1
|
Topham K, Stockwell V, Grinstead S, Mollov D. Genomic characterization and survey of a second luteovirus infecting blueberries. Virus Res 2024; 350:199480. [PMID: 39428039 DOI: 10.1016/j.virusres.2024.199480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
New and emerging viral problems may be contributing to blueberry decline. In this research we described a new virus detected in Oregon blueberry production field and surveyed the region for its potential spread. The complete genome sequence of a putative new member of the genus Luteovirus was obtained from blueberry (Vaccinium corymbosum L.) by high throughput sequencing and 5'/3'-RACE. The new virus was tentatively named blueberry virus M (BlVM). Its genome is 5,018 nt long with four putative open reading frames. Similarly to some recently discovered luteoviruses, BlVM does not possess any movement protein (MP). Phylogenetic analysis confirmed clustering of BlVM with the group of non-MP luteoviruses, showing blueberry virus L as the most similar species. Through a small-scale high throughput sequencing survey we obtained 14 additional near complete genomic sequences. A larger survey of 2,654 samples by RT-PCR in Oregon and Washington (USA) found 52 BlVM-positive plants collected from four locations in Oregon. These findings will facilitate monitoring virus distribution and assessment of potential disease associated with this new and emerging blueberry virus.
Collapse
Affiliation(s)
- Katherine Topham
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States; USDA ARS, Horticultural Crops Disease and Pest Management Unit, Corvallis, OR, United States
| | - Virginia Stockwell
- USDA ARS, Horticultural Crops Disease and Pest Management Unit, Corvallis, OR, United States
| | - Samuel Grinstead
- USDA ARS, Molecular Plant Pathology Laboratory, Beltsville, MD, United States
| | - Dimitre Mollov
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States; USDA ARS, Horticultural Crops Disease and Pest Management Unit, Corvallis, OR, United States.
| |
Collapse
|
2
|
Acharya TP, Malladi A, Nambeesan SU. Sustained carbon import supports sugar accumulation and anthocyanin biosynthesis during fruit development and ripening in blueberry (Vaccinium ashei). Sci Rep 2024; 14:24964. [PMID: 39443596 PMCID: PMC11500416 DOI: 10.1038/s41598-024-74929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Fruit ripening is a highly coordinated process involving molecular and biochemical changes that collectively determine fruit quality. The underlying metabolic programs and their transitions leading to fruit ripening remain largely under-characterized in blueberry (Vaccinium sp.), which exhibits atypical climacteric behavior. In this study, we focused on sugar, acid and anthocyanin metabolism in two rabbiteye blueberry cultivars, Premier and Powderblue, during fruit development and ripening. Concentrations of the three major sugars, sucrose (Suc), glucose (Glc), and fructose (Fru) increased steadily during fruit development leading up to ripening, and increased dramatically by around 2-fold in 'Premier' and 2- to 3-fold in 'Powderblue' during the final stage of fruit ripening. Starch concentration was very low throughout fruit development in both cultivars indicating that it does not serve the role of a major transitory carbon (C) storage form in blueberry fruit. Together, these patterns indicate continued import of C, likely in the form of Suc, throughout blueberry fruit development. Concentrations of the predominant acids, malate and quinate, decreased during ripening, and may contribute to increased shikimate biosynthesis which, in-turn, allows for downstream phenylpropanoid metabolism leading to anthocyanin synthesis. Consistently, anthocyanin concentrations were highest in fully ripened blue fruit. Weighted gene co-expression network analysis (WGCNA) was performed using a 'Powderblue' fruit ripening transcriptome and targeted fruit metabolite concentration data. A 'dark turquoise' module positively correlated with sugars and anthocyanins, and negatively correlated with acids (malate, quinate), was identified. Gene Ontology (GO) enrichment analysis of this module identified transcripts related to sugar, acid, and phenylpropanoid metabolism pathways. Among these, increased transcript abundance of a VACUOLAR INVERTASE during ripening was consistent with sugar storage in the vacuole. In general, transcript abundance of the glycolysis pathway genes was upregulated during ripening. The transcript abundance of PHOSPHOENOLPYRUVATE (PEP) CARBOXYKINASE increased during fruit ripening and was negatively correlated with malate concentration, suggesting increased malate conversion to PEP, which supports anthocyanin production during fruit ripening. This was further supported by the co-upregulation of several anthocyanin biosynthesis-related genes. Together, this study provides insights into important metabolic programs, and their underlying gene expression patterns during fruit development and ripening in blueberry.
Collapse
Affiliation(s)
- Tej P Acharya
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA, 30602, USA
- U.S. Department of Agriculture, Agriculture Research Service, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL, 34945, USA
| | - Anish Malladi
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA, 30602, USA
| | - Savithri U Nambeesan
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA, 30602, USA.
| |
Collapse
|
3
|
Wang YW, Nambeesan SU. Ethylene promotes fruit ripening initiation by downregulating photosynthesis, enhancing abscisic acid and suppressing jasmonic acid in blueberry (Vaccinium ashei). BMC PLANT BIOLOGY 2024; 24:418. [PMID: 38760720 PMCID: PMC11102277 DOI: 10.1186/s12870-024-05106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Blueberry fruit exhibit atypical climacteric ripening with a non-auto-catalytic increase in ethylene coincident with initiation of ripening. Further, application of ethephon, an ethylene-releasing plant growth regulator, accelerates ripening by increasing the proportion of ripe (blue) fruit as compared to the control treatment. To investigate the mechanistic role of ethylene in regulating blueberry ripening, we performed transcriptome analysis on fruit treated with ethephon, an ethylene-releasing plant growth regulator. RESULTS RNA-Sequencing was performed on two sets of rabbiteye blueberry ('Powderblue') fruit: (1) fruit from divergent developmental stages; and (2) fruit treated with ethephon, an ethylene-releasing compound. Differentially expressed genes (DEGs) from divergent developmental stages clustered into nine groups, among which cluster 1 displayed reduction in expression during ripening initiation and was enriched with photosynthesis related genes, while cluster 7 displayed increased expression during ripening and was enriched with aromatic-amino acid family catabolism genes, suggesting stimulation of anthocyanin biosynthesis. More DEGs were apparent at 1 day after ethephon treatment suggesting its early influence during ripening initiation. Overall, a higher number of genes were downregulated in response to ethylene. Many of these overlapped with cluster 1 genes, indicating that ethylene-mediated downregulation of photosynthesis is an important developmental event during the ripening transition. Analyses of DEGs in response to ethylene also indicated interplay among phytohormones. Ethylene positively regulated abscisic acid (ABA), negatively regulated jasmonates (JAs), and influenced auxin (IAA) metabolism and signaling genes. Phytohormone quantification supported these effects of ethylene, indicating coordination of blueberry fruit ripening by ethylene. CONCLUSION This study provides insights into the role of ethylene in blueberry fruit ripening. Ethylene initiates blueberry ripening by downregulating photosynthesis-related genes. Also, ethylene regulates phytohormone-metabolism and signaling related genes, increases ABA, and decreases JA concentrations. Together, these results indicate that interplay among multiple phytohormones regulates the progression of ripening, and that ethylene is an important coordinator of such interactions during blueberry fruit ripening.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences Building, Athens, GA, 30602, USA
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
| | - Savithri U Nambeesan
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences Building, Athens, GA, 30602, USA.
| |
Collapse
|
4
|
Molina-Montenegro MA, Egas C, Ballesteros G, Acuña-Rodríguez IS, San Martín F, Gianoli E. Sunspot activity influences tree growth: Molecular evidence and ecological implications. Mol Ecol 2024; 33:e16813. [PMID: 36479720 DOI: 10.1111/mec.16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Solar activity has a significant influence on Earth's climate and may drive many biological processes. Here, we measured growth in 11 tree species distributed along an ≈600-km latitudinal gradient in South-Central Chile, recording the width of their growth-rings among periods of maximum (highest number of sunspots) and minimum (lowest number of sunspots) solar activity. In one of these species, Quillaja saponaria, we experimentally assessed three ecophysiological traits (CO2 fixation through photosynthesis [Amax], growth and leaf production) as well as the expression of five genes related to cell wall elongation and expansion following exposure to high and low levels of UV-B radiation, simulating scenarios of maximum and minimum solar activity, respectively. We found lower tree growth during the periods of maximum solar activity, with this trend being more evident at lower latitudes, where UV-B radiation is higher. Exposure of Q. saponaria to higher levels of UV-B affected the ecophysiological parameters, revealing a decrease in Amax, growth and leaf production. In addition, higher levels of UV-B led to repression in four of the five genes studied. Our results may help foresee environmental scenarios for different plant species associated with solar activity.
Collapse
Affiliation(s)
- Marco A Molina-Montenegro
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Campus Lircay, Talca, Chile
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile
| | - Claudia Egas
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Gabriel Ballesteros
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Campus Lircay, Talca, Chile
| | - Ian S Acuña-Rodríguez
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Campus Lircay, Talca, Chile
| | - Filoromo San Martín
- Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Ernesto Gianoli
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
| |
Collapse
|
5
|
Song H, Cao Y, Zhao X, Zhang L. Na+-preferential ion transporter HKT1;1 mediates salt tolerance in blueberry. PLANT PHYSIOLOGY 2023; 194:511-529. [PMID: 37757893 DOI: 10.1093/plphys/kiad510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Soil salinity is a major environmental factor constraining growth and productivity of highbush blueberry (Vaccinium corymbosum). Leaf Na+ content is associated with variation in salt tolerance among blueberry cultivars; however, the determinants and mechanisms conferring leaf Na+ exclusion are unknown. Here, we observed that the blueberry cultivar 'Duke' was more tolerant than 'Sweetheart' and accumulated less Na+ in leaves under salt stress conditions. Through transcript profiling, we identified a member of the high-affinity K+ transporter (HKT) family in blueberry, VcHKT1;1, as a candidate gene involved in leaf Na+ exclusion and salt tolerance. VcHKT1;1 encodes a Na+-preferential transporter localized to the plasma membrane and is preferentially expressed in the root stele. Heterologous expression of VcHKT1;1 in Arabidopsis (Arabidopsis thaliana) rescued the salt hypersensitivity phenotype of the athkt1 mutant. Decreased VcHKT1;1 transcript levels in blueberry plants expressing antisense-VcHKT1;1 led to increased Na+ concentrations in xylem sap and higher leaf Na+ contents compared with wild-type plants, indicating that VcHKT1;1 promotes leaf Na+ exclusion by retrieving Na+ from xylem sap. A naturally occurring 8-bp insertion in the promoter increased the transcription level of VcHKT1;1, thus promoting leaf Na+ exclusion and blueberry salt tolerance. Collectively, we provide evidence that VcHKT1;1 promotes leaf Na+ exclusion and propose natural variation in VcHKT1;1 will be valuable for breeding Na+-tolerant blueberry cultivars in the future.
Collapse
Affiliation(s)
- Huifang Song
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Yibo Cao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xinyan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Lingyun Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Zhang W, Xu J, Wang Q, Li J, Li Y, Dong M, Sun H. Transcriptome-Based Identification of the Optimal Reference Genes for Quantitative Real-Time Polymerase Chain Reaction Analyses of Lingonberry Fruits throughout the Growth Cycle. PLANTS (BASEL, SWITZERLAND) 2023; 12:4180. [PMID: 38140507 PMCID: PMC10748091 DOI: 10.3390/plants12244180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
(1) Background: Vaccinium vitis-idaea is a nutritionally and economically valuable natural wild plant species that produces berries useful for treating various diseases. There is growing interest in lingonberry, but there is limited information regarding lingonberry reference genes suitable for gene expression analyses of different tissues under various abiotic stress conditions. The objective of this study was to identify stable reference genes suitable for different lingonberry tissues in response to abiotic stress. (2) Methods: The delta Ct method and the GeNorm v3.5 and NormFinder v20 programs were used to comprehensively analyze gene expression stability. (3) Results: Actin Unigene23839 was the best reference gene for analyzing different cultivars, whereas Actin CL5740.Contig2 was the most suitable reference gene for analyzing different tissues and alkali stress. In contrast, 18S rRNA CL5051.Contig1 was the most stable reference gene under drought conditions. (4) Conclusions: These suitable reference genes may be used in future qRT-PCR analyses of different lingonberry tissues and the effects of abiotic stresses. Furthermore, the study data may be useful for functional genomics studies and the molecular breeding of lingonberry. In summary, internal reference genes or internal reference gene combinations should be carefully selected according to the experimental conditions to ensure that the generated gene expression data are accurate.
Collapse
Affiliation(s)
- Wanchen Zhang
- Joint International Research Laboratory of Modern Agricultural Technology, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (W.Z.); (J.X.); (Y.L.)
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Jian Xu
- Joint International Research Laboratory of Modern Agricultural Technology, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (W.Z.); (J.X.); (Y.L.)
| | - Qiang Wang
- Research Institute of Pomology of CAAS, Xingcheng 125100, China; (Q.W.); (J.L.)
| | - Jing Li
- Research Institute of Pomology of CAAS, Xingcheng 125100, China; (Q.W.); (J.L.)
| | - Yadong Li
- Joint International Research Laboratory of Modern Agricultural Technology, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (W.Z.); (J.X.); (Y.L.)
| | - Mei Dong
- Joint International Research Laboratory of Modern Agricultural Technology, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (W.Z.); (J.X.); (Y.L.)
| | - Haiyue Sun
- Joint International Research Laboratory of Modern Agricultural Technology, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (W.Z.); (J.X.); (Y.L.)
| |
Collapse
|
7
|
Wang Y, Xu Y, Liao F, Li T, Li X, Wu B, Hong SB, Xu K, Zang Y, Zheng W. Genome-wide identification of GH9 gene family and the assessment of its role during fruit abscission zone formation in Vaccinium ashei. PLANT CELL REPORTS 2023; 42:1589-1609. [PMID: 37474780 DOI: 10.1007/s00299-023-03049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
KEY MESSAGE The genomic location and stage-specific expression pattern of GH9 genes reveal their critical roles during fruit abscission zone formation in Vaccinium ashei. Glycosyl hydrolase family 9 (GH9) cellulases play a crucial role in both cellulose synthesis and hydrolysis during plant growth and development. Despite this importance, there is currently no study on the involvement of GH9-encoding genes, specifically VaGH9s, in abscission zone formation of rabbiteye blueberries (Vaccinium ashei). In this study, we identified a total of 61 VaGH9s in the genome, which can be classified into 3 subclasses based on conserved motifs and domains, gene structures, and phylogenetic analyses. Our synteny analysis revealed that VaGH9s are more closely related to the GH9s of Populus L. than to those of Arabidopsis, Vitis vinifera, and Citrus sinensis. In silico structural analysis predicted that most of VaGH9s are hydrophilic, and localized in cell membrane and/or cell wall, and the variable sets of cis-acting regulatory elements and functional diversity with four categories of stress response, hormone regulation, growth and development, and transcription factor-related elements are present in the promoter sequence of VaGH9s genes. Transcriptomic analysis showed that there were 22 differentially expressed VaGH9s in fruit abscission zone tissue at the veraison stage, and the expression of VaGH9B2 and VaGH9C10 was continuously increased during fruit maturation, which were in parallel with the increasing levels of cellulase activity and oxidative stress indicators, suggesting that they are involved in the separation stage of fruit abscission in Vaccinium ashei. Our work identified 22 VaGH9s potentially involved in different stages of fruit abscission and would aid further investigation into the molecular regulation of abscission in rabbiteye blueberries fruit.
Collapse
Affiliation(s)
- Yingying Wang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Yue Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Fangfang Liao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Ting Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Xiaolong Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Boping Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Kai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Weiwei Zheng
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
8
|
Liu S, Wang X, Peng L. Comparative Transcriptomic Analysis of the Metabolism of Betalains and Flavonoids in Red Amaranth Hypocotyl under Blue Light and Dark Conditions. Molecules 2023; 28:5627. [PMID: 37570597 PMCID: PMC10420052 DOI: 10.3390/molecules28155627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Amaranth plants contain abundant betalains and flavonoids. Anthocyanins are important flavonoids; however, they cannot coexist in the same plant with betalains. Blue light influences metabolite synthesis and hypocotyl elongation; accordingly, analyses of its effects on betalain and flavonoid biosynthesis in Amaranthus tricolor may provide insight into the distribution of these plant pigments. We analyzed the betalain and flavonoid content and transcriptome profiles in amaranth hypocotyls under blue light and dark conditions. Furthermore, we analyzed the expression patterns of key genes related to betalains and flavonoids. Amaranth hypocotyls were shorter and redder and showed higher betalain and flavonoid content under blue light than in dark conditions. Key genes involved in the synthesis of betalains and flavonoids were upregulated under blue light. The gene encoding DELLA was also upregulated. These results suggest that blue light favors the synthesis of both betalains and flavonoids via the suppression of bioactive gibberellin and the promotion of DELLA protein accumulation, which also suppresses hypocotyl elongation. The metabolite profiles differed between plants under blue light and dark conditions. These findings improve our understanding of the environmental cues and molecular mechanisms underlying pigment variation in Amaranthus.
Collapse
Affiliation(s)
- Shengcai Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xiao Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Liyun Peng
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China;
| |
Collapse
|
9
|
Lawas LMF, Kamileen MO, Buell CR, O'Connor SE, Leisner CP. Transcriptome-based identification and functional characterization of iridoid synthase involved in monotropein biosynthesis in blueberry. PLANT DIRECT 2023; 7:e512. [PMID: 37440931 PMCID: PMC10333835 DOI: 10.1002/pld3.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Blueberries (Vaccinium spp.) are well known for their nutritional quality, and recent work has shown that Vaccinium spp. also produce iridoids, which are specialized metabolites with potent health-promoting benefits. The iridoid glycoside monotropein, which has anti-inflammatory and antinociceptive activities, has been detected in several wild blueberry species but in only a few cultivated highbush blueberry cultivars. How monotropein is produced in blueberry and the genes involved in its biosynthesis remain to be elucidated. Using a monotropein-positive (M+) and monotropein-negative (M-) cultivar of blueberry, we employed transcriptomics and comparative genomics to identify candidate genes in the blueberry iridoid biosynthetic pathway. Orthology analysis was completed using de novo transcript assemblies for both the M+ and M- blueberry cultivars along with the known iridoid-producing plant species Catharanthus roseus to identify putative genes involved in key steps in the early iridoid biosynthetic pathway. From the identified orthologs, we functionally characterized iridoid synthase (ISY), a key enzyme involved in formation of the iridoid scaffold, from both the M+ and M- cultivars. Detection of nepetalactol suggests that ISY from both the M+ and M- cultivars produce functional enzymes that catalyze the formation of iridoids. Transcript accumulation of the putative ISY gene did not correlate with monotropein production, suggesting other genes in the monotropein biosynthetic pathway may be more directly responsible for differential accumulation of the metabolite in blueberry. Mutual rank analysis revealed that ISY is co-expressed with UDP-glucuronosyltransferase, which encodes an enzyme downstream of the ISY step. Results from this study contribute new knowledge in our understanding of iridoid biosynthesis in blueberry and could lead to development of new cultivars with increased human health benefits.
Collapse
Affiliation(s)
| | - Mohamed O. Kamileen
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyJenaGermany
| | - C. Robin Buell
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Department of Crop and Soil SciencesInstitute of Plant Breeding, Genetics, & Genomics, University of GeorgiaAthensGeorgiaUSA
| | - Sarah E. O'Connor
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyJenaGermany
| | - Courtney P. Leisner
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
- School of Plant and Environmental SciencesVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
10
|
Tobacco rattle virus-induced VcANS gene silencing in blueberry fruit. Gene 2023; 852:147054. [PMID: 36395971 DOI: 10.1016/j.gene.2022.147054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Blueberry (Vaccinium corymbosum L.), a woody perennial bush in the genus Vaccinium, is an economically important and popular fruit crop worldwide. Development the superior cultivars, which including excellent fruit traits, not only means higher yielding and economic efficiency, but also produce fruit that to meet the preferences of different consumers. Excavating fruit quality-related genes, studying their functions, and using transgenic or molecular-assisted breeding are beneficial to the development of excellent blueberry varieties. Genetic transformation is an excellent way to study the function of genes in plants, however, it is a labor-intensive and time-consuming process to genetically transform many woody plants, including blueberry. Virus-induced gene silencing (VIGS) provides an efficient approach to knock-down the expression of target genes for functional analysis. In this study, tobacco rattle virus induced genes silencing (TRV-VIGS) was established in blueberry fruits using the VcANS gene as a reporter. The silenced sector of the skin of blueberry fruits injected with pTRV2 (plasmid Tobacco Rattle Virus, TRV-RNA2)::VcANS remained green or white at 25 days after agroinfiltration. In agroinfiltrated materials, the VcANS transcript levels were much lower in fruits with phenotypic changes (delayed color change) than in those infiltrated with the pTRV2 empty vector. Silencing of VcANS also affected the expression of other genes involved in the anthocyanin synthesis pathway. The experimental results support that VcANS can be used as an effective marker gene for VIGS system. In addition, the TRV-VIGS system has been successfully established in blueberry fruits, which provided an effective verification method for functional identification of unknown genes in blueberry fruits.
Collapse
|
11
|
Sutton M, Roussel B, Chavez DJ, Malladi A. Synthesis of active cytokinins mediated by LONELY GUY is associated with cell production during early fruit growth in peach [ Prunus persica (L.) Batsch]. FRONTIERS IN PLANT SCIENCE 2023; 14:1155755. [PMID: 37152121 PMCID: PMC10157650 DOI: 10.3389/fpls.2023.1155755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Early fruit growth in peach is characterized by cell production. Cytokinins have established roles in regulating cell division and may regulate cell production during early fruit growth. However, the role of active cytokinins and regulation of their metabolism are not well characterized in the peach fruit. In this study, fruit growth parameters, concentrations of active cytokinin bases and a cytokinin riboside, and expression of three key cytokinin metabolism-related gene families were determined during early fruit growth. Early fruit growth was associated with intensive cell production until around 40 days after full bloom. During the early stages of this period, trans-zeatin (tZ), isopentenyladenine (iP), dihydrozeatin (DHZ) and tZ-riboside (tZR), displayed higher abundance which declined rapidly by 3.5- to 16-fold during the later stages. Changes in concentration of active cytokinin bases were consistent with roles for them in regulating cell production. Expression analyses of members of cytokinin biosynthesis-related gene families, ISOPENTENYL TRANSFERASE (IPT) and LONELY GUY (LOG), further indicated that mechanisms of synthesis of cytokinin metabolites and their activation are functional within the fruit pericarp. Changes in expression of multiple members of the LOG family paralleled changes in active cytokinin concentrations. Specifically, transcript abundance of LOG3 and LOG8 were correlated with concentrations of tZ, and iP and DHZ, respectively, suggesting that the direct activation pathway is an important route for active cytokinin base synthesis during early fruit development. Transcript abundance of two CYTOKININ OXIDASE (CKX) genes, CKX1 and CKX2, was consistent with roles in cytokinin catabolism during later stages of early fruit growth. Together, these data support a role for active cytokinins synthesized in the fruit pericarp in regulating early fruit growth in peach.
Collapse
Affiliation(s)
- Mary Sutton
- Department of Horticulture, University of Georgia, Athens, GA, United States
| | - Bayleigh Roussel
- Department of Horticulture, University of Georgia, Athens, GA, United States
| | - Dario J. Chavez
- Department of Horticulture, University of Georgia, Griffin, GA, United States
| | - Anish Malladi
- Department of Horticulture, University of Georgia, Athens, GA, United States
- *Correspondence: Anish Malladi,
| |
Collapse
|
12
|
Wang YW, Nambeesan SU. Full-length fruit transcriptomes of southern highbush (Vaccinium sp.) and rabbiteye (V. virgatum Ait.) blueberry. BMC Genomics 2022; 23:733. [DOI: 10.1186/s12864-022-08935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Blueberries (Vaccinium sp.) are native to North America and breeding efforts to improve blueberry fruit quality are focused on improving traits such as increased firmness, enhanced flavor and greater shelf-life. Such efforts require additional genomic resources, especially in southern highbush and rabbiteye blueberries.
Results
We generated the first full-length fruit transcriptome for the southern highbush and rabbiteye blueberry using the cultivars, Suziblue and Powderblue, respectively. The transcriptome was generated using the Pacific Biosciences single-molecule long-read isoform sequencing platform with cDNA pooled from seven stages during fruit development and postharvest storage. Raw reads were processed through the Isoseq pipeline and full-length transcripts were mapped to the ‘Draper’ genome with unmapped reads collapsed using Cogent. Finally, we identified 16,299 and 15,882 non-redundant transcripts in ‘Suziblue’ and ‘Powderblue’ respectively by combining the reads mapped to Northern Highbush blueberry ‘Draper’ genome and Cogent analysis. In both cultivars, > 80% of sequences were longer than 1,000 nt, with the median transcript length around 1,700 nt. Functionally annotated transcripts using Blast2GO were > 92% in both ‘Suziblue’ and ‘Powderblue’ with overall equal distribution of gene ontology (GO) terms in the two cultivars. Analyses of alternative splicing events indicated that around 40% non-redundant sequences exhibited more than one isoform. Additionally, long non-coding RNAs were predicted to represent 5.6% and 7% of the transcriptomes in ‘Suziblue’ and ‘Powderblue’, respectively. Fruit ripening is regulated by several hormone-related genes and transcription factors. Among transcripts associated with phytohormone metabolism/signaling, the highest number of transcripts were related to abscisic acid (ABA) and auxin metabolism followed by those for brassinosteroid, jasmonic acid and ethylene metabolism. Among transcription factor-associated transcripts, those belonging to ripening-related APETALA2/ethylene-responsive element-binding factor (AP2/ERF), NAC (NAM, ATAF1/2 and CUC2), leucine zipper (HB-zip), basic helix-loop-helix (bHLH), MYB (v-MYB, discovered in avian myeloblastosis virus genome) and MADS-Box gene families, were abundant.
Further we measured three fruit ripening quality traits and indicators [ABA, and anthocyanin concentration, and texture] during fruit development and ripening. ABA concentration increased during the initial stages of fruit ripening and then declined at the Ripe stage, whereas anthocyanin content increased during the final stages of fruit ripening in both cultivars. Fruit firmness declined during ripening in ‘Powderblue’. Genes associated with the above parameters were identified using the full-length transcriptome. Transcript abundance patterns of these genes were consistent with changes in the fruit ripening and quality-related characteristics.
Conclusions
A full-length, well-annotated fruit transcriptome was generated for two blueberry species commonly cultivated in the southeastern United States. The robustness of the transcriptome was verified by the identification and expression analyses of multiple fruit ripening and quality–regulating genes. The full-length transcriptome is a valuable addition to the blueberry genomic resources and will aid in further improving the annotation. It will also provide a useful resource for the investigation of molecular aspects of ripening and postharvest processes.
Collapse
|
13
|
Valenzuela F, D’Afonseca V, Hernández R, Gómez A, Arencibia AD. Validation of Reference Genes in a Population of Blueberry (Vaccinium corymbosum) Plants Regenerated in Colchicine. PLANTS (BASEL, SWITZERLAND) 2022; 11:2645. [PMID: 36235509 PMCID: PMC9573746 DOI: 10.3390/plants11192645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
For the first time we report the validation of reference genes in plants from a population of blueberry (Vaccinium corymbosum) clones cultured in vitro on a colchicine-supplemented medium. Nodal segment explants of the cultivar Duke were regenerated by organogenesis under different periods of colchicine 1 mg/L exposure (1, 2, 3, 5, 30 days). The clones selected for the study showed variability for phenotypic traits after 2 years of adaptation to field conditions, compared to plants of the donor genotype that were regenerated on a medium without colchicine. Vaccinium myrtillus (GAPDH) and Vaccinium macrocarpon (ATP1, NADH, RPOB and COX2) were used as reference genomes for primer design. The results show that colchicine treatments can cause genomic changes in blueberry plants. At the molecular level, exposure of plants to colchicine in early periods could promote an increase in gene expression of specific genes such as ATP1, COX2, GAPDH, MATK, NADH and RPOB. However, prolonged exposure (30 days) could decrease gene expression of the genes studied. For qPCR assays, the primers designed for ATP1, COX2, GAPDH and MATK genes showed high efficiency. In addition, the GAPDH, ATP1, NADH and COX2 genes showed high stability and could be recommended as potential reference genes for gene expression assays in Vaccinium.
Collapse
Affiliation(s)
- Francisca Valenzuela
- Centro de Biotecnología en Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Ave San Miguel 3605, Talca 3466706, Chile
| | - Vivían D’Afonseca
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad Católica del Maule, Ave San Miguel 3605, Talca 3466706, Chile
| | - Ricardo Hernández
- Centro de Biotecnología en Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Ave San Miguel 3605, Talca 3466706, Chile
- Doctorado en Biotecnología Traslacional. Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Ave San Miguel 3605, Talca 3466706, Chile
| | - Aleydis Gómez
- Centro de Biotecnología en Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Ave San Miguel 3605, Talca 3466706, Chile
| | - Ariel D. Arencibia
- Centro de Biotecnología en Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Ave San Miguel 3605, Talca 3466706, Chile
| |
Collapse
|
14
|
Mengist MF, Grace MH, Mackey T, Munoz B, Pucker B, Bassil N, Luby C, Ferruzzi M, Lila MA, Iorizzo M. Dissecting the genetic basis of bioactive metabolites and fruit quality traits in blueberries ( Vaccinium corymbosum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:964656. [PMID: 36119607 PMCID: PMC9478557 DOI: 10.3389/fpls.2022.964656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/26/2022] [Indexed: 06/01/2023]
Abstract
Blueberry is well-recognized as a healthy fruit with functionality derived largely from anthocyanin and chlorogenic acid. Despite their importance, no study to date has evaluated the genetic basis of these bioactives in blueberries and their relationship with fruit quality traits. Hence, to fill this gap, a mapping population including 196 F1 individuals was phenotyped for anthocyanin and chlorogenic acid concentration and fruit quality traits (titratable acidity, pH, and total soluble solids) over 3 years and data were used for QTL mapping and correlation analysis. Total soluble solids and chlorogenic acid were positively correlated with glycosylated anthocyanin and total anthocyanin, respectively, indicating that parallel selection for these traits is possible. Across all the traits, a total of 188 QTLs were identified on chromosomes 1, 2, 4, 8, 9, 11 and 12. Notably, four major regions with overlapping major-effect QTLs were identified on chromosomes 1, 2, 4 and 8, and were responsible for acylation and glycosylation of anthocyanins in a substrate and sugar donor specific manner. Through comparative transcriptome analysis, multiple candidate genes were identified for these QTLs, including glucosyltransferases and acyltransferases. Overall, the study provides the first insights into the genetic basis controlling anthocyanins accumulation and composition, chlorogenic acid and fruit quality traits, and establishes a framework to advance genetic studies and molecular breeding for anthocyanins in blueberry.
Collapse
Affiliation(s)
- Molla Fentie Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Mary H. Grace
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Ted Mackey
- Horticultural Crops Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Corvallis, OR, United States
| | - Bryan Munoz
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Boas Pucker
- Institute of Plant Biology, TU Braunschweig, Braunschweig, Germany
- BRICS, TU Braunschweig, Braunschweig, Germany
| | - Nahla Bassil
- National Clonal Germplasm Repository, USDA-ARS, Corvallis, OR, United States
| | - Claire Luby
- Horticultural Crops Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Corvallis, OR, United States
| | - Mario Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
15
|
Wang YW, Acharya TP, Malladi A, Tsai HJ, NeSmith DS, Doyle JW, Nambeesan SU. Atypical Climacteric and Functional Ethylene Metabolism and Signaling During Fruit Ripening in Blueberry ( Vaccinium sp.). FRONTIERS IN PLANT SCIENCE 2022; 13:932642. [PMID: 35812961 PMCID: PMC9260287 DOI: 10.3389/fpls.2022.932642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Climacteric fruits display an increase in respiration and ethylene production during the onset of ripening, while such changes are minimal in non-climacteric fruits. Ethylene is a primary regulator of ripening in climacteric fruits. The ripening behavior and role of ethylene in blueberry (Vaccinium sp.) ripening is controversial. This work aimed to clarify the fruit ripening behavior and the associated role of ethylene in blueberry. Southern highbush (Vaccinium corymbosum hybrids) and rabbiteye (Vaccinium ashei) blueberry displayed an increase in the rate of respiration and ethylene evolution, both reaching a maxima around the Pink and Ripe stages of fruit development, consistent with climacteric fruit ripening behavior. Increase in ethylene evolution was associated with increases in transcript abundance of its biosynthesis genes, AMINOCYCLOPROPANE CARBOXYLATE (ACC) SYNTHASE1 (ACS1) and ACC OXIDASE2 (ACO2), implicating them in developmental ethylene production during ripening. Blueberry fruit did not display autocatalytic system 2 ethylene during ripening as ACS transcript abundance and ACC concentration were not enhanced upon treatment with an ethylene-releasing compound (ethephon). However, ACO transcript abundance was enhanced in response to ethephon, suggesting that ACO was not rate-limiting. Transcript abundance of multiple genes associated with ethylene signal transduction was upregulated concomitant with developmental increase in ethylene evolution, and in response to exogenous ethylene. As these changes require ethylene signal transduction, fruit ripening in blueberry appears to involve functional ethylene signaling. Together, these data indicate that blueberry fruit display atypical climacteric ripening, characterized by a respiratory climacteric, developmentally regulated but non-autocatalytic increase in ethylene evolution, and functional ethylene signaling.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Department of Horticulture, University of Georgia, Athens, GA, United States
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Tej P. Acharya
- Department of Horticulture, University of Georgia, Athens, GA, United States
| | - Anish Malladi
- Department of Horticulture, University of Georgia, Athens, GA, United States
| | - Hsuan-Ju Tsai
- Department of Horticulture, University of Georgia, Athens, GA, United States
- Taiwan Agricultural Research Institute Council of Agriculture, Taichung, Taiwan
| | - D. Scott NeSmith
- Department of Horticulture, University of Georgia, Griffin, GA, United States
| | - John W. Doyle
- Department of Horticulture, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
16
|
Yang B, Wei Y, Liang C, Guo J, Niu T, Zhang P, Wen P. VvANR silencing promotes expression of VvANS and accumulation of anthocyanin in grape berries. PROTOPLASMA 2022; 259:743-753. [PMID: 34448083 DOI: 10.1007/s00709-021-01698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Virus-induced gene silencing (VIGS) technology was applied to silence VvANR in cv. Zaoheibao grape berries, and the effects of VvANR silencing on berries phenotype; gene expression level of ANS, LAR1, LAR2, and UFGT; enzyme activity of ANS; and accumulations of anthocyanin and flavan-3-ol were investigated. At the third day after treatment, the VvANR silenced grape berries began to turn red slightly, which was 2 days earlier than that of the control group. And the flavan-3-ol content in VvANR-silenced grape berries had been remarkable within 1 to 5 days, the ANR enzyme activity in VvANR-silenced grapes extremely significantly decreased in 3 days, and LAR enzyme activity also decreased, but the difference was not striking. The ANS enzyme activity of the transformed berries was significantly higher than that of the control after 3 days of infection, and it was exceedingly significantly higher than that of the control after 5 to 10 days. The content of anthocyanin in transformed berries increased of a very marked difference within 3 to 15 days. pTRV2-ANR infection resulted in an extremely significant decrease in the expression of VvANR gene, and the expression of VvLAR1, VvLAR2, VvMYBPA1, VvMYBPA2, and VvDFR were also down-regulated. However, the expression of VvANS and VvUFGT was up-regulated significantly. After VvANR silencing via VIGS, VvANR expression in grape berries was extremely significantly decreased, resulting in decreased ANR enzyme activity and flavan-3-ol content; berries turned red and deeper in advance. In addition, VvANR silencing can induce up-regulation of VvANS and VvUFGT expression, significantly increase ANS enzyme activity, and increase of anthocyanin accumulation.
Collapse
Affiliation(s)
- Bo Yang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ying Wei
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Changmei Liang
- College of Information Science and Engineering, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jianyong Guo
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Tiequan Niu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Pengfei Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Pengfei Wen
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
17
|
Cárcamo de la Concepción M, Sargent DJ, Šurbanovski N, Colgan RJ, Moretto M. De novo sequencing and analysis of the transcriptome of two highbush blueberry (Vaccinium corymbosum L.) cultivars 'Bluecrop' and 'Legacy' at harvest and following post-harvest storage. PLoS One 2021; 16:e0255139. [PMID: 34339434 PMCID: PMC8328333 DOI: 10.1371/journal.pone.0255139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
Fruit firmness and in particular the individual components of texture and moisture loss, are considered the key quality traits when describing blueberry fruit quality, and whilst these traits are genetically regulated, the mechanisms governing their control are not clearly understood. In this investigation, RNAseq was performed on fruits of two blueberry cultivars with very different storage properties, 'Bluecrop' and 'Legacy', at harvest, three weeks storage in a non-modified environment at 4 °C and after three weeks storage at 4 °C followed by three days at 21 °C, with the aim of understanding the transcriptional changes that occur during storage in cultivars with very different post-harvest fruit quality. De novo assemblies of the transcriptomes of the two cultivars were performed separately and a total of 39,335 and 41,896 unigenes for 'Bluecrop' and 'Legacy' respectively were resolved. Differential gene expression analyses were grouped into four cluster profiles based on changes in transcript abundance between harvest and 24 days post-harvest. A total of 290 unigenes were up-regulated in 'Legacy' only, 685 were up-regulated in 'Bluecrop', 252 were up-regulated in both cultivars and 948 were down-regulated in both cultivars between harvest and 24 days post-harvest. Unigenes showing significant differential expression between harvest and following post-harvest cold-storage were grouped into classes of biological processes including stress responses, cell wall metabolism, wax metabolism, calcium metabolism, cellular components, and biological processes. In total 21 differentially expressed unigenes with a putative role in regulating the response to post-harvest cold-storage in the two cultivars were identified from the de novo transcriptome assemblies performed. The results presented provide a stable foundation from which to perform further analyses with which to functionally validate the candidate genes identified, and to begin to understand the genetic mechanisms controlling changes in firmness in blueberry fruits post-harvest.
Collapse
Affiliation(s)
| | - Daniel James Sargent
- Natural Resources Institute, University of Greenwich, Chatham, Kent, United Kingdom
- NIAB EMR, East Malling, Kent, United Kingdom
| | | | - Richard John Colgan
- Natural Resources Institute, University of Greenwich, Chatham, Kent, United Kingdom
- * E-mail:
| | - Marco Moretto
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy
| |
Collapse
|
18
|
Wang A, Liang K, Yang S, Cao Y, Wang L, Zhang M, Zhou J, Zhang L. Genome-wide analysis of MYB transcription factors of Vaccinium corymbosum and their positive responses to drought stress. BMC Genomics 2021; 22:565. [PMID: 34294027 PMCID: PMC8296672 DOI: 10.1186/s12864-021-07850-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/25/2021] [Indexed: 01/22/2023] Open
Abstract
Background Blueberry (Vaccinium corymbosum L.) is an important species with a high content of flavonoids in fruits. As a perennial shrub, blueberry is characterized by shallow-rooted property and susceptible to drought stress. MYB transcription factor was reported to be widely involved in plant response to abiotic stresses, however, the role of MYB family in blueberry responding to drought stress remains elusive. Results In this study, we conducted a comprehensive analysis of VcMYBs in blueberry based on the genome data under drought stress, including phylogenetic relationship, identification of differentially expressed genes (DEGs), expression profiling, conserved motifs, expression correlation and protein-protein interaction prediction, etc. The results showed that 229 non-redundant MYB sequences were identified in the blueberry genome, and divided into 23 subgroups. A total of 102 MYB DEGs with a significant response to drought stress were identified, of which 72 in leaves and 69 in roots, and 8 differential expression genes with a > 20-fold change in the level of expression. 17 DEGs had a higher expression correlation with other MYB members. The interaction partners of the key VcMYB proteins were predicted by STRING analysis and in combination with physiological and morphological observation. 10 key VcMYB genes such as VcMYB8, VcMYB102 and VcMYB228 were predicted to be probably involved in reactive oxygen species (ROS) pathway, and 7 key VcMYB genes (VcMYB41, VcMYB88 and VcMYB100, etc..) probably participated in leaf regulation under drought treatment. Conclusions Our studies provide a new understanding of the regulation mechanism of VcMYB family in blueberry response to drought stress, and lay fundamental support for future studies on blueberry grown in regions with limited water supply for this crop. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07850-5.
Collapse
Affiliation(s)
- Aibin Wang
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, 35 QinghuaEast Road, 100083, Beijing, China
| | - Kehao Liang
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, 35 QinghuaEast Road, 100083, Beijing, China
| | - Shiwen Yang
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, 35 QinghuaEast Road, 100083, Beijing, China
| | - Yibo Cao
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, 35 QinghuaEast Road, 100083, Beijing, China
| | - Lei Wang
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, 35 QinghuaEast Road, 100083, Beijing, China
| | - Ming Zhang
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, 35 QinghuaEast Road, 100083, Beijing, China
| | - Jing Zhou
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, 35 QinghuaEast Road, 100083, Beijing, China
| | - Lingyun Zhang
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, 35 QinghuaEast Road, 100083, Beijing, China.
| |
Collapse
|
19
|
Guo X, Wang D, Shakeel M. Transcriptome analysis reveals light-induced anthocyanin synthesis candidate genes in rabbiteye blueberry ( Vaccinium ashei: Reade). BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1924078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Xiaolan Guo
- Department of Forest Cultivation, College of Forestry, Guizhou University, Guiyang, Guizhou, PR China
| | - Delu Wang
- Department of Forest Cultivation, College of Forestry, Guizhou University, Guiyang, Guizhou, PR China
| | - Muhammad Shakeel
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou, PR China
| |
Collapse
|
20
|
Balboa K, Ballesteros GI, Molina-Montenegro MA. Integration of Physiological and Molecular Traits Would Help to Improve the Insights of Drought Resistance in Highbush Blueberry Cultivars. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1457. [PMID: 33137914 PMCID: PMC7693893 DOI: 10.3390/plants9111457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022]
Abstract
Water deficit or drought is one of the most severe factors limiting plant yield or fruit quality. Thus, water availability for irrigation is decisive for crop success, such as the case of highbush blueberry (Vaccinium corymbosum L.). Therefore, drought stress may compromise blueberry production due to lower fruit weight or fruit yield. Despite this, it is unclear if there is any difference in the response of blueberry cultivars to water deficit, either in terms of physiological and molecular parameters, or in terms of their sensitivity or resistance to drought. In this study, we determined the effect of drought on different physiological parameters in blueberry plants (relative water content (RWC), photochemical efficiency of photosystem II (Fv/Fm), Carbon Isotopic Discrimination, and proline content) in six V. corymbosum cultivars. We also explored molecular responses in terms of gene expression coding for late embryogenesis abundant proteins. Finally, we estimated cultivar water deficit resistance using an integrative model based on physiological results. Upon water deficit conditions, we found reductions in Fv/Fm, RWC, and isotopic discrimination of 13C (Δ13C), while proline content increased significantly for all cultivars. Additionally, we also found differences in the estimated water deficit resistance index. These results indicate differences in water deficit resistance, possibly due to variations in cultivars' genetic composition.
Collapse
Affiliation(s)
- Karen Balboa
- Bachillerato en Ciencias, Facultad de Ciencias, Universidad Santo Tomás, Av. Circunvalación Poniente #1855, Talca 3460000, Chile;
| | | | - Marco A. Molina-Montenegro
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca 3460000, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1281, Chile
- Centro de Investigaciones y Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
21
|
Jose S, Abbey J, Jaakola L, Percival D. Selection and validation of reliable reference genes for gene expression studies from Monilinia vaccinii-corymbosi infected wild blueberry phenotypes. Sci Rep 2020; 10:11688. [PMID: 32678232 PMCID: PMC7366731 DOI: 10.1038/s41598-020-68597-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/19/2020] [Indexed: 01/24/2023] Open
Abstract
Monilinia blight disease caused by Monilinia vaccinii-corymbosi (Reade) Honey (M.vc) causes severe damage and economic losses in wild blueberry growing regions. Molecular mechanisms regulating defence responses of wild blueberry phenotypes towards this causal fungus are not yet fully known. A reliable quantification of gene expression using quantitative real time PCR (qPCR) is fundamental for measuring changes in target gene expression. A crucial aspect of accurate normalisation is the choice of appropriate reference genes. This study evaluated the expression stability of seven candidate reference genes (GAPDH, UBC9, UBC28, TIP41, CaCSa, PPR and RH8) in floral tissues of diploid and tetraploid wild blueberry phenotypes challenged with M.vc. The expression stability was calculated using five algorithms: geNorm, NormFinder, BestKeeper, deltaCt and RefFinder. The results indicated that UBC9 and GAPDH were the most stable reference genes, while RH8 and PPR were the least stable ones. To further validate the suitability of the analyzed reference genes, the expression level of a pathogenesis related protein gene (i.e., PR3) was analysed for both phenotypes at four time points of infection. Our results may be beneficial for future studies involving the quantification of relative gene expression levels in wild blueberry species.
Collapse
Affiliation(s)
- Sherin Jose
- Wild Blueberry Research Program, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| | - Joel Abbey
- Wild Blueberry Research Program, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Laura Jaakola
- Climate Laboratory Holt, Department of Arctic and Marine Biology, The Arctic University of Norway, 9037, Tromsø, Norway.,NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431, Ås, Norway
| | - David Percival
- Wild Blueberry Research Program, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
22
|
Mayorga-Gómez A, Nambeesan SU. Temporal expression patterns of fruit-specific α- EXPANSINS during cell expansion in bell pepper (Capsicum annuum L.). BMC PLANT BIOLOGY 2020; 20:241. [PMID: 32466743 PMCID: PMC7254744 DOI: 10.1186/s12870-020-02452-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Expansins (EXPs) facilitate non-enzymatic cell wall loosening during several phases of plant growth and development including fruit growth, internode expansion, pollen tube growth, leaf and root development, and during abiotic stress responses. In this study, the spatial and temporal expression patterns of C. annuum α- EXPANSIN (CaEXPA) genes were characterized. Additionally, fruit-specific CaEXPA expression was correlated with the rate of cell expansion during bell pepper fruit development. RESULTS Spatial expression patterns revealed that CaEXPA13 was up-regulated in vegetative tissues and flowers, with the most abundant expression in mature leaves. Expression of CaEXPA4 was associated with stems and roots. CaEXPA3 was expressed abundantly in flower at anthesis suggesting a role for CaEXPA3 in flower development. Temporal expression analysis revealed that 9 out of the 21 genes were highly expressed during fruit development. Of these, expression of six genes, CaEXPA5, CaEXPA7, CaEXPA12, CaEXPA14 CaEXPA17 and CaEXPA19 were abundant 7 to 21 days after anthesis (DAA), whereas CaEXPA6 was strongly expressed between 14 and 28 DAA. Further, this study revealed that fruit growth and cell expansion occur throughout bell pepper development until ripening, with highest rates of fruit growth and cell expansion occurring between 7 and 14 DAA. The expression of CaEXPA14 and CaEXPA19 positively correlated with the rate of cell expansion, suggesting their role in post-mitotic cell expansion-mediated growth of the bell pepper fruit. In this study, a ripening specific EXP transcript, CaEXPA9 was identified, suggesting its role in cell wall disassembly during ripening. CONCLUSIONS This is the first genome-wide study of CaEXPA expression during fruit growth and development. Identification of fruit-specific EXPAs suggest their importance in facilitating cell expansion during growth and cell wall loosening during ripening in bell pepper. These EXPA genes could be important targets for future manipulation of fruit size and ripening characteristics.
Collapse
Affiliation(s)
- Andrés Mayorga-Gómez
- Department of Horticulture, University of Georgia, 120 Carlton Street, Athens, GA, 30602, USA
| | - Savithri U Nambeesan
- Department of Horticulture, University of Georgia, 120 Carlton Street, Athens, GA, 30602, USA.
| |
Collapse
|
23
|
Deng Y, Li Y, Sun H. Selection of reference genes for RT-qPCR normalization in blueberry (Vaccinium corymbosum × angustifolium) under various abiotic stresses. FEBS Open Bio 2020; 10:1418-1435. [PMID: 32438500 PMCID: PMC7396441 DOI: 10.1002/2211-5463.12903] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 11/06/2022] Open
Abstract
As a small fruit rich in anthocyanins, blueberry (Vaccinium corymbosum × angustifolium) has become a focus of research in recent years for identifying genes related to anthocyanin transport and stress resistance mechanisms based on transcriptome sequencing. However, the lack of validated, stably expressed reference genes greatly limits the functional study of blueberry genes. Therefore, in this study, we selected 14 candidate reference genes from a blueberry transcriptome database and used three algorithms (geNorm, NormFinder and BestKeeper) to evaluate the expression stability of these genes in various organs at different fruit developmental stages under five abiotic stress conditions. EF1α, EIF and TBP were observed to be the most stable and were thus chosen as reference genes for quantitative real-time PCR. Measurement of the relative expression of VcMATE1 (European Nucleotide Archive accession number KF875433) in blueberry further verified the reliability of these reference genes, which may have great utility for determining the accuracy of gene expression analyses in future research on blueberry.
Collapse
Affiliation(s)
- Yu Deng
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Yadong Li
- Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Haiyue Sun
- Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun, China
| |
Collapse
|
24
|
Hereme R, Morales-Navarro S, Ballesteros G, Barrera A, Ramos P, Gundel PE, Molina-Montenegro MA. Fungal Endophytes Exert Positive Effects on Colobanthus quitensis Under Water Stress but Neutral Under a Projected Climate Change Scenario in Antarctica. Front Microbiol 2020; 11:264. [PMID: 32184767 PMCID: PMC7058981 DOI: 10.3389/fmicb.2020.00264] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Functional symbiosis is considered one of the successful mechanisms by which plants that inhabit extreme environment improve their ability to tolerate different types of stress. One of the most conspicuous type of symbiosis is the endophyticism. This interaction has been noted to play a role in the adaptation of the native vascular plant Colobanthus quitensis to the stressful environments of Antarctica, characterized by low temperatures and extreme aridity. Projections of climate change for this ecosystem indicate that abiotic conditions will be less limiting due to an increase in temperature and water availability in the soil. Due to this decrease in stress induced by the climate change, it has been suggested that the positive role of fungal endophytes on performance of C. quitensis plants would decrease. In this study, we evaluated the role of endophytic fungi on osmoprotective molecules (sugar production, proline, oxidative stress) and gene expression (CqNCED1, CqABCG25, and CqRD22) as well as physiological traits (stomatal opening, net photosynthesis, and stomatal conductance) in individuals of C. quitensis. Individual plants of C. quitensis with (E+) and without (E-) endophytic fungi were exposed to simulated conditions of increased water availability (W+), having the current limiting water condition (W-) in Antarctica as control. The results reveal an endophyte-mediated lower oxidative stress, higher production of sugars and proline in plants. In addition, E+ plants showed differential expressions in genes related with drought stress response, which was more evident in W- than in W+. These parameters corresponded with increased physiological mechanisms such as higher net photosynthesis, stomatal opening and conductance under presence of endophytes (E+) as well as the projected water condition (W+) for Antarctica. These results suggest that the presence of fungal endophytes plays a positive role in favoring tolerance to drought in C. quitensis. However, this positive role would be diminished if the stress factor is relaxed, suggesting that the role of endophytes could be less important under a future scenario of climate change in Antarctica with higher soil water availability.
Collapse
Affiliation(s)
- Rasme Hereme
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | | | | | - Andrea Barrera
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Patricio Ramos
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Núcleo Científico Multidisciplinario-DI, Universidad de Talca, Talca, Chile
| | - Pedro E. Gundel
- IFEVA, CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marco A. Molina-Montenegro
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centro de Estudios Avanzados en Zonas Áridas, Universidad Católica del Norte, Antofagasta, Chile
- Centro de Investigación en Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
25
|
Jing S, Malladi A. Higher growth of the apple (Malus × domestica Borkh.) fruit cortex is supported by resource intensive metabolism during early development. BMC PLANT BIOLOGY 2020; 20:75. [PMID: 32054442 PMCID: PMC7020378 DOI: 10.1186/s12870-020-2280-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/05/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND The major fleshy tissues of the apple fruit are spatially separable into cortex and pith. These tissues display differential growth during development. Key features of such differential growth, and sink metabolic programs supporting it have not been investigated previously. We hypothesized that differential growth between these fruit tissues is supported by differential sink metabolic programs, particularly during early development. Growth, metabolite concentrations, and transcript abundance of metabolism-related genes were measured to determine characteristics of differential growth and their underlying metabolic programs. RESULTS The cortex displayed > 5-fold higher growth than the pith during early fruit development, indicating that differential growth was established during this period. Further, when resource availability was increased through sink-removal, cortex growth was preferentially enhanced. Greatest diversity in metabolic programs between these tissues was evident during early fruit development. Higher cortex growth during early development was facilitated by increased catabolism of imported carbon (C) resources, sorbitol and sucrose, and the nitrogen (N) resource, asparagine. It was also associated with enhanced primary C metabolism, and C storage as malate and quinate. The pith metabolic program during this period involved limited allocation of C and N to growth, but greater allocation to storage, and enhanced sucrose-sucrose cycling. CONCLUSIONS Together, these data indicate that the fruit cortex tissue displays a resource intensive metabolic program during early fruit development. This provides the C backbones, proteins, energy and osmolytes to support its higher growth.
Collapse
Affiliation(s)
- Shan Jing
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA 30602 USA
| | - Anish Malladi
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA 30602 USA
| |
Collapse
|
26
|
Identification and Expression of NAC Transcription Factors of Vaccinium corymbosum L. in Response to Drought Stress. FORESTS 2019. [DOI: 10.3390/f10121088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Research Highlights: Phenotypic changes and expression profiles, phylogeny, conserved motifs, and expression correlations of NAC (NAM, ATAF1, ATAF2 and CUC2) transcription factors (TFs) in blueberry genome were detected under drought stress, and the expression patterns and functions of 12 NACs were analyzed. Background and Objectives: Blueberry is an important shrub species with a high level of flavonoids in fruit, which are implicated in a broad range of health benefits. However, the molecular mechanism of this shrub species in response to drought stress still remains elusive. NAC TFs widely participate in stress tolerance in many plant species. The characterization and expression profiles of NAC TFs were analyzed on the basis of genome data in blueberry when subjected to drought stress. Materials and Methods: Combined with the analysis of chlorophyll a fluorescence and endogenous phytohormones, the phenotypic changes of blueberry under drought stress were observed. The phylogenetic tree, conserved motifs, differently expressed genes, and expression correlation were determined by means of multiple bioinformatics analysis. The expression profiles of NACs in different organs were examined and compared through RNA-seq and qRT-PCR assay. Results: The chlorophyll a fluorescence parameters φPo, φEo, φRo, and PIabs of leaves were significantly inhibited under drought stress. ABA (abscisic acid) content noticeably increased over the duration of drought, whereas GA3 (gibberellic acid) and IAA (indole acetic acid) content decreased continuously. A total of 158 NACs were identified in blueberry genome and 62 NACs were differently expressed in leaf and root of blueberry under drought stress. Among them, 14 NACs were significantly correlated with the expression of other NAC genes. Conclusions: Our results revealed the phenotypic changes of this shrub under drought stress and linked them with NAC TFs, which are potentially involved in the process of response to drought stress.
Collapse
|
27
|
Selection of reference genes for normalization of cranberry (Vaccinium macrocarpon Ait.) gene expression under different experimental conditions. PLoS One 2019; 14:e0224798. [PMID: 31715627 PMCID: PMC6850891 DOI: 10.1371/journal.pone.0224798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 10/22/2019] [Indexed: 11/19/2022] Open
Abstract
Real-time fluorescent quantitative PCR (qRT-PCR) is often chosen as an effective experimental method for analyzing gene expression. However, an appropriate reference gene as a standard is needed to obtain accurate gene expression data. To date, no internal reference genes have been reported for research on cranberries. Expanding the selection of internal reference genes for cranberry will enable reliable gene expression analysis, and, at the same time, can also lay a solid foundation for revealing the biological characteristics of cranberry. Here, we selected ten candidate reference gene families and used three statistical software tools-geNorm, NormFinder and BestKeeper-to evaluate their expression stability under the influence of different experimental factors. The results showed that protein phosphatase 2A regulatory subunit (PP2A) or RNA helicase-like 8 (RH 8) was the best choice for an internal reference gene when analyzing different cranberry cultivars. In two sample sets comprising different cranberry organs and three abiotic stress treatments, sand family protein (SAND) was the best choice as a reference gene. In this study, we screened genes that are stably expressed under the influence of various experimental factors by qRT-PCR. Our results will guide future studies involving gene expression analysis of cranberry.
Collapse
|
28
|
|
29
|
Zorenc Z, Veberic R, Slatnar A, Koron D, Miosic S, Chen MH, Haselmair-Gosch C, Halbwirth H, Mikulic-Petkovsek M. A wild 'albino' bilberry (Vaccinium myrtillus L.) from Slovenia shows three bottlenecks in the anthocyanin pathway and significant differences in the expression of several regulatory genes compared to the common blue berry type. PLoS One 2017; 12:e0190246. [PMID: 29272302 PMCID: PMC5741254 DOI: 10.1371/journal.pone.0190246] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022] Open
Abstract
Relative expressions of structural genes and a number of transcription factors of the anthocyanin pathway relevant in Vaccinium species, and related key enzyme activities were compared with the composition and content of metabolites in skins of ripe fruits of wild albino and blue bilberry (Vaccinium myrtillus) found in Slovenia. Compared to the common blue type, the albino variant had a 151-fold lower total anthocyanin and a 7-fold lower total phenolic content in their berry skin, which correlated with lower gene expression of flavonoid 3-O-glycosyltransferase (FGT; 33-fold), flavanone 3-hydroxylase (FHT; 18-fold), anthocyanidin synthase (ANS; 11-fold), chalcone synthase (CHS, 7.6-fold) and MYBPA1 transcription factor (22-fold). The expression of chalcone isomerase (CHI), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin reductase (LAR), anthocyanidin reductase (ANR) and MYBC2 transcription factor was reduced only by a factor of 1.5-2 in the albino berry skins, while MYBR3 and flavonoid 3',5'-hydroxylase (F3'5'H) were increased to a similar extent. Expression of the SQUAMOSA class transcription factor TDR4, in contrast, was independent of the color type and does therefore not seem to be correlated with anthocyanin formation in this variant. At the level of enzymes, significantly lower FHT and DFR activities, but not of phenylalanine ammonia-lyase (PAL) and CHS/CHI, were observed in the fruit skins of albino bilberries. A strong increase in relative hydroxycinnamic acid derivative concentrations indicates the presence of an additional bottleneck in the general phenylpropanoid pathway at a so far unknown step between PAL and CHS.
Collapse
Affiliation(s)
- Zala Zorenc
- Department of Agronomy, Chair for Fruit, Wine and Vegetable Growing, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Veberic
- Department of Agronomy, Chair for Fruit, Wine and Vegetable Growing, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Slatnar
- Department of Agronomy, Chair for Fruit, Wine and Vegetable Growing, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Darinka Koron
- Department of Fruit Growing, Viticulture and Oenology, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Silvija Miosic
- Institute of Chemical, Environmental and Biological Engineering, Technische Universität Wien, Vienna, Austria
| | - Ming-Hui Chen
- Institute of Chemical, Environmental and Biological Engineering, Technische Universität Wien, Vienna, Austria
| | - Christian Haselmair-Gosch
- Institute of Chemical, Environmental and Biological Engineering, Technische Universität Wien, Vienna, Austria
| | - Heidi Halbwirth
- Institute of Chemical, Environmental and Biological Engineering, Technische Universität Wien, Vienna, Austria
| | - Maja Mikulic-Petkovsek
- Department of Agronomy, Chair for Fruit, Wine and Vegetable Growing, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
30
|
Luengo Escobar A, Magnum de Oliveira Silva F, Acevedo P, Nunes-Nesi A, Alberdi M, Reyes-Díaz M. Different levels of UV-B resistance in Vaccinium corymbosum cultivars reveal distinct backgrounds of phenylpropanoid metabolites. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:541-550. [PMID: 28779619 DOI: 10.1016/j.plaphy.2017.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 05/21/2023]
Abstract
UV-B radiation induces several physiological and biochemical effects that can influence regulatory plant processes. Vaccinium corymbosum responds differently to UV-B radiation depending on the UV-B resistance of cultivars, according to their physiological and biochemical features. In this work, the effect of two levels of UV-B radiation during long-term exposure on the phenylpropanoid biosynthesis, and the expression of genes associated with flavonoid biosynthesis as well as the absolute quantification of secondary metabolites were studied in two contrasting UV-B-resistant cultivars (Legacy, resistant and Bluegold, sensitive). Multivariate analyses were performed to understand the role of phenylpropanoids in UV-B defense mechanisms. The amount of phenylpropanoid compounds was generally higher in Legacy than in Bluegold. Different expression levels of flavonoid biosynthetic genes for both cultivars were transiently induced, showing that even in longer period of UV-B exposure; plants are still adjusting their phenylpropanoids at the transcription levels. Multivariate analysis in Legacy indicated no significant correlation between gene expression and the levels of the flavonoids and phenolic acids. By contrast, in the Bluegold cultivar higher number of correlations between secondary metabolite and transcript levels was found. Taken together, the results indicated different adjustments between the cultivars for a successful UV-B acclimation. While the sensitive cultivar depends on metabolite adjustments to respond to UV-B exposure, the resistant cultivar also possesses an intrinsically higher antioxidant and UV-B screening capacity. Thus, we conclude that UV-B resistance involves not only metabolite level adjustments during the acclimation period, but also depends on the intrinsic metabolic status of the plant and metabolic features of the phenylpropanoid compounds.
Collapse
Affiliation(s)
- Ana Luengo Escobar
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, 54-D, Chile; Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, 54-D, Chile
| | | | - Patricio Acevedo
- Departamento de Ciencias Físicas, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, 54-D, Chile
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Miren Alberdi
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, 54-D, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, 54-D, Chile
| | - Marjorie Reyes-Díaz
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, 54-D, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, 54-D, Chile.
| |
Collapse
|
31
|
Alt DS, Doyle JW, Malladi A. Nitrogen-source preference in blueberry (Vaccinium sp.): Enhanced shoot nitrogen assimilation in response to direct supply of nitrate. JOURNAL OF PLANT PHYSIOLOGY 2017; 216:79-87. [PMID: 28578080 DOI: 10.1016/j.jplph.2017.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Blueberry (Vaccinium sp.) is thought to display a preference for the ammonium (NH4+) form over the nitrate (NO3-) form of inorganic nitrogen (N). This N-source preference has been associated with a generally low capacity to assimilate the NO3- form of N, especially within the shoot tissues. Nitrate assimilation is mediated by nitrate reductase (NR), a rate limiting enzyme that converts NO3- to nitrite (NO2-). We investigated potential limitations of NO3- assimilation in two blueberry species, rabbiteye (Vaccinium ashei) and southern highbush (Vaccinium corymbosum) by supplying NO3- to the roots, leaf surface, or through the cut stem. Both species displayed relatively low but similar root uptake rates for both forms of inorganic N. Nitrate uptake through the roots transiently increased NR activity by up to 3.3-fold and root NR gene expression by up to 4-fold. However, supplying NO3- to the roots did not increase its transport in the xylem, nor did it increase NR activity in the leaves, indicating that the acquired N was largely assimilated or stored within the roots. Foliar application of NO3- increased leaf NR activity by up to 3.5-fold, but did not alter NO3- metabolism-related gene expression, suggesting that blueberries are capable of post translational regulation of NR activity in the shoots. Additionally, supplying NO3- to the cut ends of stems resulted in around a 5-fold increase in NR activity, a 10-fold increase in NR transcript accumulation, and up to a 195-fold increase in transcript accumulation of NITRITE REDUCTASE (NiR1) which codes for the enzyme catalyzing the conversion of NO2- to NH4+. These data indicate that blueberry shoots are capable of assimilating NO3- when it is directly supplied to these tissues. Together, these data suggest that limitations in the uptake and translocation of NO3- to the shoots may limit overall NO3- assimilation capacity in blueberry.
Collapse
Affiliation(s)
- Douglas S Alt
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA, 30602, United Statesof America; Douglas S. Alt, Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, United States of America.
| | - John W Doyle
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA, 30602, United Statesof America; Douglas S. Alt, Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, United States of America.
| | - Anish Malladi
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA, 30602, United Statesof America; Douglas S. Alt, Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, United States of America.
| |
Collapse
|
32
|
Carmona R, Arroyo M, Jiménez-Quesada MJ, Seoane P, Zafra A, Larrosa R, Alché JDD, Claros MG. Automated identification of reference genes based on RNA-seq data. Biomed Eng Online 2017; 16:65. [PMID: 28830520 PMCID: PMC5568602 DOI: 10.1186/s12938-017-0356-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Gene expression analyses demand appropriate reference genes (RGs) for normalization, in order to obtain reliable assessments. Ideally, RG expression levels should remain constant in all cells, tissues or experimental conditions under study. Housekeeping genes traditionally fulfilled this requirement, but they have been reported to be less invariant than expected; therefore, RGs should be tested and validated for every particular situation. Microarray data have been used to propose new RGs, but only a limited set of model species and conditions are available; on the contrary, RNA-seq experiments are more and more frequent and constitute a new source of candidate RGs. Results An automated workflow based on mapped NGS reads has been constructed to obtain highly and invariantly expressed RGs based on a normalized expression in reads per mapped million and the coefficient of variation. This workflow has been tested with Roche/454 reads from reproductive tissues of olive tree (Olea europaea L.), as well as with Illumina paired-end reads from two different accessions of Arabidopsis thaliana and three different human cancers (prostate, small-cell cancer lung and lung adenocarcinoma). Candidate RGs have been proposed for each species and many of them have been previously reported as RGs in literature. Experimental validation of significant RGs in olive tree is provided to support the algorithm. Conclusion Regardless sequencing technology, number of replicates, and library sizes, when RNA-seq experiments are designed and performed, the same datasets can be analyzed with our workflow to extract suitable RGs for subsequent PCR validation. Moreover, different subset of experimental conditions can provide different suitable RGs. Electronic supplementary material The online version of this article (doi:10.1186/s12938-017-0356-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rosario Carmona
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Macarena Arroyo
- Servicio de Neumología, Hospital Regional Universitario de Málaga, Avda Carlos Haya s/n, Malaga, Spain
| | - María José Jiménez-Quesada
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Pedro Seoane
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Malaga, Spain
| | - Adoración Zafra
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Rafael Larrosa
- Departamento de Arquitectura de Computadores, Universidad de Málaga, Malaga, Spain
| | - Juan de Dios Alché
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - M Gonzalo Claros
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Malaga, Spain.
| |
Collapse
|
33
|
Kundu A, Patel A, Pal A. Defining reference genes for qPCR normalization to study biotic and abiotic stress responses in Vigna mungo. PLANT CELL REPORTS 2013; 32:1647-58. [PMID: 23868569 DOI: 10.1007/s00299-013-1478-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 05/20/2023]
Abstract
Expression of ACT, EF1A; H2A, EF1A, ACT and 18S, TUB showed stability under MYMIV, salinity and drought stress, respectively; these are recommended as reference genes for qPCR normalization in Vigna mungo. Accurate gene expression profiling through qPCR depends on selection of appropriate reference gene(s) for normalization. Due to lack of unanimous internal standard, suitable constitutively expressed reference genes are selected that exhibit stable expression under diverse experimental conditions. In this communication, a comparative evaluation of stability among seven V. mungo genes encoding actin (ACT), histone H2A (H2A), elongation factor 1-alpha (EF1A), 18S rRNA (18S), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), cyclophilin (CYP) and tubulin (TUB) under biotic (MYMIV) and abiotic (drought and salinity) stress conditions has been attempted. Specificity and amplification efficiency for each primer pair were verified; however, cumulative assessment of their accumulated transcripts revealed no uniformity. Therefore, individual stability and suitability of these seven candidates have been assessed in silico, by two widely used algorithms, geNorm and Normfinder. Based on the computed results, high stability was obtained for ACT and EF1A during MYMIV stress, while H2A, EFIA and ACT were found to be most suitable in salinity stress experiments and TUB and 18S during drought treatments. Combinations of ACT/TUB or ACT/EFIA were recommended for their use in the pooled analysis, while expression of 18S and CYP showed greater variations and therefore considered unsuitable as reference genes. Additionally, precise quantification of the target gene VmPRX under these stresses was shown to be a function of reference genes' stability, which tends to get affected when normalized with the least stable genes. Hence, use of these normalizers will facilitate accurate and reliable analyses of gene expression in V. mungo.
Collapse
Affiliation(s)
- Anirban Kundu
- Division of Plant Biology, Bose Institute, Kolkata, 700054, West Bengal, India
| | | | | |
Collapse
|
34
|
Die JV, Rowland LJ. Superior cross-species reference genes: a blueberry case study. PLoS One 2013; 8:e73354. [PMID: 24058469 PMCID: PMC3776805 DOI: 10.1371/journal.pone.0073354] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/18/2013] [Indexed: 11/28/2022] Open
Abstract
The advent of affordable Next Generation Sequencing technologies has had major impact on studies of many crop species, where access to genomic technologies and genome-scale data sets has been extremely limited until now. The recent development of genomic resources in blueberry will enable the application of high throughput gene expression approaches that should relatively quickly increase our understanding of blueberry physiology. These studies, however, require a highly accurate and robust workflow and make necessary the identification of reference genes with high expression stability for correct target gene normalization. To create a set of superior reference genes for blueberry expression analyses, we mined a publicly available transcriptome data set from blueberry for orthologs to a set of Arabidopsis genes that showed the most stable expression in a developmental series. In total, the expression stability of 13 putative reference genes was evaluated by qPCR and a set of new references with high stability values across a developmental series in fruits and floral buds of blueberry were identified. We also demonstrated the need to use at least two, preferably three, reference genes to avoid inconsistencies in results, even when superior reference genes are used. The new references identified here provide a valuable resource for accurate normalization of gene expression in Vaccinium spp. and may be useful for other members of the Ericaceae family as well.
Collapse
Affiliation(s)
- Jose V. Die
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Lisa J. Rowland
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Pettengill EA, Parmentier-Line C, Coleman GD. Evaluation of qPCR reference genes in two genotypes of Populus for use in photoperiod and low-temperature studies. BMC Res Notes 2012; 5:366. [PMID: 22824181 PMCID: PMC3479007 DOI: 10.1186/1756-0500-5-366] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/29/2012] [Indexed: 11/25/2022] Open
Abstract
Background Quantitative PCR (qPCR) is a widely used technique for gene expression analysis. A common normalization method for accurate qPCR data analysis involves stable reference genes to determine relative gene expression. Despite extensive research in the forest tree species Populus, there is not a resource for reference genes that meet the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) standards for qPCR techniques and analysis. Since Populus is a woody perennial species, studies of seasonal changes in gene expression are important towards advancing knowledge of this important developmental and physiological trait. The objective of this study was to evaluate reference gene expression stability in various tissues and growth conditions in two important Populus genotypes (P. trichocarpa “Nisqually 1” and P. tremula x P. alba 717 1-B4) following MIQE guidelines. Results We evaluated gene expression stability in shoot tips, young leaves, mature leaves and bark tissues from P. trichocarpa and P. tremula. x P. alba grown under long-day (LD), short-day (SD) or SD plus low-temperatures conditions. Gene expression data were analyzed for stable reference genes among 18S rRNA, ACT2, CDC2, CYC063, TIP4-like, UBQ7, PT1 and ANT using two software packages, geNormPLUS and BestKeeper. GeNormPLUS ranked TIP4-like and PT1 among the most stable genes in most genotype/tissue combinations while BestKeeper ranked CDC2 and ACT2 among the most stable genes. Conclusions This is the first comprehensive evaluation of reference genes in two important Populus genotypes and the only study in Populus that meets MIQE standards. Both analysis programs identified stable reference genes in both genotypes and all tissues grown under different photoperiods. This set of reference genes was found to be suitable for either genotype considered here and may potentially be suitable for other Populus species and genotypes. These results provide a valuable resource for the Populus research community.
Collapse
Affiliation(s)
- Emily A Pettengill
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742-4452, USA
| | | | | |
Collapse
|
36
|
Nonis A, Vezzaro A, Ruperti B. Evaluation of RNA extraction methods and identification of putative reference genes for real-time quantitative polymerase chain reaction expression studies on olive (Olea europaea L.) fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6855-6865. [PMID: 22703380 DOI: 10.1021/jf300419w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Genome wide transcriptomic surveys together with targeted molecular studies are uncovering an ever increasing number of differentially expressed genes in relation to agriculturally relevant processes in olive (Olea europaea L). These data need to be supported by quantitative approaches enabling the precise estimation of transcript abundance. qPCR being the most widely adopted technique for mRNA quantification, preliminary work needs to be done to set up robust methods for extraction of fully functional RNA and for the identification of the best reference genes to obtain reliable quantification of transcripts. In this work, we have assessed different methods for their suitability for RNA extraction from olive fruits and leaves and we have evaluated thirteen potential candidate reference genes on 21 RNA samples belonging to fruit developmental/ripening series and to leaves subjected to wounding. By using two different algorithms, GAPDH2 and PP2A1 were identified as the best reference genes for olive fruit development and ripening, and their effectiveness for normalization of expression of two ripening marker genes was demonstrated.
Collapse
Affiliation(s)
- Alberto Nonis
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | | | | |
Collapse
|
37
|
Marum L, Miguel A, Ricardo CP, Miguel C. Reference gene selection for quantitative real-time PCR normalization in Quercus suber. PLoS One 2012; 7:e35113. [PMID: 22529976 PMCID: PMC3329553 DOI: 10.1371/journal.pone.0035113] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 03/12/2012] [Indexed: 12/11/2022] Open
Abstract
The use of reverse transcription quantitative PCR technology to assess gene expression levels requires an accurate normalization of data in order to avoid misinterpretation of experimental results and erroneous analyses. Despite being the focus of several transcriptomics projects, oaks, and particularly cork oak (Quercus suber), have not been investigated regarding the identification of reference genes suitable for the normalization of real-time quantitative PCR data. In this study, ten candidate reference genes (Act, CACs, EF-1α, GAPDH, His3, PsaH, Sand, PP2A, ß-Tub and Ubq) were evaluated to determine the most stable internal reference for quantitative PCR normalization in cork oak. The transcript abundance of these genes was analysed in several tissues of cork oak, including leaves, reproduction cork, and periderm from branches at different developmental stages (1-, 2-, and 3-year old) or collected in different dates (active growth period versus dormancy). The three statistical methods (geNorm, NormFinder, and CV method) used in the evaluation of the most suitable combination of reference genes identified Act and CACs as the most stable candidates when all the samples were analysed together, while ß-Tub and PsaH showed the lowest expression stability. However, when different tissues, developmental stages, and collection dates were analysed separately, the reference genes exhibited some variation in their expression levels. In this study, and for the first time, we have identified and validated reference genes in cork oak that can be used for quantification of target gene expression in different tissues and experimental conditions and will be useful as a starting point for gene expression studies in other oaks.
Collapse
Affiliation(s)
- Liliana Marum
- Instituto de Biologia Experimental e Tecnológica (IBET) / Instituto de Tecnologia Química e Biológica-Universidade Nova de Lisboa (ITQB-UNL), Oeiras, Portugal
- * E-mail: (LM); (CM)
| | | | | | - Célia Miguel
- Instituto de Biologia Experimental e Tecnológica (IBET) / Instituto de Tecnologia Química e Biológica-Universidade Nova de Lisboa (ITQB-UNL), Oeiras, Portugal
- * E-mail: (LM); (CM)
| |
Collapse
|