1
|
Li F, Cui C, Li C, Yu Y, Zeng Q, Li X, Zhao W, Dong J, Gao X, Xiang J, Zhang D, Wen S, Yang M. Cytology, metabolomics, and proteomics reveal the grain filling process and quality difference of wheat. Food Chem 2024; 457:140130. [PMID: 38943917 DOI: 10.1016/j.foodchem.2024.140130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Comparative proteomics and non-target metabolomics, together with physiological and microstructural analyses of wheat grains (at 15, 20, 25, and 30 days after anthesis) from two different quality wheat varieties (Gaoyou 5766 (strong-gluten) and Zhoumai 18) were performed to illustrate the grain filling material dynamics and to search for quality control genes. The differential expressions of 1541 proteins and 406 metabolites were found. They were mostly engaged in protein metabolism, stress/defense, energy metabolism, and amino acid metabolism, and the metabolism of stored proteins and carbohydrates was the major focus of the latter stages. The core proteins and metabolites in the growth process were identified, and the candidate genes for quality differences were screened. In conclusion, this study offers a molecular explanation for the establishment of wheat quality, and it aids in our understanding of the intricate metabolic network between different qualities of wheat at the filling stage.
Collapse
Affiliation(s)
- Fang Li
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Chao Cui
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Chenyang Li
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Yan Yu
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Quan Zeng
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Xiaoyan Li
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Wanchun Zhao
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Jian Dong
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Xiang Gao
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Jishan Xiang
- Yili Normal University/Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yili 830500, Xinjiang, China
| | - Dingguo Zhang
- Yili Normal University/Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yili 830500, Xinjiang, China
| | - Shanshan Wen
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China.
| | - Mingming Yang
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China.
| |
Collapse
|
2
|
Gong G, Jia H, Tang Y, Pei H, Zhai L, Huang J. Genetic analysis and QTL mapping for pericarp thickness in maize (Zea mays L.). BMC PLANT BIOLOGY 2024; 24:338. [PMID: 38664642 PMCID: PMC11044598 DOI: 10.1186/s12870-024-05052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Proper pericarp thickness protects the maize kernel against pests and diseases, moreover, thinner pericarp improves the eating quality in fresh corn. In this study, we aimed to investigate the dynamic changes in maize pericarp during kernel development and identified the major quantitative trait loci (QTLs) for maize pericarp thickness. It was observed that maize pericarp thickness first increased and then decreased. During the growth and formation stages, the pericarp thickness gradually increased and reached the maximum, after which it gradually decreased and reached the minimum during maturity. To identify the QTLs for pericarp thickness, a BC4F4 population was constructed using maize inbred lines B73 (recurrent parent with thick pericarp) and Baimaya (donor parent with thin pericarp). In addition, a high-density genetic map was constructed using maize 10 K SNP microarray. A total of 17 QTLs related to pericarp thickness were identified in combination with the phenotypic data. The results revealed that the heritability of the thickness of upper germinal side of pericarp (UG) was 0.63. The major QTL controlling UG was qPT1-1, which was located on chromosome 1 (212,215,145-212,948,882). The heritability of the thickness of upper abgerminal side of pericarp (UA) was 0.70. The major QTL controlling UA was qPT2-1, which was located on chromosome 2 (2,550,197-14,732,993). In addition, a combination of functional annotation, DNA sequencing analysis and quantitative real-time PCR (qPCR) screened two candidate genes, Zm00001d001964 and Zm00001d002283, that could potentially control maize pericarp thickness. This study provides valuable insights into the improvement of maize pericarp thickness during breeding.
Collapse
Affiliation(s)
- Guantong Gong
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Haitao Jia
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Yunqi Tang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Hu Pei
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Lihong Zhai
- Basic School of Medicine, Hubei University of Arts and Science, Xiangyang, 441053, China.
| | - Jun Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Botticella E, Testone G, Buffagni V, Palombieri S, Taddei AR, Lafiandra D, Lucini L, Giannino D, Sestili F. Mutations in starch biosynthesis genes affect chloroplast development in wheat pericarp. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108354. [PMID: 38219425 DOI: 10.1016/j.plaphy.2024.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Starch bioengineering in cereals has produced a plethora of genotypes with new nutritional and technological functionalities. Modulation of amylose content from 0 to 100% was inversely correlated with starch digestibility and promoted a lower glycemic index in food products. In wheat, starch mutants have been reported to exhibit various side effects, mainly related to the seed phenotype. However, little is known about the impact of altered amylose content and starch structure on plant metabolism. Here, three bread wheat starch mutant lines with extreme phenotypes in starch branching and amylose content were used to study plant responses to starch structural changes. Omics profiling of gene expression and metabolic patterns supported changes, confirmed by ultrastructural analysis in the chloroplast of the immature seeds. In detail, the identification of differentially expressed genes belonging to functional categories related to photosynthesis, chloroplast and thylakoid (e.g. CURT1), the alteration in the accumulation of photosynthesis-related compounds, and the chloroplast alterations (aberrant shape, grana stacking alteration, and increased number of plastoglobules) suggested that the modification of starch structure greatly affects starch turnover in the chloroplast, triggering oxidative stress (ROS accumulation) and premature tissue senescence. In conclusion, this study highlighted a correlation between starch structure and chloroplast functionality in the wheat kernel.
Collapse
Affiliation(s)
- Ermelinda Botticella
- Department of Agriculture and Forest Science, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy; Institute of Sciences of Food Production (ISPA), National Research Council (CNR), via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Giulio Testone
- Institute for Biological Systems, National Research Council (CNR), Via Salaria, km 29.300, Monterotondo, 00015, Rome, Italy.
| | - Valentina Buffagni
- Department of Agriculture and Forest Science, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy; Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Samuela Palombieri
- Department of Agriculture and Forest Science, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Anna Rita Taddei
- Center of Large Equipments, Section of Electron Microscopy, University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Domenico Lafiandra
- Department of Agriculture and Forest Science, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Donato Giannino
- Institute for Biological Systems, National Research Council (CNR), Via Salaria, km 29.300, Monterotondo, 00015, Rome, Italy
| | - Francesco Sestili
- Department of Agriculture and Forest Science, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy.
| |
Collapse
|
4
|
Meng X, Zhang Z, Wang H, Nai F, Wei Y, Li Y, Wang X, Ma X, Tegeder M. Multi-scale analysis provides insights into the roles of ureide permeases in wheat nitrogen use efficiency. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5564-5590. [PMID: 37478311 DOI: 10.1093/jxb/erad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
The ureides allantoin and allantoate serve as nitrogen (N) transport compounds in plants, and more recently, allantoin has been shown to play a role in signaling. In planta, tissue ureide levels are controlled by the activity of enzymes of the purine degradation pathway and by ureide transporters called ureide permeases (UPS). Little is known about the physiological function of UPS proteins in crop plants, and especially in monocotyledon species. Here, we identified 13 TaUPS genes in the wheat (Triticum aestivum L.) genome. Phylogenetic and genome location analyses revealed a close relationship of wheat UPSs to orthologues in other grasses and a division into TaUPS1, TaUPS2.1, and TaUPS2.2 groups, each consisting of three homeologs, with a total of four tandem duplications. Expression, localization, and biochemical analyses resolved spatio-temporal expression patterns of TaUPS genes, transporter localization at the plasma membrane, and a role for TaUPS2.1 proteins in cellular import of ureides and phloem and seed loading. In addition, positive correlations between TaUPS1 and TaUPS2.1 transcripts and ureide levels were found. Together the data support that TaUPSs function in regulating ureide pools at source and sink, along with source-to-sink transport. Moreover, comparative studies between wheat cultivars grown at low and high N strengthened a role for TaUPS1 and TaUPS2.1 transporters in efficient N use and in controlling primary metabolism. Co-expression, protein-protein interaction, and haplotype analyses further support TaUPS involvement in N partitioning, N use efficiency, and domestication. Overall, this work provides a new understanding on UPS transporters in grasses as well as insights for breeding resilient wheat varieties with improved N use efficiency.
Collapse
Affiliation(s)
- Xiaodan Meng
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
- National Engineering Research Centre for Wheat, Henan Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhiyong Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huali Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Furong Nai
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yihao Wei
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yongchun Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- National Engineering Research Centre for Wheat, Henan Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaochun Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinming Ma
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Zhuo J, Wang K, Wang N, Xing C, Peng D, Wang X, Qu G, Kang C, Ye X, Li Y, Yan Y, Li X. Pericarp starch metabolism is associated with caryopsis development and endosperm starch accumulation in common wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111622. [PMID: 36731749 DOI: 10.1016/j.plantsci.2023.111622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/22/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
The wheat pericarp is the main component of the caryopsis at the early development stage and ultimately converts into a tissue that covers the mature caryopsis. A large number of starch granules are accumulated in the pericarp, but the production of and the role of starch granules in caryopsis development remain- elusive. In the present study, the relationship between accumulated starch granules and starch metabolism-related genes in wheat pericarp was investigated using paraffin section observations, expression analysis, and mutant analysis. Starch synthesis is initiated before anthesis and is dependent on a sucrose uptake and conversion system similar to that in the endosperm. TaPTST2 is required to initiate the production of pericarp starch granules. Pericarp starch granules gradually disappeared at the filling stage with high expression levels of genes encoding β-amylase, sucrose-phosphate synthase, and sucrose-phosphate phosphatase. As a maternal tissue adjacent to the endosperm and embryo, the pericarp plays a temporary reservoir for excess nutrients delivered into the caryopsis during the early development stage and exported at the filling stage. The pericarp contributes to the development of the endosperm and embryo as well as the accumulation of endosperm starch. The metabolism of pericarp starch may affect the weight of the wheat caryopsis.
Collapse
Affiliation(s)
- Jiahui Zhuo
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Ke Wang
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ning Wang
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Caihong Xing
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Da Peng
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xinyu Wang
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Ge Qu
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Caiyun Kang
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xingguo Ye
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaxuan Li
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Yueming Yan
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xiaohui Li
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
6
|
Legland D, Le TDQ, Alvarado C, Girousse C, Chateigner-Boutin AL. New Growth-Related Features of Wheat Grain Pericarp Revealed by Synchrotron-Based X-ray Micro-Tomography and 3D Reconstruction. PLANTS (BASEL, SWITZERLAND) 2023; 12:1038. [PMID: 36903900 PMCID: PMC10005608 DOI: 10.3390/plants12051038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops as it provides 20% of calories and proteins to the human population. To overcome the increasing demand in wheat grain production, there is a need for a higher grain yield, and this can be achieved in particular through an increase in the grain weight. Moreover, grain shape is an important trait regarding the milling performance. Both the final grain weight and shape would benefit from a comprehensive knowledge of the morphological and anatomical determinism of wheat grain growth. Synchrotron-based phase-contrast X-ray microtomography (X-ray µCT) was used to study the 3D anatomy of the growing wheat grain during the first developmental stages. Coupled with 3D reconstruction, this method revealed changes in the grain shape and new cellular features. The study focused on a particular tissue, the pericarp, which has been hypothesized to be involved in the control of grain development. We showed considerable spatio-temporal diversity in cell shape and orientations, and in tissue porosity associated with stomata detection. These results highlight the growth-related features rarely studied in cereal grains, which may contribute significantly to the final grain weight and shape.
Collapse
Affiliation(s)
- David Legland
- INRAE, UR BIA, 44316 Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, 44316 Nantes, France
| | - Thang Duong Quoc Le
- INRAE, UR BIA, 44316 Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, 44316 Nantes, France
| | | | - Christine Girousse
- INRAE, Université Clermont-Auvergne, UMR GDEC, 63000 Clermont-Ferrand, France
| | | |
Collapse
|
7
|
Girousse C. Heat shock exposure during early wheat grain development can reduce maximum endosperm cell number but not necessarily final grain dry mass. PLoS One 2023; 18:e0285218. [PMID: 37115800 PMCID: PMC10146457 DOI: 10.1371/journal.pone.0285218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Post-anthesis heat shocks, which are expected to increase in frequency under climate change, may affect wheat grain development and lead to significant decreases in grain yield. Grain development occurs in three phases, the lag-phase, the filling-phase, and maturation. The growth of the three main compartments of the grain (outer layers (OLs), endosperm, embryo) is staggered, so that heat shocks affect time- and tissue-specific growth processes differentially depending on their timing. We hypothesized that heat shocks during the lag-phase may reduce final grain size, resulting from a reduction in endosperm cell number and/or a restricted OLs growth. Plants were heated for four consecutive days during the lag-phase or the filling-phase or both phases (lag- and filling-). Heat shocks consisted in four hours a day at 38°C and 21°C for the rest of the day. Controlled plants were maintained at 21/14°C (day/night). For each temperature treatment, kinetics of whole grain and compartment masses and dimensions were measured as well as the endosperm cell number. An early heat shock reduced endosperm cell proliferation. However, the growth patterns neither of endosperm nor of OLs were modified compared to controls, resulting in no differences in final grain size. Furthermore, compared to controls, a single heat shock during the filling-phase reduced both the duration and rate of dry mass accumulation into grains, whereas two consecutive shocks reduced the duration but enhanced the rate of dry mass of accumulation, even when endosperm cell number was reduced. The mean endosperm cell size was shown to be larger after early heat shocks. All together, these results suggest a compensatory mechanism exists to regulate endosperm cell size and number. This process might be a new mechanistic target for molecular studies and would improve our understanding of post-anthesis wheat tolerance to heat-shocks.
Collapse
Affiliation(s)
- Christine Girousse
- INRAE, UCA, UMR 1095 GDEC, 5 Chemin de Beaulieu, Clermont-Ferrand, France
| |
Collapse
|
8
|
Starič P, Mravlje J, Mozetič M, Zaplotnik R, Šetina Batič B, Junkar I, Vogel Mikuš K. The Influence of Glow and Afterglow Cold Plasma Treatment on Biochemistry, Morphology, and Physiology of Wheat Seeds. Int J Mol Sci 2022; 23:ijms23137369. [PMID: 35806379 PMCID: PMC9266853 DOI: 10.3390/ijms23137369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Cold plasma (CP) technology is a technique used to change chemical and morphological characteristics of the surface of various materials. It is a newly emerging technology in agriculture used for seed treatment with the potential of improving seed germination and yield of crops. Wheat seeds were treated with glow (direct) or afterglow (indirect) low-pressure radio-frequency oxygen plasma. Chemical characteristics of the seed surface were evaluated by XPS and FTIR analysis, changes in the morphology of the seed pericarp were analysed by SEM and AFM, and physiological characteristics of the seedlings were determined by germination tests, growth studies, and the evaluation of α-amylase activity. Changes in seed wettability were also studied, mainly in correlation with functionalization of the seed surface and oxidation of lipid molecules. Only prolonged direct CP treatment resulted in altered morphology of the seed pericarp and increased its roughness. The degree of functionalization is more evident in direct compared to indirect CP treatment. CP treatment slowed the germination of seedlings, decreased the activity of α-amylase in seeds after imbibition, and affected the root system of seedlings.
Collapse
Affiliation(s)
- Pia Starič
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.M.); (R.Z.); (I.J.); (K.V.M.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia;
- Correspondence:
| | - Jure Mravlje
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia;
| | - Miran Mozetič
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.M.); (R.Z.); (I.J.); (K.V.M.)
| | - Rok Zaplotnik
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.M.); (R.Z.); (I.J.); (K.V.M.)
| | | | - Ita Junkar
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.M.); (R.Z.); (I.J.); (K.V.M.)
| | - Katarina Vogel Mikuš
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.M.); (R.Z.); (I.J.); (K.V.M.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia;
| |
Collapse
|
9
|
Chaban IA, Gulevich AA, Kononenko NV, Khaliluev MR, Baranova EN. Morphological and Structural Details of Tomato Seed Coat Formation: A Different Functional Role of the Inner and Outer Epidermises in Unitegmic Ovule. PLANTS (BASEL, SWITZERLAND) 2022; 11:1101. [PMID: 35567102 PMCID: PMC9104524 DOI: 10.3390/plants11091101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 06/15/2023]
Abstract
In order to understand how and what structures of the tomato ovule with a single integument form the seed coat of a mature seed, a detailed study of the main development stages of the tomato ovule integument was carried out using the methods of light and electron microscopy. The integument itself it was shown to transform in the course of development into the coat (skin) of a mature seed, but the outer and inner epidermises of the integument and some layers of the integument parenchyma are mainly involved in this process. The outer epidermis cells are highly modified in later stages; their walls are thickened and lignified, creating a unique relatively hard outer coat. The fate of the inner epidermis of integument is completely different. It is separated from the other parenchyma cells of integument and is transformed into an independent new secretory tissue, an endothelium, which fences off the forming embryo and endosperm from the death zone. Due to the secretory activity of the endothelium, the dying inner parenchyma cells of the integument are lysed. Soon after the cuticle covers the endosperm, the lysis of dead integument cells stops and their flattened remnants form dense layers, which then enter the final composition of the coat of mature tomato seed. The endothelium itself returns to the location of the integument inner epidermis.
Collapse
Affiliation(s)
- Inna A. Chaban
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia;
| | - Alexander A. Gulevich
- Laboratory of Plant Cell Engineering, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (A.A.G.); (M.R.K.)
| | - Neonila V. Kononenko
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia;
| | - Marat R. Khaliluev
- Laboratory of Plant Cell Engineering, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (A.A.G.); (M.R.K.)
- Department of Biotechnology, Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya 49, 127550 Moscow, Russia
| | - Ekaterina N. Baranova
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia;
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia
| |
Collapse
|
10
|
Synchrotron Based X-ray Microtomography Reveals Cellular Morphological Features of Developing Wheat Grain. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wheat is one of the most important crops in the world, mainly used for human consumption and animal feed. To overcome the increasing demand in wheat production, it is necessary to better understand the mechanisms involved in the growth of the wheat grain. X-ray computed tomography is an efficient method for the non-destructive investigation of the 3D architecture of biological specimens, which does not require staining, sectioning, or inclusion. In particular, phase-contrast tomography results in images with better contrast and an increased resolution compared to that obtained with laboratory tomography devices. The aim of this study was to investigate the potential of phase-contrast tomography for the study of the anatomy of the wheat grain at early stages of development. We provided 3D images of entire grains at various development stages. The image analysis allowed identifying a large number of tissues, and to visualize individual cells. Using a high-resolution setup, finer details were obtained, making it possible to identify additional tissues. Three-dimensional rendering of the grain also revealed the pattern resulting from the epidermis cells. X-ray phase-contrast tomography appears as a promising imaging method for the study of the 3D anatomy of plant organs and tissues.
Collapse
|
11
|
Li YB, Yan M, Cui DZ, Huang C, Sui XX, Guo FZ, Fan QQ, Chu XS. Programmed Degradation of Pericarp Cells in Wheat Grains Depends on Autophagy. Front Genet 2021; 12:784545. [PMID: 34966414 PMCID: PMC8710714 DOI: 10.3389/fgene.2021.784545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022] Open
Abstract
Wheat is one of the most important food crops in the world, with development of the grains directly determining yield and quality. Understanding grain development and the underlying regulatory mechanisms is therefore essential in improving the yield and quality of wheat. In this study, the developmental characteristics of the pericarp was examined in developing wheat grains of the new variety Jimai 70. As a result, pericarp thickness was found to be thinnest in grains at the top of the spike, followed by those in the middle and thickest at the bottom. Moreover, this difference corresponded to the number of cell layers in the pericarp, which decreased as a result of programmed cell death (PCD). A number of autophagy-related genes (ATGs) are involved in the process of PCD in the pericarp, and in this study, an increase in ATG8-PE expression was observed followed by the appearance of autophagy structures. Meanwhile, following interference of the key autophagy gene ATG8, PCD was inhibited and the thickness of the pericarp increased, resulting in small premature grains. These findings suggest that autophagy and PCD coexist in the pericarp during early development of wheat grains, with both processes increasing from the bottom to the top of the spike. Moreover, PCD was also found to rely on ATG8-mediated autophagy. The results of this study therefore provide a theoretical basis for in-depth studies of the regulatory mechanisms of wheat grain development.
Collapse
Affiliation(s)
- Yong-Bo Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Mei Yan
- Shandong Luyan Seed Company, Jinan, China
| | - De-Zhou Cui
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chen Huang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xin-Xia Sui
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Feng Zhi Guo
- Heze Academy of Agricultural Sciences, Heze, China
| | - Qing-Qi Fan
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiu-Sheng Chu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
12
|
Chaban IA, Gulevich AA, Smirnova EA, Baranova EN. Morphological and Ultrastructural Features of Formation of the Skin of Wheat ( Triticum aestivum L.) Kernel. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112538. [PMID: 34834901 PMCID: PMC8624426 DOI: 10.3390/plants10112538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 05/14/2023]
Abstract
The integumentary tissues of plant seeds protect the embryo (new sporophyte) forming in them from unfavorable external conditions; therefore, comprehensive knowledge about the structural and functional specificity of seed covers in various plants may be of both theoretical and practical interest. As a result of our study, additional data were obtained on the morphological and ultrastructural features of the formation of a multilayer skin of wheat (Triticum aestivum L.) kernel (caryopsis). The ultrastructure research analysis showed that differentiation of the pericarp and inner integument of the ovule leads to the formation of functionally different layers of the skin of mature wheat grain. Thus, the differentiation of exocarp and endocarp cells is accompanied by a significant thickening of the cell walls, which reliably protect the ovule from adverse external conditions. The cells of the two-layer inner integument of the ovule differentiate into cuticular and phenolic layers, which are critical for protecting daughter tissues from various pathogens. The epidermis of the nucellus turns into a layer of mucilage, which apparently helps to maintain the water balance of the seed. Morphological and ultrastructural data showed that the formation of the kernel's skin occurs in coordination with the development of the embryo and endosperm up to the full maturity of the kernel. This is evidenced by the structure of the cytoplasm and nucleus, characteristic of metabolically active protoplasts of cells, which is observed in most integumentary layers at the late stages of maturation. This activity can also be confirmed by a significant increase in the thickness of the cell walls in the cells of two layers of the exocarp and in cross cells in comparison with the earlier stages. Based on these results, we came to the conclusion that the cells of a majority in the covering tissues of the wheat kernel during its ontogenesis are transformed into specialized layers of the skin by terminal differentiation.
Collapse
Affiliation(s)
- Inna A. Chaban
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryzevskaya 42, 127550 Moscow, Russia;
- Correspondence: (I.A.C.); (E.N.B.); Tel.: +7-(903)-6245971 (E.N.B.)
| | - Alexander A. Gulevich
- Plant Cell Engineering Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia;
| | - Elena A. Smirnova
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryzevskaya 42, 127550 Moscow, Russia;
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Building 12, 119991 Moscow, Russia
| | - Ekaterina N. Baranova
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryzevskaya 42, 127550 Moscow, Russia;
- Plant Protection Laboratory, N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, 127276 Moscow, Russia
- Correspondence: (I.A.C.); (E.N.B.); Tel.: +7-(903)-6245971 (E.N.B.)
| |
Collapse
|
13
|
Girousse C, Inchboard L, Deswarte JC, Chenu K. How does post-flowering heat impact grain growth and its determining processes in wheat? JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6596-6610. [PMID: 34125876 DOI: 10.1093/jxb/erab282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/11/2021] [Indexed: 05/23/2023]
Abstract
Wheat grain yield is anticipated to suffer from the increased temperatures expected under climate change. In particular, the effects of post-anthesis temperatures on grain growth and development must be better understood in order to improve crop models. Grain growth and development involve several processes, and we hypothesized that some of the most important processes, namely grain dry biomass and water accumulation, grain volume expansion, and endosperm cell proliferation, will have different thermal sensitivity. To assess this, we established temperature-response curves of these processes for steady post-anthesis temperatures between 15 °C and 36 °C. From anthesis to maturity, grain dry mass, water mass, volume, and endosperm cell number were monitored, whilst considering grain temperature. Different sensitivities to heat of these various processes were revealed. The rate of grain dry biomass accumulation increased linearly up to 25 °C, while the reciprocal of its duration increased linearly up to at least 32 °C. In contrast, the growth rates of traits contributing to grain expansion, such as increase in grain volume and cell numbers, had higher optimum temperatures, while the reciprocal of their durations were significantly lower. These temperature-response curves can contribute to improve current crop models, and allow targeting of specific mechanisms for genetic and genomic studies.
Collapse
Affiliation(s)
- Christine Girousse
- INRAe, UCA, UMR 1095 GDEC, 5 Chemin de Beaulieu, F-63000 Clermont-Ferrand, France
| | - Lauren Inchboard
- INRAe, UCA, UMR 1095 GDEC, 5 Chemin de Beaulieu, F-63000 Clermont-Ferrand, France
| | - Jean-Charles Deswarte
- Arvalis Institut du Végétal, Route de Chateaufort, ZA des graviers, F-91190 Villiers-le-Bâcle, France
| | - Karine Chenu
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), 13 Holberton street, Toowoomba, QLD 4350, Australia
| |
Collapse
|
14
|
Tambussi EA, Maydup ML, Carrión CA, Guiamet JJ, Araus JL. Ear photosynthesis in C3 cereals and its contribution to grain yield: methodologies, controversies, and perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3956-3970. [PMID: 33764460 DOI: 10.1093/jxb/erab125] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/17/2021] [Indexed: 05/08/2023]
Abstract
In C3 cereals such as wheat and barley, grain filling was traditionally explained as being sustained by assimilates from concurrent leaf photosynthesis and remobilization from the stem. In recent decades, a role for ear photosynthesis as a contributor to grain filling has emerged. This review analyzes several aspects of this topic: (i) methodological approaches for estimation of ear photosynthetic contribution to grain filling; (ii) the existence of genetic variability in the contribution of the ear, and evidence of genetic gains in the past; (iii) the controversy of the existence of C4 metabolism in the ear; (iv) the response of ear photosynthesis to water deficit; and (v) morphological and physiological traits possibly related to ear temperature and thermal balance of the ear. The main conclusions are: (i) there are a number of methodologies to quantify ear photosynthetic activity (e.g. gas exchange and chlorophyll fluorescence) and the contribution of the ear to grain filling (individual ear shading, ear emergence in shaded canopies, and isotope composition); (ii) the contribution of ear photosynthesis seems to have increased in modern wheat germplasm; (iii) the contribution of the ear to grain filling increases under resource-limitation (water deficit, defoliation, or pathogen infection); (iv) there is genetic variability in the contribution of the ear in wheat, opening up the possibility to use this trait to ameliorate grain yield; (v) current evidence supports the existence of C3 metabolism rather than C4 metabolism; (vi) the ear is a 'dehydration avoider organ' under drought; and (vii) thermal balance in the ear is a relevant issue to explore, and more research is needed to clarify the underlying morphological and physiological traits.
Collapse
Affiliation(s)
- Eduardo A Tambussi
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), cc 327, 1900, La Plata, Argentina
| | - María L Maydup
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), cc 327, 1900, La Plata, Argentina
| | - Cristian A Carrión
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales. Universidad Nacional de Tierra del Fuego, Argentina
| | - Juan J Guiamet
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), cc 327, 1900, La Plata, Argentina
| | - Jose L Araus
- Unitat de Fisiología Vegetal, Departament de Botánica, Universitat de Barcelona, Barcelona, and AGROTECNIO (Center for Research in Agrotechnology), Av. Rovira Roure 191, 25198, Lleida,Spain
| |
Collapse
|
15
|
Chateigner-Boutin AL, Alvarado C, Devaux MF, Durand S, Foucat L, Geairon A, Grélard F, Jamme F, Rogniaux H, Saulnier L, Guillon F. The endosperm cavity of wheat grains contains a highly hydrated gel of arabinoxylan. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110845. [PMID: 33775355 DOI: 10.1016/j.plantsci.2021.110845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Cereal grains provide a substantial part of the calories for humans and animals. The main quality determinants of grains are polysaccharides (mainly starch but also dietary fibers such as arabinoxylans, mixed-linkage glucans) and proteins synthesized and accumulated during grain development in a specialized storage tissue: the endosperm. In this study, the composition of a structure localized at the interface of the vascular tissues of the maternal plant and the seed endosperm was investigated. This structure is contained in the endosperm cavity where water and nutrients are transferred to support grain filling. While studying the wheat grain development, the cavity content was found to autofluoresce under UV light excitation. Combining multispectral analysis, Fourier-Transform infrared spectroscopy, immunolabeling and laser-dissection coupled with wet chemistry, we identified in the cavity arabinoxylans and hydroxycinnamic acids. The cavity content forms a "gel" in the developing grain, which persists in dry mature grain and during subsequent imbibition. Microscopic magnetic resonance imaging revealed that the gel is highly hydrated. Our results suggest that arabinoxylans are synthesized by the nucellar epidermis, released in the cavity where they form a highly hydrated gel which might contribute to regulate grain hydration.
Collapse
Affiliation(s)
| | | | | | | | - Loïc Foucat
- INRAE, UR BIA, F-44316, Nantes, France; INRAE, BIBS Facility, F-44316, Nantes, France
| | | | - Florent Grélard
- INRAE, UR BIA, F-44316, Nantes, France; INRAE, BIBS Facility, F-44316, Nantes, France
| | - Frédéric Jamme
- DISCO Beamline, SOLEIL Synchrotron, 91192, Gif-sur-Yvette, France
| | - Hélène Rogniaux
- INRAE, UR BIA, F-44316, Nantes, France; INRAE, BIBS Facility, F-44316, Nantes, France
| | | | | |
Collapse
|
16
|
Ran L, Yu X, Li Y, Zou J, Deng J, Pan J, Xiong F. Analysis of development, accumulation and structural characteristics of starch granule in wheat grain under nitrogen application. Int J Biol Macromol 2020; 164:3739-3750. [DOI: 10.1016/j.ijbiomac.2020.08.192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022]
|
17
|
Herrera J, Calderini DF. Pericarp growth dynamics associate with final grain weight in wheat under contrasting plant densities and increased night temperature. ANNALS OF BOTANY 2020; 126:1063-1076. [PMID: 32674130 PMCID: PMC7596374 DOI: 10.1093/aob/mcaa131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/13/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS The pericarp weight comprises <17 % of wheat grain weight at harvest. The pericarp supports the hydration and nutrition of both the embryo and endosperm during early grain filling. However, studies of the pericarp and its association with final grain weight have been scarce. This research studied the growth dynamics of wheat pericarp from anthesis onwards and its relationship to final grain weight under contrasting plant densities and night warming. METHODS Two spring wheat cultivars contrasting in kernel weight (Bacanora and Kambara) were sown in field conditions during seasons 2012-13 and 2014-15. Both genotypes were grown under contrasting plant density (control, 370 plants m-2; and low plant density, 44 plants m-2) and night temperatures, i.e. at ambient and increased (>6 °C) temperature for short periods before and after anthesis. From anthesis onward, grains were harvested every 3 or 4 d. Grain samples were measured and the pericarp was removed with a scalpel. Whole grain and pericarp fresh and dry weight were weighed with a precision balance. At harvest, 20 grains from ten spikes were weighed and grain dimensions were measured. KEY RESULTS Fresh weight, dry matter and water content of pericarp dynamics showed a maximum between 110 and 235 °Cd. Maximum dry matter of the pericarp ranged between 4.3 and 5.7 mg, while water content achieved values of up to 12.5 mg. Maximum values and their timings were affected by the genotype, environmental condition and grain position. Final grain weight was closely associated with maximum dry matter and water content of the pericarp. CONCLUSIONS Maximum pericarp weight is a determinant of grain weight and size in wheat, which is earlier than other traits considered as key determinants of grain weight during grain filling. Better growing conditions increased maximum pericarp weight, while higher temperature negatively affected this trait.
Collapse
Affiliation(s)
- Jaime Herrera
- Graduate School, Faculty of Agricultural Sciences, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Daniel F Calderini
- Institute of Plant Production and Protection, Faculty of Agricultural Sciences, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| |
Collapse
|
18
|
Mehdi C, Virginie L, Audrey G, Axelle B, Colette L, Hélène R, Elisabeth J, Fabienne G, Mathilde FA. Cell Wall Proteome of Wheat Grain Endosperm and Outer Layers at Two Key Stages of Early Development. Int J Mol Sci 2019; 21:ijms21010239. [PMID: 31905787 PMCID: PMC6981528 DOI: 10.3390/ijms21010239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022] Open
Abstract
The cell wall is an important compartment in grain cells that fulfills both structural and functional roles. It has a dynamic structure that is constantly modified during development and in response to biotic and abiotic stresses. Non-structural cell wall proteins (CWPs) are key players in the remodeling of the cell wall during events that punctuate the plant life. Here, a subcellular and quantitative proteomic approach was carried out to identify CWPs possibly involved in changes in cell wall metabolism at two key stages of wheat grain development: the end of the cellularization step and the beginning of storage accumulation. Endosperm and outer layers of wheat grain were analyzed separately as they have different origins (maternal and seed) and functions in grains. Altogether, 734 proteins with predicted signal peptides were identified (CWPs). Functional annotation of CWPs pointed out a large number of proteins potentially involved in cell wall polysaccharide remodeling. In the grain outer layers, numerous proteins involved in cutin formation or lignin polymerization were found, while an unexpected abundance of proteins annotated as plant invertase/pectin methyl esterase inhibitors were identified in the endosperm. In addition, numerous CWPs were accumulating in the endosperm at the grain filling stage, thus revealing strong metabolic activities in the cell wall during endosperm cell differentiation, while protein accumulation was more intense at the earlier stage of development in outer layers. Altogether, our work gives important information on cell wall metabolism during early grain development in both parts of the grain, namely the endosperm and outer layers. The wheat cell wall proteome is the largest cell wall proteome of a monocot species found so far.
Collapse
Affiliation(s)
- Cherkaoui Mehdi
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Lollier Virginie
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Geairon Audrey
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Bouder Axelle
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Larré Colette
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Rogniaux Hélène
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Jamet Elisabeth
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326 Castanet Tolosan, France;
| | - Guillon Fabienne
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Francin-Allami Mathilde
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
- Correspondence:
| |
Collapse
|
19
|
Chen X, Chen M, Lin G, Yang Y, Yu X, Wu Y, Xiong F. Structural development and physicochemical properties of starch in caryopsis of super rice with different types of panicle. BMC PLANT BIOLOGY 2019; 19:482. [PMID: 31703691 PMCID: PMC6839170 DOI: 10.1186/s12870-019-2101-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/28/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Starch is the main storage substance in rice caryopsis and its properties will determine the quality of rice. Super rice has been extensively studied due to its high-yield characteristics, but the knowledge of amyloplast development and starch quality in caryopsis of super rice especially with large panicle is limited. RESULTS To address this, large panicle typed and normal panicle typed super rice cultivar Yongyou2640 (YY2640) and Nangeng9108 (NG9108) were investigated in this study. The development of amyloplast in YY2640 caryopsis was better than NG9108, showing faster degradation rate of pericarp amyloplast and better filling degree of endosperm amyloplast. Meanwhile, the starch granule of YY2640 presented as polyhedral shape with smooth surface and the granule size was slightly larger than NG9108. The starch of YY2640 exhibited the lower amylose content, ratio of amylose to amylopectin and the higher level of amylopectin short and long branch-chains compared with NG9108, but there was no significant difference in amylopectin branching degree between them. Two rice starches both showed the characteristics of A-type crystal, and the relative crystallinity and external ordered degree of YY2640 starch were higher than those of NG9108. Furthermore, YY2640 starch showed better pasting properties with lower pasting temperature, shorter pasting time, higher peak viscosity, trough viscosity, breakdown value and lower setback value because of lower apparent amylose content. CONCLUSIONS Overall, the development and filling of amyloplast in YY2640 caryopsis were better than those of NG9108, thus leading to better starch quality of YY2640.
Collapse
Affiliation(s)
- Xinyu Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Bioscience and Biotechnology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 China
| | - Mingxin Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Bioscience and Biotechnology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 China
| | - Guoqiang Lin
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Bioscience and Biotechnology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 China
| | - Yang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Bioscience and Biotechnology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 China
| | - Xurun Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Bioscience and Biotechnology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 China
| | - Yunfei Wu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Bioscience and Biotechnology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 China
| | - Fei Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Bioscience and Biotechnology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 China
| |
Collapse
|
20
|
Lee DW, Lee SK, Rahman MM, Kim YJ, Zhang D, Jeon JS. The Role of Rice Vacuolar Invertase2 in Seed Size Control. Mol Cells 2019; 42:711-720. [PMID: 31607684 PMCID: PMC6821455 DOI: 10.14348/molcells.2019.0109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/23/2022] Open
Abstract
Sink strength optimizes sucrose import, which is fundamental to support developing seed grains and increase crop yields, including those of rice (Oryza sativa). In this regard, little is known about the function of vacuolar invertase (VIN) in controlling sink strength and thereby seed size. Here, in rice we analyzed mutants of two VINs, OsVIN1 and OsVIN2, to examine their role during seed development. In a phenotypic analysis of the T-DNA insertion mutants, only the OsVIN2 mutant osvin2-1 exhibited reduced seed size and grain weight. Scanning electron microscopy analysis revealed that the small seed grains of osvin2-1 can be attributed to a reduction in spikelet size. A significant decrease in VIN activity and hexose level in the osvin2-1 spikelets interfered with spikelet growth. In addition, significant reduction in starch and increase in sucrose, which are characteristic features of reduced turnover and flux of sucrose due to impaired sink strength, were evident in the pre-storage stage of osvin2-1 developing grains. In situ hybridization analysis found that expression of OsVIN2 was predominant in the endocarp of developing grains. A genetically complemented line with a native genomic clone of OsVIN2 rescued reduced VIN activity and seed size. Two additional mutants, osvin2-2 and osvin2-3 generated by the CRISPR/Cas9 method, exhibited phenotypes similar to those of osvin2-1 in spikelet and seed size, VIN activity, and sugar metabolites. These results clearly demonstrate an important role of OsVIN2 as sink strength modulator that is critical for the maintenance of sucrose flux into developing seed grains.
Collapse
Affiliation(s)
- Dae-Woo Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| | - Sang-Kyu Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| | - Md Mizanor Rahman
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| | - Yu-Jin Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| |
Collapse
|
21
|
Le TDQ, Alvarado C, Girousse C, Legland D, Chateigner-Boutin AL. Use of X-ray micro computed tomography imaging to analyze the morphology of wheat grain through its development. PLANT METHODS 2019; 15:84. [PMID: 31384289 PMCID: PMC6668075 DOI: 10.1186/s13007-019-0468-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/23/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Wheat is one of the most important staple source in the world for human consumption, animal feed and industrial raw materials. To deal with the global and increasing population demand, enhancing crop yield by increasing the final weight of individual grain is considered as a feasible solution. Morphometric analysis of wheat grain plays an important role in tracking and understanding developmental processes by assessing potential impacts on grains properties, size and shape that are major determinants of final grain weight. X-ray micro computed tomography (μCT) is a very powerful non-invasive imaging tool that is able to acquire 3D images of an individual grain, enabling to assess the morphology of wheat grain and of its different compartments. Our objective is to quantify changes of morphology during growth stages of wheat grain from 3D μCT images. METHODS 3D μCT images of wheat grains were acquired at various development stages ranging from 60 to 310 degree days after anthesis. We developed robust methods for the identification of outer and inner tissues within the grains, and the extraction of morphometric features using 3D μCT images. We also developed a specific workflow for the quantification of the shape of the grain crease. RESULTS The different compartments of the grain could be semi-automatically segmented. Variations of volumes of the compartments adequately describe the different stages of grain developments. The evolution of voids within wheat grain reflects lysis of outer tissues and growth of inner tissues. The crease shape could be quantified for each grain and averaged for each stage of development, helping us understand the genesis of the grain shape. CONCLUSION This work shows that μCT acquisitions and image processing methodologies are powerful tools to extract morphometric parameters of developing wheat grain. The results of quantitative analysis revealed remarkable features of wheat grain growth. Further work will focus on building a computational model of wheat grain growth based on real 3D imaging data.
Collapse
Affiliation(s)
| | | | - Christine Girousse
- UMR GDEC, INRA, Université Clermont-Auvergne, 63000 Clermont-Ferrand, France
| | | | | |
Collapse
|
22
|
Tomaszewska P, Kosina R. Variability of the caryopsis transfer system in oat amphiploids and their parental species. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2018.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
|
24
|
Chateigner-Boutin AL, Lapierre C, Alvarado C, Yoshinaga A, Barron C, Bouchet B, Bakan B, Saulnier L, Devaux MF, Girousse C, Guillon F. Ferulate and lignin cross-links increase in cell walls of wheat grain outer layers during late development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:199-207. [PMID: 30348319 DOI: 10.1016/j.plantsci.2018.08.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Important biological, nutritional and technological roles are attributed to cell wall polymers from cereal grains. The composition of cell walls in dry wheat grain has been well studied, however less is known about cell wall deposition and modification in the grain outer layers during grain development. In this study, the composition of cell walls in the outer layers of the wheat grain (Triticum aestivum Recital cultivar) was investigated during grain development, with a focus on cell wall phenolics. We discovered that lignification of outer layers begins earlier than previously reported and long before the grain reaches its final size. Cell wall feruloylation increased in development. However, in the late stages, the amount of ferulate releasable by mild alkaline hydrolysis was reduced as well as the yield of lignin-derived thioacidolysis monomers. These reductions indicate that new ferulate-mediated cross-linkages of cell wall polymers appeared as well as new resistant interunit bonds in lignins. The formation of these additional linkages more specifically occurred in the outer pericarp. Our results raised the possibility that stiffening of cell walls occur at late development stages in the outer pericarp and might contribute to the restriction of the grain radial growth.
Collapse
Affiliation(s)
| | - Catherine Lapierre
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France.
| | - Camille Alvarado
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, 44300, Nantes, France.
| | - Arata Yoshinaga
- Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Cécile Barron
- UMR1208 IATE, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| | - Brigitte Bouchet
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, 44300, Nantes, France.
| | - Bénédicte Bakan
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, 44300, Nantes, France.
| | - Luc Saulnier
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, 44300, Nantes, France.
| | | | - Christine Girousse
- INRA UMR1095 GDEC (Génétique Diversité Ecophysiologie des Céréales), INRA, 63000, Clermont-Ferrand, France; UBP, UMR 1095 GDEC (Génétique Diversité Ecophysiologie des Céréales), INRA, 63000, Clermont-Ferrand, France.
| | - Fabienne Guillon
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, 44300, Nantes, France.
| |
Collapse
|
25
|
Zhao L, Xu A, Zhang L, Yin Z, Wei C. Spatiotemporal accumulation and characteristics of starch in developing maize caryopses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:493-500. [PMID: 30086516 DOI: 10.1016/j.plaphy.2018.07.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
The accumulation and morphology of starch in the pericarp, embryo and endosperm of normal and waxy maize were investigated using whole sections of complete caryopses. Pericarp starch took the form of compound granules, was distributed in the bottom of caryopses, and degraded from the top to the bottom. Embryo starch mostly took the form of simple granules and accumulated in the scutellum beginning approximately 10 DAP. In the endosperm, starch accumulated longitudinally from the top to the bottom and transversely from the centre to the periphery with caryopsis development. The peripheral endosperm cells synthesized starch faster than did the inner ones. Simple and compound starches were both observed, but the compound starch granules were distributed in the central region of the endosperm. At a late stage of development, compound starch was only observed in the bottom central portion of the endosperm. The pericarp starch of normal maize showed higher amylose content than did the embryo and endosperm starch. The waxy maize pericarp and embryo starches had similar amylose contents, but amylose was hardly detected in the endosperm due to the granule-bound starch synthase I gene mutation. The starches from the endosperm, embryo and pericarp of normal and waxy maize all had A-type crystallinity.
Collapse
Affiliation(s)
- Lingxiao Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Ahui Xu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Long Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Zhitong Yin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
26
|
Francoz E, Lepiniec L, North HM. Seed coats as an alternative molecular factory: thinking outside the box. PLANT REPRODUCTION 2018; 31:327-342. [PMID: 30056618 DOI: 10.1007/s00497-018-0345-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/13/2018] [Indexed: 05/15/2023]
Abstract
Seed coats as commodities. Seed coats play important roles in the protection of the embryo from biological attack and physical damage by the environment as well as dispersion strategies. A significant part of the energy devoted by the mother plant to seed production is channeled into the production of the cell layers and metabolites that surround the embryo. Nevertheless, in crop species these are often discarded post-harvest and are a wasted resource that could be processed to yield co-products. The production of novel compounds from existing metabolites is also a possibility. A number of macromolecules are already accumulated in these maternal layers that could be exploited in industrial applications either directly or via green chemistry, notably flavonoids, lignin, lignan, polysaccharides, lipid polyesters and waxes. Here, we summarize our knowledge of the in planta biosynthesis pathways of these macromolecules and their molecular regulation as well as potential applications. We also outline recent work aimed at providing further tools for increasing yields of existing molecules or the development of novel biotech approaches, as well as trial studies aimed at exploiting this underused resource.
Collapse
Affiliation(s)
- Edith Francoz
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Helen M North
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
27
|
Yang J, Luo D, Yang B, Frommer WB, Eom JS. SWEET11 and 15 as key players in seed filling in rice. THE NEW PHYTOLOGIST 2018; 218:604-615. [PMID: 29393510 DOI: 10.1111/nph.15004] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/15/2017] [Indexed: 05/04/2023]
Abstract
Despite the relevance of seed-filling mechanisms for crop yield, we still have only a rudimentary understanding of the transport processes that supply the caryopsis with sugars. We hypothesized that SWEET sucrose transporters may play important roles in nutrient import pathways in the rice caryopsis. We used a combination of mRNA quantification, histochemical analyses, translational promoter-reporter fusions and analysis of knockout mutants created by genomic editing to evaluate the contribution of SWEET transporters to seed filling. In rice caryopses, SWEET11 and 15 had the highest mRNA levels and proteins localized to four key sites: all regions of the nucellus at early stages; the nucellar projection close to the dorsal vein; the nucellar epidermis that surrounds the endosperm; and the aleurone. ossweet11;15 double knockout lines accumulated starch in the pericarp, whereas caryopses did not contain a functional endosperm. Jointly, SWEET11 and 15 show all the hallmarks of being necessary for seed filling with sucrose efflux functions at the nucellar projection and a role in transfer across the nucellar epidermis/aleurone interface, delineating two major steps for apoplasmic seed filling, observations that are discussed in relation to observations made in rice and barley regarding the relative prevalence of these two potential import routes.
Collapse
Affiliation(s)
- Jungil Yang
- Institute for Molecular Physiology, Heinrich-Heine University Duesseldorf, 40225, Duesseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Dangping Luo
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Bing Yang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Wolf B Frommer
- Institute for Molecular Physiology, Heinrich-Heine University Duesseldorf, 40225, Duesseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Joon-Seob Eom
- Institute for Molecular Physiology, Heinrich-Heine University Duesseldorf, 40225, Duesseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
28
|
Okada T, Jayasinghe JEARM, Nansamba M, Baes M, Warner P, Kouidri A, Correia D, Nguyen V, Whitford R, Baumann U. Unfertilized ovary pushes wheat flower open for cross-pollination. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:399-412. [PMID: 29202197 PMCID: PMC5853862 DOI: 10.1093/jxb/erx410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/27/2017] [Indexed: 05/06/2023]
Abstract
Bread wheat is strongly autogamous; however, an opportunity for outcrossing occurs when self-pollination fails and florets open. The first phase of floret opening at anthesis is short and induced by lodicule turgidity. Some wheat florets re-open post-anthesis for several days, known as the 'second opening', for which the underlying mechanisms are largely unknown. We performed detailed physiological, anatomical, and histological investigations to understand the biological basis of the flower opening process. Wheat florets were observed open when the ovary was unfertilized. Unfertilized ovaries significantly increased in radial size post-anthesis, pushing the lemma and palea apart to open the florets. The absence of fertile pollen was not directly linked to this, but anther filament elongation coincided with initiation of ovary swelling. The pericarp of unfertilized ovaries did not undergo degeneration as normally seen in developing grains, instead pericarp cells remained intact and enlarged, leading to increased ovary radial size. This is a novel role for the ovary pericarp in wheat flower opening, and the knowledge is useful for facilitating cross-pollination in hybrid breeding. Ovary swelling may represent a survival mechanism in autogamous cereals such as wheat and barley, ensuring seed set in the absence of self-fertilization and increasing genetic diversity through cross-pollination.
Collapse
Affiliation(s)
- Takashi Okada
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
- Correspondence:
| | - J E A Ridma M Jayasinghe
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
| | - Moureen Nansamba
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
| | - Mathieu Baes
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
| | - Patricia Warner
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
| | - Allan Kouidri
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
| | - David Correia
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
| | - Vy Nguyen
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
| | - Ryan Whitford
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
| | - Ute Baumann
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
| |
Collapse
|
29
|
Zhang L, Dong Y, Wang Q, Du C, Xiong W, Li X, Zhu S, Li Y. iTRAQ-Based Proteomics Analysis and Network Integration for Kernel Tissue Development in Maize. Int J Mol Sci 2017; 18:E1840. [PMID: 28837076 PMCID: PMC5618489 DOI: 10.3390/ijms18091840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/09/2017] [Accepted: 08/18/2017] [Indexed: 02/07/2023] Open
Abstract
Grain weight is one of the most important yield components and a developmentally complex structure comprised of two major compartments (endosperm and pericarp) in maize (Zea mays L.), however, very little is known concerning the coordinated accumulation of the numerous proteins involved. Herein, we used isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic method to analyze the characteristics of dynamic proteomics for endosperm and pericarp during grain development. Totally, 9539 proteins were identified for both components at four development stages, among which 1401 proteins were non-redundant, 232 proteins were specific in pericarp and 153 proteins were specific in endosperm. A functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the tissue development. Three and 76 proteins involved in 49 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were integrated for the specific endosperm and pericarp proteins, respectively, reflecting their complex metabolic interactions. In addition, four proteins with important functions and different expression levels were chosen for gene cloning and expression analysis. Different concordance between mRNA level and the protein abundance was observed across different proteins, stages, and tissues as in previous research. These results could provide useful message for understanding the developmental mechanisms in grain development in maize.
Collapse
Affiliation(s)
- Long Zhang
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Yongbin Dong
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Qilei Wang
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Chunguang Du
- Deptment of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA.
| | - Wenwei Xiong
- Deptment of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA.
| | - Xinyu Li
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Sailan Zhu
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Yuling Li
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| |
Collapse
|
30
|
Yu X, Chen X, Wang L, Yang Y, Zhu X, Shao S, Cui W, Xiong F. Novel insights into the effect of nitrogen on storage protein biosynthesis and protein body development in wheat caryopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2259-2274. [PMID: 28472326 DOI: 10.1093/jxb/erx108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Molecular and cytological mechanisms concerning the effects of nitrogen on wheat (Triticum aestivum L.) storage protein biosynthesis and protein body development remain largely elusive. We used transcriptome sequencing, proteomics techniques, and light microscopy to investigate these issues. In total, 2585 differentially expressed genes (DEGs) and 57 differentially expressed proteins (DEPs) were found 7 days after anthesis (DAA), and 2456 DEGs and 64 DEPs were detected 18 DAA after nitrogen treatment. Gene ontology terms related to protein biosynthesis processes enriched these numbers by 678 and 582 DEGs at 7 and 18 DAA, respectively. Further, 25 Kyoto Encyclopedia of Genes and Genomes pathways were involved in protein biosynthesis at both 7 and 18 DAA. DEPs related to storage protein biosynthesis contained gliadin and glutenin subunits, most of which were up-regulated after nitrogen treatment. Quantitative real-time PCR analysis indicated that some gliadin and glutenin subunit encoding genes were differentially expressed at 18 DAA. Structural observation revealed that wheat endosperm accumulated more and larger protein bodies after nitrogen treatment. Collectively, our findings suggest that nitrogen treatment enhances storage protein content, endosperm protein body quantity, and partial processing quality by altering the expression levels of certain genes involved in protein biosynthesis pathways and storage protein expression at the proteomics level.
Collapse
Affiliation(s)
- Xurun Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Xinyu Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Leilei Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Yang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Xiaowei Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Shanshan Shao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Wenxue Cui
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Fei Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
31
|
Lin Z, Wang Z, Zhang X, Liu Z, Li G, Wang S, Ding Y. Complementary Proteome and Transcriptome Profiling in Developing Grains of a Notched-Belly Rice Mutant Reveals Key Pathways Involved in Chalkiness Formation. PLANT & CELL PHYSIOLOGY 2017; 58:560-573. [PMID: 28158863 PMCID: PMC5444571 DOI: 10.1093/pcp/pcx001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/02/2017] [Indexed: 05/03/2023]
Abstract
Rice grain chalkiness is a highly complex trait involved in multiple metabolic pathways and controlled by polygenes and growth conditions. To uncover novel aspects of chalkiness formation, we performed an integrated profiling of gene activity in the developing grains of a notched-belly rice mutant. Using exhaustive tandem mass spectrometry-based shotgun proteomics and whole-genome RNA sequencing to generate a nearly complete catalog of expressed mRNAs and proteins, we reliably identified 38,476 transcripts and 3,840 proteins. Comparison between the translucent part and chalky part of the notched-belly grains resulted in only a few differently express genes (240) and differently express proteins (363), thus making it possible to focus on 'core' genes or common pathways. Several novel key pathways were identified as of relevance to chalkiness formation, in particular the shift of C and N metabolism, the down-regulation of ribosomal proteins and the resulting low abundance of storage proteins especially the 13 kDa prolamin subunit, and the suppressed photosynthetic capacity in the pericarp of the chalky part. Further, genes and proteins as transporters for carbohydrates, amino acid/peptides, proteins, lipids and inorganic ions showed an increasing expression pattern in the chalky part of the notched-belly grains. Similarly, transcripts and proteins of receptors for auxin, ABA, ethylene and brassinosteroid were also up-regulated. In summary, this joint analysis of transcript and protein profiles provides a comprehensive reference map of gene activity regarding the physiological state in the chalky endosperm.
Collapse
Affiliation(s)
- Zhaomiao Lin
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zunxin Wang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xincheng Zhang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenghui Liu
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, PR China
- Corresponding author: E-mail, ; Fax, +86-25-84395313
| | - Ganghua Li
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shaohua Wang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, PR China
| |
Collapse
|
32
|
Wu X, Liu J, Li D, Liu CM. Rice caryopsis development I: Dynamic changes in different cell layers. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:772-85. [PMID: 26472484 PMCID: PMC5064628 DOI: 10.1111/jipb.12440] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/09/2015] [Indexed: 05/18/2023]
Abstract
Rice caryopsis as one of the most important food sources for humans has a complex structure that is composed of maternal tissues including the pericarp and testa and filial tissues including the endosperm and embryo. Although rice caryopsis studies have been conducted previously, a systematic characterization throughout the entire developmental process is still lacking. In this study, detailed morphological examinations of caryopses were made during the entire 30-day developmental process. We observed some rapid changes in cell differentiation events and cataloged how cellular degeneration processes occurred in maternal tissues. The differentiations of tube cells and cross cells were achieved by 9 days after pollination (DAP). In the testa, the outer integument was degenerated by 3 DAP, while the outer layer of the inner integument degenerated by 7 DAP. In the nucellus, all tissues with the exception of the nucellar projection and the nucellar epidermis degenerated in the first 5 DAP. By 21 DAP, all maternal tissues, including vascular bundles, the nucellar projection and the nucellar epidermal cells were degenerated. In summary, this study provides a complete atlas of the dynamic changes in cell differentiation and degeneration for individual maternal cell layers of rice caryopsis.
Collapse
Affiliation(s)
- Xiaoba Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Dongqi Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
33
|
Yu X, Li B, Wang L, Chen X, Wang W, Wang Z, Xiong F. Systematic Analysis of Pericarp Starch Accumulation and Degradation during Wheat Caryopsis Development. PLoS One 2015; 10:e0138228. [PMID: 26394305 PMCID: PMC4578966 DOI: 10.1371/journal.pone.0138228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/26/2015] [Indexed: 11/18/2022] Open
Abstract
Although wheat (Triticum aestivum L.) pericarp starch granule (PSG) has been well-studied, our knowledge of its features and mechanism of accumulation and degradation during pericarp growth is poor. In the present study, developing wheat caryopses were collected and starch granules were extracted from their pericarp to investigate the morphological and structural characteristics of PSGs using microscopy, X-ray diffraction and Fourier transform infrared spectroscopy techniques. Relative gene expression levels of ADP-glucose pyrophosphorylase (APGase), granule-bound starch synthase II (GBSS II), and α-amylase (AMY) were quantified by quantitative real-time polymerase chain reaction. PSGs presented as single or multiple starch granules and were synthesized both in the amyloplast and chloroplast in the pericarp. PSG degradation occurred in the mesocarp, beginning at 6 days after anthesis. Amylose contents in PSGs were lower and relative degrees of crystallinity were higher at later stages of development than at earlier stages. Short-range ordered structures in the external regions of PSGs showed no differences in the developing pericarp. When hydrolyzed by α-amylase, PSGs at various developmental stages showed high degrees of enzymolysis. Expression levels of AGPase, GBSS II, and AMY were closely related to starch synthesis and degradation. These results help elucidate the mechanisms of accumulation and degradation as well as the functions of PSG during wheat caryopsis development.
Collapse
Affiliation(s)
- Xurun Yu
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Bo Li
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226541, China
| | - Leilei Wang
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xinyu Chen
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wenjun Wang
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhong Wang
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Fei Xiong
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- * E-mail:
| |
Collapse
|
34
|
Chateigner-Boutin AL, Suliman M, Bouchet B, Alvarado C, Lollier V, Rogniaux H, Guillon F, Larré C. Endomembrane proteomics reveals putative enzymes involved in cell wall metabolism in wheat grain outer layers. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2649-58. [PMID: 25769308 PMCID: PMC4986875 DOI: 10.1093/jxb/erv075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cereal grain outer layers fulfil essential functions for the developing seed such as supplying energy and providing protection. In the food industry, the grain outer layers called 'the bran' is valuable since it is rich in dietary fibre and other beneficial nutriments. The outer layers comprise several tissues with a high content in cell wall material. The cell wall composition of the grain peripheral tissues was investigated with specific probes at a stage of active cell wall synthesis. Considerable wall diversity between cell types was revealed. To identify the cellular machinery involved in cell wall synthesis, a subcellular proteomic approach was used targeting the Golgi apparatus where most cell wall polysaccharides are synthesized. The tissues were dissected into outer pericarp and intermediate layers where 822 and 1304 proteins were identified respectively. Many carbohydrate-active enzymes were revealed: some in the two peripheral grain fractions, others only in one tissue. Several protein families specific to one fraction and with characterized homologs in other species might be related to the specific detection of a polysaccharide in a particular cell layer. This report provides new information on grain cell walls and its biosynthesis in the valuable outer tissues, which are poorly studied so far. A better understanding of the mechanisms controlling cell wall composition could help to improve several quality traits of cereal products (e.g. dietary fibre content, biomass conversion to biofuel).
Collapse
Affiliation(s)
| | - Muhtadi Suliman
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| | - Brigitte Bouchet
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| | - Camille Alvarado
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| | - Virginie Lollier
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| | - Hélène Rogniaux
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| | - Fabienne Guillon
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| | - Colette Larré
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| |
Collapse
|
35
|
Xurun Y, Xinyu C, Liang Z, Jing Z, Heng Y, Shanshan S, Fei X, Zhong W. Structural development of wheat nutrient transfer tissues and their relationships with filial tissues development. PROTOPLASMA 2015; 252:605-617. [PMID: 25252888 DOI: 10.1007/s00709-014-0706-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
Nutrients from spikelet phloem are commonly delivered to endosperm via caryopsis nutrient transfer tissues (NTTs). Elucidation of NTTs development is paramount to developing an understanding of the control of assimilate partitioning. Little information was available on the structural development of the entire NTTs and their functions, particularly those involved in the relationship between development of NTTs and growth of filial tissues including endosperm and embryo. In this study, wheat caryopses at different development stages were collected for observation of the NTTs by light microscopy, stereoscopic microscopy, and scanning electron microscopy. The cytological features of NTTs in the developing wheat caryopsis were clearly elucidated. The results were as follows: NTTs in the wheat caryopsis include maternal transfer tissues that are composed of vascular bundle, chalaza and nucellar projection transfer cells, and endosperm transfer tissues that consist of the aleurone transfer cells, starchy endosperm transfer cells, and endosperm conducting cells. The initiation, development, and apoptosis of these NTTs revealed the pattern of temporal and spatial gradient and were closely coordinated with endosperm and embryo development. These results may give us a further understanding about the functions of NTTs and their relationships with endosperm and embryo development.
Collapse
Affiliation(s)
- Yu Xurun
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yu X, Zhou L, Zhang J, Yu H, Xiong F, Wang Z. Comparison of starch granule development and physicochemical properties of starches in wheat pericarp and endosperm. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:148-57. [PMID: 24740388 DOI: 10.1002/jsfa.6696] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/14/2014] [Accepted: 04/11/2014] [Indexed: 05/25/2023]
Abstract
BACKGROUND The objectives of this study were: (i) to characterize structural development of starch granule in pericarp and endosperm during wheat caryopsis growth; (ii) to compare physicochemical properties of starches in pericarp and endosperm; (iii) to further discover the relationships between pericarp starches and endosperm starches. Wheat pericarp and endosperm at different development stages were observed by light microscopy and scanning electron microscopy, respectively. Structural properties of starches were determined using X-ray power diffraction and (13) C solid nuclear magnetic resonance. RESULTS Pericarp starch granules (PSG) accumulated in amyloplasts and chloroplasts, and showed a typical accumulation peak at 5 days after fertilization (DAF), and then gradually decomposed during 5-22 DAF. PSG in the abdominal region showed a higher rate of decomposition compared to the dorsal region of pericarp. Endosperm starch granules (ESG) accumulated in amyloplasts, and occurred in endosperm cells at 5 DAF, then rapidly enriched the endosperm cells until 22 DAF. Compared with ESG, PSG were compound granules of irregular shape and small size distribution. The results also suggested lower amylose content and V-type single-helix content and higher proportions of double helices for PSG compared to ESG. CONCLUSION Based on the structural development of PSG and ESG, we speculated that the saccharides resulting from decomposition of PSG, on one hand, enabled the pericarp to survive before maturity of wheat caryopsis and, on the other hand, provided extra nutrition for the growth of ESG.
Collapse
Affiliation(s)
- Xurun Yu
- Key Laboratories of Crop Genetics and Physiology of the Jiangsu Province and Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | | | | | | | | | | |
Collapse
|
37
|
Radchuk V, Borisjuk L. Physical, metabolic and developmental functions of the seed coat. FRONTIERS IN PLANT SCIENCE 2014; 5:510. [PMID: 25346737 PMCID: PMC4193196 DOI: 10.3389/fpls.2014.00510] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/11/2014] [Indexed: 05/04/2023]
Abstract
The conventional understanding of the role of the seed coat is that it provides a protective layer for the developing zygote. Recent data show that the picture is more nuanced. The seed coat certainly represents a first line of defense against adverse external factors, but it also acts as channel for transmitting environmental cues to the interior of the seed. The latter function primes the seed to adjust its metabolism in response to changes in its external environment. The purpose of this review is to provide the reader with a comprehensive view of the structure and functionality of the seed coat, and to expose its hidden interaction with both the endosperm and embryo. Any breeding and/or biotechnology intervention seeking to increase seed size or modify seed features will have to consider the implications on this tripartite interaction.
Collapse
Affiliation(s)
| | - Ljudmilla Borisjuk
- Heterosis, Molecular Genetics, Leibniz-Institut für Pflanzengenetik und KulturpflanzenforschungGatersleben, Germany
| |
Collapse
|
38
|
Tran V, Weier D, Radchuk R, Thiel J, Radchuk V. Caspase-like activities accompany programmed cell death events in developing barley grains. PLoS One 2014; 9:e109426. [PMID: 25286287 PMCID: PMC4186829 DOI: 10.1371/journal.pone.0109426] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/31/2014] [Indexed: 11/19/2022] Open
Abstract
Programmed cell death is essential part of development and cell homeostasis of any multicellular organism. We have analyzed programmed cell death in developing barley caryopsis at histological, biochemical and molecular level. Caspase-1, -3, -4, -6 and -8-like activities increased with aging of pericarp coinciding with abundance of TUNEL positive nuclei and expression of HvVPE4 and HvPhS2 genes in the tissue. TUNEL-positive nuclei were also detected in nucellus and nucellar projection as well as in embryo surrounding region during early caryopsis development. Quantitative RT-PCR analysis of micro-dissected grain tissues revealed the expression of HvVPE2a, HvVPE2b, HvVPE2d, HvPhS2 and HvPhS3 genes exclusively in the nucellus/nucellar projection. The first increase in cascade of caspase-1, -3, -4, -6 and -8-like activities in the endosperm fraction may be related to programmed cell death in the nucellus and nucellar projection. The second increase of all above caspase-like activities including of caspase-9-like was detected in the maturating endosperm and coincided with expression of HvVPE1 and HvPhS1 genes as well as with degeneration of nuclei in starchy endosperm and transfer cells. The distribution of the TUNEL-positive nuclei, tissues-specific expression of genes encoding proteases with potential caspase activities and cascades of caspase-like activities suggest that each seed tissue follows individual pattern of development and disintegration, which however harmonizes with growth of the other tissues in order to achieve proper caryopsis development.
Collapse
Affiliation(s)
- Van Tran
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Diana Weier
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ruslana Radchuk
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Johannes Thiel
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Volodymyr Radchuk
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|