1
|
Salgado L, Cifuentes-Delgado PC, Orozco JC, Muñoz-Camargo C, Reyes LH, Quezada V, Cruz JC. Evaluating the impact of cell-penetrating motif position on the cellular uptake of magnetite nanoparticles. Front Bioeng Biotechnol 2024; 12:1450694. [PMID: 39687269 PMCID: PMC11646778 DOI: 10.3389/fbioe.2024.1450694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Cell-penetrating peptides (CPPs) have been employed to enhance the cellular uptake and intracellular delivery of various nanocarriers. Among them, nanoparticles (NPs) have been used as suitable vehicles for delivering different bioactive molecules in the treatment of a diverse range of diseases. Given the pivotal role of the conjugation method of CPPs, this study aims to evaluate the impact of the position of a cell-penetrating motif (LFVCR) on the biocompatibility, cellular uptake, and endosomal escape of magnetite NPs. The designed peptide's physicochemical properties suggest they are well-suited for efficient cell penetration with minimal cytotoxicity. The resulting designed nanoconjugates were characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The results indicate that motif position significantly impacts the cellular uptake and endosomal escape of the designed nanobioconjugates. Key findings suggest that motif exposure enhances endocytosis-mediated cell internalization and improves endosomal escape efficiency. These results were compared with nanobioconjugates displaying previously reported CPPs. The selected nanobioconjugate demonstrated superior performance in endosomal escape and comparable cell uptake to the reference nanobioconjugates. These results, along with the nanobioconjugate's physicochemical characteristics and high biocompatibility, position the nanocarrier as a suitable candidate for delivering diverse bioactive molecules.
Collapse
Affiliation(s)
- Laura Salgado
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | | | - Juan Camilo Orozco
- Center for Microscopy (MicroCore), Vice Presidency for Research and Creation, Universidad de Los Andes, Bogotá, Colombia
| | | | - Luis H. Reyes
- Product and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Valentina Quezada
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
2
|
Li Y, Zhang Y, Zhang Z, Zhang M, Niu X, Mao X, Yue T, Zhang X. Clathrin-Mediated Endocytosis of Multiple Nanoparticles Tends to Be Less Cooperative: A Computational Study. J Phys Chem B 2024; 128:9785-9797. [PMID: 39352204 DOI: 10.1021/acs.jpcb.4c05025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
The internalization of nanoparticles is of great significance for their biological applications. Clathrin-mediated endocytosis (CME) is one of the main endocytic pathways. However, there is still a lack of a fundamental understanding regarding the internalization of multiple nanoparticles via CME. Therefore, in this study, we conducted computational investigations to uncover detailed molecular mechanisms and kinetic pathways for differently shaped nanoparticles in the presence of clathrin. Particular focus is given to understanding the CME of multiple-nanoparticle systems. We found that unlike receptor-mediated endocytosis, multiple nanoparticles did not get cooperatively wrapped by the membrane but tended to undergo independent endocytosis in the presence of clathrin. To further investigate the endocytosis mechanism, we studied the effects of clathrins, nanoparticle shape, nanoparticle size, nanoparticle arrangement, and membrane surface tension. The self-assembly of clathrin prefers independent endocytosis for multiple nanoparticles. Besides, the cooperative behavior is weak with increasing nanoparticle-shape anisotropy. However, when the membrane tension is reduced, the endocytosis pathway for multiple nanoparticles is cooperative endocytosis. Moreover, we found that the self-assembly of clathrins reduces the critical size of nanoparticles to undergo cooperative wrapping by the cell membrane. Our results provide valuable insights into the molecular mechanisms of multiple nanoparticles through CME and offer useful guidance for the design of nanoparticles as drug/gene delivery carriers.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Yezhuo Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Zhun Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Man Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Xinhui Niu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Xinyi Mao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Badiali C, Beccaccioli M, Sciubba F, Chronopoulou L, Petruccelli V, Palocci C, Reverberi M, Miccheli A, Pasqua G, Brasili E. Pterostilbene-loaded PLGA nanoparticles alter phenylpropanoid and oxylipin metabolism in Solanum lycopersicum L. leaves. Sci Rep 2024; 14:21941. [PMID: 39304705 DOI: 10.1038/s41598-024-73313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Due to the fast-changing global climate, conventional agricultural systems have to deal with more unpredictable and harsh environmental conditions leading to compromise food production. The application of phytonanotechnology can ensure safer and more sustainable crop production, allowing the target-specific delivery of bioactive molecules with great and partially explored positive effects for agriculture, such as an increase in crop production and plant pathogen reduction. In this study, the effect of free pterostilbene (PTB) and poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) loaded with pterostilbene was investigated on Solanum lycopersicum L. metabolism. An untargeted NMR-based metabolomics approach was used to examine primary and secondary metabolism whereas a targeted HPLC-MS/MS-based approach was used to explore the impact on defense response subjected to anti-oxidant effect of PTB, such as free fatty acids, oxylipins and them impact on hormone biosynthesis, in particular salicylic and jasmonic acid. In tomato leaves after treatment with PTB and PLGA NPs loaded with PTB (NPs + PTB), both NPs + PTB and free PTB treatments increased GABA levels in tomato leaves. In addition, a decrease of quercetin-3-glucoside associated with the increase in caffeic acid was observed suggesting a shift in secondary metabolism towards the biosynthesis of phenylpropanoids and other phenolic compounds. An increase of behenic acid (C22:0) and a remodulation of oxylipin metabolism deriving from the linoleic acid (i.e. 9-HpODE, 13-HpODE and 9-oxo-ODE) and linolenic acid (9-HOTrE and 9-oxoOTrE) after treatment with PLGA NPs and PLGA NPs + PTB were also found as a part of mechanisms of plant redox modulation. To the best of our knowledge, this is the first study showing the role of PLGA nanoparticles loaded with pterostilbene in modulating leaf metabolome and physiology in terms of secondary metabolites, fatty acids, oxylipins and hormones. In perspective, PLGA NPs loaded with PTB could be used to reshape the metabolic profile to allow plant to react more quickly to stresses.
Collapse
Affiliation(s)
- Camilla Badiali
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Marzia Beccaccioli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Rome, Italy
| | - Valerio Petruccelli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Rome, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Elisa Brasili
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
4
|
He C, Feng Y, Deng Y, Lin L, Cheng S. A systematic review and meta-analysis on the root effects and toxic mechanisms of rare earth elements. CHEMOSPHERE 2024; 363:142951. [PMID: 39067824 DOI: 10.1016/j.chemosphere.2024.142951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Rare earth elements (REEs) have attracted much attention because of their unique physical and chemical properties. The root system is the plant organ most directly in contact with REEs, and it is critical to understand the mechanisms of interaction between the two. This paper investigates the effects of REEs on plant enrichment and fractionation, as well as on various developmental and toxicity indices of the root system. REEs are more likely to be deposited on the root surface under the influence of root secretion. The complexation between the two affects the uptake and fractionation of REEs and the altered pattern of root secretion. The toxicity mechanisms of REEs on plant root cells were lied in: (1) REEs generate reactive oxygen species after entering the plant, leading to oxidative stress and damage to plant cells; (2) REEs with higher charge-to-volume ratios compete for organic ligands with or displace Ca2+, further disrupting the normal function of plant root cells. It was shown that the sensitivity of inter-root microorganisms to REEs varied depending on the content and physicochemical properties of REEs. The paper also concluded with a meta-analysis of phytotoxicity induced by REEs, which showed that REEs affect plant physiological parameters. REEs, as a source of oxidative stress, triggered lipid peroxidation damage in plants and enhanced the activity of antioxidant enzymes, thus revealing the significant toxicity of REEs to plants. The phytotoxic effects of REEs increased with time and concentration. These results help to elucidate the ecotoxicology of rare earth-induced phytotoxicity.
Collapse
Affiliation(s)
- Chenyi He
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yiping Feng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yirong Deng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong-Hong Kong- Macau, Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China.
| | - Longyong Lin
- Guangdong-Hong Kong- Macau, Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Sheng Cheng
- Guangdong-Hong Kong- Macau, Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| |
Collapse
|
5
|
Gupta P, Meher MK, Tripathi S, Poluri KM. Nanoformulations for dismantling fungal biofilms: The latest arsenals of antifungal therapy. Mol Aspects Med 2024; 98:101290. [PMID: 38945048 DOI: 10.1016/j.mam.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Globally, fungal infections have evolved as a strenuous challenge for clinicians, particularly in patients with compromised immunity in intensive care units. Fungal co-infection in Covid-19 patients has made the situation more formidable for healthcare practitioners. Surface adhered fungal population known as biofilm often develop at the diseased site to elicit antifungal tolerance and recalcitrant traits. Thus, an innovative strategy is required to impede/eradicate developed biofilm and avoid the formation of new colonies. The development of nanocomposite-based antibiofilm solutions is the most appropriate way to withstand and dismantle biofilm structures. Nanocomposites can be utilized as a drug delivery medium and for fabrication of anti-biofilm surfaces capable to resist fungal colonization. In this context, the present review comprehensively described different forms of nanocomposites and mode of their action against fungal biofilms. Amongst various nanocomposites, efficacy of metal/organic nanoparticles and nanofibers are particularly emphasized to highlight their role in the pursuit of antibiofilm strategies. Further, the inevitable concern of nanotoxicology has also been introduced and discussed with the exigent need of addressing it while developing nano-based therapies. Further, a list of FDA-approved nano-based antifungal formulations for therapeutic usage available to date has been described. Collectively, the review highlights the potential, scope, and future of nanocomposite-based antibiofilm therapeutics to address the fungal biofilm management issue.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biotechnology, Graphic Era (Demmed to be Unievrsity), Dehradun, 248001, Uttarakhand, India
| | - Mukesh Kumar Meher
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
6
|
Zhou L, Godse S, Sinha N, Kodidela S, Singh U, Kumar S. Darunavir Nanoformulation Suppresses HIV Pathogenesis in Macrophages and Improves Drug Delivery to the Brain in Mice. Pharmaceutics 2024; 16:555. [PMID: 38675216 PMCID: PMC11054602 DOI: 10.3390/pharmaceutics16040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Although antiretroviral therapy (ART) can suppress peripheral HIV, patients still suffer from neuroHIV due to insufficient levels of ART drugs in the brain. Hence, this study focuses on developing a poly lactic-co-glycolic acid (PLGA) nanoparticle-based ART drug delivery system for darunavir (DRV) using an intranasal route that can overcome the limitation of drug metabolic stability and blood-brain barrier (BBB) permeability. The physicochemical properties of PLGA-DRV were characterized. The results indicated that PLGA-DRV formulation inhibits HIV replication in U1 macrophages directly and in the presence of the BBB without inducing cytotoxicity. However, the PLGA-DRV did not inhibit HIV replication more than DRV alone. Notably, the total antioxidant capacity remained unchanged upon treatment with both DRV or PLGA-DRV in U1 cells. Compared to DRV alone, PLGA-DRV further decreased reactive oxygen species, suggesting a decrease in oxidative stress by the formulation. Oxidative stress is generally increased by HIV infection, leading to increased inflammation. Although the PLGA-DRV formulation did not further reduce the inflammatory response, the formulation did not provoke an inflammatory response in HIV-infected U1 macrophages. As expected, in vitro experiments showed higher DRV permeability by PLGA-DRV than DRV alone to U1 macrophages. Importantly, in vivo experiments, especially using intranasal administration of PLGA-DRV in wild-type mice, demonstrated a significant increase in the brain-to-plasma ratio of DRV compared to the free DRV. Overall, findings from this study attest to the potential of the PLGA-DRV nanoformulation in reducing HIV pathogenesis in macrophages and enhancing drug delivery to the brain, offering a promising avenue for treating HIV-related neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave., Memphis, TN 38163, USA (S.G.); (U.S.)
| |
Collapse
|
7
|
Stolte Bezerra Lisboa Oliveira L, Ristroph KD. Critical Review: Uptake and Translocation of Organic Nanodelivery Vehicles in Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5646-5669. [PMID: 38517744 DOI: 10.1021/acs.est.3c09757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Nanodelivery vehicles (NDVs) are engineered nanomaterials (ENMs) that, within the agricultural sector, have been investigated for their ability to improve uptake and translocation of agrochemicals, control release, or target specific tissues or subcellular compartments. Both inorganic and organic NDVs have been studied for agrochemical delivery in the literature, but research on the latter has been slower to develop than the literature on the former. Since the two classes of nanomaterials exhibit significant differences in surface chemistry, physical deformability, and even colloidal stability, trends that apply to inorganic NDVs may not hold for organic NDVs, and vice versa. We here review the current literature on the uptake, translocation, biotransformation, and cellular and subcellular internalization of organic NDVs in plants following foliar or root administration. A background on nanomaterials and plant physiology is provided as a leveling ground for researchers in the field. Trends in uptake and translocation are examined as a function of NDV properties and compared to those reported for inorganic nanomaterials. Methods for assessing fate and transport of organic NDVs in plants (a major bottleneck in the field) are discussed. We end by identifying knowledge gaps in the literature that must be understood in order to rationally design organic NDVs for precision agrochemical nanodelivery.
Collapse
Affiliation(s)
- Luiza Stolte Bezerra Lisboa Oliveira
- Agricultural and Biological Engineering Department, Purdue University, 225 South University Street, West Lafayette, Indiana 47907, United States
| | - Kurt D Ristroph
- Agricultural and Biological Engineering Department, Purdue University, 225 South University Street, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Chauhan S, Tomar RS. Unveiling the molecular networks underlying cellular impairment in Saccharomyces cerevisiae: investigating the effects of magnesium oxide nanoparticles on cell wall integrity and endoplasmic reticulum stress response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30149-30162. [PMID: 38602634 DOI: 10.1007/s11356-024-33265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Nanoparticles, particularly magnesium oxide nanoparticles (MgO-NPs), are increasingly utilized in various fields, yet their potential impact on cellular systems remains a topic of concern. This study aimed to comprehensively investigate the molecular mechanisms underlying MgO-NP-induced cellular impairment in Saccharomyces cerevisiae, with a focus on cell wall integrity, endoplasmic reticulum (ER) stress response, mitochondrial function, lipid metabolism, autophagy, and epigenetic alterations. MgO-NPs were synthesized through a chemical reduction method, characterized for morphology, size distribution, and elemental composition. Concentration-dependent toxicity assays were conducted to evaluate the inhibitory effect on yeast growth, accompanied by propidium iodide (PI) staining to assess membrane damage. Intracellular reactive oxygen species (ROS) accumulation was measured, and chitin synthesis, indicative of cell wall perturbation, was examined along with the expression of chitin synthesis genes. Mitochondrial function was assessed through Psd1 localization, and ER structure was analyzed using dsRed-HDEL marker. The unfolded protein response (UPR) pathway activation was monitored, and lipid droplet formation and autophagy induction were investigated. Results demonstrated a dose-dependent inhibition of yeast growth by MgO-NPs, with concomitant membrane damage and ROS accumulation. Cell wall perturbation was evidenced by increased chitin synthesis and upregulation of chitin synthesis genes. MgO-NPs impaired mitochondrial function, disrupted ER structure, and activated the UPR pathway. Lipid droplet formation and autophagy were induced, indicating cellular stress responses. Additionally, MgO-NPs exhibited differential cytotoxicity on histone mutant strains, implicating specific histone residues in cellular response to nanoparticle stress. Immunoblotting revealed alterations in histone posttranslational modifications, particularly enhanced methylation of H3K4me. This study provides comprehensive insights into the multifaceted effects of MgO-NPs on S. cerevisiae, elucidating key molecular pathways involved in nanoparticle-induced cellular impairment. Understanding these mechanisms is crucial for assessing nanoparticle toxicity and developing strategies for safer nanoparticle applications.
Collapse
Affiliation(s)
- Shraddha Chauhan
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India.
| |
Collapse
|
9
|
Yong J, Wu M, Carroll BJ, Xu ZP, Zhang R. Enhancing plant biotechnology by nanoparticle delivery of nucleic acids. Trends Genet 2024; 40:352-363. [PMID: 38320883 DOI: 10.1016/j.tig.2024.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Plant biotechnology plays a crucial role in developing modern agriculture and plant science research. However, the delivery of exogenous genetic material into plants has been a long-standing obstacle. Nanoparticle-based delivery systems are being established to address this limitation and are proving to be a feasible, versatile, and efficient approach to facilitate the internalization of functional RNA and DNA by plants. The nanoparticle-based delivery systems can also be designed for subcellular delivery and controlled release of the biomolecular cargo. In this review, we provide a concise overview of the recent advances in nanocarriers for the delivery of biomolecules into plants, with a specific focus on applications to enhance RNA interference, foreign gene transfer, and genome editing in plants.
Collapse
Affiliation(s)
- Jiaxi Yong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia; Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia; Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, P. R. China 518107
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, Queensland 4068, Australia.
| |
Collapse
|
10
|
Zikeli F, Jusic J, Palocci C, Mugnozza GS, Romagnoli M. Spray Coating of Wood with Nanoparticles from Lignin and Polylactic Glycolic Acid Loaded with Thyme Essential Oils. Polymers (Basel) 2024; 16:947. [PMID: 38611206 PMCID: PMC11013818 DOI: 10.3390/polym16070947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
Ensuring the longevity of wooden constructions depends heavily on the preservation process. However, several traditional preservation methods involving fossil-based compounds have become outdated because they pose a significant risk to the environment and to human health. Therefore, the use of bio-based and bioactive solutions, such as essential oils, has emerged as a more sustainable alternative in protecting wood from biotic attacks. The entrapment of essential oils in polymeric carrier matrices provides protection against oxidation and subsequent degradation or rapid evaporation, which implies the loss of their biocidal effect. In this work, lignin as well as PLGA nanoparticles containing the essential oils from two different thyme species (Thymus capitatus and T. vulgaris) were applied on beech wood samples using spray coating. The prepared coatings were investigated using FTIR imaging, SEM, as well as LSM analysis. Release experiments were conducted to investigate the release behavior of the essential oils from their respective lignin and PLGA carrier materials. The study found that lignin nanoparticles were more effective at trapping and retaining essential oils than PLGA nanoparticles, despite having larger average particle diameters and a more uneven particle size distribution. An analysis of the lignin coatings showed that they formed a uniform layer that covered most of the surface pores. PLGA nanoparticles formed a film-like layer on the cell walls, and after leaching, larger areas of native wood were evident on the wood samples treated with PLGA NPs compared to the ones coated with lignin NPs. The loading capacity and efficiency varied with the type of essential oil, while the release behaviors were similar between the two essential oil types applied in this study.
Collapse
Affiliation(s)
- Florian Zikeli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (F.Z.); (J.J.); (G.S.M.)
| | - Jasmina Jusic
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (F.Z.); (J.J.); (G.S.M.)
- Fraunhofer, Via Alessandro Volta 13A, 39100 Bozen, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy;
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Giuseppe Scarascia Mugnozza
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (F.Z.); (J.J.); (G.S.M.)
| | - Manuela Romagnoli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (F.Z.); (J.J.); (G.S.M.)
| |
Collapse
|
11
|
Bansal M, Santhiya D, Sharma JG. Mechanistic understanding on the uptake of micro-nano plastics by plants and its phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8354-8368. [PMID: 38170356 DOI: 10.1007/s11356-023-31680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Contaminated soil is one of today's most difficult environmental issues, posing serious hazards to human health and the environment. Contaminants, particularly micro-nano plastics, have become more prevalent around the world, eventually ending up in the soil. Numerous studies have been conducted to investigate the interactions of micro-nano plastics in plants and agroecosystems. However, viable remediation of micro-nano plastics in soil remains limited. In this review, a powerful in situ soil remediation technology known as phytoremediation is emphasized for addressing micro-nano-plastic contamination in soil and plants. It is based on the synergistic effects of plants and the microorganisms that live in their rhizosphere. As a result, the purpose of this review is to investigate the mechanism of micro-nano plastic (MNP) uptake by plants as well as the limitations of existing MNP removal methods. Different phytoremediation options for removing micro-nano plastics from soil are also described. Phytoremediation improvements (endophytic-bacteria, hyperaccumulator species, omics investigations, and CRISPR-Cas9) have been proposed to enhance MNP degradation in agroecosystems. Finally, the limitations and future prospects of phytoremediation strategies have been highlighted in order to provide a better understanding for effective MNP decontamination from soil.
Collapse
Affiliation(s)
- Megha Bansal
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
12
|
Singh N, Mudassir M, Ansari S, Chosdol K, Sinha S, Chattopadhyay P. Poly(lactic-co-glycolic) acid nanoparticles localize in vesicles after diffusing into cells and are retained by intracellular traffic modulators. Nanomedicine (Lond) 2023; 18:1907-1919. [PMID: 38078434 DOI: 10.2217/nnm-2023-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Aim: We investigated our previous finding of increased retention of poly(lactic-co-glycolic) acid nanoparticles (PLGA-NPs) with metabolic inhibitors (MI) and studied the effect of some small molecule inhibitors on PLGA-NP assimilation. Materials & methods: Intracellular PLGA-NP colocalization in the presence of MI was investigated by confocal microscopy. Intracellular retention of PLGA-NPs by some small molecules was estimated by fluorescence microscopy and flow cytometry after Pulse/Chase experiments. Results: MI caused PLGA-NP colocalization in intracellular membranous structures, mainly endosomes and lysosomes. Some small molecule inhibitors demonstrated increased intracellular PLGA-NP accumulation. Conclusion: This study elucidates the movement of PLGA-NP in cells and suggests that clinically used small molecules can reduce their extrusion by enhancing their stay within intracellular vesicles, with possible clinically beneficial consequences.
Collapse
Affiliation(s)
- Neha Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Madeeha Mudassir
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Obstetrics and Gynaecology, University College of Medical Sciences, GTB Hospital, Delhi, 110095, India
| | - Shiba Ansari
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Biochemistry, University College of Medical Sciences, GTB Hospital, Delhi, 110095, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | |
Collapse
|
13
|
Ullah I, Toor MD, Basit A, Mohamed HI, Gamal M, Tanveer NA, Shah ST. Nanotechnology: an Integrated Approach Towards Agriculture Production and Environmental Stress Tolerance in Plants. WATER, AIR, & SOIL POLLUTION 2023; 234:666. [DOI: 10.1007/s11270-023-06675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
|
14
|
Sangwan A, Gupta D, Singh OW, Roy A, Mukherjee SK, Mandal B, Singh N. Size variations of mesoporous silica nanoparticle control uptake efficiency and delivery of AC2-derived dsRNA for protection against tomato leaf curl New Delhi virus. PLANT CELL REPORTS 2023; 42:1571-1587. [PMID: 37482559 DOI: 10.1007/s00299-023-03048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
KEY MESSAGE We report the size dependent uptake of dsRNA loaded MSNPs into the leaves and roots of Nicotiana benthamiana plants and accessed for their relative reduction in Tomato leaf curl New Delhi viral load. A non-GMO method of RNA interference (RNAi) has been recently in practice through direct delivery of double stranded RNA into the plant cells. Tomato leaf curl New Delhi virus (ToLCNDV), a bipartitie begomovirus, is a significant viral pathogen of many crops in the Indian subcontinent. Conventional RNAi cargo delivery strategies for instance uses viral vectors and Agrobacterium-facilitated delivery, exhibiting specific host responses from the plant system. In the present study, we synthesized three different sizes of amine-functionalized mesoporous silica nanoparticles (amino-MSNPs) to mediate the delivery of dsRNA derived from the AC2 (dsAC2) gene of ToLCNDV and showed that these dsRNA loaded nanoparticles enabled effective reduction in viral load. Furthermore, we demonstrate that amino-MSNPs protected the dsRNA molecules from nuclease degradation, while the complex was efficiently taken up by the leaves and roots of Nicotiana benthamiana. The real time gene expression evaluation showed that plants treated with nanoparticles of different sizes ~ 10 nm (MSNPDEA), ~ 32 nm (MSNPTEA) and ~ 66 nm (MSNPNH3) showed five-, eleven- and threefold reduction of ToLCNDV in N. benthamiana, respectively compared to the plants treated with naked dsRNA. This work clearly demonstrates the size dependent internalization of amino-MSNPs and relative efficacy in transporting dsRNA into the plant system, which will be useful in convenient topical treatment to protect plants against their pathogens including viruses. Mesoporous silica nanoparticles loaded with FITC, checked for its uptake into Nicotiana benthamiana.
Collapse
Affiliation(s)
- Anju Sangwan
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Dipinte Gupta
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Oinam Washington Singh
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anirban Roy
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sunil Kumar Mukherjee
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
15
|
De Angelis G, Badiali C, Chronopoulou L, Palocci C, Pasqua G. Confocal Microscopy Investigations of Biopolymeric PLGA Nanoparticle Uptake in Arabidopsis thaliana L. Cultured Cells and Plantlet Roots. PLANTS (BASEL, SWITZERLAND) 2023; 12:2397. [PMID: 37446957 DOI: 10.3390/plants12132397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023]
Abstract
To date, most endocytosis studies in plant cells have focused on clathrin-dependent endocytosis, while limited evidence is available on clathrin-independent pathways. Since dynamin a is a key protein both in clathrin-mediated endocytosis and in clathrin-independent endocytic processes, this study investigated its role in the uptake of poly-(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs). The experiments were performed on cultured cells and roots of Arabidopsis thaliana. Dynasore was used to inhibit the activity of dynamin-like proteins to investigate whether PLGA NPs enter plant cells through a dynamin-like-dependent or dynamin-like-independent endocytic pathway. Observations were performed by confocal microscopy using a fluorescent probe, coumarin 6, loaded in PLGA NPs. The results showed that both cells and roots of A. thaliana rapidly take up PLGA NPs. Dynasore was administered at different concentrations and exposure times in order to identify the effective ones for inhibitory activity. Treatments with dynasore did not prevent the NPs uptake, as revealed by the presence of fluorescence emission detected in the cytoplasm. At the highest concentration and the longest exposure time to dynasore, the fluorescence of NPs was not visible due to cell death. Thus, the results suggest that, because the NPs' uptake is unaffected by dynasore exposure, NPs can enter cells and roots by following a dynamin-like-independent endocytic pathway.
Collapse
Affiliation(s)
- Giulia De Angelis
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Camilla Badiali
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
16
|
Hennig TB, Bandeira FO, Puerari RC, Fraceto LF, Matias WG. A systematic review of the toxic effects of a nanopesticide on non-target organisms: Estimation of protective concentrations using a species sensitivity distribution (SSD) approach - The case of atrazine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162094. [PMID: 36764548 DOI: 10.1016/j.scitotenv.2023.162094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Nanopesticides, such as nanoencapsulated atrazine (nATZ), have been studied and developed as eco-friendly alternatives to control weeds in fields, requiring lower doses. This review contains a historical and systematic literature review about the toxicity of nATZ to non-target species. In addition, the study establishes protective concentrations for non-target organisms through a species sensitivity distribution (SSD) approach. Through the systematic search, we identified 3197 publications. Of these, 14 studies addressed "(nano)atrazine's toxicity to non-target organisms". Chronological and geographic data on the publication of articles, characterization of nATZ (type of nanocarrier, size, polydispersity index, zeta potential), experimental design (test species, exposure time, measurements, methodology, tested concentrations), and toxic effects are summarized and discussed. The data indicate that cell and algal models do not show sensitivity to nATZ, while many terrestrial and aquatic invertebrates, aquatic vertebrates, microorganisms, and plants have high sensitivity to nAZT. The SSD results indicated that D. similis is the most sensitive species to nATZ, followed by C. elegans, E. crypticus, and P. subcapitata. However, the limitations in terms of the number of species and endpoints available to elaborate the SSD reflect gaps in knowledge of the effects of nATZ on different ecosystems.
Collapse
Affiliation(s)
- Thuanne Braúlio Hennig
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil
| | - Felipe Ogliari Bandeira
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil
| | - Rodrigo Costa Puerari
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil
| | - Leonardo Fernandes Fraceto
- Department of Environmental Engineering, Institute of Science and Technology of Sorocaba, São Paulo State University, Av. Três de Março, 18087-180 Sorocaba, SP, Brazil
| | - William Gerson Matias
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil.
| |
Collapse
|
17
|
Xu X, Yu T, Zhang D, Song H, Huang K, Wang Y, Shen L, Li Y, Wang F, Zhang S, Jiao Y, Yang J. Evaluation of the anti-viral efficacy of three different dsRNA nanoparticles against potato virus Y using various delivery methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114775. [PMID: 36933482 DOI: 10.1016/j.ecoenv.2023.114775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Nanoparticles (NPs) derived from RNA interference (RNAi) are considered a potentially revolutionary technique in the field of plant protection in the future. However, the application of NPs in RNAi is hindered by the conflict between the high cost of RNA production and the large quantity of materials required for field application. This study aimed to evaluate the antiviral efficacy of commercially available nanomaterials, such as chitosan quaternary ammonium salt (CQAS), amine functionalized silica nano powder (ASNP), and carbon quantum dots (CQD), that carried double-stranded RNA (dsRNA) via various delivery methods, including infiltration, spraying, and root soaking. ASNP-dsRNA NPs are recommended for root soaking, which is considered the most effective method of antiviral compound application. The most effective antiviral compound tested was CQAS-dsRNA NPs delivered by root soaking. Using fluorescence, FITC-CQAS-dsCP-Cy3, and CQD-dsCP-Cy3 NPs demonstrated the uptake and transport pathways of dsRNA NPs in plants when applied to plants in different modes. The duration of protection with NPs applied in various modes was then compared, providing references for evaluating the retention period of various types of NPs. All three types of NPs effectively silenced genes in plants and afforded at least 14 days of protection against viral infection. Particularly, CQD-dsRNA NPs could protect systemic leaves for 21 days following spraying.
Collapse
Affiliation(s)
- Xiang Xu
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Tingting Yu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Agriculture and Forestry University, Fuzhou 350000, Fujian, China
| | - Daoshun Zhang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Hongping Song
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Kun Huang
- Honghe City Company of Yunnan Province Tobacco Company, Mile 652300, Yunnan, China
| | - Yong Wang
- Liangshan State Company of Sichuan Province Tobacco Company, Xichang 615000, Sichuan, China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Songbai Zhang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Yubing Jiao
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
18
|
Naidu S, Pandey J, Mishra LC, Chakraborty A, Roy A, Singh IK, Singh A. Silicon nanoparticles: Synthesis, uptake and their role in mitigation of biotic stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114783. [PMID: 36963184 DOI: 10.1016/j.ecoenv.2023.114783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
In the current scenario of global warming and climate change, plants face many biotic stresses, which restrain growth, development and productivity. Nanotechnology is gaining precedence over other means to deal with biotic and abiotic constraints for sustainable agriculture. One of nature's most beneficial metalloids, silicon (Si) shows ameliorative effect against environmental challenges. Silicon/Silica nanoparticles (Si/SiO2NPs) have gained special attention due to their significant chemical and optoelectronic capabilities. Its mesoporous nature, easy availability and least biological toxicity has made it very attractive to researchers. Si/SiO2NPs can be synthesised by chemical, physical and biological methods and supplied to plants by foliar, soil, or seed priming. Upon uptake and translocation, Si/SiO2NPs reach their destined cells and cause optimum growth, development and tolerance against environmental stresses as well as pest attack and pathogen infection. Using Si/SiO2NPs as a supplement can be an eco-friendly and cost-effective option for sustainable agriculture as they facilitate the delivery of nutrients, assist plants to mitigate biotic stress and enhances plant resistance. This review aims to present an overview of the methods of formulation of Si/SiO2NPs, their application, uptake, translocation and emphasize the role of Si/SiO2NPs in boosting growth and development of plants as well as their conventional advantage as fertilizers with special consideration on their mitigating effects towards biotic stress.
Collapse
Affiliation(s)
- Shrishti Naidu
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India
| | - Jyotsna Pandey
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India
| | - Lokesh C Mishra
- Department of Zoology, Hansraj College, University of Delhi, Delhi 110007, India
| | - Amrita Chakraborty
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic.
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India.
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India; Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, India.
| |
Collapse
|
19
|
Husted S, Minutello F, Pinna A, Tougaard SL, Møs P, Kopittke PM. What is missing to advance foliar fertilization using nanotechnology? TRENDS IN PLANT SCIENCE 2023; 28:90-105. [PMID: 36153275 DOI: 10.1016/j.tplants.2022.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
An urgent challenge within agriculture is to improve fertilizer efficiency in order to reduce the environmental footprint associated with an increased production of crops on existing farmland. Standard soil fertilization strategies are often not very efficient due to immobilization in the soil and losses of nutrients by leaching or volatilization. Foliar fertilization offers an attractive supplementary strategy as it bypasses the adverse soil processes, but implementation is often hampered by a poor penetration through leaf barriers, leaf damage, and a limited ability of nutrients to translocate. Recent advances within bionanotechnology offer a range of emerging possibilities to overcome these challenges. Here we review how nanoparticles can be tailored with smart properties to interact with plant tissue for a more efficient delivery of nutrients.
Collapse
Affiliation(s)
- Søren Husted
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark.
| | - Francesco Minutello
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Andrea Pinna
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Stine Le Tougaard
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Pauline Møs
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia 4072, Queensland, Australia
| |
Collapse
|
20
|
Zhao L, Ckurshumova W, Fefer M, Liu J, Hoare T. Fabrication, Characterization and In Planta Uptake of Engineered Surfactant Nanovesicles for the Delivery of the Biostimulant Sodium Copper Chlorophyllin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15028-15037. [PMID: 36414271 DOI: 10.1021/acs.jafc.2c05279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Effective delivery of agrochemicals requires control over bioactive release kinetics coupled with effective penetration of the bioactive into plants. Herein, we demonstrate the fabrication of hybrid nanovesicles based on sodium dodecylbenzenesulfonate (SDBS) and cetyltrimethylammonium bromide (CTAB) for enabling effective delivery of the biostimulant sodium copper chlorophyllin (Cu-chl) into plants. SDBS-CTAB nanovesicles exhibited a particle size of 107 nm with a well-defined spherical morphology, while modified formulations that included small fractions of the unsaturated dopant Span 80 yielded larger nanovesicles that were softer and more irregular in shape. All nanovesicles maintained high colloidal stability over >4 weeks and enabled sustained Cu-chl release, with the incorporation of Span 80 into the membranes enabling controllable acceleration of the release rate. Nanovesicle encapsulation improved the photostability of Cu-chl bioactive 3-4 × relative to that of free Cu-chl and enabled significant penetration of Cu-chl into the plant root without inducing any significant phytotoxicity.
Collapse
Affiliation(s)
- Lisha Zhao
- Department of Chemical Engineering, 1280 Main Street West, Hamilton, Ontario, CanadaL8S 4L7
| | - Wenzi Ckurshumova
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, Ontario, CanadaL5K 1A8
| | - Michael Fefer
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, Ontario, CanadaL5K 1A8
| | - Jun Liu
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, Ontario, CanadaL5K 1A8
| | - Todd Hoare
- Department of Chemical Engineering, 1280 Main Street West, Hamilton, Ontario, CanadaL8S 4L7
| |
Collapse
|
21
|
Wang Y, Xiang L, Wang F, Wang Z, Bian Y, Gu C, Wen X, Kengara FO, Schäffer A, Jiang X, Xing B. Positively Charged Microplastics Induce Strong Lettuce Stress Responses from Physiological, Transcriptomic, and Metabolomic Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16907-16918. [PMID: 36354282 DOI: 10.1021/acs.est.2c06054] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) can enter plants through the foliar pathway and are potential hazards to ecosystems and human health. However, studies related to the molecular mechanisms underlying the impact of foliar exposure to differently charged MPs to leafy vegetables are limited. Because the surfaces of MPs in the environment are often charged, we explored the uptake pathways, accumulation concentration of MPs, physiological responses, and molecular mechanisms of lettuce foliarly exposed to MPs carrying positive (MP+) and negative charges (MP-). MPs largely accumulated in the lettuce leaves, and stomatal uptake and cuticle entry could be the main pathways for MPs to get inside lettuce leaves. More MP+ entered lettuce leaves and induced physiological, transcriptomic, and metabolomic changes, including a decrease in biomass and photosynthetic pigments, an increase in reactive oxygen species and antioxidant activities, a differential expression of genes, and a change of metabolite profiles. In particular, MP+ caused the upregulation of circadian rhythm-related genes, and this may play a major role in the greater physiological toxicity of MP+ to lettuce, compared to MP-. These findings provide direct evidence that MPs can enter plant leaves following foliar exposure and a molecular-scale perspective on the response of leafy vegetables to differently charged MPs.
Collapse
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Leilei Xiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - Ziquan Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Chenggang Gu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Xin Wen
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | | | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
22
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Soroush F, Varma RS. Nano/microencapsulation of plant biocontrol agents by chitosan, alginate, and other important biopolymers as a novel strategy for alleviating plant biotic stresses. Int J Biol Macromol 2022; 222:1589-1604. [DOI: 10.1016/j.ijbiomac.2022.09.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
23
|
Stalder T, Zaiter T, El-Basset W, Cornu R, Martin H, Diab-Assaf M, Béduneau A. Interaction and toxicity of ingested nanoparticles on the intestinal barrier. Toxicology 2022; 481:153353. [DOI: 10.1016/j.tox.2022.153353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022]
|
24
|
Gouthu S, Mandelli C, Eubanks BA, Deluc LG. Transgene-free genome editing and RNAi ectopic application in fruit trees: Potential and limitations. FRONTIERS IN PLANT SCIENCE 2022; 13:979742. [PMID: 36325537 PMCID: PMC9621297 DOI: 10.3389/fpls.2022.979742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
For the past fifteen years, significant research advances in sequencing technology have led to a substantial increase in fruit tree genomic resources and databases with a massive number of OMICS datasets (transcriptomic, proteomics, metabolomics), helping to find associations between gene(s) and performance traits. Meanwhile, new technology tools have emerged for gain- and loss-of-function studies, specifically in gene silencing and developing tractable plant models for genetic transformation. Additionally, innovative and adapted transformation protocols have optimized genetic engineering in most fruit trees. The recent explosion of new gene-editing tools allows for broadening opportunities for functional studies in fruit trees. Yet, the fruit tree research community has not fully embraced these new technologies to provide large-scale genome characterizations as in cereals and other staple food crops. Instead, recent research efforts in the fruit trees appear to focus on two primary translational tools: transgene-free gene editing via Ribonucleoprotein (RNP) delivery and the ectopic application of RNA-based products in the field for crop protection. The inherent nature of the propagation system and the long juvenile phase of most fruit trees are significant justifications for the first technology. The second approach might have the public favor regarding sustainability and an eco-friendlier environment for a crop production system that could potentially replace the use of chemicals. Regardless of their potential, both technologies still depend on the foundational knowledge of gene-to-trait relationships generated from basic genetic studies. Therefore, we will discuss the status of gene silencing and DNA-based gene editing techniques for functional studies in fruit trees followed by the potential and limitations of their translational tools (RNP delivery and RNA-based products) in the context of crop production.
Collapse
Affiliation(s)
- Satyanarayana Gouthu
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Christian Mandelli
- Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States
| | - Britt A. Eubanks
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Laurent G. Deluc
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
- Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
25
|
Proença PL, Carvalho LB, Campos EV, Fraceto LF. Fluorescent labeling as a strategy to evaluate uptake and transport of polymeric nanoparticles in plants. Adv Colloid Interface Sci 2022; 305:102695. [PMID: 35598536 DOI: 10.1016/j.cis.2022.102695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 11/01/2022]
Abstract
The use of biodegradable nanopolymers in agriculture offers an excellent alternative for the efficient delivery of agrochemicals that promote plant protection and development. However, tracking of these systems inside plants requires complex probe tagging strategies. In addition to providing a basis for better understanding such nanostructures to optimize delivery system design, these probes allow monitoring the migration of nanoparticles through plant tissues, and determine accumulation sites. Thus, these probes are powerful tools that can be used to quantify and visualize nanoparticle accumulation in plant cells and tissues. This review is an overview of the methods involved in labeling nanocarriers, mainly based on polymeric matrices, for the delivery of nanoagrochemicals and the recent advances in this field.
Collapse
|
26
|
Novel Approaches for Encapsulation of Plant Probiotic Bacteria with Sustainable Polymer Gums: Application in the Management of Pests and Diseases. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/4419409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The unique attributes, biodegradability, biocompatibility, perfect accessibility, and low production costs led to the use of natural gums in a different section of our lives. Among them, we can mention gums obtained from microorganisms (xanthan gum and gellan gum), plant tissues (Arabic gum and gum tragacanth), seeds (konjac gum and guar gum), seaweeds (alginates, agar gum, and carrageenans). Gums have essential applications in the medical and pharmaceutical, food, biotechnology, and critical agricultural industries. Encapsulation is one of the new methods to increase the stability of bioactive compounds during processing and storage. Encapsulation technology using natural gums is a new way to improve the performance of microbial agents in various sciences, especially agriculture, which represents a bright future in this field.
Collapse
|
27
|
Verma KK, Song XP, Joshi A, Rajput VD, Singh M, Sharma A, Singh RK, Li DM, Arora J, Minkina T, Li YR. Nanofertilizer Possibilities for Healthy Soil, Water, and Food in Future: An Overview. FRONTIERS IN PLANT SCIENCE 2022; 13:865048. [PMID: 35677230 PMCID: PMC9168910 DOI: 10.3389/fpls.2022.865048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 05/27/2023]
Abstract
Conventional fertilizers and pesticides are not sustainable for multiple reasons, including high delivery and usage inefficiency, considerable energy, and water inputs with adverse impact on the agroecosystem. Achieving and maintaining optimal food security is a global task that initiates agricultural approaches to be revolutionized effectively on time, as adversities in climate change, population growth, and loss of arable land may increase. Recent approaches based on nanotechnology may improve in vivo nutrient delivery to ensure the distribution of nutrients precisely, as nanoengineered particles may improve crop growth and productivity. The underlying mechanistic processes are yet to be unlayered because in coming years, the major task may be to develop novel and efficient nutrient uses in agriculture with nutrient use efficiency (NUE) to acquire optimal crop yield with ecological biodiversity, sustainable agricultural production, and agricultural socio-economy. This study highlights the potential of nanofertilizers in agricultural crops for improved plant performance productivity in case subjected to abiotic stress conditions.
Collapse
Affiliation(s)
- Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Abhishek Joshi
- Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow, India
| | - Anjney Sharma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Rajesh Kumar Singh
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Dong-Mei Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Jaya Arora
- Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| |
Collapse
|
28
|
Markowski A, Jaromin A, Migdał P, Olczak E, Zygmunt A, Zaremba-Czogalla M, Pawlik K, Gubernator J. Design and Development of a New Type of Hybrid PLGA/Lipid Nanoparticle as an Ursolic Acid Delivery System against Pancreatic Ductal Adenocarcinoma Cells. Int J Mol Sci 2022; 23:5536. [PMID: 35628352 PMCID: PMC9143619 DOI: 10.3390/ijms23105536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Despite many attempts, trials, and treatment procedures, pancreatic ductal adenocarcinoma (PDAC) still ranks among the most deadly and treatment-resistant types of cancer. Hence, there is still an urgent need to develop new molecules, drugs, and therapeutic methods against PDAC. Naturally derived compounds, such as pentacyclic terpenoids, have gained attention because of their high cytotoxic activity toward pancreatic cancer cells. Ursolic acid (UA), as an example, possesses a wide anticancer activity spectrum and can potentially be a good candidate for anti-PDAC therapy. However, due to its minimal water solubility, it is necessary to prepare an optimal nano-sized vehicle to overcome the low bioavailability issue. Poly(lactic-co-glycolic acid) (PLGA) polymeric nanocarriers seem to be an essential tool for ursolic acid delivery and can overcome the lack of biological activity observed after being incorporated within liposomes. PLGA modification, with the addition of PEGylated phospholipids forming the lipid shell around the polymeric core, can provide additional beneficial properties to the designed nanocarrier. We prepared UA-loaded hybrid PLGA/lipid nanoparticles using a nanoprecipitation method and subsequently performed an MTT cytotoxicity assay for AsPC-1 and BxPC-3 cells and determined the hemolytic effect on human erythrocytes with transmission electron microscopic (TEM) visualization of the nanoparticles and their cellular uptake. Hybrid UA-loaded lipid nanoparticles were also examined in terms of their stability, coating dynamics, and ursolic acid loading. We established innovative and repeatable preparation procedures for novel hybrid nanoparticles and obtained biologically active nanocarriers for ursolic acid with an IC50 below 20 µM, with an appropriate size for intravenous dosage (around 150 nm), high homogeneity of the sample (below 0.2), satisfactory encapsulation efficiency (up to 70%) and excellent stability. The new type of hybrid UA-PLGA nanoparticles represents a further step in the development of potentially effective PDAC therapies based on novel, biologically active, and promising triterpenoids.
Collapse
Affiliation(s)
- Adam Markowski
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Paweł Migdał
- Polish Academy of Science Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wrocław, Poland; (P.M.); (K.P.)
- Department of Environment Hygiene and Animal Welfare, Bee Division, Wroclaw University of Environmental and Life Sciences, Chelmońskiego 38C, 51-630 Wrocław, Poland
| | - Ewa Olczak
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Adrianna Zygmunt
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Krzysztof Pawlik
- Polish Academy of Science Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wrocław, Poland; (P.M.); (K.P.)
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| |
Collapse
|
29
|
A novel approach to control Botrytis cinerea fungal infections: uptake and biological activity of antifungals encapsulated in nanoparticle based vectors. Sci Rep 2022; 12:7989. [PMID: 35568696 PMCID: PMC9107473 DOI: 10.1038/s41598-022-11533-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
Botrytis cinerea, responsible for grey mold diseases, is a pathogen with a broad host range, affecting many important agricultural crops, in pre and post harvesting of fruits and vegetables. Commercial fungicides used to control this pathogen are often subjected to photolysis, volatilization, degradation, leaching, and runoff during application. In this context, the use of a delivery system, based on poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) represents an innovative approach to develop new pesticide formulations to successfully fight B. cinerea infections. In order to study NPs uptake, B. cinerea conidia and mycelium were treated with PLGA NPs loaded with the high fluorescent probe coumarin 6 (Cu6-PLGA NPs) and analyzed under ApoTome fluorescence microscopy. The observations revealed that 50 nm Cu6-PLGA NPs penetrated into B. cinerea conidia and hyphae, as early as 10 min after administration. Pterostilbene, a natural compound, and fluopyram, a synthetic antifungal, were entrapped in PLGA NPs, added to B. cinerea conidia and mycelium, and their antifungal activity was tested. The results revealed that the compounds loaded in NPs exhibited a higher activity against B. cinerea. These results lay the foundations for the use of PLGA NPs as a new strategy in plant pest management.
Collapse
|
30
|
Kolbert Z, Szőllősi R, Rónavári A, Molnár Á. Nanoforms of essential metals: from hormetic phytoeffects to agricultural potential. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1825-1840. [PMID: 34922354 PMCID: PMC8921003 DOI: 10.1093/jxb/erab547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Vital plant functions require at least six metals (copper, iron, molybdenum, manganese, zinc, and nickel), which function as enzyme cofactors or inducers. In recent decades, rapidly evolving nanotechnology has created nanoforms of essential metals and their compounds (e.g. nZnO, nFe2O3) with a number of favourable properties over the bulk materials. The effects of nanometals on plants are concentration-dependent (hormesis) but also depend on the properties of the nanometals, the plant species, and the treatment conditions. Here, we review studies examining plant responses to essential nanometal treatments using a (multi)omics approach and emphasize the importance of gaining a holistic view of the diverse effects. Furthermore, we discuss the beneficial effects of essential nanometals on plants, which provide the basis for their application in crop production as, for example, nanopriming or nanostimulator agents, or nanofertilizers. As lower environmental impact and increased yield can be achieved by the application of essential nanometals, they support sustainable agriculture. Recent studies have actively examined the utilization of green-synthesized metal nanoparticles, which perfectly fit into the environmentally friendly trend of future agriculture. Further knowledge is required before essential nanometals can be safely applied in agriculture, but it is a promising direction that is timely to investigate.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology University of Szeged, Közép fasor 52, Szeged H6726, Hungary
| | - Réka Szőllősi
- Department of Plant Biology University of Szeged, Közép fasor 52, Szeged H6726, Hungary
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H6720, Hungary
| | - Árpád Molnár
- Department of Plant Biology University of Szeged, Közép fasor 52, Szeged H6726, Hungary
| |
Collapse
|
31
|
Aqeel U, Aftab T, Khan MMA, Naeem M, Khan MN. A comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment. CHEMOSPHERE 2022; 291:132672. [PMID: 34756946 DOI: 10.1016/j.chemosphere.2021.132672] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/12/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
The application of nanotechnology in agriculture includes the use of nanofertilizers, nanopesticides, and nanoherbicides that enhance plant nutrition without disturbing the soil texture and protect it against microbial infections. Thus, nanotechnology maintains the plant's health by maintaining its soil health. The use of nanoparticles (NPs) in agriculture reduces the chemical spread and nutrient loss and boosts crop yield and productivity. Effect of NPs varies with their applied concentrations, physiochemical properties, and plant species. Various NPs have an impact on the plant to increase biomass productivity, germination rate and their physiology. Also, NPs change the plant molecular mechanisms by altering gene expression. Metal and non-metal oxides of NPs (Au, Ag, ZnO, Fe2O3, TiO2, SiO2, Al2O3, Se, carbon nanotubes, quantum dots) exert an important role in plant growth and development and perform an essential role in stress amelioration. On the other hand, other effects of NPs have also been well investigated by observing their role in growth suppression and inhibition of chlorophyll and photosynthetic efficiency. In this review, we addressed a description of studies that have been made to understand the effects of various kind of NPs, their translocation and interaction with the plants. Also, the phytoremediation approaches of contaminated soil with combined use of NPs for sustainable agriculture is covered.
Collapse
Affiliation(s)
- Umra Aqeel
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Masroor A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - M Nasir Khan
- Department of Biology, Faculty of Science, College of Haql, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
32
|
Zhou P, He H, Ma H, Wang S, Hu S. A Review of Optical Imaging Technologies for Microfluidics. MICROMACHINES 2022; 13:mi13020274. [PMID: 35208397 PMCID: PMC8877635 DOI: 10.3390/mi13020274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
Microfluidics can precisely control and manipulate micro-scale fluids, and are also known as lab-on-a-chip or micro total analysis systems. Microfluidics have huge application potential in biology, chemistry, and medicine, among other fields. Coupled with a suitable detection system, the detection and analysis of small-volume and low-concentration samples can be completed. This paper reviews an optical imaging system combined with microfluidics, including bright-field microscopy, chemiluminescence imaging, spectrum-based microscopy imaging, and fluorescence-based microscopy imaging. At the end of the article, we summarize the advantages and disadvantages of each imaging technology.
Collapse
Affiliation(s)
- Pan Zhou
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China;
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
| | - Haipeng He
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
- Guangdong ACXEL Micro & Nano Tech Co., Ltd., Foshan 528000, China
| | - Shurong Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
- Correspondence: (S.W.); (S.H.)
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
- Correspondence: (S.W.); (S.H.)
| |
Collapse
|
33
|
Fong SS, Foo YY, Saw WS, Leo BF, Teo YY, Chung I, Goh BT, Misran M, Imae T, Chang CC, Chung LY, Kiew LV. Chitosan-Coated-PLGA Nanoparticles Enhance the Antitumor and Antimigration Activity of Stattic – A STAT3 Dimerization Blocker. Int J Nanomedicine 2022; 17:137-150. [PMID: 35046650 PMCID: PMC8762521 DOI: 10.2147/ijn.s337093] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose The use of nanocarriers to improve the delivery and efficacy of antimetastatic agents is less explored when compared to cytotoxic agents. This study reports the entrapment of an antimetastatic Signal Transducer and Activator of Transcription 3 (STAT3) dimerization blocker, Stattic (S) into a chitosan-coated-poly(lactic-co-glycolic acid) (C-PLGA) nanocarrier and the improvement on the drug’s physicochemical, in vitro and in vivo antimetastatic properties post entrapment. Methods In vitro, physicochemical properties of the Stattic-entrapped C-PLGA nanoparticles (S@C-PLGA) and Stattic-entrapped PLGA nanoparticles (S@PLGA, control) in terms of size, zeta potential, polydispersity index, drug loading, entrapment efficiency, Stattic release in different medium and cytotoxicity were firstly evaluated. The in vitro antimigration properties of the nanoparticles on breast cancer cell lines were then studied by Scratch assay and Transwell assay. Study on the in vivo antitumor efficacy and antimetastatic properties of S@C-PLGA compared to Stattic were then performed on 4T1 tumor bearing mice. Results The S@C-PLGA nanoparticles (141.8 ± 2.3 nm) was hemocompatible and exhibited low Stattic release (12%) in plasma. S@C-PLGA also exhibited enhanced in vitro anti-cell migration potency (by >10-fold in MDA-MB-231 and 5-fold in 4T1 cells) and in vivo tumor growth suppression (by 33.6%) in 4T1 murine metastatic mammary tumor bearing mice when compared to that of the Stattic-treated group. Interestingly, the number of lung and liver metastatic foci was found to reduce by 50% and 56.6%, respectively, and the average size of the lung metastatic foci was reduced by 75.4% in 4T1 tumor-bearing mice treated with S@C-PLGA compared to Stattic-treated group (p < 0.001). Conclusion These findings suggest the usage of C-PLGA nanocarrier to improve the delivery and efficacy of antimetastatic agents, such as Stattic, in cancer therapy.
Collapse
Affiliation(s)
- Stephanie Sally Fong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yiing Yee Foo
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Wen Shang Saw
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Bey Fen Leo
- Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yin Yin Teo
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Boon Tong Goh
- Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Misni Misran
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Toyoko Imae
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chia-Ching Chang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, 30050, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan
- Taiwan-Malaysia Semiconductor and Biomedical Oversea Science and Technology Innovation Center, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- Chia-Ching Chang Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30068, TaiwanTel +886-3-57131633 Email
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan
- Correspondence: Lik Voon Kiew Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, MalaysiaTel +603-79675720 Email
| |
Collapse
|
34
|
The Response of Antioxidant System of Drought-Stressed Green Pea (Pisum sativum L.) Affected by Watering and Foliar Spray with Silica Nanoparticles. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abiotic stress caused by drought impairs plant growth and reduces yields. This study aimed to investigate the impact of silica nanoparticles (SiO2 NPs) through the adverse effects of drought on the growth, oxidative stress, and antioxidative response of pea ‘Respect’. Pea plants were grown in a greenhouse before being watered (100 ± 1 mL per pot) or foliar sprayed (ca. 14 ± 0.5 mL plant−1) with suspensions containing SiO2 NPs (0, 12.5 ppm, 25 ppm, and 50 ppm) and were exposed to drought stress for 10 days. Drought stress was created by maintaining 30% of the soil moisture while the control was 80%. The growth parameters of pea grown under drought stress conditions were improved by spraying or watering plants with SiO2 NPs (12.5, 25, and 50 ppm). At drought stress, peas treated with SiO2 NPs (50 ppm) increased their relative water content by 29%, specific leaf area by 17%, and decreased root/shoot ratio by 4% as compared to plant non-treated with SiO2 NPs. In addition, spraying or watering of SiO2 NPs increased peas tolerance to drought by increasing the activity of antioxidant enzymes at least three times including catalase, ascorbate peroxidase, glutathione reductase, and superoxide dismutase, as well as reducing hydrogen peroxide and lipid peroxidation in plant tissue. It was observed the increase in total phenolic compounds and non-enzymatic antioxidant activity (DPPH, ABTS, FRAP) in peas treated with SiO2 NPs under drought stress. The physiological response of peas to drought and the effects of SiO2 NPs studied in this experiment based on the use of the concentration of 50 ppm nanoparticles can protect peas from the damaging effects of drought and could help reduce global food shortages.
Collapse
|
35
|
Huang L, Himawan E, Belhadj S, Pérez García RO, Paquet Durand F, Schipper N, Buzgo M, Simaite A, Marigo V. Efficient Delivery of Hydrophilic Small Molecules to Retinal Cell Lines Using Gel Core-Containing Solid Lipid Nanoparticles. Pharmaceutics 2021; 14:74. [PMID: 35056970 PMCID: PMC8780956 DOI: 10.3390/pharmaceutics14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we developed a novel solid lipid nanoparticle (SLN) formulation for drug delivery of small hydrophilic cargos to the retina. The new formulation, based on a gel core and composite shell, allowed up to two-fold increase in the encapsulation efficiency. The type of hydrophobic polyester used in the composite shell mixture affected the particle surface charge, colloidal stability, and cell internalization profile. We validated SLNs as a drug delivery system by performing the encapsulation of a hydrophilic neuroprotective cyclic guanosine monophosphate analog, previously demonstrated to hold retinoprotective properties, and the best formulation resulted in particles with a size of ±250 nm, anionic charge > -20 mV, and an encapsulation efficiency of ±60%, criteria that are suitable for retinal delivery. In vitro studies using the ARPE-19 and 661W retinal cell lines revealed the relatively low toxicity of SLNs, even when a high particle concentration was used. More importantly, SLN could be taken up by the cells and the release of the hydrophilic cargo in the cytoplasm was visually demonstrated. These findings suggest that the newly developed SLN with a gel core and composite polymer/lipid shell holds all the characteristics suitable for the drug delivery of small hydrophilic active molecules into retinal cells.
Collapse
Affiliation(s)
- Li Huang
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Erico Himawan
- Research and Development Department, InoCure s.r.o, 11000 Prague, Czech Republic; (M.B.); (A.S.)
| | - Soumaya Belhadj
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (S.B.); (F.P.D.)
| | - Raúl Oswaldo Pérez García
- Division Bioeconomy and Health, Chemical Process and Pharmaceutical Development, RISE Research Institutes of Sweden, Forskargatan 18, 151 36 Södertälje, Sweden; (R.O.P.G.); (N.S.)
| | - François Paquet Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (S.B.); (F.P.D.)
| | - Nicolaas Schipper
- Division Bioeconomy and Health, Chemical Process and Pharmaceutical Development, RISE Research Institutes of Sweden, Forskargatan 18, 151 36 Södertälje, Sweden; (R.O.P.G.); (N.S.)
| | - Matej Buzgo
- Research and Development Department, InoCure s.r.o, 11000 Prague, Czech Republic; (M.B.); (A.S.)
| | - Aiva Simaite
- Research and Development Department, InoCure s.r.o, 11000 Prague, Czech Republic; (M.B.); (A.S.)
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Center for Neuroscience and Neurotechnology, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|
36
|
Genotoxic Evaluation of Fe 3O 4 Nanoparticles in Different Three Barley ( Hordeum vulgare L.) Genotypes to Explore the Stress-Resistant Molecules. Molecules 2021; 26:molecules26216710. [PMID: 34771116 PMCID: PMC8587113 DOI: 10.3390/molecules26216710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
Sustainable agricultural practices are still essential due to soil degradation and crop losses. Recently, the relationship between plants and nanoparticles (NPs) attracted scientists’ attention, especially for applications in agricultural production as nanonutrition. Therefore, the present research was carried out to investigate the effect of Fe3O4 NPs at low concentrations (0, 1, 10, and 20 mg/L) on three genotypes of barley (Hordeum vulgare L.) seedlings grown in hydroponic conditions. Significant increases in seedling growth, enhanced chlorophyll quality and quantity, and two miRNA expression levels were observed. Additionally, increased genotoxicity was observed in seedlings grown with NPs. Generally, Fe3O4 NPs at low concentrations could be successfully used as nanonutrition for increasing barley photosynthetic efficiency with consequently enhanced yield. These results are important for a better understanding of the potential impact of Fe3O4 NPs at low concentrations in agricultural crops and the potential of these NPs as nanonutrition for barley growth and yield enhancement. Future studies are needed to investigate the effect of these NPs on the expression of resistance-related genes and chlorophyll synthesis-related gene expression in treated barley seedlings.
Collapse
|
37
|
Avital A, Muzika NS, Persky Z, Karny A, Bar G, Michaeli Y, Shklover J, Shainsky J, Weissman H, Shoseyov O, Schroeder A. Foliar Delivery of siRNA Particles for Treating Viral Infections in Agricultural Grapevines. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2101003. [PMID: 34744552 PMCID: PMC7611933 DOI: 10.1002/adfm.202101003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 05/05/2023]
Abstract
Grapevine leafroll disease (GLD) is a globally spreading viral infection that causes major economic losses by reducing crop yield, plant longevity and berry quality, with no effective treatment. Grapevine leafroll associated virus-3 (GLRaV-3) is the most severe and prevalent GLD strain. Here, we evaluated the ability of RNA interference (RNAi), a non-GMO gene-silencing pathway, to treat GLRaV-3 in infected Cabernet Sauvignon grapevines. We synthesized lipid-modified polyethylenimine (lmPEI) as a carrier for long double-stranded RNA (dsRNA, 250-bp-long) that targets RNA polymerase and coat protein genes that are conserved in the GLRaV-3 genome. Self-assembled dsRNA-lmPEI particles, 220 nm in diameter, displayed inner ordered domains spaced 7.3±2 nm from one another, correlating to lmPEI wrapping spirally around the dsRNA. The particles effectively protected RNA from degradation by ribonucleases, and Europium-loaded particles applied to grapevine leaves were detected as far as 60-cm from the foliar application point. In three field experiments, a single dose of foliar administration knocked down GLRaV-3 titer, and multiple doses of the treatment kept the viral titer at baseline and triggered recovery of the vine and berries. This study demonstrates RNAi as a promising platform for treating viral diseases in agriculture.
Collapse
Affiliation(s)
- Aviram Avital
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Noy Sadot Muzika
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, Rehovot 76100, Israel
| | - Zohar Persky
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, Rehovot 76100, Israel
| | - Avishai Karny
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Gili Bar
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Yuval Michaeli
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Janna Shainsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Haim Weissman
- The Weizmann Institute of Science, Department of Organic Chemistry, Rehovot 76100, Israel
| | - Oded Shoseyov
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, Rehovot 76100, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
38
|
Avellan A, Yun J, Morais BP, Clement ET, Rodrigues SM, Lowry GV. Critical Review: Role of Inorganic Nanoparticle Properties on Their Foliar Uptake and in Planta Translocation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13417-13431. [PMID: 33988374 DOI: 10.1021/acs.est.1c00178] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
There is increasing pressure on global agricultural systems due to higher food demand, climate change, and environmental concerns. The design of nanostructures is proposed as one of the economically viable technological solutions that can make agrochemical use (fertilizers and pesticides) more efficient through reduced runoff, increased foliar uptake and bioavailability, and decreased environmental impacts. However, gaps in knowledge about the transport of nanoparticles across the leaf surface and their behavior in planta limit the rational design of nanoparticles for foliar delivery with controlled fate and limited risk. Here, the current literature on nano-objects deposited on leaves is reviewed. The different possible foliar routes of uptake (stomata, cuticle, trichomes, hydathodes, necrotic spots) are discussed, along with the paths of translocation, via the phloem, from the leaf to the end sinks (mature and developing tissues, roots, rhizosphere). This review details the interplays between morphological constraints, environmental stimuli, and physical-chemical properties of nanoparticles influencing their fate, transformation, and transport after foliar deposition. A metadata analysis from the existing literature highlighted that plant used for testing nanoparticle fate are most often dicotyledon plants (75%), while monocotyledons (as cereals) are less considered. Correlations on parameters calculated from the literature indicated that nanoparticle dose, size, zeta potential, and affinity to organic phases correlated with leaf-to-sink translocation, demonstrating that targeting nanoparticles to specific plant compartments by design should be achievable. Correlations also showed that time and plant growth seemed to be drivers for in planta mobility, parameters that are largely overlooked in the literature. This review thus highlights the material design opportunities and the knowledge gaps for targeted, stimuli driven deliveries of safe nanomaterials for agriculture.
Collapse
Affiliation(s)
- Astrid Avellan
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Biogeochemical Processes and Pollutants, Center for Environmental and Marine Studies, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Jie Yun
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge 02139, United States
| | - Bruno P Morais
- Biogeochemical Processes and Pollutants, Center for Environmental and Marine Studies, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Emma T Clement
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Sonia M Rodrigues
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Biogeochemical Processes and Pollutants, Center for Environmental and Marine Studies, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Gregory V Lowry
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
39
|
Pardeshi SR, Nikam A, Chandak P, Mandale V, Naik JB, Giram PS. Recent advances in PLGA based nanocarriers for drug delivery system: a state of the art review. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1985495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sagar R. Pardeshi
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, India
| | - Aniket Nikam
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Priyanka Chandak
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Vijaya Mandale
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Jitendra B. Naik
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, India
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| |
Collapse
|
40
|
Arya SS, Lenka SK, Cahill DM, Rookes JE. Designer nanoparticles for plant cell culture systems: Mechanisms of elicitation and harnessing of specialized metabolites. Bioessays 2021; 43:e2100081. [PMID: 34608646 DOI: 10.1002/bies.202100081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/07/2022]
Abstract
Plant cell culture systems have become an attractive and sustainable approach to produce high-value and commercially significant metabolites under controlled conditions. Strategies involving elicitor supplementation into plant cell culture media are employed to mimic natural conditions for increasing the metabolite yield. Studies on nanoparticles (NPs) that have investigated elicitation of specialized metabolism have shown the potential of NPs to be a substitute for biotic elicitors such as phytohormones and microbial extracts. Customizable physicochemical characteristics allow the design of monodispersed-, stimulus-responsive-, and hormone-carrying-NPs of precise geometries to enhance their elicitation capabilities based on target metabolite/plant cell culture type. We contextualize advances in NP-mediated elicitation, especially stimulation of specialized metabolic pathways, the underlying mechanisms, impacts on gene regulation, and NP-associated cytotoxicity. The novelty of the concept lies in unleashing the potential of designer NPs to enhance yield, harness metabolites, and transform nanoelicitation from exploratory investigations to a commercially viable strategy.
Collapse
Affiliation(s)
- Sagar S Arya
- School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria, Australia.,TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, India
| | - Sangram K Lenka
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, India
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria, Australia
| | - James E Rookes
- School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria, Australia
| |
Collapse
|
41
|
Takeshita V, de Sousa BT, Preisler AC, Carvalho LB, Pereira ADES, Tornisielo VL, Dalazen G, Oliveira HC, Fraceto LF. Foliar absorption and field herbicidal studies of atrazine-loaded polymeric nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126350. [PMID: 34130159 DOI: 10.1016/j.jhazmat.2021.126350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 05/25/2023]
Abstract
Nanoparticles loaded with atrazine show weed control efficacy even with lower application doses of the active ingredient. Changes in the mode of action of the herbicide through the nanoformulation are key to understanding the efficiency of post-emergence activity of nanoatrazine. Here, we report the leaf absorption and translocation of nanoatrazine and atrazine employing radiometric techniques and compare their herbicidal effects in greenhouse and field conditions. Compared to the commercial formulation, nanoatrazine showed greater and faster absorption rates in mustard leaves (40% increment in the absorbed herbicide 24 h after application), inducing higher inhibition of photosystem II activity. Assays with fusicoccin-treated leaves indicated that the stomatal uptake of nanoparticles might be involved in the improved activity of nanoatrazine. Nanoencapsulation potentiated the post-emergent herbicidal activity of atrazine and the gain provided by nanoencapsulation was higher in the field compared to greenhouse conditions. Regardless of the dose, nanoatrazine provided two-fold higher weed control in the field compared to commercial atrazine. Thus, the design of this carrier system enables improvements in the performance of the herbicide in the field with less risk of environmental losses of the active ingredients due to faster absorption.
Collapse
Affiliation(s)
- Vanessa Takeshita
- Center of Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Bruno Teixeira de Sousa
- Department of Animal and Plant Biology, Londrina State University, PR 445, km 380, 86057-970 Londrina, PR, Brazil; Department of Agronomy, Londrina State University, PR 445, km 380, 86057-970 Londrina, PR, Brazil
| | - Ana Cristina Preisler
- Department of Animal and Plant Biology, Londrina State University, PR 445, km 380, 86057-970 Londrina, PR, Brazil; Department of Agronomy, Londrina State University, PR 445, km 380, 86057-970 Londrina, PR, Brazil
| | - Lucas Bragança Carvalho
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março 511, 18087-180 Sorocaba, SP, Brazil
| | | | - Valdemar Luiz Tornisielo
- Center of Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Giliardi Dalazen
- Department of Agronomy, Londrina State University, PR 445, km 380, 86057-970 Londrina, PR, Brazil
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, Londrina State University, PR 445, km 380, 86057-970 Londrina, PR, Brazil.
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março 511, 18087-180 Sorocaba, SP, Brazil.
| |
Collapse
|
42
|
Unsunnidhal L, Wasito R, Nugraha Setyawan EM, Warsani Z, Kusumawati A. Potential of polylactic-co-glycolic acid (PLGA) for delivery Jembrana disease DNA vaccine Model (pEGFP-C1-tat). J Vet Sci 2021; 22:e76. [PMID: 34697922 PMCID: PMC8636661 DOI: 10.4142/jvs.2021.22.e76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022] Open
Abstract
Background The development of a vaccine for Jembrana disease is needed to prevent losses in Indonesia's Bali cattle industry. A DNA vaccine model (pEGFP-C1-tat) that requires a functional delivery system will be developed. Polylactic-co-glycolic acid (PLGA) may have potential as a delivery system for the vaccine model. Objectives This study aims to evaluate the in vitro potential of PLGA as a delivery system for pEGFP-C1-tat. Methods Consensus and codon optimization for the tat gene was completed using a bioinformatic method, and the product was inserted into a pEGFP-C1 vector. Cloning of the pEGFP-C1-tat was successfully performed, and polymerase chain reaction (PCR) and restriction analysis confirmed DNA isolation. PLGA-pEGFP-C1-tat solutions were prepared for encapsulated formulation testing, physicochemical characterization, stability testing with DNase I, and cytotoxicity testing. The PLGA-pEGFP-C1-tat solutions were transfected in HeLa cells, and gene expression was observed by fluorescent microscopy and real-time PCR. Results The successful acquisition of transformant bacteria was confirmed by PCR. The PLGA:DNA:polyvinyl alcohol ratio formulation with optimal encapsulation was 4%:0.5%:2%, physicochemical characterization of PLGA revealed a polydispersity index value of 0.246, a particle size of 925 nm, and a zeta potential value of −2.31 mV. PLGA succeeded in protecting pEGFP-C1-tat from enzymatic degradation, and the percentage viability from the cytotoxicity test of PLGA-pEGFP-C1-tat was 98.03%. The PLGA-pEGFP-C1-tat demonstrated luminescence of the EGFP-tat fusion protein and mRNA transcription was detected. Conclusions PLGA has good potential as a delivery system for pEGFP-C1-tat.
Collapse
Affiliation(s)
- Lalu Unsunnidhal
- Department of Reproduction and Obstetrics, Faculty of Veterinary Medicine, University Gadjah Mada, Yogyakarta 55281, Indonesia.,Biomedical Field, Nursing Study Program, STIKES Yarsi Mataram, West Nusa Tenggara 83361, Indonesia
| | - Raden Wasito
- Department of Pathology, Faculty of Veterinary Medicine, University Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Erif Maha Nugraha Setyawan
- Department of Reproduction and Obstetrics, Faculty of Veterinary Medicine, University Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Ziana Warsani
- Research Center of Biotechnology, University Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Asmarani Kusumawati
- Department of Reproduction and Obstetrics, Faculty of Veterinary Medicine, University Gadjah Mada, Yogyakarta 55281, Indonesia.,Department of Pathology, Faculty of Veterinary Medicine, University Gadjah Mada, Yogyakarta 55281, Indonesia.
| |
Collapse
|
43
|
Sommer A, Hoeftberger M, Foissner I. Fluid-phase and membrane markers reveal spatio-temporal dynamics of membrane traffic and repair in the green alga Chara australis. PROTOPLASMA 2021; 258:711-728. [PMID: 33704568 PMCID: PMC8211606 DOI: 10.1007/s00709-021-01627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
We investigated the mechanisms and the spatio-temporal dynamics of fluid-phase and membrane internalization in the green alga Chara australis using fluorescent hydrazides markers alone, or in conjunction with styryl dyes. Using live-cell imaging, immunofluorescence and inhibitor studies we revealed that both fluid-phase and membrane dyes were actively taken up into the cytoplasm by clathrin-mediated endocytosis and stained various classes of endosomes including brefeldin A- and wortmannin-sensitive organelles (trans-Golgi network and multivesicular bodies). Uptake of fluorescent hydrazides was poorly sensitive to cytochalasin D, suggesting that actin plays a minor role in constitutive endocytosis in Chara internodal cells. Sequential pulse-labelling experiments revealed novel aspects of the temporal progression of endosomes in Chara internodal cells. The internalized fluid-phase marker distributed to early compartments within 10 min from dye exposure and after about 30 min, it was found almost exclusively in late endocytic compartments. Notably, fluid cargo consecutively internalized at time intervals of more than 1h, was not targeted to the same vesicular structures, but was sorted into distinct late compartments. We further found that fluorescent hydrazide dyes distributed not only to rapidly recycling endosomes but also to long-lived compartments that participated in plasma membrane repair after local laser injury. Our approach highlights the benefits of combining different fluid-phase markers in conjunction with membrane dyes in simultaneous and sequential application modus for investigating vesicle traffic, especially in organisms, which are still refractory to genetic transformation like characean algae.
Collapse
Affiliation(s)
- Aniela Sommer
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria.
| | - Margit Hoeftberger
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Ilse Foissner
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria.
| |
Collapse
|
44
|
Abstract
In recent years; the interaction of nanoparticles (NPs) with plants has been intensively studied. Therefore, more and more aspects related to both the positive and negative impact of NP on plants are well described. This article focuses on two aspects of NP interaction with plants. The first is a summary of the current knowledge on NP migration through the roots into the plant body, in particular, the role of the cell wall. The second aspect summarizes the current knowledge of the participation of the symplast, including the plasmodesmata (PD), in the movement of NP within the plant body. We highlight the gaps in our knowledge of the plant–NP interactions; paying attention to the need for future studies to explain the mechanisms that regulate the composition of the cell wall and the functioning of the PD under the influence of NP.
Collapse
|
45
|
Khan MA, Fugate M, Rogers DT, Sambi J, Littleton JM, Rankin SE, Knutson BL. Mechanism of Mesoporous Silica Nanoparticle Interaction with Hairy Root Cultures during Nanoharvesting of Biomolecules. Adv Biol (Weinh) 2021; 5:e2000173. [PMID: 33729698 DOI: 10.1002/adbi.202000173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/11/2021] [Indexed: 11/06/2022]
Abstract
Cellular uptake and expulsion mechanisms of engineered mesoporous silica nanoparticles (MSNPs) are important in their design for novel biomolecule isolation and delivery applications such as nanoharvesting, defined as using nanocarriers to transport and isolate valuable therapeutics (secondary metabolites) out of living plant organ cultures (e.g., hairy roots). Here, temperature-dependent MSNP uptake and recovery processes in hairy roots are examined as a function of surface chemistry. MSNP uptake into hairy roots and time-dependent expulsion are quantified using Ti content (present for biomolecule binding) and fluorescence spectroscopy of fluorescently tagged MSNPs, respectively. The results suggest that functionalization and surface charge (regulated by amine group attachment) play the biggest role in the effectiveness of uptake and recovery. Comparison of MSNP interactions with hairy roots at 4 and 23 °C shows that weakly charged MSNPs functionalized only with Ti are taken up and expelled by thermally activated mechanisms, while amine-modified positively charged particles are taken up and expelled mainly by direct penetration of cell walls. Amine-functionalized MSNPs move spontaneously in and out of plant cells by dynamic exchange with a residence time of 20 ± 5 min, suggesting promise as a biomolecule nanoharvesting platform for plant organ cultures.
Collapse
Affiliation(s)
- Md Arif Khan
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY, 40506, USA
| | - Madeleine Fugate
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY, 40506, USA
| | | | | | | | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY, 40506, USA
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY, 40506, USA
| |
Collapse
|
46
|
Nanobiotechnology for Agriculture: Smart Technology for Combating Nutrient Deficiencies with Nanotoxicity Challenges. SUSTAINABILITY 2021. [DOI: 10.3390/su13041781] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanobiotechnology in agriculture is a driver for modern-day smart, efficient agricultural practices. Nanoparticles have been shown to stimulate plant growth and disease resistance. The goal of sustainable farming can be accomplished by developing and sustainably exploiting the fruits of nanobiotechnology to balance the advantages nanotechnology provides in tackling environmental challenges. This review aims to advance our understanding of nanobiotechnology in relevant areas, encourage interactions within the research community for broader application, and benefit society through innovation to realize sustainable agricultural practices. This review critically evaluates what is and is not known in the domain of nano-enabled agriculture. It provides a holistic view of the role of nanobiotechnology in multiple facets of agriculture, from the synthesis of nanoparticles to controlled and targeted delivery, uptake, translocation, recognition, interaction with plant cells, and the toxicity potential of nanoparticle complexes when presented to plant cells.
Collapse
|
47
|
Nanotechnology Potential in Seed Priming for Sustainable Agriculture. NANOMATERIALS 2021; 11:nano11020267. [PMID: 33498531 PMCID: PMC7909549 DOI: 10.3390/nano11020267] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 01/09/2023]
Abstract
Our agriculture is threatened by climate change and the depletion of resources and biodiversity. A new agriculture revolution is needed in order to increase the production of crops and ensure the quality and safety of food, in a sustainable way. Nanotechnology can contribute to the sustainability of agriculture. Seed nano-priming is an efficient process that can change seed metabolism and signaling pathways, affecting not only germination and seedling establishment but also the entire plant lifecycle. Studies have shown various benefits of using seed nano-priming, such as improved plant growth and development, increased productivity, and a better nutritional quality of food. Nano-priming modulates biochemical pathways and the balance between reactive oxygen species and plant growth hormones, resulting in the promotion of stress and diseases resistance outcoming in the reduction of pesticides and fertilizers. The present review provides an overview of advances in the field, showing the challenges and possibilities concerning the use of nanotechnology in seed nano-priming, as a contribution to sustainable agricultural practices.
Collapse
|
48
|
Juárez-Maldonado A, Tortella G, Rubilar O, Fincheira P, Benavides-Mendoza A. Biostimulation and toxicity: The magnitude of the impact of nanomaterials in microorganisms and plants. J Adv Res 2021; 31:113-126. [PMID: 34194836 PMCID: PMC8240115 DOI: 10.1016/j.jare.2020.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 01/02/2023] Open
Abstract
Background Biostimulation and toxicity constitute the continuous response spectrum of a biological organism against physicochemical or biological factors. Among the environmental agents capable of inducing biostimulation or toxicity are nanomaterials. On the < 100 nm scale, nanomaterials impose both physical effects resulting from the core’s and corona’s surface properties, and chemical effects related to the core’s composition and the corona’s functional groups. Aim of Review The purpose of this review is to describe the impact of nanomaterials on microorganisms and plants, considering two of the most studied physical and chemical properties: size and concentration. Key Scientific Concepts of Review Using a graphical analysis, the presence of a continuous biostimulation-toxicity spectrum is shown considering different biological responses. In microorganisms, the results showed high susceptibility to nanomaterials. Simultaneously, in plants, a hormetic response was found related to nanomaterials concentration and, in a few cases, a positive response in the smaller nanomaterials when these were applied at a higher level. With the above, it is concluded that: (1) microorganisms are more susceptible to nanomaterials than plants, (2) practically all nanomaterials seem to induce responses from biostimulation to toxicity in plants, and (3) the kind of response observed will depend in a complex way on the nanomateriaĺs physical and chemical characteristics, of the biological species with which they interact, and of the form and route of application and on the nature of the medium -soil, soil pore water, and biological surfaces- where the interaction occurs.
Collapse
Affiliation(s)
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Adalberto Benavides-Mendoza
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, 25315 Saltillo, Mexico
- Corresponding author.
| |
Collapse
|
49
|
Yazıcılar B, Böke F, Alaylı A, Nadaroglu H, Gedikli S, Bezirganoglu I. In vitro effects of CaO nanoparticles on Triticale callus exposed to short and long-term salt stress. PLANT CELL REPORTS 2021; 40:29-42. [PMID: 33037884 DOI: 10.1007/s00299-020-02613-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Ca2+ NPs enhanced tolerance of Triticale callus under salt stress by improving biochemical activity and confocal laser scanning analysis, conferring salt tolerance on callus cells. CaO NPs (Ca2+) are significant components that act as transducers in many adaptive and developmental processes in plants. In this study, effect of Ca2+ NPs on the response and regulation of the protective system in Triticale callus under short and long-salt treatments was investigated. The activation of Ca2+ NPs was induced by salt stress in callus of Triticale cultivars. MDA, H2O2, POD, and protein activities were determined in callus tissues. Concerning MDA, H2O2, protein activities, it was found that the Ca2+ NPs treatment was significant, and it demonstrated a high correlation with the tolerance levels of cultivars. Tatlıcak cultivar was detected for better MDA activities in the short time with 1.5 ppm Ca2+ NPs concentration of 50 g and 100 g NaCl. Similarly, the same cultivar responded with better H2O2 activity at 1.5 ppm Ca2+ NPs 100 g NaCl in the short time. POD activities exhibited a decreasing trend in response to the increasing concentrations of Ca2+ NPs. The best result was observed at 1.5 ppm Ca2+ NPs 100 g NaCl in the short term. Based on the protein content, treatment of short-term cultured callus cells with 1.5 ppm Ca2+ NPs inhibited stress response and it significantly promoted Ca2+ NPs signals as compared to control callus. Confocal laser scanning analysis proved that the application of Ca2+ NPs could alleviate the adverse effects of salt stress by the inhibition of stress severity in callus cells. This study demonstrated, under in vitro conditions, that the application of Ca2+ NPs can significantly suppress the adverse effects of salt stress on Triticale callus; it was also verified that the concentration of Ca2+ NPs could be important parameter to be considered in adjusting the micronutrient content in the media for this plant.
Collapse
Affiliation(s)
- Büşra Yazıcılar
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050, Erzurum, Turkey
| | - Fatma Böke
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050, Erzurum, Turkey
| | - Azize Alaylı
- Department of Nursing, Faculty of Health Sciences, Faculty of Applied Sciences, Sakarya University, 54187, Sakarya, Turkey
| | - Hayrunisa Nadaroglu
- Department of Food Technology, Vocational College of Technical Sciences, Ataturk University, 25240, Erzurum, Turkey
- Department of Nano-Science and Nano-Engineering, Institute of Science, Ataturk University, 25240, Erzurum, Turkey
| | - Semin Gedikli
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Ismail Bezirganoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050, Erzurum, Turkey.
| |
Collapse
|
50
|
Chiu YTE, Choi CHJ. Enabling Transgenic Plant Cell–Derived Biomedicines with Nanotechnology. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yee Ting Elaine Chiu
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin New Territories Hong Kong
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin New Territories Hong Kong
| |
Collapse
|