1
|
Papp D, Gilbert KM, Cereza G, D'Astous A, Lopez-Rios N, Boudreau M, Couch MJ, Yazdanbakhsh P, Barry RL, Alonso-Ortiz E, Cohen-Adad J. RF shimming in the cervical spinal cord at 7 T. Magn Reson Med 2024; 92:2392-2403. [PMID: 39136249 DOI: 10.1002/mrm.30225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/29/2024] [Accepted: 06/26/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE Advancing the development of 7 T MRI for spinal cord imaging is crucial for the enhanced diagnosis and monitoring of various neurodegenerative diseases and traumas. However, a significant challenge at this field strength is the transmit field inhomogeneity. Such inhomogeneity is particularly problematic for imaging the small, deep anatomical structures of the cervical spinal cord, as it can cause uneven signal intensity and elevate the local specific absorption ratio, compromising image quality. This multisite study explores several RF shimming techniques in the cervical spinal cord. METHODS Data were collected from 5 participants between two 7 T sites with a custom 8Tx/20Rx parallel transmission coil. We explored two radiofrequency (RF) shimming approaches from an MRI vendor and four from an open-source toolbox, showcasing their ability to enhance transmit field and signal homogeneity along the cervical spinal cord. RESULTS The circularly polarized (CP), coefficient of variation (CoV), and specific absorption rate (SAR) efficiency shim modes showed the highest B1 + efficiency, and the vendor-based "patient" and "volume" modes showed the lowest B1 + efficiency. The coefficient of variation method produced the highest CSF/spinal cord contrast on T2*-weighted scans (ratio of 1.27 ± 0.03), and the lowest variation of that contrast along the superior-inferior axis. CONCLUSION The study's findings highlight the potential of RF shimming to advance 7 T MRI's clinical utility for central nervous system imaging by enabling more homogenous and efficient spinal cord imaging. Additionally, the research incorporates a reproducible Jupyter Notebook, enhancing the study's transparency and facilitating peer verification.
Collapse
Affiliation(s)
- Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Gaspard Cereza
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Alexandre D'Astous
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
- Centre de Recherche du CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Nibardo Lopez-Rios
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Mathieu Boudreau
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Marcus J Couch
- Siemens Healthcare Limited, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Pedram Yazdanbakhsh
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Robert L Barry
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, Massachusetts, USA
| | - Eva Alonso-Ortiz
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
- Centre de Recherche du CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
- Mila-Quebec AI Institute, Montreal, Quebec, Canada
- Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Fursevich D. Imaging Evaluation of the Biliary Tree. Surg Clin North Am 2024; 104:1145-1157. [PMID: 39448118 DOI: 10.1016/j.suc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Noninvasive visualization of the biliary tree is of paramount importance in any patient who may require a biliary surgical intervention. Most hospitals and imaging centers offer ultrasound, computed tomography (CT), cholescintigraphy (commonly known as hepatobiliary iminodiacetic acid scan), and MRI whenever acute biliary pathology is suspected. PET combined with CT is sometimes utilized to evaluate biliary malignancy and metastatic disease. Unfortunately, these imaging modalities are often ordered incorrectly and have numerous limitations. This article discusses the strengths and weaknesses or each imaging modality and focuses on appropriateness of their utilization in clinical practice.
Collapse
Affiliation(s)
- Dzmitry Fursevich
- Reno Radiological Associates, Renown Regional Medical Center, PO Box 7055, Reno, NV 89510, USA.
| |
Collapse
|
3
|
Kamal O, Haghshomar M, Yang J, Lalani T, Bijan B, Yaghmai V, Mendiratta-Lala M, Hong CW, Fowler KJ, Sirlin CB, Kambadakone A, Lee J, Borhani AA, Fung A. CT/MRI technical pitfalls for diagnosis and treatment response assessment using LI-RADS and how to optimize. Abdom Radiol (NY) 2024:10.1007/s00261-024-04632-x. [PMID: 39433603 DOI: 10.1007/s00261-024-04632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver cancer, is a significant global health burden. Accurate imaging is crucial for diagnosis and treatment response assessment, often eliminating the need for biopsy. The Liver Imaging Reporting and Data System (LI-RADS) standardizes the interpretation and reporting of liver imaging for diagnosis and treatment response assessment, categorizing observations using defined categories that are based on the probability of malignancy or post-treatment tumor viability. Optimized imaging protocols are essential for accurate visualization and characterization of liver findings by LI-RADS. Common technical pitfalls, such as suboptimal postcontrast phase timing, and MRI-specific challenges like subtraction misregistration artifacts, can significantly reduce image quality and diagnostic accuracy. The use of hepatobiliary contrast agents introduces additional challenges including arterial phase degradation and suboptimal uptake in advanced cirrhosis. This review provides radiologists with comprehensive insights into the technical aspects of liver imaging for LI-RADS. We discuss common pitfalls encountered in routine clinical practice and offer practical solutions to optimize imaging techniques. We also highlight technical advances in liver imaging, including multi-arterial MR acquisition and compressed sensing. By understanding and addressing these technical aspects, radiologists can improve accuracy and confidence in the diagnosis and treatment response assessment for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Omar Kamal
- Oregon Health and Science University, Portland, OR, USA.
| | - Maryam Haghshomar
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jessica Yang
- Royal Prince Alfred and Concord Hospitals, Sydney, NSW, Australia
| | - Tasneem Lalani
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bijan Bijan
- University of California Davis Medical Center, Sacramento, CA, USA
| | | | | | | | | | | | | | - James Lee
- University of Kentucky, Lexington, KY, USA
| | - Amir A Borhani
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alice Fung
- Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
4
|
Ueda T, Yamamoto K, Yazawa N, Tozawa I, Ikedo M, Yui M, Nagata H, Nomura M, Ozawa Y, Ohno Y. Efficacy of compressed sensing and deep learning reconstruction for adult female pelvic MRI at 1.5 T. Eur Radiol Exp 2024; 8:103. [PMID: 39254920 PMCID: PMC11387279 DOI: 10.1186/s41747-024-00506-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND We aimed to determine the capabilities of compressed sensing (CS) and deep learning reconstruction (DLR) with those of conventional parallel imaging (PI) for improving image quality while reducing examination time on female pelvic 1.5-T magnetic resonance imaging (MRI). METHODS Fifty-two consecutive female patients with various pelvic diseases underwent MRI with T1- and T2-weighted sequences using CS and PI. All CS data was reconstructed with and without DLR. Signal-to-noise ratio (SNR) of muscle and contrast-to-noise ratio (CNR) between fat tissue and iliac muscle on T1-weighted images (T1WI) and between myometrium and straight muscle on T2-weighted images (T2WI) were determined through region-of-interest measurements. Overall image quality (OIQ) and diagnostic confidence level (DCL) were evaluated on 5-point scales. SNRs and CNRs were compared using Tukey's test, and qualitative indexes using the Wilcoxon signed-rank test. RESULTS SNRs of T1WI and T2WI obtained using CS with DLR were higher than those using CS without DLR or conventional PI (p < 0.010). CNRs of T1WI and T2WI obtained using CS with DLR were higher than those using CS without DLR or conventional PI (p < 0.003). OIQ of T1WI and T2WI obtained using CS with DLR were higher than that using CS without DLR or conventional PI (p < 0.001). DCL of T2WI obtained using CS with DLR was higher than that using conventional PI or CS without DLR (p < 0.001). CONCLUSION CS with DLR provided better image quality and shorter examination time than those obtainable with PI for female pelvic 1.5-T MRI. RELEVANCE STATEMENT CS with DLR can be considered effective for attaining better image quality and shorter examination time for female pelvic MRI at 1.5 T compared with those obtainable with PI. KEY POINTS Patients underwent MRI with T1- and T2-weighted sequences using CS and PI. All CS data was reconstructed with and without DLR. CS with DLR allowed for examination times significantly shorter than those of PI and provided significantly higher signal- and CNRs, as well as OIQ.
Collapse
Affiliation(s)
- Takahiro Ueda
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan.
| | | | | | - Ikki Tozawa
- Department of Radiology, Fujita Health University Bantane Hospital, Nagoya, Japan
| | - Masato Ikedo
- Canon Medical Systems Corporation, Otawara, Japan
| | - Masao Yui
- Canon Medical Systems Corporation, Otawara, Japan
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masahiko Nomura
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshiyuki Ozawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
5
|
Norris EC, Schneider G, Clark TJ, Kirchin MA, Wilson GJ, Maki JH. Efficacy of Whole-Blood Model of Gadolinium-Based Contrast Agent Relaxivity in Predicting Vascular MR Signal Intensity In Vivo. J Magn Reson Imaging 2024; 60:615-627. [PMID: 37916957 DOI: 10.1002/jmri.29089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Previous in vitro studies have described sub-linear longitudinal and heightened transverse H2O relaxivities of gadolinium-based contrast agents (GBCAs) in blood due to their extracellular nature. However, in vivo validation is lacking. PURPOSE Validate theory describing blood behavior of R1 and R2* in an animal model. STUDY TYPE Prospective, animal. ANIMAL MODEL Seven swine (54-65 kg). FIELD STRENGTH/SEQUENCE 1.5 T; time-resolved 3D spoiled gradient-recalled echo (SPGR) and quantitative Look-Locker and multi-echo fast field echo sequences. ASSESSMENT Seven swine were each injected three times with 0.1 mmol/kg intravenous doses of one of three GBCAs: gadoteridol, gadobutrol, and gadobenate dimeglumine. Injections were randomized for rate (1, 2, and 3 mL/s) and order, during which time-resolved aortic 3D SPGR imaging was performed concurrently with aortic blood sampling via an indwelling catheter. Time-varying [GBCA] was measured by mass spectrometry of sampled blood. Predicted signal intensity (SI) was determined from a model incorporating sub-linear R1 and R2* effects (whole-blood model) and simpler models incorporating linear R1, with and without R2* effects. Predicted SIs were compared to measured aortic SI. STATISTICAL TESTS Linear correlation (coefficient of determination, R2) and mean errors were compared across the SI prediction models. RESULTS There was an excellent correlation between predicted and measured SI across all injections and swine when accounting for the non-linear dependence of R1 and high blood R2* (regression slopes 0.91-1.04, R2 ≥ 0.91). Simplified models (linear R1 with and without R2* effects) showed poorer correlation (slopes 0.67-0.85 and 0.54-0.64 respectively, both R2 ≥ 0.89) and higher averaged mean absolute and mean square errors (128.4 and 177.4 vs. 42.0, respectively, and 5506 and 11,419 vs. 699, respectively). DATA CONCLUSION Incorporating sub-linear R1 and high first-pass R2* effects in arterial blood models allows accurate SPGR SI prediction in an in vivo animal model, and might be utilized when modeling MR blood SI. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Evan C Norris
- Department of Radiology, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Guenther Schneider
- Department of Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg, Germany
| | - Toshimasa J Clark
- Department of Radiology, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Miles A Kirchin
- Global Medical & Regulatory Affairs, Bracco Imaging SpA, Milan, Italy
| | - Gregory J Wilson
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Jeffrey H Maki
- Department of Radiology, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
- Department of Radiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Woernle A, Englman C, Dickinson L, Kirkham A, Punwani S, Haider A, Freeman A, Kasivisivanathan V, Emberton M, Hines J, Moore CM, Allen C, Giganti F. Picture Perfect: The Status of Image Quality in Prostate MRI. J Magn Reson Imaging 2024; 59:1930-1952. [PMID: 37804007 DOI: 10.1002/jmri.29025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023] Open
Abstract
Magnetic resonance imaging is the gold standard imaging modality for the diagnosis of prostate cancer (PCa). Image quality is a fundamental prerequisite for the ability to detect clinically significant disease. In this critical review, we separate the issue of image quality into quality improvement and quality assessment. Beginning with the evolution of technical recommendations for scan acquisition, we investigate the role of patient preparation, scanner factors, and more advanced sequences, including those featuring Artificial Intelligence (AI), in determining image quality. As means of quality appraisal, the published literature on scoring systems (including the Prostate Imaging Quality score), is evaluated. Finally, the application of AI and teaching courses as ways to facilitate quality assessment are discussed, encouraging the implementation of future image quality initiatives along the PCa diagnostic and monitoring pathway. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Alexandre Woernle
- Faculty of Medical Sciences, University College London, London, UK
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Cameron Englman
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
- Division of Surgery & Interventional Science, University College London, London, UK
| | - Louise Dickinson
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Alex Kirkham
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Shonit Punwani
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
- Centre for Medical Imaging, University College London, London, UK
| | - Aiman Haider
- Department of Pathology, University College London Hospital NHS Foundation Trust, London, UK
| | - Alex Freeman
- Department of Pathology, University College London Hospital NHS Foundation Trust, London, UK
| | - Veeru Kasivisivanathan
- Division of Surgery & Interventional Science, University College London, London, UK
- Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| | - Mark Emberton
- Division of Surgery & Interventional Science, University College London, London, UK
- Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| | - John Hines
- Faculty of Medical Sciences, University College London, London, UK
- Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
- North East London Cancer Alliance & North Central London Cancer Alliance Urology, London, UK
| | - Caroline M Moore
- Division of Surgery & Interventional Science, University College London, London, UK
- Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| | - Clare Allen
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Francesco Giganti
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
- Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
7
|
Gokyar S, Zhao C, Ma SJ, Wang DJJ. Deep learning-based local SAR prediction using B 1 maps and structural MRI of the head for parallel transmission at 7 T. Magn Reson Med 2023; 90:2524-2538. [PMID: 37466040 PMCID: PMC10543469 DOI: 10.1002/mrm.29797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/03/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE To predict subject-specific local specific absorption rate (SAR) distributions of the human head for parallel transmission (pTx) systems at 7 T. THEORY AND METHODS Electromagnetic energy deposition in tissues is nonuniform at 7 T, and interference patterns due to individual channels of pTx systems may result in increased local SAR values, which can only be estimated with very high safety margins. We proposed, designed, and demonstrated a multichannel 3D convolutional neural network (CNN) architecture to predict local SAR maps as well as peak-spatial SAR (ps-SAR) levels. We hypothesized that utilizing a three-channel 3D CNN, in which each channel is fed by aB 1 + $$ {B}_1^{+} $$ map, a phase-reversedB 1 + $$ {B}_1^{+} $$ map, and an MR image, would improve prediction accuracies and decrease uncertainties in the predictions. We generated 10 new head-neck body models, along with 389 3D pTx MRI data having different RF shim settings, with their B1 and local SAR maps to support efforts in this field. RESULTS The proposed three-channel 3D CNN predicted ps-SAR10g levels with an average overestimation error of 20%, which was better than the virtual observation points-based estimation error (i.e., 152% average overestimation). The proposed method decreased prediction uncertainties over 20% (i.e., 22.5%-17.7%) compared to other methods. A safety factor of 1.20 would be enough to avoid underestimations for the dataset generated in this work. CONCLUSION Multichannel 3D CNN networks can be promising in predicting local SAR values and perform predictions within a second, making them clinically useful as an alternative to virtual observation points-based methods.
Collapse
Affiliation(s)
- Sayim Gokyar
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Chenyang Zhao
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Samantha J. Ma
- Siemens Medical Solutions USA, Los Angeles, California, USA
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, USC, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Manganaro L, Capuani S, Gennarini M, Miceli V, Ninkova R, Balba I, Galea N, Cupertino A, Maiuro A, Ercolani G, Catalano C. Fetal MRI: what's new? A short review. Eur Radiol Exp 2023; 7:41. [PMID: 37558926 PMCID: PMC10412514 DOI: 10.1186/s41747-023-00358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/22/2023] [Indexed: 08/11/2023] Open
Abstract
Fetal magnetic resonance imaging (fetal MRI) is usually performed as a second-level examination following routine ultrasound examination, generally exploiting morphological and diffusion MRI sequences. The objective of this review is to describe the novelties and new applications of fetal MRI, focusing on three main aspects: the new sequences with their applications, the transition from 1.5-T to 3-T magnetic field, and the new applications of artificial intelligence software. This review was carried out by consulting the MEDLINE references (PubMed) and including only peer-reviewed articles written in English. Among the most important novelties in fetal MRI, we find the intravoxel incoherent motion model which allow to discriminate the diffusion from the perfusion component in fetal and placenta tissues. The transition from 1.5-T to 3-T magnetic field allowed for higher quality images, thanks to the higher signal-to-noise ratio with a trade-off of more frequent artifacts. The application of motion-correction software makes it possible to overcome movement artifacts by obtaining higher quality images and to generate three-dimensional images useful in preoperative planning.Relevance statementThis review shows the latest developments offered by fetal MRI focusing on new sequences, transition from 1.5-T to 3-T magnetic field and the emerging role of AI software that are paving the way for new diagnostic strategies.Key points• Fetal magnetic resonance imaging (MRI) is a second-line imaging after ultrasound.• Diffusion-weighted imaging and intravoxel incoherent motion sequences provide quantitative biomarkers on fetal microstructure and perfusion.• 3-T MRI improves the detection of cerebral malformations.• 3-T MRI is useful for both body and nervous system indications.• Automatic MRI motion tracking overcomes fetal movement artifacts and improve fetal imaging.
Collapse
Affiliation(s)
- Lucia Manganaro
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Rome, Italy.
| | - Silvia Capuani
- National Research Council (CNR),, Institute for Complex Systems (ISC) c/o Physics Department Sapienza University of Rome, Rome, Italy
| | - Marco Gennarini
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Valentina Miceli
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Roberta Ninkova
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | | | - Nicola Galea
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Angelica Cupertino
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Alessandra Maiuro
- National Research Council (CNR),, Institute for Complex Systems (ISC) c/o Physics Department Sapienza University of Rome, Rome, Italy
| | - Giada Ercolani
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Alkandari D, Bosshard JC, Huang CH, Wright SM. Multiple slot modules for high field magnetic resonance imaging array coils. Magn Reson Med 2023; 89:2485-2498. [PMID: 36763854 DOI: 10.1002/mrm.29610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 02/12/2023]
Abstract
PURPOSE Mitigating coupling effects between coil elements represents a continuing challenge. Here, we present a 16-bowtie slot volume coil arranged in eight independent dual-slot modules without the use of any decoupling circuits. METHODS Two electrically short "bowtie" slot antennas were used to form a "module." A bowtie configuration was chosen because electromagnetic modeling results show that bowtie slots exhibit improved B 1 + P in $$ \frac{B_1^{+}}{\sqrt{P_{in}}} $$ efficiency when compared to thin rectangular slots. An eight-module volume coil was evaluated through electromagnetic modeling, bench tests, and MRI experiments at 4.7 T. RESULTS Bench tests indicate that worst-case coupling between modules did not exceed -14.5 dB. MR images demonstrate well-localized patterns about single excited modules confirming the low coupling between modules. Homogeneous MR images were acquired from a synthesized quadrature birdcage transmit mode. MRI experiments show that the RF power requirements for the proposed coil are 9.2 times more than a birdcage coil. Whereas from simulations performed to assess the proposed coil losses, the total power dissipated in the phantom was 1.1 times more for the birdcage. Simulation results at 7 T reveal an equivalent B1 + homogeneity when compared with an eight-dipole coil. CONCLUSION Although exhibiting higher RF power requirements, as a transmit coil when the power availability is not a restriction, the inherently low coupling between electrically short slots should enable the use of many slot elements around the imaging volume. The slot module described in this paper should be useful in the design of multi-channel transmit coils.
Collapse
Affiliation(s)
- Dheyaa Alkandari
- Department of Electrical Engineering, Kuwait University, Kuwait City, Kuwait
| | - John C Bosshard
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Chung-Huan Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Steven M Wright
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
10
|
Canjels LPW, Jansen JFA, Alers RJ, Ghossein‐Doha C, van den Kerkhof M, Schiffer VMMM, Mulder E, Gerretsen SC, Aldenkamp AP, Hurks PPM, van de Ven V, Spaanderman MEA, Backes WH. Blood-brain barrier leakage years after pre-eclampsia: dynamic contrast-enhanced 7-Tesla MRI study. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:541-548. [PMID: 35502137 PMCID: PMC9826493 DOI: 10.1002/uog.24930] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Pre-eclampsia is a hypertensive complication of pregnancy that is associated with an increased risk of long-term cardiovascular and cerebrovascular disorders. Although the underlying mechanism of persistent susceptibility to cerebral complications after pre-eclampsia remains largely unclear, impaired blood-brain barrier (BBB) integrity has been suggested to precede several cerebrovascular diseases. In this study, we aimed to investigate the integrity of the BBB years after pre-eclampsia. METHODS This was an observational study of premenopausal formerly pre-eclamptic women and controls with a history of normotensive pregnancy who underwent cerebral magnetic resonance imaging (MRI) at ultra-high field (7 Tesla) to assess the integrity of the BBB. Permeability of the BBB was determined by assessing leakage rate and fractional leakage volume of the contrast agent gadobutrol using dynamic contrast-enhanced MRI. BBB leakage measures were determined for the whole brain and lobar white and gray matter. Multivariable analyses were performed, and odds ratios were calculated to compare women with and those without a history of pre-eclampsia, adjusting for potential confounding effects of age, hypertension status at MRI and Fazekas score. RESULTS Twenty-two formerly pre-eclamptic women (mean age, 37.8 ± 5.4 years) and 13 control women with a history of normotensive pregnancy (mean age, 40.8 ± 5.5 years) were included in the study. The time since the index pregnancy was 6.6 ± 3.2 years in the pre-eclamptic group and 9.0 ± 3.7 years in controls. The leakage rate and fractional leakage volume were significantly higher in formerly pre-eclamptic women than in controls in the global white (P = 0.001) and gray (P = 0.02) matter. Regionally, the frontal (P = 0.04) and parietal (P = 0.009) cortical gray matter, and the frontal (P = 0.001), temporal (P < 0.05) and occipital (P = 0.007) white matter showed higher leakage rates in formerly pre-eclamptic women. The odds of a high leakage rate after pre-eclampsia were generally higher in white-matter regions than in gray-matter regions. CONCLUSION This observational study demonstrates global impairment of the BBB years after a pre-eclamptic pregnancy, which could be an early marker of long-term cerebrovascular disorders. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- L. P. W. Canjels
- Department of Radiology & Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
- MHeNs, School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - J. F. A. Jansen
- Department of Radiology & Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
- MHeNs, School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - R. J. Alers
- Department of Gynaecology and ObstetricsMaastricht University Medical Center (MUMC+)MaastrichtThe Netherlands
- GROW, School for Oncology and Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - C. Ghossein‐Doha
- GROW, School for Oncology and Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
- CARIM, School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
- Department of CardiologyMaastricht University Medical Center (MUMC+)MaastrichtThe Netherlands
| | - M. van den Kerkhof
- Department of Radiology & Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
- MHeNs, School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - V. M. M. M. Schiffer
- Department of Gynaecology and ObstetricsMaastricht University Medical Center (MUMC+)MaastrichtThe Netherlands
- GROW, School for Oncology and Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - E. Mulder
- Department of Gynaecology and ObstetricsMaastricht University Medical Center (MUMC+)MaastrichtThe Netherlands
- GROW, School for Oncology and Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - S. C. Gerretsen
- Department of Radiology & Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| | - A. P. Aldenkamp
- MHeNs, School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Academic Center for Epileptology Kempenhaeghe/ Maastricht University Medical Center (MUMC+)Heeze and MaastrichtThe Netherlands
- Department of NeurologyMaastricht University Medical Center (MUMC+)MaastrichtThe Netherlands
| | - P. P. M. Hurks
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - V. van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - M. E. A. Spaanderman
- Department of Gynaecology and ObstetricsMaastricht University Medical Center (MUMC+)MaastrichtThe Netherlands
- GROW, School for Oncology and Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - W. H. Backes
- Department of Radiology & Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
- MHeNs, School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- CARIM, School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
11
|
Yamada T, Masui T, Sasaki M, Katayama M, Iwadate Y, Takei N, Miyoshi M. Time resolved DCE-MRI of the kidneys: Evaluation of the renal vasculatures and tumors using F-DISCO with and without compressed sensing in normal and wide-bore 3T systems. Medicine (Baltimore) 2022; 101:e29971. [PMID: 35945778 PMCID: PMC9351894 DOI: 10.1097/md.0000000000029971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dynamic contrast-enhanced MR imaging (DCE-MRI) has been widely used for the evaluation of renal arteries. This method is also useful for tumor and renal parenchyma characterization. The very fast MRI may provide stable and precise information regarding vasculature and soft tissues. The purpose of this study was to evaluate the ability of DCE-MRI to assess renal vasculatures and tumor perfusions using Differential subsampling with Cartesian ordering with spectrally selected inversion recovery with adiabatic pulses (F-DISCO) with and without compressed sensing (CS) in normal and wide-bore 3T systems. Fifty-one patients who underwent DCE-MRI using F-DISCO with or without CS for evaluation of renal or adrenal regions were included. Image quality, artifacts, fat saturation, and selective visual recognition of renal vasculatures were assessed by using a 5-point scale. Tumor recognition was verified by using a 5-point scale of confidence level. Signal intensities of each structure were also measured. In all cases, the temporal resolution of each phase for DCE-MRI was 1.9 to 2.0 seconds. Image quality, artifacts, fat saturation, and selective visual recognition of vasculatures were all acceptable (mean score 4.2-4.9). The selective visualization of renal arteries and veins was successfully accomplished (mean score 4.0-4.9). Contrast media perfusion for renal vasculature, renal parenchyma, and tumors was also recognized. DCE-MRI for the evaluation of renal vasculatures and tumors using F-DISCO with or without CS can be performed with high temporal and spatial resolutions in normal and wide-bore 3T systems. This information can be obtained in a stable fashion throughout the dynamic contrast study. CS can additionally provide benefits that the total imaging time may be shorter than without CS.
Collapse
Affiliation(s)
- Takahiro Yamada
- Department of Radiology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Takayuki Masui
- Department of Radiology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
- *Correspondence: Takayuki Masui, MD, PhD, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Naka-district, Hamamatsu, Shizuoka 430-8558, Japan (e-mail )
| | - Masako Sasaki
- Department of Radiology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Motoyuki Katayama
- Department of Radiology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Yuji Iwadate
- Global MR Applications and Workflow, GE Healthcare Japan, Hino, Tokyo, Japan
| | - Naoyuki Takei
- Global MR Applications and Workflow, GE Healthcare Japan, Hino, Tokyo, Japan
| | - Mitsuharu Miyoshi
- Global MR Applications and Workflow, GE Healthcare Japan, Hino, Tokyo, Japan
| |
Collapse
|
12
|
Schoen N, Seifert F, Petzold J, Metzger GJ, Speck O, Ittermann B, Schmitter S. The Impact of Respiratory Motion on Electromagnetic Fields and Specific Absorption Rate in Cardiac Imaging at 7T. Magn Reson Med 2022; 88:2645-2661. [PMID: 35906923 DOI: 10.1002/mrm.29402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To present electromagnetic simulation setups for detailed analyses of respiration's impact on B 1 + $$ {B}_1^{+} $$ and E-fields, local specific absorption rate (SAR) and associated safety-limits for 7T cardiac imaging. METHODS Finite-difference time-domain electromagnetic field simulations were performed at five respiratory states using a breathing body model and a 16-element 7T body transceiver RF-coil array. B 1 + $$ {B}_1^{+} $$ and SAR are analyzed for fixed and moving coil configurations. SAR variations are investigated using phase/amplitude shimming considering (i) a local SAR-controlled mode (here SAR calculations consider RF amplitudes and phases) and (ii) a channel-wise power-controlled mode (SAR boundary calculation is independent of the channels' phases, only dependent on the channels' maximum amplitude). RESULTS Respiration-induced variations of both B 1 + $$ {B}_1^{+} $$ amplitude and phase are observed. The flip angle homogeneity depends on the respiratory state used for B 1 + $$ {B}_1^{+} $$ shimming; best results were achieved for shimming on inhale and exhale simultaneously ( | Δ C V | < 35 % $$ \mid \Delta CV\mid <35\% $$ ). The results reflect that respiration impacts position and amplitude of the local SAR maximum. With the local-SAR-control mode, a safety factor of up to 1.4 is needed to accommodate for respiratory variations while the power control mode appears respiration-robust when the coil moves with respiration (SAR peak decrease: 9% exhale→inhale). Instead, a spatially fixed coil setup yields higher SAR variations with respiration. CONCLUSION Respiratory motion does not only affect the B 1 + $$ {B}_1^{+} $$ distribution and hence the image contrast, but also location and magnitude of the peak spatial SAR. Therefore, respiration effects may need to be included in safety analyses of RF coils applied to the human thorax.
Collapse
Affiliation(s)
- Natalie Schoen
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Oliver Speck
- Otto von Guericke University, Magdeburg, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
13
|
Puchnin V, Ivanov V, Gulyaev M, Pirogov Y, Zubkov M. Imaging Capabilities of the ¹H-X-Nucleus Metamaterial-Inspired Multinuclear RF-Coil. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1587-1595. [PMID: 35030077 DOI: 10.1109/tmi.2022.3143693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this paper, we present the initial experimental investigation of a two-coil receive/transmit design for small animals imaging at 7T MRI. The system uses a butterfly-type coil tuned to 300 MHz for scanning the 1H nuclei and a non-resonant loop antenna with a metamaterial-inspired resonator with the ability to tune over a wide frequency range for X-nuclei. 1H, 31P, 23Na and 13C, which are of particular interest in biomedical MRI, were selected as test nuclei in this work. Coil simulations show the two parts of the radiofrequency (RF) assembly to be decoupled and operating independently due to the orthogonality of the excited RF transverse magnetic fields. Simulations and phantom experimental imaging show sufficiently homogeneous transverse transmit RF fields and tuning capabilities for the pilot multiheteronuclear experiments.
Collapse
|
14
|
Radbruch A, Paech D, Gassenmaier S, Luetkens J, Isaak A, Herrmann J, Othman A, Schäfer J, Nikolaou K. 1.5 vs 3 Tesla Magnetic Resonance Imaging: A Review of Favorite Clinical Applications for Both Field Strengths-Part 2. Invest Radiol 2021; 56:692-704. [PMID: 34417406 DOI: 10.1097/rli.0000000000000818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ABSTRACT The second part of this review deals with experiences in neuroradiological and pediatric examinations using modern magnetic resonance imaging systems with 1.5 T and 3 T, with special attention paid to experiences in pediatric cardiac imaging. In addition, whole-body examinations, which are widely used for diagnostic purposes in systemic diseases, are compared with respect to the image quality obtained in different body parts at both field strengths. A systematic overview of the technical differences at 1.5 T and 3 T has been presented in part 1 of this review, as well as several organ-based magnetic resonance imaging applications including musculoskeletal imaging, abdominal imaging, and prostate diagnostics.
Collapse
Affiliation(s)
- Alexander Radbruch
- From the Clinic for Diagnostic and Interventional Neuroradiology, University Hospital Bonn, Bonn
| | - Daniel Paech
- From the Clinic for Diagnostic and Interventional Neuroradiology, University Hospital Bonn, Bonn
| | - Sebastian Gassenmaier
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen, Tübingen
| | - Julian Luetkens
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn
| | - Alexander Isaak
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn
| | - Judith Herrmann
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen, Tübingen
| | | | - Jürgen Schäfer
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen, Tübingen
| | - Konstantin Nikolaou
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen, Tübingen
| |
Collapse
|
15
|
Schick F, Pieper CC, Kupczyk P, Almansour H, Keller G, Springer F, Mürtz P, Endler C, Sprinkart AM, Kaufmann S, Herrmann J, Attenberger UI. 1.5 vs 3 Tesla Magnetic Resonance Imaging: A Review of Favorite Clinical Applications for Both Field Strengths-Part 1. Invest Radiol 2021; 56:680-691. [PMID: 34324464 DOI: 10.1097/rli.0000000000000812] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ABSTRACT Whole-body magnetic resonance imaging (MRI) systems with a field strength of 3 T have been offered by all leading manufacturers for approximately 2 decades and are increasingly used in clinical diagnostics despite higher costs. Technologically, MRI systems operating at 3 T have reached a high standard in recent years, as well as the 1.5-T devices that have been in use for a longer time. For modern MRI systems with 3 T, more complexity is required, especially for the magnet and the radiofrequency (RF) system (with multichannel transmission). Many clinical applications benefit greatly from the higher field strength due to the higher signal yield (eg, imaging of the brain or extremities), but there are also applications where the disadvantages of 3 T might outweigh the advantages (eg, lung imaging or examinations in the presence of implants). This review describes some technical features of modern 1.5-T and 3-T whole-body MRI systems, and reports on the experience of using both types of devices in different clinical settings, with all sections written by specialist radiologists in the respective fields.This first part of the review includes an overview of the general physicotechnical aspects of both field strengths and elaborates the special conditions of diffusion imaging. Many relevant aspects in the application areas of musculoskeletal imaging, abdominal imaging, and prostate diagnostics are discussed.
Collapse
Affiliation(s)
- Fritz Schick
- From the Section of Experimental Radiology, Department of Radiology, Diagnostic, and Interventional Radiology, University of Tübingen, Tübingen
| | | | - Patrick Kupczyk
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn
| | - Haidara Almansour
- Department of Radiology, Diagnostic, and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Gabriel Keller
- Department of Radiology, Diagnostic, and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Fabian Springer
- Department of Radiology, Diagnostic, and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Petra Mürtz
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn
| | - Christoph Endler
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn
| | - Alois M Sprinkart
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn
| | - Sascha Kaufmann
- Department of Radiology, Diagnostic, and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Judith Herrmann
- Department of Radiology, Diagnostic, and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Ulrike I Attenberger
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn
| |
Collapse
|
16
|
Deplano L, Piga M, Porcu M, Stecco A, Suri JS, Mannelli L, Cauli A, Carriero A, Saba L. Whole-Body MRI in Rheumatology: Major Advances and Future Perspectives. Diagnostics (Basel) 2021; 11:diagnostics11101770. [PMID: 34679468 PMCID: PMC8534420 DOI: 10.3390/diagnostics11101770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/05/2021] [Accepted: 09/21/2021] [Indexed: 01/31/2023] Open
Abstract
Whole-body magnetic resonance imaging is constantly gaining more importance in rheumatology, particularly for what concerns the diagnosis, follow-up, and treatment response evaluation. Initially applied principally for the study of ankylosing spondylitis, in the last years, its use has been extended to several other rheumatic diseases. Particularly in the pediatric population, WB-MRI is rapidly becoming the gold-standard technique for the diagnosis and follow-up of both chronic recurrent multifocal osteomyelitis and juvenile spondyloarthritis. In this review, we analyze the benefits and limits of this technique as well as possible future applications.
Collapse
Affiliation(s)
- Luca Deplano
- Department of Radiology, University Hospital of Cagliari, 09100 Cagliari, Italy; (L.D.); (L.S.)
| | - Matteo Piga
- Department of Rheumatology, University Hospital of Cagliari, 09100 Cagliari, Italy; (M.P.); (A.C.)
| | - Michele Porcu
- Department of Radiology, University Hospital of Cagliari, 09100 Cagliari, Italy; (L.D.); (L.S.)
- Correspondence:
| | - Alessandro Stecco
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (A.S.); (A.C.)
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA;
| | | | - Alberto Cauli
- Department of Rheumatology, University Hospital of Cagliari, 09100 Cagliari, Italy; (M.P.); (A.C.)
| | - Alessandro Carriero
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (A.S.); (A.C.)
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, 09100 Cagliari, Italy; (L.D.); (L.S.)
| |
Collapse
|
17
|
Improving magnetic resonance imaging with smart and thin metasurfaces. Sci Rep 2021; 11:16179. [PMID: 34376748 PMCID: PMC8355254 DOI: 10.1038/s41598-021-95420-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/23/2021] [Indexed: 01/05/2023] Open
Abstract
Over almost five decades of development and improvement, Magnetic Resonance Imaging (MRI) has become a rich and powerful, non-invasive technique in medical imaging, yet not reaching its physical limits. Technical and physiological restrictions constrain physically feasible developments. A common solution to improve imaging speed and resolution is to use higher field strengths, which also has subtle and potentially harmful implications. However, patient safety is to be considered utterly important at all stages of research and clinical routine. Here we show that dynamic metamaterials are a promising solution to expand the potential of MRI and to overcome some limitations. A thin, smart, non-linear metamaterial is presented that enhances the imaging performance and increases the signal-to-noise ratio in 3T MRI significantly (up to eightfold), whilst the transmit field is not affected due to self-detuning and, thus, patient safety is also assured. This self-detuning works without introducing any additional overhead related to MRI-compatible electronic control components or active (de-)tuning mechanisms. The design paradigm, simulation results, on-bench characterization, and MRI experiments using homogeneous and structural phantoms are described. The suggested single-layer metasurface paves the way for conformal and patient-specific manufacturing, which was not possible before due to typically bulky and rigid metamaterial structures.
Collapse
|
18
|
Kong D, Qian Y, Kurosawa MK, Aoyagi M. Evaluation method for acoustic underwater propulsion systems. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:1157. [PMID: 34470274 DOI: 10.1121/10.0005657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Acoustic underwater propulsion systems based on bulk acoustic waves and surface acoustic waves have been studied. In this study, an acoustic propulsion system that consists of a 2.065-MHz thickness-vibration-mode lead-zirconate-titanate ultrasonic transducer is evaluated. A prototype swimmer is designed and fabricated. The admittance difference of the transducer in water and air is investigated. The vibration amplitude of the transducer is measured to evaluate transducer performance. The acoustic radiation force is calculated to describe acoustic propulsion. The zero-speed propulsion (ZSP) force and no-load speed (NLS) are measured in water. Swimmer movement starts at a NLS of 6.1 mm/s and a ZSP force of 0.2 mN for an input voltage and input power of 12.4 V peak to peak and 0.4 W, respectively. Although the average efficiency of the acoustic propulsion system is 69% in water, the overall movement efficiency of the swimmer is less than 1% because of fluid resistance and wire traction. Based on admittance, acoustic propulsion calculations, ZSP force, NLS measurements, and efficiency analysis, an evaluation method is proposed for optimizing swimmers with an acoustic underwater propulsion system. Small size, high power density, and simple structure of an acoustic propulsion system with an ultrasonic transducer make such systems suitable for applications such as pipeline inspection and repair.
Collapse
Affiliation(s)
- Deqing Kong
- Muroran Institute of Technology, Muroran, Japan
| | - Yuan Qian
- Tokyo Institute of Technology, Tokyo, Japan
| | | | | |
Collapse
|
19
|
Han S, Eun S, Cho H, Uludaǧ K, Kim SG. Improvement of sensitivity and specificity for laminar BOLD fMRI with double spin-echo EPI in humans at 7 T. Neuroimage 2021; 241:118435. [PMID: 34324976 DOI: 10.1016/j.neuroimage.2021.118435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Mapping mesoscopic cortical functional units such as columns or laminae is increasingly pursued by ultra-high field (UHF) functional magnetic resonance imaging (fMRI). The most popular approach for high-resolution fMRI is currently gradient-echo (GE) blood oxygenation level-dependent (BOLD) fMRI. However, its spatial accuracy is reduced due to its sensitivity to draining vessels, including pial veins, whereas spin-echo (SE) BOLD signal is expected to have higher spatial accuracy, albeit with lower sensitivity than the GE-BOLD signal. Here, we introduce a new double spin-echo (dSE) echo-planar imaging (EPI) method to improve the sensitivity of SE-BOLD contrast by averaging two spin-echoes using three radiofrequency pulses. Human fMRI experiments were performed with slices perpendicular to the central sulcus between motor and sensory cortices at 7 T during fist-clenching with touching. First, we evaluated the feasibility of single-shot dSE-EPI for BOLD fMRI with 1.5 mm isotropic resolution and found that dSE-BOLD fMRI has higher signal-to-noise ratio (SNR), temporal SNR (tSNR), and higher functional sensitivity than conventional SE-BOLD fMRI. Second, to investigate the laminar specificity of dSE-BOLD fMRI, we implemented a multi-shot approach to achieve 0.8-mm isotropic resolution with sliding-window reconstruction. Unlike GE-BOLD fMRI, the cortical profile of dSE-BOLD fMRI peaked at ~ 1.0 mm from the surface of the primary motor and sensory cortices, demonstrating an improvement of laminar specificity in humans over GE-BOLD fMRI. The proposed multi-shot dSE-EPI method is viable for high spatial resolution UHF-fMRI studies in the pursuit of resolving mesoscopic functional units.
Collapse
Affiliation(s)
- SoHyun Han
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Seulgi Eun
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - HyungJoon Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kâmil Uludaǧ
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Techna Institute & Koerner Scientist in MR Imaging, University Health Network, Toronto, Canada
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
20
|
Blaise H, Remen T, Ambarki K, Weiland E, Kuehn B, Orry X, Laurent V. Comparison of respiratory-triggered 3D MR cholangiopancreatography and breath-hold compressed-sensing 3D MR cholangiopancreatography at 1.5 T and 3 T and impact of individual factors on image quality. Eur J Radiol 2021; 142:109873. [PMID: 34371309 DOI: 10.1016/j.ejrad.2021.109873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/02/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE To evaluate the image quality of an accelerated compressed-sensing single-breath-hold 3D magnetic resonance cholangiopancreatography (BH-CS-MRCP) prototype sequence compared to the standard 3D sequence with respiratory triggering (STD-MRCP) at 1.5 T and 3 T. To assess the individual factors that can affect image quality. METHOD This is a retrospective analysis. Both sequences (BH-CS-MRCP and STD-MRCP) were performed in 200 patients at 1.5 T and 200 patients at 3 T. Overall image quality and the visualization of the bilio-pancreatic ducts were rated on a 5-point scale. Image sharpness and background suppression were rated on a 4-point scale. A double reading was performed in 50 patients to assess the inter-observer reproducibility. Individual characteristics studied were gender, age, BMI, ascites, abdominal surface and breath-hold quality. RESULTS At 1.5 T, BH-CS-MRCP was inferior to STD-MRCP in terms of overall quality (p = 0.0046), background suppression (p < 0.0001), visualization of the cystic duct (p < 0.0001), the right bile duct (p = 0.0008), the left bile duct (p = 0.0152), and the main pancreatic duct (p < 0.0001). However, BH-CS-MRCP was sharper than STD-MRCP (p = 0.028). At 3 T, BH-CS-MRCP was superior to STD-MRCP for overall quality (p < 0.0001), sharpness (p < 0.0001), and visualization of the bilio-pancreatic ducts (p < 0.0001). Background signal was conversely better suppressed in STD-MRCP (p < 0.0001). At 1.5 T, the volume of ascites was inversely correlated with image quality for BH-CS-MRCP while BMI was inversely correlated with image quality for STD-MRCP. Breath-hold quality was correlated with image quality for BH-CS-MRCP at 1.5 T and 3 T. CONCLUSION BH-CS-MRCP is feasible in clinical routine at 1.5 and 3 T, yielding significantly better perceived image quality at 3 T but not at 1.5 T. BH-CS-MRCP appears to be influenced by ascites whereas STD-MRCP is influenced by BMI at 1.5 T. This study was approved by the Ethics Review Board for Research in Medical Imaging (IRB: CRM-2003-065).
Collapse
Affiliation(s)
- Hélène Blaise
- Brabois Imaging Department, Nancy University Hospital, Université de Lorraine, Allée du Morvan 54500 Vandœuvre-lès-Nancy, France.
| | - Thomas Remen
- Unity of Methodology and Data Management, Nancy University Hospital, Vandœuvre-Lès-Nancy, France
| | | | | | | | - Xavier Orry
- Brabois Imaging Department, Nancy University Hospital, Université de Lorraine, Allée du Morvan 54500 Vandœuvre-lès-Nancy, France
| | - Valérie Laurent
- Brabois Imaging Department, Nancy University Hospital, Université de Lorraine, Allée du Morvan 54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
21
|
Tarao K, Nozaki A, Komatsu H, Komatsu T, Taguri M, Tanaka K, Yoshida T, Koyasu H, Chuma M, Numata K, Maeda S. Comparison of unenhanced magnetic resonance imaging and ultrasound in detecting very small hepatocellular carcinoma. World J Hepatol 2021; 13:699-708. [PMID: 34239704 PMCID: PMC8239491 DOI: 10.4254/wjh.v13.i6.699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In hepatocellular carcinoma (HCC), detection and treatment prior to growth beyond 2 cm are important as a larger tumor size is more frequently associated with microvascular invasion and/or satellites. In the surveillance of very small HCC nodules (≤ 2 cm in maximum diameter, Barcelona clinical stage 0), we demonstrated that the tumor markers alpha-fetoprotein and PIVKA-Ⅱ are not so useful. Therefore, we must survey with imaging modalities. The superiority of magnetic resonance imaging (MRI) over ultrasound (US) to detect HCC was confirmed in many studies. Although enhanced MRI is now performed to accurately diagnose HCC, in conventional clinical practice for HCC surveillance in liver diseases, unenhanced MRI is widely performed throughout the world. While, MRI has made marked improvements in recent years.
AIM To make a comparison of unenhanced MRI and US in detecting very small HCC that was examined in the last ten years in patients in whom MRI and US examinations were performed nearly simultaneously.
METHODS In 394 patients with very small HCC nodules, those who underwent MRI and US at nearly the same time (on the same day whenever possible or at least within 14 days of one another) at the first diagnosis of HCC were selected. The detection rate of HCC with unenhanced MRI was investigated and compared with that of unenhanced US.
RESULTS The sensitivity of unenhanced MRI for detecting very small HCC was 95.1% (97/102, 95% confidence interval: 90.9-99.3) and that of unenhanced US was 69.6% (71/102, 95% confidence interval: 60.7-78.5). The sensitivity of unenhanced MRI for detecting very small HCC was significantly higher than that of unenhanced US (P < 0.001). Regarding the location of HCC in the liver in patients in whom detection by US was unsuccessful, S7-8 was identified in 51.7%.
CONCLUSION Currently, unenhanced MRI is a very useful tool for the surveillance of very small HCC in conventional clinical follow-up practice.
Collapse
Affiliation(s)
- Kazuo Tarao
- Tarao's Gastroenterological Clinic, Yokohama 241-0821, Japan
| | - Akito Nozaki
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Hirokazu Komatsu
- Department of Gastroenterology, Yokohama Municipal Citizen's Hospital, Yokohama 240-0855, Japan
| | - Tatsuji Komatsu
- Department of Clinical Research, National Hospital Organization, Yokohama Medical Center, Yokohama 245-8575, Japan
| | - Masataka Taguri
- Department of Data Science, Yokohama City University, Yokohama 236-0004, Japan
| | - Katsuaki Tanaka
- Department of Gastroenterology, Hadano Red Cross Hospital, Hadano City 257-0017, Japan
| | - Testuo Yoshida
- Department of Radiology, Ashigarakami Hospital, Yokohama 258-0003, Japan
| | - Hideki Koyasu
- Department of Radiology, Koyasu Clinic, Yokohama 241-0821, Japan
| | - Makoto Chuma
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Kazushi Numata
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Shin Maeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
22
|
Aivazoglou LU, Guimarães JB, Link TM, Costa MAF, Cardoso FN, de Mattos Lombardi Badia B, Farias IB, de Rezende Pinto WBV, de Souza PVS, Oliveira ASB, de Siqueira Carvalho AA, Aihara AY, da Rocha Corrêa Fernandes A. MR imaging of inherited myopathies: a review and proposal of imaging algorithms. Eur Radiol 2021; 31:8498-8512. [PMID: 33881569 DOI: 10.1007/s00330-021-07931-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/05/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The aims of this review are to discuss the imaging modalities used to assess muscle changes in myopathies, to provide an overview of the inherited myopathies focusing on their patterns of muscle involvement in magnetic resonance imaging (MR), and to propose up-to-date imaging-based diagnostic algorithms that can help in the diagnostic workup. CONCLUSION Familiarization with the most common and specific patterns of muscular involvement in inherited myopathies is very important for radiologists and neurologists, as imaging plays a significant role in diagnosis and follow-up of these patients. KEY POINTS • Imaging is an increasingly important tool for diagnosis and follow-up in the setting of inherited myopathies. • Knowledge of the most common imaging patterns of muscle involvement in inherited myopathies is valuable for both radiologists and neurologists. • In this review, we present imaging-based algorithms that can help in the diagnostic workup of myopathies.
Collapse
Affiliation(s)
- Laís Uyeda Aivazoglou
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil.,Laboratório Delboni Auriemo - Grupo DASA, Av Juruá, 434, Barueri, SP, 06455-010, Brazil
| | - Julio Brandão Guimarães
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil. .,Musculoskeletal and Quantitative Imaging Research Group (MQIR), Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA.
| | - Thomas M Link
- Musculoskeletal and Quantitative Imaging Research Group (MQIR), Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Maria Alice Freitas Costa
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil.,Laboratório Delboni Auriemo - Grupo DASA, Av Juruá, 434, Barueri, SP, 06455-010, Brazil
| | - Fabiano Nassar Cardoso
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil
| | - Bruno de Mattos Lombardi Badia
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Igor Braga Farias
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Wladimir Bocca Vieira de Rezende Pinto
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Paulo Victor Sgobbi de Souza
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Acary Souza Bulle Oliveira
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Alzira Alves de Siqueira Carvalho
- Laboratório de Doenças Neuromusculares da Faculdade de Medicina do ABC - Departamento de Neurociências, Av. Lauro Gomes, 2000, Santo André, SP, 09060-870, Brazil
| | - André Yui Aihara
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil.,Laboratório Delboni Auriemo - Grupo DASA, Av Juruá, 434, Barueri, SP, 06455-010, Brazil
| | - Artur da Rocha Corrêa Fernandes
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil
| |
Collapse
|
23
|
Wood S, Santini T, Krishnamurthy N, Martins T, Farhat N, Ibrahim TS. A comprehensive electromagnetic evaluation of an MRI anthropomorphic head phantom. NMR IN BIOMEDICINE 2021; 34:e4441. [PMID: 33354828 PMCID: PMC8080257 DOI: 10.1002/nbm.4441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Electromagnetic simulations are an important tool for the safety assessment of RF coils. They are a useful resource for MRI RF coil designers, especially when complemented with experimental measurements and testing using physical phantoms. Regular-shaped (spherical/cylindrical) homogeneous phantoms are the MRI standard for RF testing but are somewhat inaccurate when compared with anthropomorphic anatomies, especially at high frequencies. In this work, using a recently developed anthropomorphic heterogeneous human head phantom, studies were performed to analyze the scattering parameters (S-parameters) and the electric and magnetic field distributions using (1) the B1+ field mapping method on a 7 T human MRI scanner and (2) numerical full-wave electromagnetic simulations. All studies used the following: a recently developed six-compartment refillable 3D-printed anthropomorphic head phantom (developed from MRI scans obtained in vivo), where the phantom itself is filled in its entirety with either heterogeneous loading, or homogeneous brain or water loading, in vivo imaging, and a commercial homogeneous spherical water phantom. Our results determined that the calculated S-parameters for all the anthropomorphic head phantom models were comparable to the model that is based on the volunteer (within 17% difference of the reflection coefficient value) but differed for the commercial homogeneous spherical water phantom (within 45% difference). The experimentally measured B1+ field maps of the anthropomorphic heterogeneous and homogeneous brain head phantoms were most comparable to the in vivo measured values. The numerical simulations also show that both the anthropomorphic homogeneous water and brain phantom models were less accurate in terms of electric field intensities/distributions when compared with the segmented in-vivo-based head model and the anthropomorphic heterogeneous head phantom model. The presented data highlights the differences between the physical phantoms/phantom models, and the in vivo measurements/segmented in-vivo-based head model. The results demonstrate the usefulness of 3D-printed anthropomorphic phantoms for RF coil evaluation and testing.
Collapse
Affiliation(s)
- Sossena Wood
- University of Pittsburgh, Bioengineering, Pittsburgh, PA, USA
- Carnegie Mellon University, Biomedical Engineering, Pittsburgh, PA, USA
| | - Tales Santini
- University of Pittsburgh, Bioengineering, Pittsburgh, PA, USA
| | | | - Tiago Martins
- University of Pittsburgh, Bioengineering, Pittsburgh, PA, USA
| | - Nadim Farhat
- University of Pittsburgh, Bioengineering, Pittsburgh, PA, USA
| | - Tamer S. Ibrahim
- University of Pittsburgh, Bioengineering, Pittsburgh, PA, USA
- University of Pittsburgh, Psychiatry, Pittsburgh, PA, USA
- University of Pittsburgh, Radiology, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Abstract
Magnetic resonance imaging (MRI) is a noninvasive imaging technology that offers unparalleled anatomical and functional detail, along with diagnostic sensitivity. MRI is suitable for longitudinal studies due to the lack of exposure to ionizing radiation. Before undertaking preclinical MRI investigations of the kidney, the appropriate MRI hardware should be carefully chosen to balance the competing demands of image quality, spatial resolution, and imaging speed, tailored to the specific scientific objectives of the investigation. Here we describe the equipment needed to perform renal MRI in rodents, with the aim to guide the appropriate hardware selection to meet the needs of renal MRI applications.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This chapter on hardware considerations for renal MRI in small animals is complemented by two separate publications describing the experimental procedure and data analysis.
Collapse
|
25
|
Elagha A, Othman Y, Darweesh R, Awadein G, Hashad A. Characterization of the interatrial septum by high-field cardiac MRI: a comparison with multi-slice computed tomography. Egypt Heart J 2020; 72:81. [PMID: 33180202 PMCID: PMC7661592 DOI: 10.1186/s43044-020-00109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/14/2020] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Assessment of the interatrial septum (IAS) has become an attractive area of interest for a variety of important interventional procedures. Newer imaging modalities like multi-slice computed tomography (MSCT) and cardiac MRI (CMR) can provide higher resolution and wider field of view than echocardiography. Moreover, high-field (3-Tesla) CMR can even enhance spatial and temporal resolution.
The characteristics of the interatrial septum were retrospectively studied in 371 consecutive subjects (201 men, 31–73 years old) in whom MSCT was performed primarily for non-invasive evaluation of the coronary arteries. All subjects underwent both MSCT and MRI scans within 0–30 day’s interval. A 3D volume covering the whole heart was acquired across the heart with and without contrast enhancement. Also, patients underwent cardiac MSCT examinations using 64-row MSCT scanners.
Results
The mean scan time of MSCT was 10.4 ± 2.8 s and 9.7 ± 2.9 min for CMR. The mean length of IAS by CMR and CT was 39.65 ± 4.6 mm and 39.28 ± 4.7 mm, respectively. The mean maximal thickness of IAS by CMR and CT was 3.1 ± 0.97 mm and 3.15 ± 0.95 mm, respectively. The mean thickness of fossa ovalis by CMR and CT was 1.04 ± 0.36 mm and 1.04 ± 0.44 mm, respectively. The mean length of fossa ovalis by CMR and CT was 12.8 ± 3.7 mm and 12.8 ± 3.5 mm, respectively. Finally, the mean angle of IAS by CMR and CT was identical (155 ± 9.2°). Measurements of various morphological features of IAS showed no statistically significant difference between CMR and CT, with an excellent correlation and close relationship regarding IAS length, maximal IAS thickness, fossa ovalis thickness, fossa ovalis length, and IAS angle (r = 0.98, 0.98, 0.95, 0.96, and 0.92, respectively).
Conclusion
Whole-heart 3D acquisition at 3-T MRI using a free-breathing technique provides a valuable non-invasive imaging tool for excellent assessment of the interatrial septum—as compared to MSCT—that may have significant clinical implication for diagnostic purposes and therapeutic interventional procedures, as it may facilitate planning, improve outcome, and shorten its duration.
Collapse
|
26
|
Bollmann S, Barth M. New acquisition techniques and their prospects for the achievable resolution of fMRI. Prog Neurobiol 2020; 207:101936. [PMID: 33130229 DOI: 10.1016/j.pneurobio.2020.101936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/10/2020] [Accepted: 10/18/2020] [Indexed: 01/17/2023]
Abstract
This work reviews recent advances in technologies for functional magnetic resonance imaging (fMRI) of the human brain and highlights the push for higher functional specificity based on increased spatial resolution and specific MR contrasts to reveal previously undetectable functional properties of small-scale cortical structures. We discuss how the combination of MR hardware, advanced acquisition techniques and various MR contrast mechanisms have enabled recent progress in functional neuroimaging. However, these advanced fMRI practices have only been applied to a handful of neuroscience questions to date, with the majority of the neuroscience community still using conventional imaging techniques. We thus discuss upcoming challenges and possibilities for fMRI technology development in human neuroscience. We hope that readers interested in functional brain imaging acquire an understanding of current and novel developments and potential future applications, even if they don't have a background in MR physics or engineering. We summarize the capabilities of standard fMRI acquisition schemes with pointers to relevant literature and comprehensive reviews and introduce more recent developments.
Collapse
Affiliation(s)
- Saskia Bollmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
27
|
MR Imaging Safety in the Interventional Environment. Magn Reson Imaging Clin N Am 2020; 28:583-591. [PMID: 33040998 DOI: 10.1016/j.mric.2020.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Interventional MR imaging procedures are rapidly growing in number owing to the excellent soft tissue resolution of MR imaging, lack of ionizing radiation, hardware and software advancements, and technical developments in MR imaging-compatible robots, lasers, and ultrasound equipment. The safe operation of an interventional MR imaging system is a complex undertaking, which is only possible with multidisciplinary planning, training, operations and oversight. Safety for both patients and operators is essential for successful operations. Herein, we review the safety concerns, solutions and challenges associated with the operation of a modern interventional MR imaging system.
Collapse
|
28
|
Magnetic Resonance Imaging for Evaluation of Interstitial Fibrosis in Kidney Allografts. Transplant Direct 2020; 6:e577. [PMID: 33134501 PMCID: PMC7581173 DOI: 10.1097/txd.0000000000001009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Supplemental Digital Content is available in the text. Interstitial fibrosis (IF) is the common pathway of chronic kidney injury in various conditions. Magnetic resonance imaging (MRI) may be a promising tool for the noninvasive assessment of IF in renal allografts.
Collapse
|
29
|
Gangadaran P, Rajendran RL, Ahn BC. Application of In Vivo Imaging Techniques for Monitoring Natural Killer Cell Migration and Tumor Infiltration. Cancers (Basel) 2020; 12:cancers12051318. [PMID: 32455886 PMCID: PMC7281416 DOI: 10.3390/cancers12051318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022] Open
Abstract
In recent years, the use of natural killer (NK) cell-based immunotherapy has shown promise against various cancer types. To some extent therapeutic potential of NK cell-based immunotherapy depends on migration of NK cells towards tumors in animal models or human subjects and subsequent infiltration. Constant improvement in the pharmacological and therapeutic properties of NK cells is driving the performance and use of NK cell-based immunotherapies. In this review, we summarize the molecular imaging techniques used in monitoring the migration and infiltration of NK cells in vivo at preclinical and clinical levels. A review of pros and cons of each molecular imaging modality is done. Finally, we provide our perception of the usefulness of molecular imaging approaches for in vivo monitoring of NK cells in preclinical and clinical scenarios.
Collapse
Affiliation(s)
- Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (P.G.); (R.L.R.)
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (P.G.); (R.L.R.)
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (P.G.); (R.L.R.)
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University Hospital, Daegu 41944, Korea
- Correspondence:
| |
Collapse
|
30
|
Pozaruk A, Pawar K, Li S, Carey A, Cheng J, Sudarshan VP, Cholewa M, Grummet J, Chen Z, Egan G. Augmented deep learning model for improved quantitative accuracy of MR-based PET attenuation correction in PSMA PET-MRI prostate imaging. Eur J Nucl Med Mol Imaging 2020; 48:9-20. [DOI: 10.1007/s00259-020-04816-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
|
31
|
Comparison of 18F-FDG PET/MRI, MRI, and 18F-FDG PET/CT for the detection of synchronous cancers and distant metastases in patients with oropharyngeal and hypopharyngeal squamous cell carcinoma. Eur J Nucl Med Mol Imaging 2019; 47:94-104. [PMID: 31606831 DOI: 10.1007/s00259-019-04510-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE In this prospective study, we sought to compare the clinical utility of fluorodeoxyglucose PET/MRI, MRI, and PET/CT in the detection of synchronous cancers and distant metastases in patients with oropharyngeal and hypopharyngeal squamous cell carcinoma (OHSCC). METHODS We examined 198 consecutive patients with biopsy-proven OHSCC who agreed to receive chemoradiation. All patients underwent pretreatment PET/MRI and PET/CT on the same day. Patients were followed-up for a minimum of 12 months or until death. The McNemar's test and receiver-operating characteristic (ROC) curves were used to compare sensitivity/specificity and the diagnostic capabilities of PET/MRI, MRI, and PET/CT, respectively. RESULTS We identified 55 patients (27.7%) who had synchronous cancers and/or distant metastases (number of involved sites: 83). The results of site-based analysis revealed that the sensitivity of PET/MRI was 15.7% higher than that of MRI (73.5% versus 57.8%, p < 0.001) and 3.6% higher compared with PET/CT (73.5% versus 69.9%, p = 0.083), whereas the sensitivity of PET/CT was 12.1% higher than that of MRI (69.9% versus 57.8%, p = 0.012). On a patient-basis, ROC curve analysis demonstrated that PET/MRI yielded a greater area under curve than MRI (0.930 versus 0.905, p = 0.023). There were no significant differences in terms of diagnostic capability between MRI and PET/CT (0.905 versus 0.917, p = 0.469) and between PET/MRI and PET/CT (0.930 versus 0.917, p = 0.062). CONCLUSIONS In our cohort, PET/MRI showed a significantly higher diagnostic capability than MRI and no significant difference compared with PET/CT for the detection of synchronous cancers or distant metastases in patients with OHSCC.
Collapse
|
32
|
Greenberg TD, Hoff MN, Gilk TB, Jackson EF, Kanal E, McKinney AM, Och JG, Pedrosa I, Rampulla TL, Reeder SB, Rogg JM, Shellock FG, Watson RE, Weinreb JC, Hernandez D. ACR guidance document on MR safe practices: Updates and critical information 2019. J Magn Reson Imaging 2019; 51:331-338. [PMID: 31355502 DOI: 10.1002/jmri.26880] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
The need for a guidance document on MR safe practices arose from a growing awareness of the MR environment's potential risks and adverse event reports involving patients, equipment, and personnel. Initially published in 2002, the American College of Radiology White Paper on MR Safety established de facto industry standards for safe and responsible practices in clinical and research MR environments. The most recent version addresses new sources of risk of adverse events, increases awareness of dynamic MR environments, and recommends that those responsible for MR medical director safety undergo annual MR safety training. With regular updates to these guidelines, the latest MR safety concerns can be accounted for to ensure a safer MR environment where dangers are minimized. Level of Evidence: 1 Technical Efficacy Stage: 5 J. Magn. Reson. Imaging 2020;51:331-338.
Collapse
Affiliation(s)
| | | | - Michael N Hoff
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | | | - Edward F Jackson
- Departments of Medical Physics, Radiology, and Human Oncology, University of Wisconsin School of Medicine and Public Heath, Madison, Wisconsin, USA
| | - Emanuel Kanal
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Alexander M McKinney
- Department of Radiology, University of Minnesota Medical Center, Minneapolis, Minnesota, USA
| | - Joseph G Och
- Department of Medical & Health Physics, Geisinger, Danville, Pennsylvania, USA
| | - Ivan Pedrosa
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Scott B Reeder
- Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeffrey M Rogg
- Department of Diagnostic Imaging, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Frank G Shellock
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Robert E Watson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey C Weinreb
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
33
|
Hoff MN, McKinney A, Shellock FG, Rassner U, Gilk T, Watson RE, Greenberg TD, Froelich J, Kanal E. Safety Considerations of 7-T MRI in Clinical Practice. Radiology 2019; 292:509-518. [PMID: 31310177 DOI: 10.1148/radiol.2019182742] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although 7-T MRI has recently received approval for use in clinical patient care, there are distinct safety issues associated with this relatively high magnetic field. Forces on metallic implants and radiofrequency power deposition and heating are safety considerations at 7 T. Patient bioeffects such as vertigo, dizziness, false feelings of motion, nausea, nystagmus, magnetophosphenes, and electrogustatory effects are more common and potentially more pronounced at 7 T than at lower field strengths. Herein the authors review safety issues associated with 7-T MRI. The rationale for safety concerns at this field strength are discussed as well as potential approaches to mitigate risk to patients and health care professionals.
Collapse
Affiliation(s)
- Michael N Hoff
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Alexander McKinney
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Frank G Shellock
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Ulrich Rassner
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Tobias Gilk
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Robert E Watson
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Todd D Greenberg
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Jerry Froelich
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Emanuel Kanal
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| |
Collapse
|
34
|
State of the Art of Natural Killer Cell Imaging: A Systematic Review. Cancers (Basel) 2019; 11:cancers11070967. [PMID: 31324064 PMCID: PMC6678345 DOI: 10.3390/cancers11070967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/20/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cell therapy is a promising alternative to conventional T cell-based treatments, although there is a lack of diagnostic tools to predict and evaluate therapeutic outcomes. Molecular imaging can offer several approaches to non-invasively address this issue. In this study, we systematically reviewed the literature to evaluate the state of the art of NK cell imaging and its translational potential. PubMed and Scopus databases were searched for published articles on the imaging of NK cells in humans and preclinical models. Study quality was evaluated following Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) criteria. We pooled studies as follows: Optical, magnetic resonance imaging (MRI) and nuclear medicine imaging with a total of 21 studies (n = 5, n = 8 and n = 8, respectively). Considering the limitation of comparing different imaging modalities, it appears that optical imaging (OI) of NK cells is very useful in a preclinical setting, but has the least translational potential. MRI provides high quality images without ionizing radiations with lower sensitivity. Nuclear medicine is the only imaging technique that has been applied in humans (four papers), but results were not outstanding due to a limited number of enrolled patients. At present, no technique emerged as superior over the others and more standardization is required in conducting human and animal studies.
Collapse
|
35
|
Kausar ASMZ, Reutens DC, Weber E, Vegh V. Monopole antenna array design for 3 T and 7 T magnetic resonance imaging. PLoS One 2019; 14:e0214637. [PMID: 30933999 PMCID: PMC6443181 DOI: 10.1371/journal.pone.0214637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/18/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Ultra-high field magnetic resonance imaging poses a number of challenges for robust radio frequency coil designs. A monopole antenna array can potentially overcome key limitations of birdcage coil designs and may provide a useful radio frequency coil for brain imaging. METHODS Four, 8 and 12 element monopole antenna arrays were simulated using 3 T and 7T magnetic resonance imaging frequencies. For comparison, 4, 8 and 12 element birdcage coils were also simulated. Coil performance was evaluated and compared and the impact of shielding was assessed. A 4 element monopole antenna array was fabricated and bench tested. RESULTS Comparison of the 4, 8 and 12 element designs suggest that the monopole antenna array leads to better field properties than the birdcage coil in all configurations studied: unloaded, loaded with saline and loaded using a head phantom. Improvements in field properties and homogeneity were evident at both field strengths, implying that the monopole antenna array has potential for head imaging. The monopole antenna array also appears to be more efficient than the comparable birdcage coil design. Additionally, the former is scalable via the addition of more elements whereas our results suggest that this is not the case for the latter. Bench testing results show that the monopole antenna array is well matched with the transmission line, and mutual coupling between elements is sufficiently low. CONCLUSION We found the monopole antenna array generated a larger field intensity than the birdcage coil design, whilst also producing a more useful magnetic resonance imaging field as measured by radio frequency field homogeneity. Our study suggests that magnetic resonance imaging of the brain can likely benefit from the use of radio frequency monopole antenna arrays.
Collapse
Affiliation(s)
- A. S. M. Zahid Kausar
- Centre for Advanced Imaging, University of Queensland, St Lucia, Brisbane, Australia
| | - David C. Reutens
- Centre for Advanced Imaging, University of Queensland, St Lucia, Brisbane, Australia
| | - Ewald Weber
- School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Brisbane, Australia
| | - Viktor Vegh
- Centre for Advanced Imaging, University of Queensland, St Lucia, Brisbane, Australia
- * E-mail:
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW The purpose of this review article is to highlight the current role of diagnostic imaging in the assessment of inflammatory myopathies. RECENT FINDINGS Recent research demonstrates that imaging plays an important role in evaluating patients with symptoms of an inflammatory myopathy. In general, MRI is the pivotal imaging modality for assessing inflammatory myopathies, revealing precise anatomic details because of changes in the signal intensity of the muscles. Whole-body MR imaging has become increasingly important over the last several years. US is also a valuable imaging modality for scanning muscles. Together with the clinical history, familiarity with the imaging features of inflammatory myopathies is essential for formulating an accurate diagnosis.
Collapse
|
37
|
Whole-Body MR Imaging: The Novel, "Intrinsically Hybrid," Approach to Metastases, Myeloma, Lymphoma, in Bones and Beyond. PET Clin 2018; 13:505-522. [PMID: 30219185 DOI: 10.1016/j.cpet.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Whole-body MR imaging (WB-MR imaging) has become a modality of choice for detecting bone metastases in multiple cancers, and bone marrow involvement by multiple myeloma or lymphoma. Combination of anatomic and functional sequences imparts an inherently hybrid dimension to this nonirradiating tool and extends the screening of malignancies outside the skeleton. WB-MR imaging outperforms bone scintigraphy and CT and offers an alternative to PET in many tumors by time of lesion detection and assessment of treatment response. Much work has been done to standardize procedures, optimize sequences, validate indications, confirm preliminary research into new applications, rendering clinical application more user-friendly.
Collapse
|
38
|
Paixão D, Guimarães MD, de Andrade KC, Nóbrega AF, Chojniak R, Achatz MI. Whole-body magnetic resonance imaging of Li-Fraumeni syndrome patients: observations from a two rounds screening of Brazilian patients. Cancer Imaging 2018; 18:27. [PMID: 30107858 PMCID: PMC6092833 DOI: 10.1186/s40644-018-0162-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Li-Fraumeni syndrome (LFS) is an autosomal dominant disease that is associated with germline TP53 mutations and it predisposes affected individuals to a high risk of developing multiple tumors. In Brazil, LFS is characterized by a different pattern of TP53 variants, with the founder TP53 p.R337H mutation being predominant. The adoption of screening strategies to diagnose LFS in its early stages is a major challenge due to the diverse spectrum of tumors that LFS patients can develop. The purpose of this study was to evaluate two rounds of whole-body magnetic resonance imaging (WB-MRI) which were conducted as a screening strategy for LFS patients. METHODS Over a 4-year period, 59 LFS patients underwent two rounds of WB-MRI. Each MRI was characterized as positive or negative, and positive cases were further investigated to establish a diagnosis. The parameters used to evaluate the WB-MRI results included: positive rate, number of invasive investigations of positive results, and cancer detection rate. RESULTS A total of 118 WB-MRI scans were performed. Positive results were associated with 11 patients (9.3%). Seven of these patients (11.8%) were identified in the first round of screening and 4 patients (6.7%) were identified in the second round of screening. Biopsies were performed in three cases (2.5%), two (3.4%) after the first round of screening and one (1.7%) after the second round of screening. The histopathological results confirmed a diagnosis of cancer for all three cases. There was no indication of unnecessary invasive procedures. CONCLUSIONS WB-MRI screening of LFS carriers diagnosed cancers in their early stages. When needed, positive results were further examined with non-invasive imaging techniques. False positive results were less frequent after the first round of WB-MRI screening.
Collapse
Affiliation(s)
- Daniele Paixão
- Department of Oncogenetics, A.C. Camargo Cancer Center, Professor Antonio Prudente Street, 211 - Liberdade, São Paulo, SP, 01509-900, Brazil.
| | | | - Kelvin César de Andrade
- Clinical Genetics Branch, Division of Epidemiology and Cancer Genetics, National Cancer Institutes, National Institutes of Health, Bethesda, MD, USA.,International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Amanda França Nóbrega
- Department of Oncogenetics, A.C. Camargo Cancer Center, Professor Antonio Prudente Street, 211 - Liberdade, São Paulo, SP, 01509-900, Brazil
| | - Rubens Chojniak
- Department of Imaging, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | | |
Collapse
|
39
|
Farshad-Amacker NA, Nanz D, Thanbanbalasingam A, Andreisek G, Nittka M, Luechinger R. 3-T MRI implant safety: heat induction with new dual-channel radiofrequency transmission technology. Eur Radiol Exp 2018; 2:7. [PMID: 29708190 PMCID: PMC5909367 DOI: 10.1186/s41747-018-0040-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/12/2018] [Indexed: 03/07/2023] Open
Abstract
We aimed to investigate whether different transmission settings of the dual-transmit technology may influence the amount of heat induction around an implant material dependent on its location within the magnetic field. Metallic hip implants were positioned in the magnet of a 3-T scanner at various lateral offset positions in relation to the magnetic axis in a body-phantom tank filled with polyacrylic acid gel. The temperature increase close to the implants was measured during turbo spin-echo scanning using dual-channel parallel radiofrequency (RF) transmission with circular in comparison to elliptic RF polarization. Circularly polarized transmission (CPT) induced higher temperature increases (maximum 6.2 °C) than elliptically polarized transmission (EPT) (maximum 1.5 °C). The heat induction was dependent on the distance to the isocenter with increased heating by increased distance to the isocenter. EPT showed lower heating around implants compared to the CPT as commonly used in single-transmission system; further, less heating was observed for both transmission settings closer to the magnet isocenter.
Collapse
Affiliation(s)
- Nadja A. Farshad-Amacker
- Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Daniel Nanz
- Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Arjun Thanbanbalasingam
- Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Gustav Andreisek
- Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | | | - Roger Luechinger
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
O'Neill AF, Voss SD, Jagannathan JP, Kamihara J, Nibecker C, Itriago-Araujo E, Masciari S, Parker E, Barreto M, London WB, Garber JE, Diller L. Screening with whole-body magnetic resonance imaging in pediatric subjects with Li-Fraumeni syndrome: A single institution pilot study. Pediatr Blood Cancer 2018; 65. [PMID: 29077256 DOI: 10.1002/pbc.26822] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/02/2017] [Accepted: 08/22/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Li-Fraumeni syndrome (LFS) is an autosomal dominant hereditary cancer syndrome associated with germline mutations in the TP53 gene and a high risk of childhood-onset malignancies. Cancer surveillance is challenging in pediatric mutation carriers given the anatomic spectrum of malignancies and young age of onset. Whole-body magnetic resonance imaging (WB-MRI) may provide an acceptable method for early cancer detection. PROCEDURE We conducted a prospective feasibility pilot study of pediatric subjects (age < 18 years) with LFS to determine return rates for annual WB-MRI scan. Secondary objectives included characterization of incident cancers (and how they were detected). RESULTS Forty-five WB-MRI scans in 20 subjects were performed over 5 years; two patients enrolled without subsequently undergoing scans. Eighty-nine percent of participants scanned (95% confidence interval: 67-99%) returned for second examinations. Fifty-five percent of participants required general anesthesia, which was well tolerated in all cases. Six patients required dedicated follow-up imaging. One participant required biopsy of a detected brain lesion; pathology demonstrated reactive gliosis. Another participant, with prior choroid plexus carcinoma, had a new brain lesion detected on clinical follow-up MRI not seen on WB-MRI 6 months prior. All other participants remain well (median: 3 years, range: 0.08-4 years). CONCLUSIONS WB-MRI in pediatric subjects is a well-tolerated approach to cancer surveillance despite the need for general anesthesia in some patients. A large multicenter trial would determine true test characteristics and efficacy of this approach for early cancer detection in children at high cancer risk.
Collapse
Affiliation(s)
- Allison F O'Neill
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Stephan D Voss
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
| | | | - Junne Kamihara
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Callie Nibecker
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elena Itriago-Araujo
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Erin Parker
- Northeastern University, School of Nursing, Boston, Massachusetts
| | - Mauricio Barreto
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wendy B London
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lisa Diller
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
41
|
|
42
|
An open 8-channel parallel transmission coil for static and dynamic 7T MRI of the knee and ankle joints at multiple postures. Magn Reson Med 2017. [DOI: 10.1002/mrm.26804] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Ishizaka K, Kudo K, Harada K, Shirai T, Fujiwara T, Aoike S, Takamori S, Shirato H. Simple modification of arm position improves B1
+
and signal homogeneity in the thoracolumbar spine at 3T. J Magn Reson Imaging 2017; 47:123-130. [DOI: 10.1002/jmri.25767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/08/2017] [Indexed: 11/05/2022] Open
Affiliation(s)
- Kinya Ishizaka
- Department of Radiological Technology; Hokkaido University Hospital; Sapporo Japan
| | - Kohsuke Kudo
- Division of Diagnostic and Interventional Radiology; Hokkaido University Hospital; Sapporo Japan
| | | | - Toru Shirai
- Hitachi, Ltd., Research and Development Group; Tokyo Japan
| | - Taro Fujiwara
- Department of Radiological Technology; Hokkaido University Hospital; Sapporo Japan
| | - Suzuko Aoike
- Department of Radiological Technology; Hokkaido University Hospital; Sapporo Japan
| | - Sayaka Takamori
- Department of Radiological Technology; Hokkaido University Hospital; Sapporo Japan
| | - Hiroki Shirato
- Department of Radiation Medicine; Hokkaido University Graduate School of Medicine; Sapporo Japan
- Global Station for Quantum Medical Science and Engineering; Global Institution for Collaborative Research and Education, Hokkaido University; Sapporo Japan
| |
Collapse
|
44
|
Zanovello U, Matekovits L, Zilberti L. An ideal dielectric coat to avoid prosthesis RF-artefacts in Magnetic Resonance Imaging. Sci Rep 2017; 7:326. [PMID: 28336947 PMCID: PMC5428001 DOI: 10.1038/s41598-017-00215-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/14/2017] [Indexed: 11/29/2022] Open
Abstract
The number of people submitted to total hip or knee arthroplasty increased in the last years and it is likely to grow further. Hence, the importance of a proper investigation tool that allows to determine and recognize the potential presence of perioperative and/or postoperative diseases becomes clear. Although the Magnetic Resonance Imaging (MRI) technique demonstrated several advantages over the other common tomography tools, it suffers from the arise of image artefacts if it is performed in presence of metallic prostheses. In particular, the so-called RF-artefacts are caused by the inhomogeneity in the radiofrequency magnetic field of MRI, due to the electric currents induced on the metal surface by the field itself. In this work, a near-zero permittivity dielectric coat is simulated to reduce those currents and, therefore, the RF-artefacts onset in the final image. Numerical results confirm that the dielectric coat strongly reduces the magnetic field inhomogeneity, suggesting a possible solution to a well-known problem in the MRI field.
Collapse
Affiliation(s)
- U Zanovello
- Politecnico di Torino, I-10129, Torino, Italy. .,Istituto Nazionale di Ricerca Metrologica, I-10135, Torino, Italy.
| | - L Matekovits
- Politecnico di Torino, I-10129, Torino, Italy.,Macquarie University, NSW, 2109, Sydney, Australia
| | - L Zilberti
- Istituto Nazionale di Ricerca Metrologica, I-10135, Torino, Italy
| |
Collapse
|
45
|
Paulides MM, Mestrom RMC, Salim G, Adela BB, Numan WCM, Drizdal T, Yeo DTB, Smolders AB. A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators. Phys Med Biol 2017; 62:1831-1847. [PMID: 28052042 DOI: 10.1088/1361-6560/aa56b3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological studies and clinical trials show that addition of hyperthermia stimulates conventional cancer treatment modalities and significantly improves treatment outcome. This supra-additive stimulation can be optimized by adaptive hyperthermia to counteract strong and dynamic thermoregulation. The only clinically proven method for the 3D non-invasive temperature monitoring required is by magnetic resonance (MR) temperature imaging, but the currently available set of MR compatible hyperthermia applicators lack the degree of heat control required. In this work, we present the design and validation of a high-frequency (433 MHz ISM band) printed circuit board antenna with a very low MR-footprint. This design is ideally suited for use in a range of hyperthermia applicator configurations. Experiments emulating the clinical situation show excellent matching properties of the antenna over a 7.2% bandwidth (S 11 < -15 dB). Its strongly directional radiation properties minimize inter-element coupling for typical array configurations (S 21 < -23 dB). MR imaging distortion by the antenna was found negligible and MR temperature imaging in a homogeneous muscle phantom was highly correlated with gold-standard probe measurements (root mean square error: RMSE = 0.51 °C and R 2 = 0.99). This work paves the way for tailored MR imaging guided hyperthermia devices ranging from single antenna or incoherent antenna-arrays, to real-time adaptive hyperthermia with phased-arrays.
Collapse
Affiliation(s)
- M M Paulides
- Department of Radiation Oncology, Erasmus University Medical Center, Cancer Institute, Rotterdam, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Maximilian F Reiser
- Institut für Klinische Radiologie, Klinikum der Universität München, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
47
|
Schmidt M, Krug JW, Rose G. Real-time QRS detection using integrated variance for ECG gated cardiac MRI. CURRENT DIRECTIONS IN BIOMEDICAL ENGINEERING 2016. [DOI: 10.1515/cdbme-2016-0057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
During magnetic resonance imaging (MRI), a patient’s vital signs are required for different purposes. In cardiac MRI (CMR), an electrocardiogram (ECG) of the patient is required for triggering the image acquisition process. However, a reliable QRS detection of an ECG signal acquired inside an MRI scanner is a challenging task due to the magnetohydrodynamic (MHD) effect which interferes with the ECG. The aim of this work was to develop a reliable QRS detector usable inside the MRI which also fulfills the standards for medical devices (IEC 60601-2-27). Therefore, a novel real-time QRS detector based on integrated variance measurements is presented. The algorithm was trained on ANSI/AAMI EC13 test waveforms and was then applied to two databases with 12-lead ECG signals recorded inside and outside an MRI scanner. Reliable results for both databases were achieved for the ECG signals recorded inside (DBMRI: sensitivity Se = 99.94%, positive predictive value +P = 99.84%) and outside (DBInCarT: Se = 99.29%, +P = 99.72%) the MRI. Due to the accurate R-peak detection in real-time this can be used for monitoring and triggering in MRI exams.
Collapse
Affiliation(s)
- Marcus Schmidt
- Department of Medical Engineering, Otto-von-Guericke-University of Magdeburg, Germany
| | - Johannes W. Krug
- Department of Medical Engineering, Otto-von-Guericke-University of Magdeburg, Germany
| | - Georg Rose
- Department of Medical Engineering, Otto-von-Guericke-University of Magdeburg, Germany
| |
Collapse
|
48
|
Chung AW, Seunarine KK, Clark CA. NODDI reproducibility and variability with magnetic field strength: A comparison between 1.5 T and 3 T. Hum Brain Mapp 2016; 37:4550-4565. [PMID: 27477113 DOI: 10.1002/hbm.23328] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 11/08/2022] Open
Abstract
Diffusion models are advantageous for examining brain microstructure non-invasively and their validation is important for transference into the clinical domain. Neurite Orientation Dispersion and Density Imaging (NODDI) is a promising model for estimating multiple diffusion compartments from MRI data acquired in a clinically feasible time. As a relatively new model, it is necessary to examine NODDI under certain experimental conditions, such as change in magnetic field-strength, and assess it in relation to diffusion tensor imaging (DTI), an established model that is largely understood by the neuroimaging community. NODDI measures (intracellular volume fraction, νic , and orientation distribution, OD) were compared with DTI at 1.5 and 3 T data in healthy adults in whole-brain tissue masks and regions of white- and deep grey-matter. Within-session reproducibility and between-subject differences of NODDI with field-strength were also investigated. Field-strength had a significant effect on NODDI measures, suggesting careful interpretation of results from data acquired at 1.5 and 3 T. It was demonstrated that NODDI is feasible at 1.5 T, but with lower νic in white-matter regions compared with 3 T. Furthermore, the advantages of NODDI over DTI in a region of complex microstructure were shown. Specifically, in the centrum-semiovale where FA is typically as low as in grey-matter, νic was comparable to other white-matter regions yet accompanied by an OD similar to deep grey-matter. In terms of reproducibility, NODDI measures varied more than DTI. It may be that NODDI is more susceptible to noisier parameter estimates when compared with DTI, conversely it may have greater sensitivity to true within- and between-subject heterogeneity. Hum Brain Mapp 37:4550-4565, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ai Wern Chung
- Developmental Imaging & Biophysics, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Kiran K Seunarine
- Developmental Imaging & Biophysics, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Chris A Clark
- Developmental Imaging & Biophysics, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| |
Collapse
|
49
|
Diagnostic Accuracy of MRI for Assessment of T Category and Circumferential Resection Margin Involvement in Patients With Rectal Cancer: A Meta-Analysis. Dis Colon Rectum 2016; 59:789-99. [PMID: 27384098 DOI: 10.1097/dcr.0000000000000611] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The prognosis of rectal cancer is directly related to the stage of the tumor at diagnosis. Accurate preoperative staging is essential for selecting patients to receive optimal treatment. OBJECTIVE The purpose of this study was to evaluate the diagnostic performance of MRI in tumor staging and circumferential resection margin involvement in rectal cancer. DATA SOURCES A systematic literature search was performed in MEDLINE, EMBASE, PubMed, Cochrane Database of Systematic Reviews, and Web of Science database. STUDY SELECTION Original articles from 2000 to 2016 on the diagnostic performance of MRI in the staging of rectal cancer and/or assessment of mesorectal fascia status were eligible. MAIN OUTCOME MEASURES Pooled diagnostic statistics including sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio were calculated for invasion of muscularis propria, perirectal tissue, and adjacent organs and for circumferential resection margin involvement through bivariate random-effects modeling. Summary receiver operating characteristic curves were fitted, and areas under summary receiver operating characteristic curves were counted to evaluate the diagnostic performance of MRI for each outcome. RESULTS Thirty-five studies were eligible for this meta-analysis. Preoperative MRI revealed the highest sensitivity of 0.97 (95% CI, 0.96-0.98) and specificity of 0.97 (95% CI, 0.96-0.98) for muscularis propria invasion and adjacent organ invasion. Areas under summary receiver operating characteristic curves indicated good diagnostic accuracy for each outcome, with the highest of 0.9515 for the assessment of adjacent organ invasion. Significant heterogeneity existed among studies. There was no notable publication bias for each outcome. LIMITATIONS This meta-analysis revealed relatively high diagnostic accuracy for preoperative MRI, although significant heterogeneity existed. Therefore, exploration should be focused on standardized interpretation criteria and optimal MRI protocols for future studies. CONCLUSIONS MRI showed relatively high diagnostic accuracy for preoperative T staging and circumferential resection margin assessment and should be reliable for clinical decision making.
Collapse
|
50
|
Fouré A, Duhamel G, Vilmen C, Bendahan D, Jubeau M, Gondin J. Fast measurement of the quadriceps femoris muscle transverse relaxation time at high magnetic field using segmented echo-planar imaging. J Magn Reson Imaging 2016; 45:356-368. [DOI: 10.1002/jmri.25355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/09/2016] [Indexed: 11/06/2022] Open
Affiliation(s)
- Alexandre Fouré
- Aix-Marseille Université, CNRS, CRMBM UMR; 7339 Marseille France
| | | | | | - David Bendahan
- Aix-Marseille Université, CNRS, CRMBM UMR; 7339 Marseille France
| | - Marc Jubeau
- Aix-Marseille Université, CNRS, CRMBM UMR; 7339 Marseille France
- Université de Nantes, Laboratoire “Motricité, Interactions, Performance,”; Nantes France
| | - Julien Gondin
- Aix-Marseille Université, CNRS, CRMBM UMR; 7339 Marseille France
| |
Collapse
|