1
|
Yao J, Chu Q, Guo X, Shao W, Shang N, Luo K, Li X, Chen H, Cheng Q, Mo F, Zheng D, Xu F, Guo F, Zhu QH, Deng S, Chu C, Xu X, Liu H, Fan L. Spatiotemporal transcriptomic landscape of rice embryonic cells during seed germination. Dev Cell 2024; 59:2320-2332.e5. [PMID: 38848718 DOI: 10.1016/j.devcel.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 02/15/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Characterizing cellular features during seed germination is crucial for understanding the complex biological functions of different embryonic cells in regulating seed vigor and seedling establishment. We performed spatially enhanced resolution omics sequencing (Stereo-seq) and single-cell RNA sequencing (scRNA-seq) to capture spatially resolved single-cell transcriptomes of germinating rice embryos. An automated cell-segmentation model, employing deep learning, was developed to accommodate the analysis requirements. The spatial transcriptomes of 6, 24, 36, and 48 h after imbibition unveiled both known and previously unreported embryo cell types, including two unreported scutellum cell types, corroborated by in situ hybridization and functional exploration of marker genes. Temporal transcriptomic profiling delineated gene expression dynamics in distinct embryonic cell types during seed germination, highlighting key genes involved in nutrient metabolism, biosynthesis, and signaling of phytohormones, reprogrammed in a cell-type-specific manner. Our study provides a detailed spatiotemporal transcriptome of rice embryo and presents a previously undescribed methodology for exploring the roles of different embryonic cells in seed germination.
Collapse
Affiliation(s)
- Jie Yao
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Qinjie Chu
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Xing Guo
- BGI Research, Shenzhen 518103, China; BGI Research, Wuhan 430074, China
| | - Wenwen Shao
- BGI Research, Shenzhen 518103, China; BGI Research, Wuhan 430074, China
| | - Nianmin Shang
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Kang Luo
- College of Computer Science and Technology & Polytechnic Institute, Zhejiang University, Hangzhou 310015, Zhejiang, China
| | - Xiaohan Li
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Hongyu Chen
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Qing Cheng
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Fangyu Mo
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Dihuai Zheng
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Fan Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Fu Guo
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Qian-Hao Zhu
- CSIRO, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Shuiguang Deng
- College of Computer Science and Technology & Polytechnic Institute, Zhejiang University, Hangzhou 310015, Zhejiang, China
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xun Xu
- BGI Research, Shenzhen 518103, China
| | - Huan Liu
- BGI Research, Shenzhen 518103, China.
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya 572025, China.
| |
Collapse
|
2
|
Li Y, Niu L, Zhou X, Liu H, Tai F, Wang W. Modifying the Expression of Cysteine Protease Gene PCP Affects Pollen Development, Germination and Plant Drought Tolerance in Maize. Int J Mol Sci 2023; 24:ijms24087406. [PMID: 37108569 PMCID: PMC10138719 DOI: 10.3390/ijms24087406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Cysteine proteases (CPs) are vital proteolytic enzymes that play critical roles in various plant processes. However, the particular functions of CPs in maize remain largely unknown. We recently identified a pollen-specific CP (named PCP), which highly accumulated on the surface of maize pollen. Here, we reported that PCP played an important role in pollen germination and drought response in maize. Overexpression of PCP inhibited pollen germination, while mutation of PCP promoted pollen germination to some extent. Furthermore, we observed that germinal apertures of pollen grains in the PCP-overexpression transgenic lines were excessively covered, whereas this phenomenon was not observed in the wild type (WT), suggesting that PCP regulated pollen germination by affecting the germinal aperture structure. In addition, overexpression of PCP enhanced drought tolerance in maize plants, along with the increased activities of the antioxidant enzymes and the decreased numbers of the root cortical cells. Conversely, mutation of PCP significantly impaired drought tolerance. These results may aid in clarifying the precise functions of CPs in maize and contribute to the development of drought-tolerant maize materials.
Collapse
Affiliation(s)
- Yanhua Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaoli Zhou
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
3
|
Zeng Y, Wen J, Fu J, Geng H, Dan Z, Zhao W, Xu W, Huang W. Genome-wide identification and comprehensive analysis of tubby-like protein gene family in multiple crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1093944. [PMID: 36589128 PMCID: PMC9795058 DOI: 10.3389/fpls.2022.1093944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The highly conserved tubby-like proteins (TLPs) play key roles in animal neuronal development and plant growth. The abiotic stress tolerance function of TLPs has been widely explored in plants, however, little is known about comparative studies of TLPs within crops. METHODS Bioinformatic identification, phylogenetic analysis, Cis-element analysis, expression analysis, Cis-element analysis, expression analysis and so on were explored to analysis the TLP gene family of multiple crops. RESULTS In this study, a comprehensive analysis of TLP genes were carried out in seven crops to explore whether similar function of TLPs in rice could be achieved in other crops. We identified 20, 9, 14, 11, 12, 35, 14 and 13 TLP genes in Glycine max, Hordeum vulgare, Sorghum bicolor, Arabidopsis thaliana, Oryza sativa Japonica, Triticum aestivum, Setaria italic and Zea mays, respectively. All of them were divided into two groups and ten orthogroups (Ors) based on amino acids. A majority of TLP genes had two domains, tubby-like domain and F-box domain, while members of Or5 only had tubby-like domain. In addition, Or5 had more exons and shorter DNA sequences, showing that characteristics of different Ors reflected the differentiated function and feature of TLP genes in evolutionary process, and Or5 was the most different from the other Ors. Besides, we recognized 25 cis-elements in the promoter of TLP genes and explored multiple new regulation pathway of TLPs including light and hormone response. The bioinformatic and transcriptomic analysis implied the stresses induced expression and possible functional redundancy of TLP genes. We detected the expression level of 6 OsTLP genes at 1 to 6 days after seed germination in rice, and the most obvious changes in these days were appeared in OsTLP10 and OsTLP12. DISCUSSION Combined yeast two-hybrid system and pull down assay, we suggested that the TLP genes of Or1 may have similar function during seed germination in different species. In general, the results of comprehensive analysis of TLP gene family in multiple species provide valuable evolutionary and functional information of TLP gene family which are useful for further application and study of TLP genes.
Collapse
|
4
|
Genome-Wide Identification and Characterization of the Cystatin Gene Family in Bread Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:ijms221910264. [PMID: 34638605 PMCID: PMC8508539 DOI: 10.3390/ijms221910264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/03/2022] Open
Abstract
Cystatins, as reversible inhibitors of papain-like and legumain proteases, have been identified in several plant species. Although the cystatin family plays crucial roles in plant development and defense responses to various stresses, this family in wheat (Triticum aestivum L.) is still poorly understood. In this study, 55 wheat cystatins (TaCystatins) were identified. All TaCystatins were divided into three groups and both the conserved gene structures and peptide motifs were relatively conserved within each group. Homoeolog analysis suggested that both homoeolog retention percentage and gene duplications contributed to the abundance of the TaCystatin family. Analysis of duplication events confirmed that segmental duplications played an important role in the duplication patterns. The results of codon usage pattern analysis showed that TaCystatins had evident codon usage bias, which was mainly affected by mutation pressure. TaCystatins may be regulated by cis-acting elements, especially abscisic acid and methyl jasmonate responsive elements. In addition, the expression of all selected TaCystatins was significantly changed following viral infection and cold stress, suggesting potential roles in response to biotic and abiotic challenges. Overall, our work provides new insights into TaCystatins during wheat evolution and will help further research to decipher the roles of TaCystatins under diverse stress conditions.
Collapse
|
5
|
Usman B, Zhao N, Nawaz G, Qin B, Liu F, Liu Y, Li R. CRISPR/Cas9 Guided Mutagenesis of Grain Size 3 Confers Increased Rice ( Oryza sativa L.) Grain Length by Regulating Cysteine Proteinase Inhibitor and Ubiquitin-Related Proteins. Int J Mol Sci 2021; 22:ijms22063225. [PMID: 33810044 PMCID: PMC8004693 DOI: 10.3390/ijms22063225] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/21/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas9)-mediated genome editing has become an important way for molecular breeding in crop plants. To promote rice breeding, we edited the Grain Size 3 (GS3) gene for obtaining valuable and stable long-grain rice mutants. Furthermore, isobaric tags for the relative and absolute quantitation (iTRAQ)-based proteomic method were applied to determine the proteome-wide changes in the GS3 mutants compared with wild type (WT). Two target sites were designed to construct the vector, and the Agrobacterium-mediated method was used for rice transformation. Specific mutations were successfully introduced, and the grain length (GL) and 1000-grain weight (GWT) of the mutants were increased by 31.39% and 27.15%, respectively, compared with WT. The iTRAQ-based proteomic analysis revealed that a total of 31 proteins were differentially expressed in the GS3 mutants, including 20 up-regulated and 11 down-regulated proteins. Results showed that differentially expressed proteins (DEPs) were mainly related to cysteine synthase, cysteine proteinase inhibitor, vacuolar protein sorting-associated, ubiquitin, and DNA ligase. Furthermore, functional analysis revealed that DEPs were mostly enriched in cellular process, metabolic process, binding, transmembrane, structural, and catalytic activities. Pathway enrichment analysis revealed that DEPs were mainly involved in lipid metabolism and oxylipin biosynthesis. The protein-to-protein interaction (PPI) network found that proteins related to DNA damage-binding, ubiquitin-40S ribosomal, and cysteine proteinase inhibitor showed a higher degree of interaction. The homozygous mutant lines featured by stable inheritance and long-grain phenotype were obtained using the CRISPR/Cas9 system. This study provides a convenient and effective way of improving grain yield, which could significantly accelerate the breeding process of long-grain japonica parents and promote the development of high-yielding rice.
Collapse
Affiliation(s)
- Babar Usman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Neng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Gul Nawaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Y.L.); (R.L.); Tel.: +86-20-8528-1908 (Y.L.); +86-136-0009-4135 (R.L.)
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
- Correspondence: (Y.L.); (R.L.); Tel.: +86-20-8528-1908 (Y.L.); +86-136-0009-4135 (R.L.)
| |
Collapse
|
6
|
Guo J, Liu X, Li Y, Ji H, Liu C, Zhou L, Huang Y, Bai C, Jiang Z, Wu X. Screening for proteins related to the biosynthesis of hispidin and its derivatives in Phellinus igniarius using iTRAQ proteomic analysis. BMC Microbiol 2021; 21:81. [PMID: 33711926 PMCID: PMC7953727 DOI: 10.1186/s12866-021-02134-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/23/2021] [Indexed: 12/03/2022] Open
Abstract
Background Hispidin (HIP) and its derivatives, a class of natural fungal metabolites, possess complex chemical structures with extensive pharmacological activities. Phellinus igniarius, the most common source of HIP, can be used as both medicine and food. However, the biosynthetic pathway of HIP in P. igniarius remains unclear and we have a limited understanding of the regulatory mechanisms related to HIP. In this work, we sought to illustrate a biosynthesis system for hispidin and its derivatives at the protein level. Results We found that tricetolatone (TL) is a key biosynthetic precursor in the biosynthetic pathway of hispidin and that its addition led to increased production of hispidin and various hispidin derivatives. Based on the changes in the concentrations of precursors and intermediates, key timepoints in the biosynthetic process were identified. We used isobaric tags for relative and absolute quantification (iTRAQ) to study dynamic changes of related proteins in vitro. The 270 differentially expressed proteins were determined by GO enrichment analysis to be primarily related to energy metabolism, oxidative phosphorylation, and environmental stress responses after TL supplementation. The differentially expressed proteins were related to ATP synthase, NAD binding protein, oxidoreductase, and other elements associated with electron transfer and dehydrogenation reactions during the biosynthesis of hispidin and its derivatives. Multiple reaction monitoring (MRM) technology was used to selectively verify the iTRAQ results, leading us to screen 11 proteins that were predicted to be related to the biosynthesis pathways. Conclution These findings help to clarify the molecular mechanism of biosynthesis of hispidin and its derivatives and may serve as a foundation for future strategies to identify new hispidin derivatives. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02134-0.
Collapse
Affiliation(s)
- Jinjing Guo
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Xiaoxi Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Yuanjie Li
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Hongyan Ji
- Department of Pharmaceutics, General Hospital of Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Cheng Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Li Zhou
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Yu Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Changcai Bai
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Zhibo Jiang
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P.R. China
| | - Xiuli Wu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P.R. China.
| |
Collapse
|
7
|
Li J, Liu X, Wang Q, Sun J, He D. Genome-wide identification and analysis of cystatin family genes in Sorghum ( Sorghum bicolor (L.) Moench). PeerJ 2021; 9:e10617. [PMID: 33552717 PMCID: PMC7827979 DOI: 10.7717/peerj.10617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 11/30/2020] [Indexed: 11/20/2022] Open
Abstract
To set a systematic study of the Sorghum cystatins (SbCys) gene family, a genome-wide analysis of the SbCys family genes was performed by bioinformatics-based methods. In total, 18 SbCys genes were identified in Sorghum, which were distributed unevenly on chromosomes, and two genes were involved in a tandem duplication event. All SbCys genes had similar exon/intron structure and motifs, indicating their high evolutionary conservation. Transcriptome analysis showed that 16 SbCys genes were expressed in different tissues, and most genes displayed higher expression levels in reproductive tissues than in vegetative tissues, indicating that the SbCys genes participated in the regulation of seed formation. Furthermore, the expression profiles of the SbCys genes revealed that seven cystatin family genes were induced during Bipolaris sorghicola infection and only two genes were responsive to aphid infestation. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) confirmed that 17 SbCys genes were induced by one or two abiotic stresses (dehydration, salt, and ABA stresses). The interaction network indicated that SbCys proteins were associated with several biological processes, including seed development and stress responses. Notably, the expression of SbCys4 was up-regulated under biotic and abiotic stresses, suggesting its potential roles in mediating the responses of Sorghum to adverse environmental impact. Our results provide new insights into the structural and functional characteristics of the SbCys gene family, which lay the foundation for better understanding the roles and regulatory mechanism of Sorghum cystatins in seed development and responses to different stress conditions.
Collapse
Affiliation(s)
- Jie Li
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, China
| | - Xinhao Liu
- Central Laboratory, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, China
| | - Qingmei Wang
- Central Laboratory, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, China
| | - Junyan Sun
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, China
| | - Dexian He
- Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
8
|
Cloning, expression and enzymatic characterization of a cystatin gene involved in herbivore defense in tea plant (Camellia sinensis). CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00312-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Abstract
Dozens of studies have assessed the practical value of plant cystatins as ectopic inhibitors of Cys proteases in biological systems. The potential of these proteins in crop protection to control herbivorous pests and pathogens has been documented extensively over the past 25 years. Their usefulness to regulate endogenous Cys proteases in planta has also been considered recently, notably to implement novel traits of agronomic relevance in crops or to generate protease activity-depleted environments in plants or plant cells used as bioreactors for recombinant proteins. After a brief update on the basic structural characteristics of plant cystatins, we summarize recent advances on the use of these proteins in plant biotechnology. Attention is also paid to the molecular improvement of their structural properties for the improvement of their protease inhibitory effects or the fine-tuning of their biological target range.
Collapse
|
10
|
Wang W, Xiong H, Lin R, Zhao N, Zhao P, Sun MX. A VPE-like protease NtTPE8 exclusively expresses in the integumentary tapetum and is involved in seed development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:598-610. [PMID: 30589207 DOI: 10.1111/jipb.12766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/17/2018] [Indexed: 05/23/2023]
Abstract
Programmed cell death (PCD) is an essential process for development, and shows conserved cytological features in both plants and animals. Caspases are well-known critical components of the PCD machinery in animals. However, currently few typical counterparts have been identified in plants and only several caspase-like proteases are known to be involved in plant PCD, indicating the existence of great challenge for confirming new caspase-like proteases and elucidating the mechanisms regulating plant PCD. Here, we report a novel cysteine protease, NtTPE8, which was extracted from tobacco seeds and confirmed as a new caspase-like protease. Recombinant NtTPE8 exhibited legumain and caspase-like proteolytic activities, both of which could be inhibited by the pan-caspase inhibitor (Z-VAD-FMK). Notably, NtTPE8 possessed several caspase activities and the capacity to cleave the cathepsin H substrate FVR, indicating a unique character of NtTPE8. NtTPE8 was exclusively expressed in the integumentary tapetum and thus, is the first specific molecular marker reported to date for this cell type. Down-regulation of NtTPE8 caused seed abortion, via disturbing early embryogenesis, indicating its critical role in embryogenesis and seed development. In conclusion, we identified a novel caspase-like cysteine protease, NtTPE8, exclusively expressed in the integumentary tapetum that is involved in seed development.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hanxian Xiong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Rongxin Lin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Nantian Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
11
|
Velasco-Arroyo B, Diaz-Mendoza M, Gomez-Sanchez A, Moreno-Garcia B, Santamaria ME, Torija-Bonilla M, Hensel G, Kumlehn J, Martinez M, Diaz I. Silencing barley cystatins HvCPI-2 and HvCPI-4 specifically modifies leaf responses to drought stress. PLANT, CELL & ENVIRONMENT 2018; 41:1776-1790. [PMID: 29486055 DOI: 10.1111/pce.13178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/19/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Protein breakdown and mobilization are some of the major metabolic features associated with abiotic stresses, essential for nutrient recycling and plant survival. Genetic manipulation of protease and/or protease inhibitors may contribute to modulate proteolytic processes and plant responses. The expression analysis of the whole cystatin family, inhibitors of C1A cysteine proteases, after water deprivation in barley leaves highlighted the involvement of Icy-2 and Icy-4 cystatin genes. Artificial microRNA lines independently silencing the two drought-induced cystatins were generated to assess their function in planta. Phenotype alterations at the final stages of the plant life cycle are represented by the stay-green phenotype of silenced cystatin 2 lines. Besides, the enhanced tolerance to drought and differential responses to water deprivation at the initial growing stages are observed. The mutual compensating expression of Icy-2 and Icy-4 genes in the silencing lines pointed to their cooperative role. Proteolytic patterns by silencing these cystatins were concomitant with modifications in the expression of potential target proteases, in particular, HvPap-1, HvPap-12, and HvPap-16 C1A proteases. Metabolomics analysis lines also revealed specific modifications in the accumulation of several metabolites. These findings support the use of plants with altered proteolytic regulation in crop improvement in the face of climate change.
Collapse
Affiliation(s)
- Blanca Velasco-Arroyo
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, 28223, Pozuelo de Alarcon, Madrid, Spain
| | - Mercedes Diaz-Mendoza
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, 28223, Pozuelo de Alarcon, Madrid, Spain
| | - Andrea Gomez-Sanchez
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, 28223, Pozuelo de Alarcon, Madrid, Spain
| | - Beatriz Moreno-Garcia
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, 28223, Pozuelo de Alarcon, Madrid, Spain
| | - Maria Estrella Santamaria
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, 28223, Pozuelo de Alarcon, Madrid, Spain
| | - Miguel Torija-Bonilla
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, 28223, Pozuelo de Alarcon, Madrid, Spain
| | - Goetz Hensel
- Leibniz Institut fur Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
| | - Jochen Kumlehn
- Leibniz Institut fur Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
| | - Manuel Martinez
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, 28223, Pozuelo de Alarcon, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, 28223, Pozuelo de Alarcon, Madrid, Spain
| |
Collapse
|
12
|
Wang W, Zhou XM, Xiong HX, Mao WY, Zhao P, Sun MX. Papain-like and legumain-like proteases in rice: genome-wide identification, comprehensive gene feature characterization and expression analysis. BMC PLANT BIOLOGY 2018; 18:87. [PMID: 29764367 PMCID: PMC5952849 DOI: 10.1186/s12870-018-1298-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/26/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Papain-like and legumain-like proteases are proteolytic enzymes which play key roles in plant development, senescence and defense. The activities of proteases in both families could be inhibited by a group of small proteins called cystatin. Cystatin family genes have been well characterized both in tobacco and rice, suggesting their potential roles in seed development. However, their potential targets, papain-like and legumain-like proteases, have not been well characterized in plants, especially in rice, a model plant for cereal biology. RESULTS Here, 33 papain-like and 5 legumain-like proteases have been identified in rice genome, respectively. Gene structure, distribution in rice chromosome, and evolutionary relationship to their counterparts in other plants have been well characterized. Comprehensive expression profile analysis revealed that two family genes display divergent expression pattern, which are regulated temporally and spatially during the process of seed development and germination. Our experiments also revealed that the expression of most genes in these two families is sensitively responsive to plant hormones and different abiotic stresses. CONCLUSIONS Genome-wide identification and comprehensive gene expression pattern analysis of papain-like and legumain-like proteases in rice suggests their multiple and cooperative roles in seed development and response to environmental variations, which provides several useful cues for further in-depth study.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xue-Mei Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Han-Xian Xiong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wan-Ying Mao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
13
|
Molecular Cloning, Recombinant Expression and Antifungal Activity of BnCPI, a Cystatin in Ramie (Boehmeria nivea L.). Genes (Basel) 2017; 8:genes8100265. [PMID: 29019965 PMCID: PMC5664115 DOI: 10.3390/genes8100265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 11/24/2022] Open
Abstract
Phytocystatins play multiple roles in plant growth, development and resistance to pests and other environmental stresses. A ramie (Boehmeria nivea L.) phytocystatin gene, designated as BnCPI, was isolated from a ramie cDNA library and its full-length cDNA was obtained by rapid amplification of cDNA ends (RACE). The full-length cDNA sequence (691 bp) consisted of a 303 bp open reading frame (ORF) encoding a protein of 100 amino acids with deduced molecular mass of 11.06 kDa and a theoretical isoelectric point (pI) of 6.0. The alignment of genome DNA (accession No. MF153097) and cDNA sequences of BnCPI showed that an intron (~104 bp) exists in the coding region. The BnCPI protein contains most of the highly conserved blocks including Gly5-Gly6 at the N-terminal, the reactive site motif QxVxG (Q49V50V51S52G53), the L79-W80 block and the [LVI]-[AGT]-[RKE]-[FY]-[AS]-[VI]-x-[EDQV]-[HYFQ]-N (L22G23R24 F25A26V27 D28D29H30 N31) block that is common among plant cystatins. BLAST analysis indicated that BnCPI is similar to cystatins from Glycine max (77%), Glycine soja (76%), Hevea brasiliensis (75%) and Ricinus communis (75%). The BnCPI was subcloned into expression vector pSmart-I and then overexpressed in Escherichia coli BL21 (DE3) as a His-tagged recombinant protein. The purified reBnCPI has a molecular mass of 11.4 kDa determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). Purified reBnCPI can efficiently inhibit the protease activity of papain and ficin toward BANA (Nα-benzoyl-L-arginine-2-naphthyamide), as well as the mycelium growth of some important plant pathogenic fungi. The data further contribute to our understanding of the molecular functions of BnCPI.
Collapse
|
14
|
Subburaj S, Zhu D, Li X, Hu Y, Yan Y. Molecular Characterization and Expression Profiling of Brachypodium distachyon L. Cystatin Genes Reveal High Evolutionary Conservation and Functional Divergence in Response to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:743. [PMID: 28536593 PMCID: PMC5423411 DOI: 10.3389/fpls.2017.00743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/20/2017] [Indexed: 05/26/2023]
Abstract
Cystatin is a class of proteins mainly involved in cysteine protease inhibition and plant growth and development, as well as tolerance under various abiotic stresses. In this study, we performed the first comprehensive analysis of the molecular characterization and expression profiling in response to various abiotic stresses of the cystatin gene family in Brachypodium distachyon, a novel model plant for Triticum species with huge genomes. Comprehensive searches of the Brachypodium genome database identified 25 B. distachyon cystatin (BdC) genes that are distributed unevenly on chromosomes; of these, nine and two were involved in tandem and segmental duplication events, respectively. All BdC genes had similar exon/intron structural organization, with three conserved motifs similar to those from other plant species, indicating their high evolutionary conservation. Expression profiling of 10 typical BdC genes revealed ubiquitous expression in different organs at varying expression levels. BdC gene expression in seedling leaves was particularly highly induced by various abiotic stresses, including the plant hormone abscisic acid and various environmental cues (cold, H2O2, CdCl2, salt, and drought). Interestingly, most BdC genes were significantly upregulated under multiple abiotic stresses, including BdC15 under all stresses, BdC7-2 and BdC10 under five stresses, and BdC7-1, BdC2-1, BdC14, and BdC12 under four stresses. The putative metabolic pathways of cytastin genes in response to various abiotic stresses mainly involve the aberrant protein degradation pathway and reactive oxygen species (ROS)-triggered programmed cell death signaling pathways. These observations provide a better understanding of the structural and functional characteristics of the plant cystatin gene family.
Collapse
|
15
|
Souza TP, Dias RO, Silva-Filho MC. Defense-related proteins involved in sugarcane responses to biotic stress. Genet Mol Biol 2017; 40:360-372. [PMID: 28222203 PMCID: PMC5452140 DOI: 10.1590/1678-4685-gmb-2016-0057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/27/2016] [Indexed: 11/22/2022] Open
Abstract
Sugarcane is one of the most important agricultural crops in the world. However, pathogen infection and herbivore attack cause constant losses in yield. Plants respond to pathogen infection by inducing the expression of several protein types, such as glucanases, chitinases, thaumatins, peptidase inhibitors, defensins, catalases and glycoproteins. Proteins induced by pathogenesis are directly or indirectly involved in plant defense, leading to pathogen death or inducing other plant defense responses. Several of these proteins are induced in sugarcane by different pathogens or insects and have antifungal or insecticidal activity. In this review, defense-related proteins in sugarcane are described, with their putative mechanisms of action, pathogen targets and biotechnological perspectives.
Collapse
Affiliation(s)
- Thais P Souza
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Renata O Dias
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Marcio C Silva-Filho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
16
|
Szewińska J, Simińska J, Bielawski W. The roles of cysteine proteases and phytocystatins in development and germination of cereal seeds. JOURNAL OF PLANT PHYSIOLOGY 2016; 207:10-21. [PMID: 27771502 DOI: 10.1016/j.jplph.2016.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Proteolysis is an important process for development and germination of cereal seeds. Among the many types of proteases identified in plants are the cysteine proteases (CPs) of the papain and legumain families, which play a crucial role in hydrolysing storage proteins during seed germination as well as in processing the precursors of these proteins and the inactive forms of other proteases. Moreover, all of the tissues of cereal seeds undergo progressive degradation via programed cell death, which is integral to their growth. In view of the important roles played by proteases, their uncontrolled activity could be harmful to the development of seeds and young seedlings. Thus, the activities of these enzymes are regulated by intracellular inhibitors called phytocystatins (PhyCys). The phytocystatins inhibit the activity of proteases of the papain family, and the presence of an additional motif in their C-termini allows them to also regulate the activity of members of the legumain family. A balance between the levels of cysteine proteases and phytocystatins is necessary for proper cereal seed development, and this is maintained through the antagonistic activities of gibberellins (GAs) and abscisic acid (ABA), which regulate the expression of the corresponding genes. Transcriptional regulation of cysteine proteases and phytocystatins is determined by cis-acting elements located in the promoters of these genes and by the expression of their corresponding transcription factors (TFs) and the interactions between different TFs.
Collapse
Affiliation(s)
- Joanna Szewińska
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland.
| | - Joanna Simińska
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland
| | - Wiesław Bielawski
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland
| |
Collapse
|
17
|
Yuan S, Li R, Wang L, Chen H, Zhang C, Chen L, Hao Q, Shan Z, Zhang X, Chen S, Yang Z, Qiu D, Zhou X. Search for Nodulation and Nodule Development-Related Cystatin Genes in the Genome of Soybean ( Glycine max). FRONTIERS IN PLANT SCIENCE 2016; 7:1595. [PMID: 27826313 PMCID: PMC5078837 DOI: 10.3389/fpls.2016.01595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/10/2016] [Indexed: 05/12/2023]
Abstract
Nodulation, nodule development and senescence directly affects nitrogen fixation efficiency, and previous studies have shown that inhibition of some cysteine proteases delay nodule senescence, so their nature inhibitors, cystatin genes, are very important in nodulation, nodule development, and senescence. Although several cystatins are actively transcribed in soybean nodules, their exact roles and functional diversities in legume have not been well explored in genome-wide survey studies. In this report, we performed a genome-wide survey of cystatin family genes to explore their relationship to nodulation and nodule development in soybean and identified 20 cystatin genes that encode peptides with 97-245 amino acid residues, different isoelectric points (pI) and structure characteristics, and various putative plant regulatory elements in 3000 bp putative promoter fragments upstream of the 20 soybean cystatins in response to different abiotic/biotic stresses, hormone signals, and symbiosis signals. The expression profiles of these cystatin genes in soybean symbiosis with rhizobium strain Bradyrhizobium japonicum strain 113-2 revealed that 7 cystatin family genes play different roles in nodulation as well as nodule development and senescence. However, these genes were not root nodule symbiosis (RNS)-specific and did not encode special clade cystatin protein with structures related to nodulation and nodule development. Besides, only two of these soybean cystatins were not upregulated in symbiosis after ABA treatment. The functional analysis showed that a candidate gene Glyma.15G227500 (GmCYS16) was likely to play a positive role in soybean nodulation. Besides, evolutionary relationships analysis divided the cystatin genes from Arabidopsis thaliana, Nicotiana tabacum, rice, barley and four legume plants into three groups. Interestingly, Group A cystatins are special in legume plants, but only include one of the above-mentioned 7 cystatin genes related to nodulation and nodule development. Overall, our results provide useful information or clues for our understanding of the functional diversity of legume cystatin family proteins in soybean nodulation and nodule development and for finding nodule-specific cysteine proteases in soybean.
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Rong Li
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Lei Wang
- Bioinformatics Laboratory, College of Life Sciences, Xinyang Normal UniversityXinyang, China
| | - Haifeng Chen
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Chanjuan Zhang
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Limiao Chen
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Qingnan Hao
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Zhihui Shan
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Xiaojuan Zhang
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Shuilian Chen
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Zhonglu Yang
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Dezhen Qiu
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Xinan Zhou
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
- *Correspondence: Xinan Zhou
| |
Collapse
|