1
|
Animasaun DA, Lawrence JA. Antisense RNA (asRNA) technology: the concept and applications in crop improvement and sustainable agriculture. Mol Biol Rep 2023; 50:9545-9557. [PMID: 37755651 DOI: 10.1007/s11033-023-08814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Antisense RNA (asRNA) technology is a method used to silence genes and inhibit their expression. Gene function relies on expression, which follows the central dogma of molecular biology. The use of asRNA can regulate gene expression by targeting specific mRNAs, which can result in changes in phenotype, disease resistance, and other traits associated with protein expression profiles. This technology uses short, single-stranded oligonucleotide strands that are complementary to the targeted mRNA. Manipulating and regulating protein expression during its translation can either knock out or knock down the expression of a gene of interest. Therefore, functional genomics can benefit from this technology since it allows for the regulation of protein expression. In this review, we discuss the concept, and applications of asRNA technology which include delaying ripening, prolonging shelf life, biofortification, and increasing biotic and abiotic resistance among others in crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- David Adedayo Animasaun
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria.
- Plant Tissue Culture Lab, Central Research Laboratories, University of Ilorin, P.M.B.1515, Ilorin, Kwara State, Nigeria.
| | - Judith Amaka Lawrence
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria.
| |
Collapse
|
2
|
Bashir T, Ul Haq SA, Masoom S, Ibdah M, Husaini AM. Quality trait improvement in horticultural crops: OMICS and modern biotechnological approaches. Mol Biol Rep 2023; 50:8729-8742. [PMID: 37642759 DOI: 10.1007/s11033-023-08728-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Horticultural crops are an essential part of food and nutritional security. Moreover, these form an integral part of the agricultural economy and have enormous economic potential. They are a rich source of nutrients that are beneficial to human health. Plant breeding of horticultural crops has focussed primarily on increasing the productivity and related traits of these crops. However, fruit and vegetable quality is paramount to their perishability, marketability, and consumer acceptance. The improved nutritional value is beneficial to underprivileged and undernourished communities. Due to a declining genetic base, conventional plant breeding does not contribute much to quality improvement as the existing natural allelic variations and crossing barriers between cultivated and wild species limit it. Over the past two decades, 'omics' and modern biotechnological approaches have made it possible to decode the complex genomes of crop plants, assign functions to the otherwise many unknown genes, and develop genome-wide DNA markers. Genetic engineering has enabled the validation of these genes and the introduction of crucial agronomic traits influencing various quality parameters directly or indirectly. This review discusses the significant advances in the quality improvement of horticultural crops, including shelf life, aroma, browning, nutritional value, colour, and many other related traits.
Collapse
Affiliation(s)
- Tanzeel Bashir
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Syed Anam Ul Haq
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Salsabeel Masoom
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Mwafaq Ibdah
- Newe Yaar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel
| | - Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
3
|
Bharathi JK, Anandan R, Benjamin LK, Muneer S, Prakash MAS. Recent trends and advances of RNA interference (RNAi) to improve agricultural crops and enhance their resilience to biotic and abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:600-618. [PMID: 36529010 DOI: 10.1016/j.plaphy.2022.11.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/04/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Over the last two decades, significant advances have been made using genetic engineering technology to modify genes from various exotic origins and introduce them into plants to induce favorable traits. RNA interference (RNAi) was discovered earlier as a natural process for controlling the expression of genes across all higher species. It aims to enhance precision and accuracy in pest/pathogen resistance, quality improvement, and manipulating the architecture of plants. However, it existed as a widely used technique recently. RNAi technologies could well be used to down-regulate any genes' expression without disrupting the expression of other genes. The use of RNA interference to silence genes in various organisms has become the preferred method for studying gene functions. The establishment of new approaches and applications for enhancing desirable characters is essential in crops by gene suppression and the refinement of knowledge of endogenous RNAi mechanisms in plants. RNAi technology in recent years has become an important and choicest method for controlling insects, pests, pathogens, and abiotic stresses like drought, salinity, and temperature. Although there are certain drawbacks in efficiency of this technology such as gene candidate selection, stability of trigger molecule, choice of target species and crops. Nevertheless, from past decade several target genes has been identified in numerous crops for their improvement towards biotic and abiotic stresses. The current review is aimed to emphasize the research done on crops under biotic and abiotic stress using RNAi technology. The review also highlights the gene regulatory pathways/gene silencing, RNA interference, RNAi knockdown, RNAi induced biotic and abiotic resistance and advancements in the understanding of RNAi technology and the functionality of various components of the RNAi machinery in crops for their improvement.
Collapse
Affiliation(s)
- Jothi Kanmani Bharathi
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Ramaswamy Anandan
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| |
Collapse
|
4
|
Brisou G, Piquerez SJM, Minoia S, Marcel F, Cornille A, Carriero F, Boualem A, Bendahmane A. Induced mutations in SlE8 and SlACO1 control tomato fruit maturation and shelf-life. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6920-6932. [PMID: 34369570 DOI: 10.1093/jxb/erab330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Fruit maturation and softening are critical traits that control fruit shelf-life. In the climacteric tomato (Solanum lycopersicum L.) fruit, ethylene plays a key role in fruit ripening and softening. We characterized two related proteins with contrasting impact on ethylene production, ACC oxidase 1 (SlACO1) and SlE8. We found SlACO1 and SlE8 to be highly expressed during fruit ripening. To identify loss-of-function alleles, we analysed the tomato genetic diversity but we did not find any natural mutations impairing the function of these proteins. We also found the two loci evolving under purifying selection. To engineer hypomorphic alleles, we used TILLING (target-induced local lesions in genomes) to screen a tomato ethylmethane sulfonate-mutagenized population. We found 13 mutants that we phenotyped for ethylene production, shelf-life, firmness, conductivity, and soluble solid content in tomato fruits. The data demonstrated that slaco1-1 and slaco1-2 alleles could be used to improve fruit shelf-life, and that sle8-1 and sle8-2 alleles could be used to accelerate ripening. This study highlights further the importance of SlACO1 and SlE8 in ethylene production in tomato fruit and how they might be used for post-harvest fruit preservation or speeding up fruit maturation.
Collapse
Affiliation(s)
- Gwilherm Brisou
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Gautier Semences, Eyragues, France
| | - Sophie J M Piquerez
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Silvia Minoia
- ALSIA Research Center Metapontum Agrobios S.S. Jonica 106 Km 448.2, Metaponto, MT, Italy
| | - Fabien Marcel
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Amandine Cornille
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Filomena Carriero
- ALSIA Research Center Metapontum Agrobios S.S. Jonica 106 Km 448.2, Metaponto, MT, Italy
| | - Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| |
Collapse
|
5
|
Rajput M, Choudhary K, Kumar M, Vivekanand V, Chawade A, Ortiz R, Pareek N. RNA Interference and CRISPR/Cas Gene Editing for Crop Improvement: Paradigm Shift towards Sustainable Agriculture. PLANTS 2021; 10:plants10091914. [PMID: 34579446 PMCID: PMC8467553 DOI: 10.3390/plants10091914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023]
Abstract
With the rapid population growth, there is an urgent need for innovative crop improvement approaches to meet the increasing demand for food. Classical crop improvement approaches involve, however, a backbreaking process that cannot equipoise with increasing crop demand. RNA-based approaches i.e., RNAi-mediated gene regulation and the site-specific nuclease-based CRISPR/Cas9 system for gene editing has made advances in the efficient targeted modification in many crops for the higher yield and resistance to diseases and different stresses. In functional genomics, RNA interference (RNAi) is a propitious gene regulatory approach that plays a significant role in crop improvement by permitting the downregulation of gene expression by small molecules of interfering RNA without affecting the expression of other genes. Gene editing technologies viz. the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) have appeared prominently as a powerful tool for precise targeted modification of nearly all crops' genome sequences to generate variation and accelerate breeding efforts. In this regard, the review highlights the diverse roles and applications of RNAi and CRISPR/Cas9 system as powerful technologies to improve agronomically important plants to enhance crop yields and increase tolerance to environmental stress (biotic or abiotic). Ultimately, these technologies can prove to be important in view of global food security and sustainable agriculture.
Collapse
Affiliation(s)
- Meenakshi Rajput
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - Khushboo Choudhary
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - Manish Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - V. Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India;
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 230 53 Alnarp, Sweden;
- Correspondence: (A.C.); (N.P.)
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 230 53 Alnarp, Sweden;
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
- Correspondence: (A.C.); (N.P.)
| |
Collapse
|
6
|
Yan Z, Appiano M, van Tuinen A, Meijer-Dekens F, Schipper D, Gao D, Huibers R, Visser RGF, Bai Y, Wolters AMA. Discovery and Characterization of a Novel Tomato mlo Mutant from an EMS Mutagenized Micro-Tom Population. Genes (Basel) 2021; 12:genes12050719. [PMID: 34064921 PMCID: PMC8150974 DOI: 10.3390/genes12050719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
In tomato (Solanum lycopersicum), there are at least three SlMLO (Mildew resistance Locus O) genes acting as susceptibility genes for the powdery mildew disease caused by Oidium neolycopersici, namely SlMLO1, SlMLO5 and SlMLO8. Of the three homologs, the SlMLO1 gene plays a major role since a natural mutant allele called ol-2 can almost completely prevent fungal penetration by formation of papillae. The ol-2 allele contains a 19-bp deletion in the coding sequence of the SlMLO1 gene, resulting in a premature stop codon within the second cytoplasmic loop of the predicted protein. In this study, we have developed a new genetic resource (M200) in the tomato cv. Micro-Tom genetic background by means of ethyl methane sulfonate (EMS) mutagenesis. The mutant M200 containing a novel allele (the m200 allele) of the tomato SlMLO1 gene showed profound resistance against powdery mildew with no fungal sporulation. Compared to the coding sequence of the SlMLO1 gene, the m200 allele carries a point mutation at T65A. The SNP results in a premature stop codon L22* located in the first transmembrane domain of the complete SlMLO1 protein. The length of the predicted protein is 21 amino acids, while the SlMLO1 full-length protein is 513 amino acids. A high-resolution melting (HRM) marker was developed to distinguish the mutated m200 allele from the SlMLO1 allele in backcross populations. The mutant allele conferred recessive resistance that was associated with papillae formation at fungal penetration sites of plant epidermal cells. A comprehensive list of known mlo mutations found in natural and artificial mutants is presented, which serves as a particularly valuable resource for powdery mildew resistance breeding.
Collapse
|
7
|
Girija A, Vijayanathan M, Sreekumar S, Basheer J, Menon TG, Krishnankutty RE, Soniya EV. Harnessing the natural pool of polyketide and non-ribosomal peptide family: A route map towards novel drug development. Curr Mol Pharmacol 2021; 15:265-291. [PMID: 33745440 DOI: 10.2174/1874467214666210319145816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022]
Abstract
Emergence of communicable and non-communicable diseases possess health challenge to millions of people worldwide and is a major threat to the economic and social development in the coming century. The occurrence of recent pandemic, SARS-CoV-2 caused by lethal severe acute respiratory syndrome coronavirus 2 is one such example. Rapid research and development of drugs for the treatment and management of these diseases has been an incredibly challenging task for the pharmaceutical industry. Although, substantial focus has been made in the discovery of therapeutic compounds from natural sources having significant medicinal potential, their synthesis has shown a slow progress. Hence, the discovery of new targets by the application of the latest biotechnological and synthetic biology approaches is very much the need of the hour. Polyketides (PKs) and non-ribosomal peptides (NRPs) found in bacteria, fungi and plants are a large diverse family of natural products synthesized by two classes of enzymes: polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). These enzymes possess immense biomedical potential due to their simple architecture, catalytic capacity, as well as diversity. With the advent of latest in-silico and in-vitro strategies, these enzymes and their related metabolic pathways, if targeted, can contribute highly towards the biosynthesis of an array of potentially natural drug leads that have antagonist effects on biopolymers associated with various human diseases. In the face of the rising threat from the multidrug-resistant pathogens, this will further open new avenues for the discovery of novel and improved drugs by combining the natural and the synthetic approaches. This review discusses the relevance of polyketides and non-ribosomal peptides and the improvement strategies for the development of their derivatives and scaffolds, and how they will be beneficial to the future bioprospecting and drug discovery.
Collapse
Affiliation(s)
- Aiswarya Girija
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Institute of Biological Environmental Rural Sciences (IBERS), Aberystwyth University, United Kingdom
| | - Mallika Vijayanathan
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Biology Centre - Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Sweda Sreekumar
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Research Centre, University of Kerala, India
| | - Jasim Basheer
- School of Biosciences, Mahatma Gandhi University, PD Hills, Kottayam, Kerala, India.,Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czech Republic
| | - Tara G Menon
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | | | - Eppurathu Vasudevan Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| |
Collapse
|
8
|
Shipman EN, Yu J, Zhou J, Albornoz K, Beckles DM. Can gene editing reduce postharvest waste and loss of fruit, vegetables, and ornamentals? HORTICULTURE RESEARCH 2021; 8:1. [PMID: 33384412 PMCID: PMC7775472 DOI: 10.1038/s41438-020-00428-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 05/22/2023]
Abstract
Postharvest waste and loss of horticultural crops exacerbates the agricultural problems facing humankind and will continue to do so in the next decade. Fruits and vegetables provide us with a vast spectrum of healthful nutrients, and along with ornamentals, enrich our lives with a wide array of pleasant sensory experiences. These commodities are, however, highly perishable. Approximately 33% of the produce that is harvested is never consumed since these products naturally have a short shelf-life, which leads to postharvest loss and waste. This loss, however, could be reduced by breeding new crops that retain desirable traits and accrue less damage over the course of long supply chains. New gene-editing tools promise the rapid and inexpensive production of new varieties of crops with enhanced traits more easily than was previously possible. Our aim in this review is to critically evaluate gene editing as a tool to modify the biological pathways that determine fruit, vegetable, and ornamental quality, especially after storage. We provide brief and accessible overviews of both the CRISPR-Cas9 method and the produce supply chain. Next, we survey the literature of the last 30 years, to catalog genes that control or regulate quality or senescence traits that are "ripe" for gene editing. Finally, we discuss barriers to implementing gene editing for postharvest, from the limitations of experimental methods to international policy. We conclude that in spite of the hurdles that remain, gene editing of produce and ornamentals will likely have a measurable impact on reducing postharvest loss and waste in the next 5-10 years.
Collapse
Affiliation(s)
- Emma N Shipman
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Plant Biology Graduate Group, University of California, Davis, CA, 95616, USA.
| | - Jingwei Yu
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Graduate Group of Horticulture & Agronomy, University of California, Davis, CA, 95616, USA.
| | - Jiaqi Zhou
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Graduate Group of Horticulture & Agronomy, University of California, Davis, CA, 95616, USA.
| | - Karin Albornoz
- Departamento de Produccion Vegetal, Universidad de Concepcion, Region del BioBio, Concepcion, Chile.
| | - Diane M Beckles
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
9
|
Das PR, Sherif SM. Application of Exogenous dsRNAs-induced RNAi in Agriculture: Challenges and Triumphs. FRONTIERS IN PLANT SCIENCE 2020; 11:946. [PMID: 32670336 PMCID: PMC7330088 DOI: 10.3389/fpls.2020.00946] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/10/2020] [Indexed: 05/05/2023]
Abstract
In recent years, RNA interference (RNAi) machinery has widely been explored by plant biologists for its potential applications in disease management, plant development, and germplasm improvement. RNAi-based technologies have mainly been applied in the form of transgenic plant generation and host-induced-gene-silencing (HIGS). However, the approval of RNAi-based transgenic plants has always been challenging due to the proclaimed concerns surrounding their impacts on human health and the environment. Lately, exogenous applications of double-stranded RNAs (dsRNAs), short interfering RNAs (siRNAs), and hairpin RNAs (hpRNAs) has emerged as another technology that could be regarded as more eco-friendly, sustainable, and publicly acceptable than genetic transformation. Inside the plant cell, dsRNAs can undergo several steps of processing, which not only triggers RNAi machinery but may also involve transitive and systemic silencing, as well as epigenetic modifications. Therefore, along with the considerations of proper exogenous applications of dsRNAs, defining their final destination into plant cells is highly relevant. In this review, we highlighted the significance of several factors that affect dsRNA-induced gene silencing, the fate of exogenous dsRNAs in the plant cell, and the challenges surrounding production technologies, cost-effectiveness, and dsRNAs stability under open-field conditions. This review also provided insights into the potential applications of exogenous dsRNAs in plant protection and crop improvement.
Collapse
Affiliation(s)
| | - Sherif M. Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Winchester, VA, United States
| |
Collapse
|
10
|
Coito JL, Silva HG, Ramos MJ, Cunha J, Eiras-Dias J, Amâncio S, Costa MM, Rocheta M. Vitis flower types: from the wild to crop plants. PeerJ 2019; 7:e7879. [PMID: 31737441 PMCID: PMC6855205 DOI: 10.7717/peerj.7879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/12/2019] [Indexed: 01/27/2023] Open
Abstract
Vitis vinifera can be divided into two subspecies, V. vinifera subsp. vinifera, one of the most important agricultural crops in the world, and its wild ancestor, V. vinifera subsp. sylvestris. Three flower types can be observed: hermaphrodite and female (on some varieties) in vinifera, and male or female flowers in sylvestris. It is assumed that the different flower types in the wild ancestor arose through specific floral patterns of organ abortion. A considerable amount of data about the diversity of sexual systems in grapevines has been collected over the past century. Several grapevine breeding studies led to the hypothesis that dioecy in vinifera is derived from a hermaphrodite ancestor and could be controlled by either, one or two linked genetic determinants following Mendelian inherence. More recently, experiments using molecular approaches suggested that these loci were located in a specific region of the chromosome 2 of vinifera. Based on the works published so far, its seems evident that a putative sex locus is present in chromosome 2. However, it is still not fully elucidated whether flower types are regulated by two linked loci or by one locus with three alleles. Nevertheless, several genes could contribute to sex determination in grapevine. This review presents the results from early studies, combined with the recent molecular approaches, which may contribute to the design of new experiments towards a better understanding of the sex inheritance in grapevine.
Collapse
Affiliation(s)
- João L. Coito
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Helena G. Silva
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho - Campus de Gualtar, Braga, Portugal
| | - Miguel J.N. Ramos
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Jorge Cunha
- Instituto Nacional de Investigação Agrária e Veterinária, Quinta d’Almoinha, Dois Portos, Portugal
| | - José Eiras-Dias
- Instituto Nacional de Investigação Agrária e Veterinária, Quinta d’Almoinha, Dois Portos, Portugal
| | - Sara Amâncio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Maria M.R. Costa
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho - Campus de Gualtar, Braga, Portugal
| | - Margarida Rocheta
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
11
|
Forlani S, Masiero S, Mizzotti C. Fruit ripening: the role of hormones, cell wall modifications, and their relationship with pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2993-3006. [PMID: 30854549 DOI: 10.1093/jxb/erz112] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 05/20/2023]
Abstract
Fruits result from complex biological processes that begin soon after fertilization. Among these processes are cell division and expansion, accumulation of secondary metabolites, and an increase in carbohydrate biosynthesis. Later fruit ripening is accomplished by chlorophyll degradation and cell wall lysis. Fruit maturation is an essential step to optimize seed dispersal, and is controlled by a complex network of transcription factors and genetic regulators that are strongly influenced by phytohormones. Abscisic acid (ABA) and ethylene are the major regulators of ripening and senescence in both dry and fleshy fruits, as demonstrated by numerous ripening-defective mutants, effects of exogenous hormone application, and transcriptome analyses. While ethylene is the best characterized player in the final step of a fruit's life, ABA also has a key regulatory role, promoting ethylene production and acting as a stress-related hormone in response to drought and pathogen attack. In this review, we focus on the role of ABA and ethylene in relation to the interconnected biotic and abiotic phenomena that affect ripening and senescence. We integrate and discuss the most recent data available regarding these biological processes, which are crucial for post-harvest fruit conservation and for food safety.
Collapse
Affiliation(s)
- Sara Forlani
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Simona Masiero
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Mizzotti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
Houben M, Van de Poel B. 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO): The Enzyme That Makes the Plant Hormone Ethylene. FRONTIERS IN PLANT SCIENCE 2019; 10:695. [PMID: 31191592 PMCID: PMC6549523 DOI: 10.3389/fpls.2019.00695] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/09/2019] [Indexed: 05/18/2023]
Abstract
The volatile plant hormone ethylene regulates many plant developmental processes and stress responses. It is therefore crucial that plants can precisely control their ethylene production levels in space and time. The ethylene biosynthesis pathway consists of two dedicated steps. In a first reaction, S-adenosyl-L-methionine (SAM) is converted into 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC-synthase (ACS). In a second reaction, ACC is converted into ethylene by ACC-oxidase (ACO). Initially, it was postulated that ACS is the rate-limiting enzyme of this pathway, directing many studies to unravel the regulation of ACS protein activity, and stability. However, an increasing amount of evidence has been gathered over the years, which shows that ACO is the rate-limiting step in ethylene production during certain dedicated processes. This implies that also the ACO protein family is subjected to a stringent regulation. In this review, we give an overview about the state-of-the-art regarding ACO evolution, functionality and regulation, with an emphasis on the transcriptional, post-transcriptional, and post-translational control. We also highlight the importance of ACO being a prime target for genetic engineering and precision breeding, in order to control plant ethylene production levels.
Collapse
Affiliation(s)
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Abstract
Multicellular organisms, such as plants, fungi, and animals, develop organs with specialized functions. Major challenges in developing such structures include establishment of polarity along three axes (apical-basal, medio-lateral, and dorso-ventral/abaxial-adaxial), specification of tissue types and their coordinated growth, and maintenance of communication between the organ and the entire organism. The gynoecium of the model plant Arabidopsis thaliana embodies the female reproductive organ and has proven an excellent model system for studying organ establishment and development, given its division into different regions with distinct symmetries and highly diverse tissue types. Upon pollination, the gynoecium undergoes dramatic changes in morphology and developmental programming to form the seed-containing fruit. In this review, we wish to provide a detailed overview of the molecular and genetic mechanisms that are known to guide gynoecium and fruit development in A. thaliana. We describe networks of key genetic regulators and their interactions with hormonal dynamics in driving these developmental processes. The discoveries made to date clearly demonstrate that conclusions drawn from studying gynoecium and fruit development in flowering plants can be used to further our general understanding of organ formation across the plant kingdom. Importantly, this acquired knowledge is increasingly being used to improve fruit and seed crops, facilitated by the recent profound advances in genomics, cloning, and gene-editing technologies.
Collapse
Affiliation(s)
- Sara Simonini
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom.
| |
Collapse
|
14
|
Guo Q, Liu Q, Smith NA, Liang G, Wang MB. RNA Silencing in Plants: Mechanisms, Technologies and Applications in Horticultural Crops. Curr Genomics 2016; 17:476-489. [PMID: 28217004 PMCID: PMC5108043 DOI: 10.2174/1389202917666160520103117] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 12/20/2022] Open
Abstract
Understanding the fundamental nature of a molecular process or a biological pathway is often a catalyst for the development of new technologies in biology. Indeed, studies from late 1990s to early 2000s have uncovered multiple overlapping but functionally distinct RNA silencing pathways in plants, including the posttranscriptional microRNA and small interfering RNA pathways and the transcriptional RNA-directed DNA methylation pathway. These findings have in turn been exploited for developing artificial RNA silencing technologies such as hairpin RNA, artificial microRNA, intrinsic direct repeat, 3' UTR inverted repeat, artificial trans-acting siRNA, and virus-induced gene silencing technologies. Some of these RNA silencing technologies, such as the hairpin RNA technology, have already been widely used for genetic improvement of crop plants in agriculture. For horticultural plants, RNA silencing technologies have been used to increase disease and pest resistance, alter plant architecture and flowering time, improve commercial traits of fruits and flowers, enhance nutritional values, remove toxic compounds and allergens, and develop high-value industrial products. In this article we aim to provide an overview of the RNA silencing pathways in plants, summarize the existing RNA silencing technologies, and review the current progress in applying these technologies for the improvement of agricultural crops particularly horticultural crops.
Collapse
Affiliation(s)
- Qigao Guo
- College of Horticulture & Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Qing Liu
- Commonwealth Scientific and Industrial Research Organisation Agriculture (CSIRO), ACT 2601, Australia
| | - Neil A Smith
- Commonwealth Scientific and Industrial Research Organisation Agriculture (CSIRO), ACT 2601, Australia
| | - Guolu Liang
- College of Horticulture & Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organisation Agriculture (CSIRO), ACT 2601, Australia
| |
Collapse
|
15
|
Global Transcriptomic Analysis of Targeted Silencing of Two Paralogous ACC Oxidase Genes in Banana. Int J Mol Sci 2016; 17:ijms17101632. [PMID: 27681726 PMCID: PMC5085665 DOI: 10.3390/ijms17101632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 08/22/2016] [Accepted: 09/13/2016] [Indexed: 11/26/2022] Open
Abstract
Among 18 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase homologous genes existing in
the banana genome there are two genes, Mh-ACO1 and
Mh-ACO2, that participate in banana fruit ripening. To better
understand the physiological functions of Mh-ACO1 and
Mh-ACO2, two hairpin-type siRNA expression vectors targeting both the
Mh-ACO1 and Mh-ACO2 were constructed and incorporated
into the banana genome by Agrobacterium-mediated transformation. The
generation of Mh-ACO1 and Mh-ACO2 RNAi transgenic banana
plants was confirmed by Southern blot analysis. To gain insights into the functional
diversity and complexity between Mh-ACO1 and Mh-ACO2,
transcriptome sequencing of banana fruits using the Illumina next-generation sequencer was
performed. A total of 32,093,976 reads, assembled into 88,031 unigenes for 123,617
transcripts were obtained. Significantly enriched Gene Oncology (GO) terms and the number
of differentially expressed genes (DEGs) with GO annotation were ‘catalytic
activity’ (1327, 56.4%), ‘heme binding’ (65, 2.76%),
‘tetrapyrrole binding’ (66, 2.81%), and ‘oxidoreductase
activity’ (287, 12.21%). Real-time RT-PCR was further performed with mRNAs from
both peel and pulp of banana fruits in Mh-ACO1 and
Mh-ACO2 RNAi transgenic plants. The results showed that expression
levels of genes related to ethylene signaling in ripening banana fruits were strongly
influenced by the expression of genes associated with ethylene biosynthesis.
Collapse
|
16
|
El-Sharkawy I, Sherif S, El Kayal W, Jones B, Li Z, Sullivan AJ, Jayasankar S. Overexpression of plum auxin receptor PslTIR1 in tomato alters plant growth, fruit development and fruit shelf-life characteristics. BMC PLANT BIOLOGY 2016; 16:56. [PMID: 26927309 PMCID: PMC4772300 DOI: 10.1186/s12870-016-0746-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/26/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND TIR1-like proteins are F-box auxin receptors. Auxin binding to the F-box receptor proteins promotes the formation of SCF(TIR1) ubiquitin ligase complex that targets the auxin repressors, Aux/IAAs, for degradation via the ubiquitin/26S proteasome pathway. The release of auxin response factors (ARFs) from their Aux/IAA partners allows ARFs to mediate auxin-responsive changes in downstream gene transcription. In an attempt to understand the potential role of auxin during fruit development, a plum auxin receptor, PslTIR1, has previously been characterized at the cellular, biochemical and molecular levels, but the biological significance of this protein is still lacking. In the present study, tomato (Solanum lycopersicum) was used as a model to investigate the phenotypic and molecular changes associated with the overexpression of PslTIR1. RESULTS The findings of the present study highlighted the critical role of PslTIR1 as positive regulator of auxin-signalling in coordinating the development of leaves and fruits. This was manifested by the entire leaf morphology of transgenic tomato plants compared to the wild-type compound leaf patterning. Moreover, transgenic plants produced parthenocarpic fruits, a characteristic property of auxin hypersensitivity. The autocatalytic ethylene production associated with the ripening of climacteric fruits was not significantly altered in transgenic tomato fruits. Nevertheless, the fruit shelf-life characteristics were affected by transgene presence, mainly through enhancing fruit softening rate. The short shelf-life of transgenic tomatoes was associated with dramatic upregulation of several genes encoding proteins involved in cell-wall degradation, which determine fruit softening and subsequent fruit shelf-life. CONCLUSIONS The present study sheds light into the involvement of PslTIR1 in regulating leaf morphology, fruit development and fruit softening-associated ripening, but not autocatalytic ethylene production. The results demonstrate that auxin accelerates fruit softening independently of ethylene action and this is probably mediated through the upregulation of many cell-wall metabolism genes.
Collapse
Affiliation(s)
- I El-Sharkawy
- Department of Plant Agriculture, University of Guelph, Vineland Station, ON, Canada.
- Damanhour University, Faculty of Agriculture, Damanhour, Egypt.
| | - S Sherif
- Department of Plant Agriculture, University of Guelph, Vineland Station, ON, Canada.
- Damanhour University, Faculty of Agriculture, Damanhour, Egypt.
| | - W El Kayal
- Department of Plant Agriculture, University of Guelph, Vineland Station, ON, Canada.
| | - B Jones
- The University of Sydney, Faculty of Agriculture, Sydney, Australia.
| | - Z Li
- Chongqing University, Genetic Engineering Research Center, Bioengineering College, Chongqing, China.
| | - A J Sullivan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada.
| | | |
Collapse
|
17
|
Kamthan A, Chaudhuri A, Kamthan M, Datta A. Small RNAs in plants: recent development and application for crop improvement. FRONTIERS IN PLANT SCIENCE 2015; 6:208. [PMID: 25883599 PMCID: PMC4382981 DOI: 10.3389/fpls.2015.00208] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/16/2015] [Indexed: 05/19/2023]
Abstract
The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects) and abiotic stresses (drought, salinity, cold, etc.). Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. microRNAs are key regulators of important plant processes like growth, development, and response to various stresses. In spite of similarity in size (20-24 nt), miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. microRNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA (sRNA) based transgenics are much safer for consumption than those over-expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of sRNAs and its application for crop improvement.
Collapse
Affiliation(s)
- Ayushi Kamthan
- National Institute of Plant Genome ResearchNew Delhi, India
| | | | - Mohan Kamthan
- Indian Institute of Toxicology ResearchLucknow, India
| | - Asis Datta
- National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
18
|
Pandey R, Gupta A, Chowdhary A, Pal RK, Rajam MV. Over-expression of mouse ornithine decarboxylase gene under the control of fruit-specific promoter enhances fruit quality in tomato. PLANT MOLECULAR BIOLOGY 2015; 87:249-60. [PMID: 25537646 DOI: 10.1007/s11103-014-0273-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/07/2014] [Indexed: 05/23/2023]
Abstract
Diamine putrescine (Put) and polyamines; spermidine (Spd) and spermine (Spm) are essential component of every cell because of their involvement in the regulation of cell division, growth and development. The aim of this study is to enhance the levels of Put during fruit development and see its implications in ripening and quality of tomato fruits. Transgenic tomato plants over-expressing mouse ornithine decarboxylase gene under the control of fruit-specific promoter (2A11) were developed. Transgenic fruits exhibited enhanced levels of Put, Spd and Spm, with a concomitant reduction in ethylene levels, rate of respiration and physiological loss of water. Consequently such fruits displayed significant delay of on-vine ripening and prolonged shelf life over untransformed fruits. The activation of Put biosynthetic pathway at the onset of ripening in transgenic fruits is also consistent with the improvement of qualitative traits such as total soluble solids, titratable acids and total sugars. Such changes were associated with alteration in expression pattern of ripening specific genes. Transgenic fruits were also fortified with important nutraceuticals like lycopene, ascorbate and antioxidants. Therefore, these transgenic tomatoes would be useful for the improvement of tomato cultivars through breeding approaches.
Collapse
MESH Headings
- Animals
- Biogenic Polyamines/metabolism
- Ethylenes/biosynthesis
- Food, Genetically Modified
- Fruit/enzymology
- Fruit/genetics
- Fruit/growth & development
- Genes, Plant
- Solanum lycopersicum/enzymology
- Solanum lycopersicum/genetics
- Solanum lycopersicum/growth & development
- Mice
- Nutritive Value
- Ornithine Decarboxylase/genetics
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Promoter Regions, Genetic
- Putrescine/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Proteins/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Roopali Pandey
- Plant Polyamine, Transgenic and RNAi Research Laboratory, Department of Genetics, University of Delhi South Campus, New Delhi, 110021, India
| | | | | | | | | |
Collapse
|
19
|
Younis A, Siddique MI, Kim CK, Lim KB. RNA Interference (RNAi) Induced Gene Silencing: A Promising Approach of Hi-Tech Plant Breeding. Int J Biol Sci 2014; 10:1150-8. [PMID: 25332689 PMCID: PMC4202031 DOI: 10.7150/ijbs.10452] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/22/2014] [Indexed: 12/27/2022] Open
Abstract
RNA interference (RNAi) is a promising gene regulatory approach in functional genomics that has significant impact on crop improvement which permits down-regulation in gene expression with greater precise manner without affecting the expression of other genes. RNAi mechanism is expedited by small molecules of interfering RNA to suppress a gene of interest effectively. RNAi has also been exploited in plants for resistance against pathogens, insect/pest, nematodes, and virus that cause significant economic losses. Keeping beside the significance in the genome integrity maintenance as well as growth and development, RNAi induced gene syntheses are vital in plant stress management. Modifying the genes by the interference of small RNAs is one of the ways through which plants react to the environmental stresses. Hence, investigating the role of small RNAs in regulating gene expression assists the researchers to explore the potentiality of small RNAs in abiotic and biotic stress management. This novel approach opens new avenues for crop improvement by developing disease resistant, abiotic or biotic stress tolerant, and high yielding elite varieties.
Collapse
Affiliation(s)
- Adnan Younis
- 1. Department of Horticultural Science, Kyungpook National University, Daegu 702-701, Korea
- 2. Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Irfan Siddique
- 3. Department of Plant Science, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea
| | - Chang-Kil Kim
- 1. Department of Horticultural Science, Kyungpook National University, Daegu 702-701, Korea
| | - Ki-Byung Lim
- 1. Department of Horticultural Science, Kyungpook National University, Daegu 702-701, Korea
| |
Collapse
|
20
|
Dutt M, Dhekney SA, Soriano L, Kandel R, Grosser JW. Temporal and spatial control of gene expression in horticultural crops. HORTICULTURE RESEARCH 2014; 1:14047. [PMID: 26504550 PMCID: PMC4596326 DOI: 10.1038/hortres.2014.47] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/19/2014] [Accepted: 08/06/2014] [Indexed: 05/05/2023]
Abstract
Biotechnology provides plant breeders an additional tool to improve various traits desired by growers and consumers of horticultural crops. It also provides genetic solutions to major problems affecting horticultural crops and can be a means for rapid improvement of a cultivar. With the availability of a number of horticultural genome sequences, it has become relatively easier to utilize these resources to identify DNA sequences for both basic and applied research. Promoters play a key role in plant gene expression and the regulation of gene expression. In recent years, rapid progress has been made on the isolation and evaluation of plant-derived promoters and their use in horticultural crops, as more and more species become amenable to genetic transformation. Our understanding of the tools and techniques of horticultural plant biotechnology has now evolved from a discovery phase to an implementation phase. The availability of a large number of promoters derived from horticultural plants opens up the field for utilization of native sequences and improving crops using precision breeding. In this review, we look at the temporal and spatial control of gene expression in horticultural crops and the usage of a variety of promoters either isolated from horticultural crops or used in horticultural crop improvement.
Collapse
Affiliation(s)
- Manjul Dutt
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Sadanand A Dhekney
- Department of Plant Sciences, Sheridan Research and Extension Center, University of Wyoming, Sheridan, WY 82801, USA
| | - Leonardo Soriano
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
- Universidade de Sao Paulo, Centro de Energia Nuclear na Agricultura, Piracicaba, Brazil
| | - Raju Kandel
- Department of Plant Sciences, Sheridan Research and Extension Center, University of Wyoming, Sheridan, WY 82801, USA
| | - Jude W Grosser
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| |
Collapse
|
21
|
Kumar R, Khurana A, Sharma AK. Role of plant hormones and their interplay in development and ripening of fleshy fruits. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4561-75. [PMID: 25028558 DOI: 10.1093/jxb/eru277] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant hormones have been extensively studied for their roles in the regulation of various aspects of plant development. However, in the last decade important new insights have been made into their action during development and ripening, in both dry and fleshy fruits. Emerging evidence suggests that relative functions of plant hormones are not restricted to a particular stage, and a complex network of more than one plant hormone is involved in controlling various aspects of fruit development. Though some areas are extensively covered, considerable gaps in our knowledge and understanding still exist in the control of hormonal networks and crosstalk between different hormones during fruit expansion, maturation, and various other aspects of ripening. Here, we evaluate the new knowledge on their relative roles during tomato fruit development with a view to understand their mechanism of action in fleshy fruits. For a better understanding, pertinent evidences available on hormonal crosstalk during fruit development in other species are also discussed. We envisage that such detailed knowledge will help design new strategies for effective manipulation of fruit ripening.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India. Current address: Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Ashima Khurana
- Zakir Husain Delhi College, University of Delhi, New Delhi 110002, India
| | - Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
22
|
Van de Poel B, Bulens I, Hertog MLATM, Nicolai BM, Geeraerd AH. A transcriptomics-based kinetic model for ethylene biosynthesis in tomato (Solanum lycopersicum) fruit: development, validation and exploration of novel regulatory mechanisms. THE NEW PHYTOLOGIST 2014; 202:952-963. [PMID: 24443955 DOI: 10.1111/nph.12685] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/17/2013] [Indexed: 06/03/2023]
Abstract
The gaseous plant hormone ethylene is involved in many physiological processes including climacteric fruit ripening, in which it is a key determinant of fruit quality. A detailed model that describes ethylene biochemistry dynamics is missing. Often, kinetic modeling is used to describe metabolic networks or signaling cascades, mostly ignoring the link with transcriptomic data. We have constructed an elegant kinetic model that describes the transfer of genetic information into abundance and metabolic activity of proteins for the entire ethylene biosynthesis pathway during fruit development and ripening of tomato (Solanum lycopersicum). Our model was calibrated against a vast amount of transcriptomic, proteomic and metabolic data and showed good descriptive qualities. Subsequently it was validated successfully against several ripening mutants previously described in the literature. The model was used as a predictive tool to evaluate novel and existing hypotheses regarding the regulation of ethylene biosynthesis. This bottom-up kinetic network model was used to indicate that a side-branch of the ethylene pathway, the formation of the dead-end product 1-(malonylamino)-1-aminocyclopropane-1-carboxylic acid (MACC), might have a strong effect on eventual ethylene production. Furthermore, our in silico analyses indicated potential (post-) translational regulation of the ethylene-forming enzyme ACC oxidase.
Collapse
Affiliation(s)
- Bram Van de Poel
- Division of MeBioS, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| | - Inge Bulens
- Division of MeBioS, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| | - Maarten L A T M Hertog
- Division of MeBioS, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| | - Bart M Nicolai
- Division of MeBioS, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
- Flanders Centre of Postharvest Technology (VCBT), Willem de Croylaan 42, 3001, Leuven, Belgium
| | - Annemie H Geeraerd
- Division of MeBioS, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| |
Collapse
|
23
|
Saurabh S, Vidyarthi AS, Prasad D. RNA interference: concept to reality in crop improvement. PLANTA 2014; 239:543-64. [PMID: 24402564 DOI: 10.1007/s00425-013-2019-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 12/21/2013] [Indexed: 05/18/2023]
Abstract
The phenomenon of RNA interference (RNAi) is involved in sequence-specific gene regulation driven by the introduction of dsRNA resulting in inhibition of translation or transcriptional repression. Since the discovery of RNAi and its regulatory potentials, it has become evident that RNAi has immense potential in opening a new vista for crop improvement. RNAi technology is precise, efficient, stable and better than antisense technology. It has been employed successfully to alter the gene expression in plants for better quality traits. The impact of RNAi to improve the crop plants has proved to be a novel approach in combating the biotic and abiotic stresses and the nutritional improvement in terms of bio-fortification and bio-elimination. It has been employed successfully to bring about modifications of several desired traits in different plants. These modifications include nutritional improvements, reduced content of food allergens and toxic compounds, enhanced defence against biotic and abiotic stresses, alteration in morphology, crafting male sterility, enhanced secondary metabolite synthesis and seedless plant varieties. However, crop plants developed by RNAi strategy may create biosafety risks. So, there is a need for risk assessment of GM crops in order to make RNAi a better tool to develop crops with biosafety measures. This article is an attempt to review the RNAi, its biochemistry, and the achievements attributed to the application of RNAi in crop improvement.
Collapse
Affiliation(s)
- Satyajit Saurabh
- Department of Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835125, India
| | | | | |
Collapse
|
24
|
Gupta A, Pal RK, Rajam MV. Delayed ripening and improved fruit processing quality in tomato by RNAi-mediated silencing of three homologs of 1-aminopropane-1-carboxylate synthase gene. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:987-95. [PMID: 23507024 DOI: 10.1016/j.jplph.2013.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 05/03/2023]
Abstract
The ripening hormone, ethylene is known to initiate, modulate and co-ordinate the expression of various genes involved in the ripening process. The burst in ethylene production is the key event for the onset of ripening in climacteric fruits, including tomatoes. Therefore ethylene is held accountable for the tons of post-harvest losses due to over-ripening and subsequently resulting in fruit rotting. In the present investigation, delayed ripening tomatoes were generated by silencing three homologs of 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) gene during the course of ripening using RNAi technology. The chimeric RNAi-ACS construct designed to target ACS homologs, effectively repressed the ethylene production in tomato fruits. Fruits from such lines exhibited delayed ripening and extended shelf life for ∼45 days, with improved juice quality. The ethylene suppression brought about compositional changes in these fruits by enhancing polyamine (PA) levels. Further, decreased levels of ethylene in RNAi-ACS fruits has led to the altered levels of various ripening-specific transcripts, especially the up-regulation of PA biosynthesis and ascorbic acid (AsA) metabolism genes and down-regulation of cell wall hydrolyzing enzyme genes. These results suggest that the down-regulation of ACS homologs using RNAi can be an effective approach for obtaining delayed ripening with longer shelf life and an enhanced processing quality of tomato fruits. Also, the chimeric gene fusion can be used as an effective design for simultaneous silencing of more than one gene. These observations would be useful in better understanding of the ethylene and PA signaling during fruit ripening and molecular mechanisms underlying the interaction of these two molecules in affecting fruit quality traits.
Collapse
Affiliation(s)
- Aarti Gupta
- Plant Polyamine, Transgenic and RNAi Research Laboratory, Department of Genetics, University of Delhi South Campus, New Delhi 110021, India
| | | | | |
Collapse
|
25
|
Yogendra KN, Ramanjini Gowda PH. Phenotypic and molecular characterization of a tomato (Solanum lycopersicum L.) F2 population segregation for improving shelf life. GENETICS AND MOLECULAR RESEARCH 2013; 12:506-18. [PMID: 23359056 DOI: 10.4238/2013.january.9.4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Breeding for better quality fruits is a major focus for tomatoes, which are continuously subjected to post-harvest losses. Several methods have been used to improve the fruit shelf life of tomatoes, including the use of ripening gene mutants of Solanum lycopersicum. We developed extended shelf-life tomato hybrids with better quality fruits using ripening mutants. Nine tomato crosses were developed using 3 fruit ripening gene mutants of S. lycopersicum [alcobaca (alc), non-ripening, and ripening inhibitor] and 3 agronomically superior Indian cultivars ('Sankranti', 'Vaibhav', and 'Pusaruby') with short shelf life. The hybrid progenies developed from alc x 'Vaibhav' had the highest extended shelf life (up to 40 days) compared with that of other varieties and hybrids. Further, the F(2) progenies of alc x 'Vaibhav' were evaluated for fruit quality traits and yield parameters. A wide range of genetic variability was observed in shelf life (5-106 days) and fruit firmness (0.55-10.65 lbs/cm(2)). The potential polymorphic simple sequence repeat markers underlying shelf life traits were identified in an F(2) mapping population. The marker association with fruit quality traits and yield was confirmed with single-marker analysis and composite interval mapping. The genetic parameters analyzed in the parents and F(1) and F(2) populations indicated that the cross between the cultivar 'Vaibhav' and ripening gene mutant alc yielded fruit with long shelf life and good quality.
Collapse
Affiliation(s)
- K N Yogendra
- Department of Plant Biotechnology, University of Agricultural Sciences, Bangalore, India.
| | | |
Collapse
|
26
|
Katoch R, Thakur N. Advances in RNA interference technology and its impact on nutritional improvement, disease and insect control in plants. Appl Biochem Biotechnol 2013; 169:1579-605. [PMID: 23322250 DOI: 10.1007/s12010-012-0046-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/17/2012] [Indexed: 12/11/2022]
Abstract
This review highlights the advances in the knowledge of RNA interference (RNAi) and discusses recent progress on the functionality of different components RNAi machinery operating in the organisms. The silencing of genes by RNA interference has become the technology of choice for investigation of gene functions in different organisms. The refinement in the knowledge of the endogenous RNAi pathways in plants along with the development of new strategies and applications for the improvement of nutritional value of important agricultural crops through suppression of genes in different plants have opened new vistas for nutritional security. The improvement in the nutritional status of the plants and reduction in the level of toxins or antinutrients was desired for long, but the available technology was not completely successful in achieving the tissue specific regulation of some genes. In the recent years, a number of economically important crop plants have been tested successfully for improving plant nutritional value through metabolic engineering using RNAi. The implications of this technology for crop improvement programs, including nutritional enrichment, reduction of antinutrients, disease, and insect control have been successfully tested in variety of crops with commercial considerations. The enhancement of the nutraceutical traits for the desired health benefits in common crop plants through manipulation of gene expression has been elaborated in this article. The tremendous potential with RNAi technology is expected to revolutionize the modern agriculture for meeting the growing challenges is discussed.
Collapse
Affiliation(s)
- Rajan Katoch
- Biochemistry Laboratory, Department of Crop Improvement, College of Agriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India 176062.
| | | |
Collapse
|
27
|
Katoch R, Thakur N. RNA interference: a promising technique for the improvement of traditional crops. Int J Food Sci Nutr 2012; 64:248-59. [PMID: 22861122 DOI: 10.3109/09637486.2012.713918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
RNA interference (RNAi) is a homology-dependent gene-silencing technology that involves double-stranded RNA directed against a target gene. This technique has emerged as powerful tool in understanding the functions of a number of genes in recent years. For the improvement in the nutritional status of the plants and reduction in the level of antinutrients, the conventional breeding methods were not completely successful in achieving the tissue-specific regulation of some genes. RNAi has shown successful results in a number of plant species for nutritional improvement, change in morphology and alteration in metabolite synthesis. This technology has been applied mostly in genetic engineering of important crop plants, and till date there are no reports of its application for the improvement of traditional/underutilized crops. In this study, we discuss current knowledge of RNAi function and concept and strategies for the improvement of traditional crops. Practical application. Although RNAi has been extensively used for the improvement of popular crops, no attention has been given for the use of this technology for the improvement of underutilized crops. This study describes the importance of use of this technology for the improvement of underutilized crops.
Collapse
Affiliation(s)
- Rajan Katoch
- Biochemistry Laboratory, Department of Crop Improvement, College of Agriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India.
| | | |
Collapse
|
28
|
Behboodian B, Mohd Ali Z, Ismail I, Zainal Z. Postharvest analysis of lowland transgenic tomato fruits harboring hpRNAi-ACO1 construct. ScientificWorldJournal 2012; 2012:439870. [PMID: 22919320 PMCID: PMC3417179 DOI: 10.1100/2012/439870] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/31/2012] [Indexed: 11/17/2022] Open
Abstract
The plant hormone, ethylene, is an important regulator which involved in regulating fruit ripening and flower senescence. In this study, RNA interference (RNAi) technology was employed to silence the genes involved in ethylene biosynthetic pathway. This was achieved by blocking the expression of specific gene encoding the ACC oxidase. Initially, cDNA corresponding to ACO1 of lowland tomato cultivar (MT1), which has high identity with ACO1 of Solanum lycopersicum in GenBank, was cloned through RT-PCR. Using a partial coding region of ACO1, one hpRNAi transformation vector was constructed and expressed ectopically under the 35S promoter. Results showed that transgenic lines harboring the hpRNA-ACO1 construct had lower ethylene production and a longer shelf life of 32 days as compared to 10 days for wild-type fruits. Changes in cell wall degrading enzyme activities were also investigated in cases where the transgenic fruits exhibited reduced rates of firmness loss, which can be associated with a decrease in pectin methylesterase (PME) and polygalacturonase (PG) activities. However, no significant change was detected in both transgenic and wild-type fruits in terms of β-galactosidase (β-Gal) activity and levels of total soluble solid, titratable acid and ascorbic acid.
Collapse
Affiliation(s)
- Bita Behboodian
- School of Biosciences and Biotechnology, Faculty Science and Technology, UKM, Selangor, 43600 Bangi, Malaysia
- Institute of System Biology, UKM, Selangor, 43600 Bangi, Malaysia
| | - Zainon Mohd Ali
- School of Biosciences and Biotechnology, Faculty Science and Technology, UKM, Selangor, 43600 Bangi, Malaysia
| | - Ismanizan Ismail
- School of Biosciences and Biotechnology, Faculty Science and Technology, UKM, Selangor, 43600 Bangi, Malaysia
| | - Zamri Zainal
- School of Biosciences and Biotechnology, Faculty Science and Technology, UKM, Selangor, 43600 Bangi, Malaysia
- Institute of System Biology, UKM, Selangor, 43600 Bangi, Malaysia
| |
Collapse
|
29
|
Okabe Y, Asamizu E, Ariizumi T, Shirasawa K, Tabata S, Ezura H. Availability of Micro-Tom mutant library combined with TILLING in molecular breeding of tomato fruit shelf-life. BREEDING SCIENCE 2012; 62:202-8. [PMID: 23136532 PMCID: PMC3405968 DOI: 10.1270/jsbbs.62.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 02/05/2012] [Indexed: 05/04/2023]
Abstract
Novel mutant alleles of an ethylene receptor Solanum lycopersicum ETHYLENE RESPONSE1 (SlETR1) gene, Sletr1-1 and Sletr1-2, were isolated from the Micro-Tom mutant library by TILLING in our previous study. They displayed different levels of impaired fruit ripening phenotype, suggesting that these alleles could be a valuable breeding material for improving shelf life of tomato fruit. To conduct practical use of the Sletr1 alleles in tomato breeding, genetic complementation analysis by transformation of genes carrying each allele is required. In this study, we generated and characterized transgenic lines over-expressing Sletr1-1 and Sletr1-2. All transgenic lines displayed ethylene insensitive phenotype and ripening inhibition, indicating that Sletr1-1 and Sletr1-2 associate with the ethylene insensitive phenotype. The level of ethylene sensitivity in the seedling was different between Sletr1-1 and Sletr1-2 transgenic lines, whereas no apparent difference was observed in fruit ripening phenotype. These results suggested that it is difficult to fine-tune the extent of ripening by transgenic approach even if the weaker allele (Sletr1-2) was used. Our present and previous studies indicate that the Micro-Tom mutant library combined with TILLING could be an efficient tool for exploring genetic variations of important agronomic traits in tomato breeding.
Collapse
Affiliation(s)
- Yoshihiro Okabe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Erika Asamizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
30
|
Li C, Wei J, Lin Y, Chen H. Gene silencing using the recessive rice bacterial blight resistance gene xa13 as a new paradigm in plant breeding. PLANT CELL REPORTS 2012; 31:851-62. [PMID: 22218673 DOI: 10.1007/s00299-011-1206-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 12/01/2011] [Accepted: 12/06/2011] [Indexed: 05/03/2023]
Abstract
Resistant germplasm resources are valuable for developing resistant varieties in agricultural production. However, recessive resistance genes are usually overlooked in hybrid breeding. Compared with dominant traits, however, they may confer resistance to different pathogenic races or pest biotypes with different mechanisms of action. The recessive rice bacterial blight resistance gene xa13, also involved in pollen development, has been cloned and its resistance mechanism has been recently characterized. This report describes the conversion of bacterial blight resistance mediated by the recessive xa13 gene into a dominant trait to facilitate its use in a breeding program. This was achieved by knockdown of the corresponding dominant allele Xa13 in transgenic rice using recently developed artificial microRNA technology. Tissue-specific promoters were used to exclude most of the expression of artificial microRNA in the anther to ensure that Xa13 functioned normally during pollen development. A battery of highly bacterial blight resistant transgenic plants with normal seed setting rates were acquired, indicating that highly specific gene silencing had been achieved. Our success with xa13 provides a paradigm that can be adapted to other recessive resistance genes.
Collapse
Affiliation(s)
- Changyan Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | |
Collapse
|
31
|
Zhu X, Wang A, Zhu S, Zhang L. Expression of ACO1, ERS1 and ERF1 genes in harvested bananas in relation to heat-induced defense against Colletotrichum musae. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1634-1640. [PMID: 21511361 DOI: 10.1016/j.jplph.2011.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 03/20/2011] [Accepted: 03/21/2011] [Indexed: 05/30/2023]
Abstract
The aim of this study was to investigate the connection between heat-induced ethylene signal changes and enhanced disease resistance. Heat enhanced ripening and elevated MaACO1 expression in naturally ripened bananas (NRB), while it delayed ripening and reduced MaACO1expression in the ethephon-treated bananas (ETB). However, in both cases, heat reduced lesion sizes infected by Colletotrichum musae. This indicates that heat-induced disease resistance in bananas was independent of ripening rate. The expression of MaERS1 gene was inhibited by heat treatment in both NRB and ETB, implying that heat as a physical signal could be sensed by banana fruits through the inhibition of ethylene receptor gene expression. The intensity of MaERF1 transcript signals was elevated in heated bananas, suggesting that the enhanced accumulation of MaERF1 transcript following heat treatment could play an important role in activation of the defense system. In ETB, inhibition of JA biosynthesis by application of IBU down-regulated the expression of MaERF and significantly weakened disease resistance, suggesting involvement of endogenous JA in induction of the gene expression, which was reconfirmed by the fact that exposure to exogenous MeJA following the combination of heat plus IBU treatment restored part of the gene expression. On the other hand, in NRB, application of IBU elevated level of MaERF1 expression at 24h and enhanced disease resistance, suggesting that, when banana was not exposed to ethephon, the expression of MaERF1 gene was not JA dependent, which was verified by the fact that MeJA application did not enhance MaERF1 gene expression. In conclusion, heat-induced disease resistance in harvested bananas could involve down-regulation of MaERS1 expression and up-regulation of MaERF1 expression and JA pathway could be involved in heat activation of the defense system in bananas exposed to ethephon.
Collapse
Affiliation(s)
- Xiangfei Zhu
- Guangdong Province Key Laboratory of Postharvest Physiology and Technology of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, PR China
| | | | | | | |
Collapse
|
32
|
Role of RNA interference in plant improvement. Naturwissenschaften 2011; 98:473-92. [PMID: 21503773 DOI: 10.1007/s00114-011-0798-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 01/07/2023]
Abstract
Research to alter crops for their better performance involving modern technology is underway in numerous plants, and achievements in transgenic plants are impacting crop improvements in unparalleled ways. Striking progress has been made using genetic engineering technology over the past two decades in manipulating genes from diverse and exotic sources, and inserting them into crop plants for inducing desirable characteristics. RNA interference (RNAi) has recently been identified as a natural mechanism for regulation of gene expression in all higher organisms from plants to humans and promises greater accuracy and precision to plant improvement. The expression of any gene can be down-regulated in a highly explicit manner exclusive of affecting the expression of any other gene by using RNAi technologies. Additional research in this field has been focused on a number of other areas including microRNAs, hairpin RNA, and promoter methylation. Manipulating new RNAi pathways, which generate small RNA molecules to amend gene expression in crops, can produce new quality traits and having better potentiality of protection against abiotic and biotic stresses. Nutritional improvement, change in morphology, or enhanced secondary metabolite synthesis are some of the other advantages of RNAi technology. In addition to its roles in regulating gene expression, RNAi is also used as a natural defense mechanism against molecular parasites such as jumping genes and viral genetic elements that affect genome stability. Even though much advancement has been made on the field of RNAi over the preceding few years, the full prospective of RNAi for crop improvement remains to be fully realized. The intricacy of RNAi pathway, the molecular machineries, and how it relates to plant development are still to be explained.
Collapse
|
33
|
Dahmani-Mardas F, Troadec C, Boualem A, Lévêque S, Alsadon AA, Aldoss AA, Dogimont C, Bendahmane A. Engineering melon plants with improved fruit shelf life using the TILLING approach. PLoS One 2010; 5:e15776. [PMID: 21209891 PMCID: PMC3012703 DOI: 10.1371/journal.pone.0015776] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 11/26/2010] [Indexed: 11/18/2022] Open
Abstract
Background Fruit ripening and softening are key traits that have an effect on food supply, fruit nutritional value and consequently, human health. Since ethylene induces ripening of climacteric fruit, it is one of the main targets to control fruit over ripening that leads to fruit softening and deterioration. The characterization of the ethylene pathway in Arabidopsis and tomato identified key genes that control fruit ripening. Methodology/Principal Findings To engineer melon fruit with improved shelf-life, we conducted a translational research experiment. We set up a TILLING platform in a monoecious and climacteric melon line, cloned genes that control ethylene production and screened for induced mutations that lead to fruits with enhanced shelf life. Two missense mutations, L124F and G194D, of the ethylene biosynthetic enzyme, ACC oxidase 1, were identified and the mutant plants were characterized with respect to fruit maturation. The L124F mutation is a conservative mutation occurring away from the enzyme active site and thus was predicted to not affect ethylene production and thus fruit ripening. In contrast, G194D modification occurs in a highly conserved amino acid position predicted, by crystallographic analysis, to affect the enzymatic activity. Phenotypic analysis of the G194D mutant fruit showed complete delayed ripening and yellowing with improved shelf life and, as predicted, the L124F mutation did not have an effect. Conclusions/Significance We constructed a mutant collection of 4023 melon M2 families. Based on the TILLING of 11 genes, we calculated the overall mutation rate of one mutation every 573 kb and identified 8 alleles per tilled kilobase. We also identified a TILLING mutant with enhanced fruit shelf life. This work demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. As cucurbits are model species in different areas of plant biology, we anticipate that the developed tool will be widely exploited by the scientific community.
Collapse
Affiliation(s)
- Fatima Dahmani-Mardas
- Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS, Evry, France
| | - Christelle Troadec
- Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS, Evry, France
| | - Adnane Boualem
- Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS, Evry, France
| | - Sylvie Lévêque
- Unité de Génétique et Amélioration des Fruits et Légumes, INRA UR1052, Montfavet, France
| | - Abdullah A. Alsadon
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. Aldoss
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Catherine Dogimont
- Unité de Génétique et Amélioration des Fruits et Légumes, INRA UR1052, Montfavet, France
| | - Abdelhafid Bendahmane
- Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS, Evry, France
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| |
Collapse
|
34
|
|
35
|
Abstract
RNAi refers to several different types of gene silencing mediated by small, dsRNA molecules. Over the course of 20 years, the scientific understanding of RNAi has developed from the initial observation of unexpected expression patterns to a sophisticated understanding of a multi-faceted, evolutionarily conserved network of mechanisms that regulate gene expression in many organisms. It has also been developed as a genetic tool that can be exploited in a wide range of species. Because transgene-induced RNAi has been effective at silencing one or more genes in a wide range of plants, this technology also bears potential as a powerful functional genomics tool across the plant kingdom. Transgene-induced RNAi has indeed been shown to be an effective mechanism for silencing many genes in many organisms, but the results from multiple projects which attempted to exploit RNAi on a genome-wide scale suggest that there is a great deal of variation in the silencing efficacy between transgenic events, silencing targets and silencing-induced phenotype. The results from these projects indicate several important variables that should be considered in experimental design prior to the initiation of functional genomics efforts based on RNAi silencing. In recent years, alternative strategies have been developed for targeted gene silencing, and a combination of approaches may also enhance the use of targeted gene silencing for functional genomics.
Collapse
Affiliation(s)
- Karen M McGinnis
- Department of Biological Sciences, Florida State University, Tallahassee, 32306-4295, USA.
| |
Collapse
|
36
|
Vegetables. BIOTECHNOLOGY IN AGRICULTURE AND FORESTRY 2010. [PMCID: PMC7121345 DOI: 10.1007/978-3-642-02391-0_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The conscious promotion of health by an appropriate, balanced diet has become an important social request. Vegetable thereby possesses a special importance due to its high vitamin, mineral and dietary fibre content. Major progress has been made over the past few years in the transformation of vegetables. The expression of several genes has been inhibited by sense gene suppression, and new traits caused by new gene constructs are stably inherited. This chapter reviews advances in various traits such as disease resistance, abiotic stress tolerance, quality improvement, pharmaceutical and industrial application. Results are presented from most important vegetable families, like Solanaceae, Brassicaceae, Fabaceae, Cucurbitaceae, Asteraceae, Apiaceae, Chenopodiaceae and Liliaceae. Although many research trends in this report are positive, only a few transgenic vegetables have been released from confined into precommercial testing or into use.
Collapse
|
37
|
Ripening of fleshy fruit: Molecular insight and the role of ethylene. Biotechnol Adv 2010; 28:94-107. [DOI: 10.1016/j.biotechadv.2009.10.002] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 09/09/2009] [Accepted: 09/09/2009] [Indexed: 01/16/2023]
|
38
|
Gupta V, Mathur S, Solanke AU, Sharma MK, Kumar R, Vyas S, Khurana P, Khurana JP, Tyagi AK, Sharma AK. Genome analysis and genetic enhancement of tomato. Crit Rev Biotechnol 2009; 29:152-81. [PMID: 19319709 DOI: 10.1080/07388550802688870] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Solanaceae is an important family of vegetable crops, ornamentals and medicinal plants. Tomato has served as a model member of this family largely because of its enriched cytogenetic, genetic, as well as physical, maps. Mapping has helped in cloning several genes of importance such as Pto, responsible for resistance against bacterial speck disease, Mi-1.2 for resistance against nematodes, and fw2.2 QTL for fruit weight. A high-throughput genome-sequencing program has been initiated by an international consortium of 10 countries. Since heterochromatin has been found to be concentrated near centromeres, the consortium is focusing on sequencing only the gene-rich euchromatic region. Genomes of the members of Solanaceae show a significant degree of synteny, suggesting that the tomato genome sequence would help in the cloning of genes for important traits from other Solanaceae members as well. ESTs from a large number of cDNA libraries have been sequenced, and microarray chips, in conjunction with wide array of ripening mutants, have contributed immensely to the understanding of the fruit-ripening phenomenon. Work on the analysis of the tomato proteome has also been initiated. Transgenic tomato plants with improved abiotic stress tolerance, disease resistance and insect resistance, have been developed. Attempts have also been made to develop tomato as a bioreactor for various pharmaceutical proteins. However, control of fruit quality and ripening remains an active and challenging area of research. Such efforts should pave the way to improve not only tomato, but also other solanaceous crops.
Collapse
Affiliation(s)
- Vikrant Gupta
- Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Modification of plant hormone levels and signaling as a tool in plant biotechnology. Biotechnol J 2009; 4:1293-304. [DOI: 10.1002/biot.200800286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
Pan G, Lou C. Isolation of an 1-aminocyclopropane-1-carboxylate oxidase gene from mulberry (Morus alba L.) and analysis of the function of this gene in plant development and stresses response. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1204-13. [PMID: 17997189 DOI: 10.1016/j.jplph.2007.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Revised: 02/11/2007] [Accepted: 02/14/2007] [Indexed: 05/24/2023]
Abstract
Mulberry (Morus alba) is an important crop tree involved in sericulture and pharmaceuticals. To further understand the development and the environmental adaptability mechanism of mulberry, a cDNA of the gene MaACO1 encoding 1-aminocyclopropane-1-carboxylate oxidase was isolated from mulberry. This was used to investigate stress-responsive expression in mulberry. Developmental expression of ACC oxidase in mulberry leaves and spatial expression in mulberry flowers were also investigated. Damage and low-temperature treatment promoted the expression of MaACO1 in mulberry. In leaves, expression of the MaACO1 gene increased in cotyledons and the lowest leaves with leaf development, but showed reduced levels in emerging leaves. In flowers, the pollinated stigma showed the highest expression level, followed by the unpollinated stigma, ovary, and immature flowers. These results suggest that high MaACO1 expression may be predominantly associated with tissue aging or senescence in mulberry.
Collapse
Affiliation(s)
- Gang Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | | |
Collapse
|
41
|
Ripening in papaya fruit is altered by ACC oxidase cosuppression. Transgenic Res 2008; 18:89-97. [PMID: 18612838 DOI: 10.1007/s11248-008-9197-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
Abstract
Papaya (Carica papaya) is a very important crop in many tropical countries but it is highly susceptible to parasitic diseases, physiological disorders, mechanical damage and fruit overripening. Here we report a study on ACC oxidase cosuppression and its effects on papaya fruit ripening. Papaya ACC oxidase was isolated using PCR and embriogenic cells transformed by biolistic using the CaMV 35S promoter to drive the expression of the PCR fragment in sense orientation. Fifty transgenic lines were recovered and 20 of those were grown under field conditions. Southern analysis showed incorporation of the transgene in different copy numbers in the papaya genome. Fruits were evaluated in terms of texture (firmness), colour development, respiration and ethylene production. A sharp reduction in ethylene and CO2 production was detected, whereas softening and colour development of the peel were also altered. Overall, transgenic fruits showed a delay in ripening rate. A reduction in mRNA level for ACC oxidase in transgenic fruit was clearly detectable by northern blot. More studies are necessary before this technology can be used to extend the shelf life of papaya fruit.
Collapse
|
42
|
HU ZL, CHEN XQ, CHEN GP, LÜ LJ, Donald G. The Influence of Co-Suppressing Tomato 1-Aminocyclopropane-1-Carboxylic Acid Oxidase I on the Expression of Fruit Ripening-Related and Pathogenesis-Related Protein Genes. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1671-2927(07)60063-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Travella S, Klimm TE, Keller B. RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. PLANT PHYSIOLOGY 2006; 142:6-20. [PMID: 16861570 PMCID: PMC1557595 DOI: 10.1104/pp.106.084517] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 07/12/2006] [Indexed: 05/11/2023]
Abstract
Insertional mutagenesis and gene silencing are efficient tools for the determination of gene function. In contrast to gain- or loss-of-function approaches, RNA interference (RNAi)-induced gene silencing can possibly silence multigene families and homoeologous genes in polyploids. This is of great importance for functional studies in hexaploid wheat (Triticum aestivum), where most of the genes are present in at least three homoeologous copies and conventional insertional mutagenesis is not effective. We have introduced into bread wheat double-stranded RNA-expressing constructs containing fragments of genes encoding Phytoene Desaturase (PDS) or the signal transducer of ethylene, Ethylene Insensitive 2 (EIN2). Transformed plants showed phenotypic changes that were stably inherited over at least two generations. These changes were very similar to mutant phenotypes of the two genes in diploid model plants. Quantitative real-time polymerase chain reaction revealed a good correlation between decreasing mRNA levels and increasingly severe phenotypes. RNAi silencing had the same quantitative effect on all three homoeologous genes. The most severe phenotypes were observed in homozygous plants that showed the strongest mRNA reduction and, interestingly, produced around 2-fold the amount of small RNAs compared to heterozygous plants. This suggests that the effect of RNAi in hexaploid wheat is gene-dosage dependent. Wheat seedlings with low mRNA levels for EIN2 were ethylene insensitive. Thus, EIN2 is a positive regulator of the ethylene-signaling pathway in wheat, very similar to its homologs in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Our data show that RNAi results in stably inherited phenotypes and therefore represents an efficient tool for functional genomic studies in polyploid wheat.
Collapse
Affiliation(s)
- Silvia Travella
- Institute of Plant Biology, University of Zurich, 8008 Zurich, Switzerland
| | | | | |
Collapse
|
44
|
Abstract
With the isolation and characterization of the key enzymes and proteins, and the corresponding genes, involved in ethylene biosynthesis and sensing it has become possible to manipulate plant ethylene levels and thereby alter a wide range of physiological processes. The phytohormone ethylene is an essential signaling molecule that affects a large number of physiological processes; plants deprived of ethylene do not grow and develop normally. In a search for flexible on-off ethylene control, scientists have used inducible organ- and tissue-specific promoters to drive expression of different transgenes. Here, the various strategies that have been used to genetically engineer plants with decreased ethylene biosynthesis and sensitivity are reviewed and discussed.
Collapse
Affiliation(s)
- Jennifer C Czarny
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
45
|
Heilersig HJB, Loonen A, Bergervoet M, Wolters AMA, Visser RGF. Post-transcriptional gene silencing of GBSSI in potato: effects of size and sequence of the inverted repeats. PLANT MOLECULAR BIOLOGY 2006; 60:647-62. [PMID: 16649104 DOI: 10.1007/s11103-005-5280-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 11/17/2005] [Indexed: 05/08/2023]
Abstract
In the past, silencing of granule-bound starch synthase (GBSSI) in potato was achieved by antisense technology, where it was observed that inclusion of the 3' end of the GBSSI coding region increased silencing efficiency. Since higher silencing efficiencies were desired, GBSSI inverted repeat constructs were designed and tested in potato. First, large inverted repeats comprising the 5' and the 3' half of the GBSSI cDNA were tested. The 5' IR construct gave a significantly higher silencing efficiency than the 3' IR construct. Since it was not known whether the observed difference was due to the sequence or the orientation of the inverted repeat, the GBSSI cDNA was divided into three regions, after which each region was tested in small inverted repeats in two orientations. To this end large numbers of independent transformants were produced for each construct. The results suggested that there was no effect of inverted repeat orientation on silencing efficiency. The percentage of transformants showing strong inhibition varied from 48% for a 3'-derived construct to 87% for a 5' as well as a middle region-derived construct. Similar to the large inverted repeats, the 3' sequences induced the least efficient silencing implying that the observed differences in silencing efficiency are caused by sequence differences. The small inverted repeat constructs with a repeat size of 500-600 bp and a spacer of about 150 bp were more efficient silencing inducers than the large inverted repeat constructs where the size of the repeat was 1.1 or 1.3 kb whilst the size of spacer was 1.3 or 1.1 kb. The results presented here show that size and sequence of the inverted repeat influenced silencing efficiency.
Collapse
MESH Headings
- Blotting, Northern
- DNA, Antisense/genetics
- DNA, Bacterial/genetics
- DNA, Complementary/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Plants, Genetically Modified
- RNA Interference
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Repetitive Sequences, Nucleic Acid/genetics
- Solanum tuberosum/enzymology
- Solanum tuberosum/genetics
- Solanum tuberosum/metabolism
- Starch/metabolism
- Starch Synthase/genetics
- Starch Synthase/metabolism
Collapse
Affiliation(s)
- H J B Heilersig
- Graduate School Experimental Plant Sciences, Laboratory of Plant Breeding, Department of Plant Sciences, Wageningen University, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Andersson M, Melander M, Pojmark P, Larsson H, Bülow L, Hofvander P. Targeted gene suppression by RNA interference: an efficient method for production of high-amylose potato lines. J Biotechnol 2006; 123:137-48. [PMID: 16466822 DOI: 10.1016/j.jbiotec.2005.11.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 10/20/2005] [Accepted: 11/02/2005] [Indexed: 11/15/2022]
Abstract
Production of high-amylose potato lines can be achieved by inhibition of two genes coding for starch branching enzymes. The use of antisense technology for gene inhibition have yielded a low frequency of high-amylose lines that mostly was correlated with high numbers of integrated T-DNA copies. To investigate whether the production of high-amylose lines could be improved, RNA interference was used for gene inhibition of the genes Sbe1 and Sbe2. Two constructs with 100 bp segments (pHAS2) or 200 bp segments (pHAS3) of both branching enzyme genes were cloned as inverted repeats controlled by a potato granule-bound starch synthase promoter. The construct pHAS3 was shown to be very efficient, yielding high-amylose quality in more than 50% of the transgenic lines. An antisense construct, included in the study as a comparator, resulted in only 3% of the transgenic lines being of high-amylose type. Noticeable was also that pHAS3 yielded low T-DNA copy inserts with an average of 83% of backbone-free transgenic lines being single copy events.
Collapse
|
47
|
Chaves ALS, Mello-Farias PCD. Ethylene and fruit ripening: from illumination gas to the control of gene expression, more than a century of discoveries. Genet Mol Biol 2006. [DOI: 10.1590/s1415-47572006000300020] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|