espinosa‐Andrews H, Castillo‐Herrera GA. Non‐conventional high‐pressure extraction process: A comparative study for astaxanthin recovery from
Xanthophyllomyces dendrorhous. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alejandro Torres‐Haro
- Industrial Biotechnology Centro de Investigacion y Asistencia en Tecnologia y Diseno del Estado de Jalisco Guadalajara Mexico
| | - Melchor Arellano‐Plaza
- Industrial Biotechnology Centro de Investigacion y Asistencia en Tecnologia y Diseno del Estado de Jalisco Guadalajara Mexico
| | - Juan C. Mateos‐Díaz
- Industrial Biotechnology Centro de Investigacion y Asistencia en Tecnologia y Diseno del Estado de Jalisco Guadalajara Mexico
| | - Hugo Espinosa‐Andrews
- Food Technology Centro de Investigacion y Asistencia en Tecnologia y Diseno del Estado de Jalisco Guadalajara Mexico
| | - Gustavo A. Castillo‐Herrera
- Food Technology Centro de Investigacion y Asistencia en Tecnologia y Diseno del Estado de Jalisco Guadalajara Mexico
| |
Collapse
|
47
|
Chen M, Wang J, Lin L, Xu X, Wei W, Shen Y, Wei D. Synergistic Regulation of Metabolism by Ca 2+/Reactive Oxygen Species in Penicillium brevicompactum Improves Production of Mycophenolic Acid and Investigation of the Ca 2+ Channel. ACS Synth Biol 2022; 11:273-285. [PMID: 34941247 DOI: 10.1021/acssynbio.1c00413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although Penicillium brevicompactum is a very important industrial strain for mycophenolic acid production, there are no reports on Ca2+/reactive oxygen species (ROS) synergistic regulation and calcium channels, Cch-pb. This study initially intensified the concentration of the intracellular Ca2+ in the high yielding mycophenolic acid producing strain NRRL864 to explore the physiological role of intracellular redox state in metabolic regulation by Penicillium brevicompactum. The addition of Ca2+ in the media caused an increase of intracellular Ca2+, which was accompanied by a strong increase, 1.5 times, in the higher intracellular ROS concentration. In addition, the more intensive ROS sparked the production of an unreported pigment and increase in mycophenolic acid production. Furthermore, the Ca2+ channel, the homologous gene of Cch1, Cch-pb, was investigated to verify the relationship between Ca2+ and the intracellular ROS. The Vitreoscilla hemoglobin was overexpressed, which was bacterial hemoglobin from Vitreoscilla, reducing the intracellular ROS concentration to verify the relationship between the redox state and the yield of mycophenolic acid. The strain pb-VGB expressed the Vitreoscilla hemoglobin exhibited a lower intracellular ROS concentration, 30% lower, and decreased the yield of mycophenolic acid as 10% lower at the same time. Subsequently, with the NRRL864 fermented under 1.7 and 28 mM Ca2+, the [NADH]/[NAD+] ratios were detected and the higher [NADH]/[NAD+] ratios (4 times higher with 28 mM) meant a more robust primary metabolism which provided more precursors to produce the pigment and the mycophenolic acid. Finally, the 10 times higher calcium addition in the media resulted in 25% enhanced mycophenolic acid production to 6.7 g/L and induced pigment synthesis in NRRL864.
Collapse
Affiliation(s)
- Mianhui Chen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Jingjing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Lin Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People’s Republic of China
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai 200241, People’s Republic of China
| | - Xiangyang Xu
- Zaozhuang jie nuo enzyme co. ltd, Zaozhuang 277100, People’s Republic of China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
48
|
In-on A, Thananusak R, Ruengjitchatchawalya M, Vongsangnak W, Laomettachit T. Construction of Light-Responsive Gene Regulatory Network for Growth, Development and Secondary Metabolite Production in Cordyceps militaris. BIOLOGY 2022; 11:biology11010071. [PMID: 35053069 PMCID: PMC8773263 DOI: 10.3390/biology11010071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 01/17/2023]
Abstract
Cordyceps militaris is an edible fungus that produces many beneficial compounds, including cordycepin and carotenoid. In many fungi, growth, development and secondary metabolite production are controlled by crosstalk between light-signaling pathways and other regulatory cascades. However, little is known about the gene regulation upon light exposure in C. militaris. This study aims to construct a gene regulatory network (GRN) that responds to light in C. militaris. First, a genome-scale GRN was built based on transcription factor (TF)-target gene interactions predicted from the Regulatory Sequence Analysis Tools (RSAT). Then, a light-responsive GRN was extracted by integrating the transcriptomic data onto the genome-scale GRN. The light-responsive network contains 2689 genes and 6837 interactions. From the network, five TFs, Snf21 (CCM_04586), an AT-hook DNA-binding motif TF (CCM_08536), a homeobox TF (CCM_07504), a forkhead box protein L2 (CCM_02646) and a heat shock factor Hsf1 (CCM_05142), were identified as key regulators that co-regulate a large group of growth and developmental genes. The identified regulatory network and expression profiles from our analysis suggested how light may induce the growth and development of C. militaris into a sexual cycle. The light-mediated regulation also couples fungal development with cordycepin and carotenoid production. This study leads to an enhanced understanding of the light-responsive regulation of growth, development and secondary metabolite production in the fungi.
Collapse
Affiliation(s)
- Ammarin In-on
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand; (A.I.-o.); (M.R.)
- School of Information Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Roypim Thananusak
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Marasri Ruengjitchatchawalya
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand; (A.I.-o.); (M.R.)
- Biotechnology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Correspondence: (W.V.); (T.L.)
| | - Teeraphan Laomettachit
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand; (A.I.-o.); (M.R.)
- Theoretical and Computational Physics (TCP) Group, Center of Excellence in Theoretical and Computational Science (TaCS-CoE), King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Correspondence: (W.V.); (T.L.)
| |
Collapse
|
49
|
Xiao Q, Zhu Y, Cui G, Zhang X, Hu R, Deng Z, Lei L, Wu L, Mei L. A Comparative Study of Flavonoids and Carotenoids Revealed Metabolite Responses for Various Flower Colorations Between Nicotiana tabacum L. and Nicotiana rustica L. FRONTIERS IN PLANT SCIENCE 2022; 13:828042. [PMID: 35548319 PMCID: PMC9083207 DOI: 10.3389/fpls.2022.828042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/24/2022] [Indexed: 05/20/2023]
Abstract
Tobacco is a model plant for studying flower coloration. Flavonoids and carotenoids were reported to contribute to the flower color in many plants. We investigated the mechanism underlying flower color formation in tobacco by comparing the profiling flavonoids and carotenoids between various species Nicotiana tabacum L. and Nicotiana rustica L., as their flowers commonly presented red (pink) and yellow (orange), respectively. The metabolomes were conducted by UPLC-ESI-MS/MS system. The main findings were as follows: (1) A total of 31 flavonoids and 36 carotenoids were identified in all four cultivars involved in N. tabacum and N. rustica. (2) Flavonoids and carotenoids tended to concentrate in the red flowers (N. tabacum) and yellow flowers (N. rustica), respectively. (3) About eight flavonoids and 12 carotenoids were primarily screened out for metabolic biomarkers, such as the robust biomarker involving kaempferol-3-o-rut, quercetin-glu, rutin, lutein, and β-carotene. This is the first research of systematic metabolome involving both flavonoids and carotenoids in tobacco flower coloration. The metabolic mechanism concluded that flavonoids and carotenoids mainly contributed to red (pink) and yellow (orange) colors of the tobacco flowers, respectively. Our finding will provide essential insights into characterizing species and modifying flower color in tobacco breeding through genetic improvement or regulation of featured metabolic synthesis.
Collapse
Affiliation(s)
- Qinzhi Xiao
- Yongzhou Tobacco Monopoly Bureau of Hunan, Yongzhou, China
- College of Agronomy, Hunan Agricultural University, Changsha, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yueyi Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guoxian Cui
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Xianwen Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Risheng Hu
- Yongzhou Tobacco Monopoly Bureau of Hunan, Yongzhou, China
| | - Zhengyu Deng
- Yongzhou Tobacco Monopoly Bureau of Hunan, Yongzhou, China
| | - Lei Lei
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liwen Wu
- College of Bioscience and Technology, Hubei Minzu University, Enshi, China
| | - Lei Mei
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Lei Mei
| |
Collapse
|
50
|
Characteristic Evaluation of Various Formulations of Anti-Aging Cream from Carotenoid Extract of Bacterial Symbiont Virgibacillus salarius Strain 19.PP.Sc1.6. COSMETICS 2021. [DOI: 10.3390/cosmetics8040120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Premature aging can be triggered by free radicals from UV rays, since exposure to these rays can cause the skin to experience oxidative stress. Oxidative stress induces intracellular DNA damage, protein denaturation, and lipid peroxidation that lead to cell death. However, cell death can be prevented with antioxidants such as carotenoids, which are among the potential natural compounds for its treatment. Sources of carotenoids include microbial symbionts associated with Sinularia sp., one of which is the bacterium Virgibacillus salarius strain 19.PP.Sc1.6, a carotenoid-producing bacteria. This study aims to explore the utilization of carotenoids from the bacterium V. salarius strain 19.PP.Sc1.6 for the preparation of anti-aging creams. Furthermore, the method employed three formulations (vs, ow, and wo) containing different types of cream tested for stability, and antioxidant and sunscreen abilities. The results obtained established that the carotenoid extract from V. salarius strain 19.PP.Sc1.6 was more stable in the cream vs. the oil-in-water type cream with an anionic emulsifier.
Collapse
|