1
|
Bader KB, Padilla F, Haworth KJ, Ellens N, Dalecki D, Miller DL, Wear KA. Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:381-433. [PMID: 39526313 PMCID: PMC11796337 DOI: 10.1002/jum.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves as an update to the parent article, highlighting advances in therapeutic ultrasound over the past 12 years. In addition to general mechanisms for bioeffects produced by therapeutic ultrasound, current applications, and the pre-clinical and clinical stages are outlined. An overview is provided for image guidance methods to monitor and assess treatment progress. Finally, other topics relevant for the translation of therapeutic ultrasound are discussed, including computational modeling, tissue-mimicking phantoms, and quality assurance protocols.
Collapse
Affiliation(s)
| | - Frederic Padilla
- Gene Therapy ProgramFocused Ultrasound FoundationCharlottesvilleVirginiaUSA
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Kevin J. Haworth
- Department of PediatricsUniversity of CincinnatiCincinnatiOhioUnited States
- Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Diane Dalecki
- Department of Biomedical EngineeringUniversity of RochesterRochesterNew YorkUSA
| | - Douglas L. Miller
- Department of RadiologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Keith A. Wear
- Center for Devices and Radiological HealthU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
2
|
Labib S, Bright RK, Liu J. Focused Ultrasound in Cancer Immunotherapy: A Review of Mechanisms and Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:1-14. [PMID: 39389856 DOI: 10.1016/j.ultrasmedbio.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/25/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Ultrasound is well-perceived for its diagnostic application. Meanwhile, ultrasound, especially focused ultrasound (FUS), has also demonstrated therapeutic capabilities, such as thermal tissue ablation, hyperthermia, and mechanical tissue ablation, making it a viable therapeutic approach for cancer treatment. Cancer immunotherapy is an emerging cancer treatment approach that boosts the immune system to fight cancer, and it has also exhibited enhanced effectiveness in treating previously considered untreatable conditions. Currently, cancer immunotherapy is regarded as one of the four pillars of cancer treatment because it has fewer adverse effects than radiation and chemotherapy. In recent years, the unique capabilities of FUS in ablating tumors, regulating the immune system, and enhancing anti-tumor responses have resulted in a new field of research known as FUS-induced/assisted cancer immunotherapy. In this work, we provide a comprehensive overview of this new research field by introducing the basics of focused ultrasound and cancer immunotherapy and providing the state-of-the-art applications of FUS in cancer immunotherapy: the mechanisms and preclinical and clinical studies. This review aims to offer the scientific community a reliable reference to the exciting field of FUS-induced/assisted cancer immunotherapy, hoping to foster the further development of related technology and expand its medical applications.
Collapse
Affiliation(s)
- Sadman Labib
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Robert K Bright
- Department of Immunology and Molecular Microbiology, School of Medicine & Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | - Jingfei Liu
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
3
|
Jameel B, Harkavyi Y, Bielas R, Józefczak A. Optimization of ultrasound heating with Pickering droplets using core-shell scattering theory. ULTRASONICS SONOCHEMISTRY 2024; 109:106965. [PMID: 39084075 PMCID: PMC11339063 DOI: 10.1016/j.ultsonch.2024.106965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024]
Abstract
Nanoparticles find widespread application in various medical contexts, including targeted nanomedicine and enhancing therapeutic efficacy. Moreover, they are employed to stabilize emulsions, giving rise to stabilized droplets known as Pickering droplets. Among the various methods to improve anti-cancer treatment, ultrasound hyperthermia stands out as an efficient approach. This research proposes Pickering droplets as promising sonosensitizer candidates, to enhance the attenuation of ultrasound with simultaneous potential to act as drug carriers. The enhanced ultrasound energy dissipation could be, therefore, optimized by changing the parameters of Pickering droplets. The ultrasound scattering theory, based on the core-shell model, was employed to calculate theoretical ultrasound properties such as attenuation and velocity. Additionally, computer simulations, based on a bioheat transfer model, were utilized to compute heat generation in agar-based phantoms of tissues under different ultrasound wave frequencies. Two types of phantoms were simulated: a pure agar phantom and an agar phantom incorporating spherical inclusions. The spherical inclusions, with a diameter of 10 mm, were doped with various sizes of Pickering droplets, considering their core radius and shell thickness. Computer simulation of these spherical inclusions incorporated within agar phantom resulted in different enhancement of achieved temperature elevation, which depending on the core radius, shell thickness, and the material properties of the system. Notably, spherical inclusions doped with Pickering droplets stabilized by magnetite nanoparticles exhibited a higher temperature rise compared to droplets stabilized by silica nanoparticles. Moreover, nanodroplets with a core radius below 400 nm demonstrated better heating performance compared to microdroplets. Furthermore, Pickering droplets incorporated into agar phantom could allow obtaining a similar effect of local heating as sophisticated focused ultrasound devices.
Collapse
Affiliation(s)
- Bassam Jameel
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Yaroslav Harkavyi
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Rafał Bielas
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| | - Arkadiusz Józefczak
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| |
Collapse
|
4
|
Marinova M, Khouri DA, Küppers J, Ramig O, Strunk HM, Breuers J, Fazaal J, Fuhrmann C, Coenen M, Möhring C, Zhou T, Zhou X, Anhalt T, Sadeghlar F, Thudium M, Conrad R, Feldmann G, Brossart P, Glowka TR, Kalff JC, Essler M, Strassburg CP, Ko YD, Schmidt-Wolf IGH, Gonzalez-Carmona M. Study Protocol of a Randomized, Two-Arm, Phase I/II Trial Investigating the Feasibility, Safety, and Efficacy of Local Treatment with US-Guided High-Intensity Focused Ultrasound in Combination with Palliative Chemotherapy in Inoperable Pancreatic Cancer. J Clin Med 2024; 13:3717. [PMID: 38999283 PMCID: PMC11242276 DOI: 10.3390/jcm13133717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PaC) still has a dismal prognosis, and despite medical advances, a bleak 5-year survival rate of only 8%, largely due to late diagnosis and limited curative surgical options for most patients. Frontline palliative treatment shows some survival advantages. However, the high disease mortality is accompanied by high morbidity including cancer-related pain and additional symptoms, which strongly impair patients' quality of life (QOL). At present, there is no established strategy for local therapy for PaC primarily aiming to manage local tumor growth and alleviate associated symptoms, particularly pain. In recent years, non-invasive high-intensity focused ultrasound (HIFU) has shown promising results in reducing cancer pain and tumor mass, improving patients' QOL with few side effects. STUDY DESIGN This is the first randomized controlled trial worldwide including 40 patients with inoperable pancreatic adenocarcinoma randomized into two groups: group A undergoing standard chemotherapy; and group B undergoing standard chemotherapy plus local HIFU treatment. This study aims to establish a robust evidence base by examining the feasibility, safety, and efficacy of US-guided HIFU in combination with standard palliative systemic therapy for unresectable PaC. Primary endpoint assessments will focus on parameters including safety issues (phase I), and local response rates (phase II).
Collapse
Affiliation(s)
- Milka Marinova
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany
| | - David-Alexis Khouri
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany
| | - Jim Küppers
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany
| | - Olga Ramig
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, 53127 Bonn, Germany
| | | | - Johannes Breuers
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany
| | - Julia Fazaal
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany
| | - Christine Fuhrmann
- D Clinical Study Core Unit Bonn, Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Martin Coenen
- D Clinical Study Core Unit Bonn, Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Christian Möhring
- Department of Internal Medicine I, University Hospital Bonn, 53127 Bonn, Germany
| | - Taotao Zhou
- Department of Internal Medicine I, University Hospital Bonn, 53127 Bonn, Germany
| | - Xin Zhou
- Department of Internal Medicine I, University Hospital Bonn, 53127 Bonn, Germany
| | - Thomas Anhalt
- Department of Internal Medicine I, University Hospital Bonn, 53127 Bonn, Germany
| | - Farsaneh Sadeghlar
- Department of Internal Medicine I, University Hospital Bonn, 53127 Bonn, Germany
| | - Marcus Thudium
- Department of Anesthesiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Rupert Conrad
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Muenster, 48149 Muenster, Germany
| | - Georg Feldmann
- Department of Internal Medicine III, University Hospital Bonn, 53127 Bonn, Germany
| | - Peter Brossart
- Department of Internal Medicine III, University Hospital Bonn, 53127 Bonn, Germany
| | - Tim R. Glowka
- Department of Surgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Jörg C. Kalff
- Department of Surgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany
| | | | - Yon-Dschun Ko
- Oncological Center, Johanniter Hospital, 53113 Bonn, Germany
| | | | | |
Collapse
|
5
|
Liu Y, Ji Y, Zhu J, Zhu L, Zhu Y, Bao Z, Zhao H. Repeated high‑intensity focused ultrasound combined with iodine‑125 seed interstitial brachytherapy offers improved quality of life and pain control for patients with advanced pancreatic cancer: A 52‑patient retrospective study. Oncol Lett 2024; 27:157. [PMID: 38426153 PMCID: PMC10902751 DOI: 10.3892/ol.2024.14290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Patients diagnosed with pancreatic cancer who have 5-year survival rates of ~5% are typically in the advanced stage. Pancreatic cancer has become the third leading cause of cancer-related death in the United States and there is still a lack of effective treatments to improve patient survival rate. Hence, the purpose of the present retrospective study was to assess the potential clinical impact of repeated high-intensity focused ultrasound (HIFU) combined with iodine-125 (125I) interstitial brachytherapy for the treatment of patients with advanced pancreatic cancer who were ineligible for or declined surgery and chemotherapy. A total of 52 patients diagnosed with advanced pancreatic cancer were included in the study. At least one course of HIFU therapy combined with percutaneous ultrasound-guided 125I seed implantation was administered to each patient. The clinical assessment included an evaluation of Karnofsky Performance Scale (KPS) score at baseline, and at 1 and 2 months after combined therapy. Pain intensity was additionally evaluated with the numerical rating score (NRS). Overall survival (OS) times and survival rates at 3, 6, 9 and 12 months after combined treatment were evaluated. Adverse events commonly associated with HIFU and 125I seed implantation were recorded, and the severity of adverse events was graded according to the Common Terminology Criteria for Adverse Events, version 4. All 52 patients received successful repeated HIFU treatment combined with 125I seed implantation and were included in the analysis of efficacy and safety. The median OS time of patients was estimated to be 13.1 months (95% CI, 11.3-14.8). The survival rates at 3, 6, 9 and 12 months were 100.0, 86.5, 61.5 and 53.8%, respectively. The mean KPS score was 62.7±6.3 at baseline, 73.7±7.9 at 1 month and 68.8±6.5 at 2 months after combined treatment. KPS score increased significantly after combined therapy. The mean NRS score was 6.7±1.6 at baseline, and 4.7±1.7 and 5.4±1.5 at 1 and 2 months after combined treatment, respectively. The number of patients with severe pain and the NRS score were both significantly lower at 1 and 2 months after 125I seed implantation compared with those at baseline. No serious complications were detected during the follow-up period. In conclusion, the present study demonstrated the survival benefit and improvement in quality of life of patients with advanced pancreatic cancer receiving repeated HIFU treatment combined with 125I interstitial brachytherapy, which may provide new ideas and methods for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yumei Liu
- High-Intensity Focused Ultrasound Center of Oncology Department, Huadong Hospital Affiliated to Fudan University, Shanghai 200000, P.R. China
| | - Yongshuo Ji
- High-Intensity Focused Ultrasound Center of Oncology Department, Huadong Hospital Affiliated to Fudan University, Shanghai 200000, P.R. China
| | - Junqiu Zhu
- High-Intensity Focused Ultrasound Center of Oncology Department, Huadong Hospital Affiliated to Fudan University, Shanghai 200000, P.R. China
| | - Linglin Zhu
- High-Intensity Focused Ultrasound Center of Oncology Department, Huadong Hospital Affiliated to Fudan University, Shanghai 200000, P.R. China
| | - Yanfei Zhu
- High-Intensity Focused Ultrasound Center of Oncology Department, Huadong Hospital Affiliated to Fudan University, Shanghai 200000, P.R. China
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200040, P.R. China
- Research Center on Aging and Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Hong Zhao
- High-Intensity Focused Ultrasound Center of Oncology Department, Huadong Hospital Affiliated to Fudan University, Shanghai 200000, P.R. China
| |
Collapse
|
6
|
Ashida R, Kawabata KI, Asami R, Kitano M. Novel treatment system using endoscopic ultrasound-guided high-intensity focused ultrasound: A proof-of-concept study. Pancreatology 2024; 24:88-92. [PMID: 38036413 DOI: 10.1016/j.pan.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
AIM High-intensity focused ultrasound (HIFU) is a novel minimally invasive local treatment of solid tumors. Endoscopic ultrasound-guided HIFU (EUS-HIFU) using mechanical effects would have potential benefits, including precise detection of target lesions and enhance drug delivery. The aim of this study is to develop EUS-HIFU device and to prove our concept in porcine model using a locally injected phase change nano droplet (PCND) as the sensitizer. METHOD A phospholipid PCND contained volatile perfluoro-carbon liquids. The prototype HIFU apparatus comprised a small (20 × 20 mm) transducer with center frequency of 2.1 MHz, attachable to a linear EUS transducer. Under general anesthetic, a single porcine received EUS-guided injection of PCND. The HIFU transducer was placed laparotomically in the stomach, and the liver was ablated through the gastric wall. RESULTS PCND was injected successfully and a distinct lesion was generated at the HIFU transducer focus only in injected areas that received HIFU exposure at 4.7 kW/cm2 at a duty cycle of 5 % (mean temporal intensity, 0.245 kW/cm2) for 30 s. The generated lesions were mechanically fractionated in macroscopic view. CONCLUSION The concept of transluminal HIFU ablation using novel EUS-HIFU system was proved in a porcine animal model. This novel treatment system has great potential for future cancer treatment although further investigation in more animals and different organs are warranted.
Collapse
Affiliation(s)
- Reiko Ashida
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | | | - Rei Asami
- Imaging Technology Center, FUJIFILM Corporation, Tokyo, Japan
| | - Masayuki Kitano
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
7
|
Dong S, Zhong A, Zhu H, Wang K, Cheng CS, Meng Z. Sequential high-intensity focused ultrasound treatment combined with chemotherapy for inoperable pancreatic cancer: a retrospective analysis for prognostic factors and survival outcomes. Int J Hyperthermia 2023; 40:2278417. [PMID: 37945310 DOI: 10.1080/02656736.2023.2278417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE To evaluate the effect of HIFU (High-Intensity Focused Ultrasound) therapy on the survival and prognosis of patients with inoperable pancreatic cancer, and the clinical application of serological prognostic indicators. METHODS We retrospectively analyzed the clinicopathological features, laboratory tests and follow-ups of 192 patients. Among the patients, 57 were treated with HIFU prior to chemotherapy (HIFU-priority), and 135 patients received chemotherapy followed by HIFU (HIFU-second). Univariate and multivariate Cox regression analysis was used to determine the prognostic value of tumor inflammation-related serological markers. A nomogram model was established based on the identified prognostic factors. RESULTS Univariate analysis showed that receiving the treatment regimen in HIFU-priority was a significant protective factor for overall survival (OS, p < 0.001). Tumor stage, high C-reactive protein (CRP), high gamma-glutamyl transferase(γGT) high carbohydrate antigen 125 (CA125), high neutrophil-to-lymphocyte ratio (NLR), high lymphocyte-to-monocyte ratio (LMR) and liver metastasis were significant risk factors for poor prognosis (p < 0.05). CRP combined with normal tumor marker CA125 (CRP + CA125) was associated with longer OS (p = 0.005). Multivariate analysis shows that HIFU-priority is a protective factor for OS (Hazard Ratio, HR: 0.38; 95% confidence interval(CI): 0.25-0.57), tumor stage (HR: 1.61; 95% CI: 1.12-2.31), CRP + CA125 (HR: 1.46; 95% CI: 1.02-2.08) and γGT (HR: 1.44; 95% CI: 1.04-1.98) are risk factors for OS and serve as independent prognostic factors in the nomogram. CONCLUSION Early application of HIFU treatment improves the OS of patients with inoperable pancreatic cancer. CRP + CA125 and γGT are independent prognostic factors.
Collapse
Affiliation(s)
- Shu Dong
- Minimally Invasive Therapy Center, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ailing Zhong
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai, China
| | - Huili Zhu
- Minimally Invasive Therapy Center, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kun Wang
- Minimally Invasive Therapy Center, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chien-Shan Cheng
- Minimally Invasive Therapy Center, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Zhiqiang Meng
- Minimally Invasive Therapy Center, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Feng X, Yang M, Li J, Liao H, Zhang Z, Wang Q, Du Y. Experimental study of HIFU incomplete ablation on the damage effect and prognosis of rabbit VX2 breast cancer model. Int J Hyperthermia 2023; 40:2255760. [PMID: 37726101 DOI: 10.1080/02656736.2023.2255760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
PURPOSE High-intensity focused ultrasound (HIFU) represents an emerging noninvasive modality for tumor treatment. While biological responses and immunological change associated with incomplete ablation have not been thoroughly investigated. This study aims to evaluate the damage effect of HIFU incomplete ablation via establishing animal model and further explore its possible mechanism to inhibit tumor growth. METHODS The rabbit VX2 breast cancer model was established and received HIFU treatment with complete ablation (100% tumor volume) and incomplete ablation (about 80% tumor volume) under real-time B-ultrasound monitoring. Histopathological alterations, dynamics of tumor cell apoptosis and proliferation, expression levels of VEGF, MMP-9, IL-2R, TGF-β1, HSP-70, IL-6, IL-8, and INF-γ, and the presence of circulating tumor cells (CTCs) were evaluated post-HIFU incomplete ablation. RESULTS For HIFU 80% ablation group, there was an 85.85% reduction in tumor volume 21 days post-intervention. A marked increase in tumor cell apoptosis and a concomitant decrease in proliferation were observed. Notably, distant tumor metastasis rates, CTC counts, and expression levels of VEGF, MMP-9, IL-2R, TGF-β1, IL-6, and IL-8 were significantly reduced. In contrast, INF-γ and HSP-70 expressions were notably elevated, aligning with findings from the 100% ablation group. CONCLUSIONS HIFU incomplete ablation, with an 80% tumor ablation rate, induces substantial tumor damage, augments tumor cell apoptosis, and triggers an anti-tumor immune response, curtailing metastasis. These insights may underpin further investigations into the therapeutic implications of HIFU incomplete ablation.
Collapse
Affiliation(s)
- Xiaoling Feng
- State Key Laboratory of Ultrasound in Medical and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Min Yang
- State Key Laboratory of Ultrasound in Medical and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Jianhu Li
- State Key Laboratory of Ultrasound in Medical and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Hongjian Liao
- State Key Laboratory of Ultrasound in Medical and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Zhifei Zhang
- State Key Laboratory of Ultrasound in Medical and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Qi Wang
- State Key Laboratory of Ultrasound in Medical and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yonghong Du
- State Key Laboratory of Ultrasound in Medical and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Ning J, Wang S, Guo Y, Diao J, Bai X, Wang H, Hu K, Zhao Q. High Intensity Focused Ultrasound Ablation for Patients With Locally Advanced Pancreatic Adenocarcinoma: A Propensity Score-Matching Analysis. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:1595-1607. [PMID: 36691925 DOI: 10.1002/jum.16181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/30/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVES This retrospective study was conducted to assess the efficacy and safety of high intensity focused ultrasound (HIFU) in combination with chemotherapy compared with chemotherapy alone in treating patients with unresectable locally advanced pancreatic cancer (LAPC). METHODS The data of unresectable LAPC patients who received chemotherapy with or without HIFU ablation were retrieved retrospectively. The overall survival (OS), objective response rate (ORR), cancer antigen 19-9 response rate, and safety were compared between these two groups before and after propensity score matching (PSM). RESULTS Overall, 254 patients with LAPC were included, of whom 92 underwent HIFU ablation. After PSM to control for potential biases, HIFU was associated with improved OS (12.8 versus 12.2 months, log-rank P = .046), as compared to patients without HIFU ablation. Patients with numeric rating scale (NRS) less than 4, and receiving HIFU ablation were significantly associated with improved OS (adjusted hazard ratio [aHR] = 0.365 [95% confidence interval (CI) = 0.148-0.655], P = .002; aHR = 0.490 [95% CI = 0.250-0.961], P = .038; respectively) by multivariate analyses with the adjustment of age, NRS, and tumor size. ORR was also observed to be higher in HIFU group of 30.0% than in the chemotherapy group of 13.3% (P = .039). No severe adverse events of special interest or HIFU-caused deaths were observed. CONCLUSIONS Patients with unresectable LAPC who received gemcitabine-based chemotherapy might benefit from additional HIFU ablation.
Collapse
Affiliation(s)
- Jiwei Ning
- Clinical Lab, The Third People's Hospital of Datong, Datong, People's Republic of China
| | - Shifeng Wang
- Department of Gastroenterology, The Second People's Hospital of Datong Cancer Hospital, Datong, People's Republic of China
| | - Yuehao Guo
- Department of Health Science, University of York, York, England
| | - Jianfeng Diao
- Department of Gastroenterology, The Second People's Hospital of Datong Cancer Hospital, Datong, People's Republic of China
| | - Xuehong Bai
- Department of Gastroenterology, The Second People's Hospital of Datong Cancer Hospital, Datong, People's Republic of China
| | - Hongjin Wang
- Department of Gastroenterology, The Second People's Hospital of Datong Cancer Hospital, Datong, People's Republic of China
| | - Kaimeng Hu
- Marketing Department, Shanghai A&S Science Technology Development Co., Ltd, Shanghai, People's Republic of China
| | - Qingwen Zhao
- Department of Gastroenterology, The Second People's Hospital of Datong Cancer Hospital, Datong, People's Republic of China
| |
Collapse
|
10
|
Ashar H, Ranjan A. Immunomodulation and targeted drug delivery with high intensity focused ultrasound (HIFU): Principles and mechanisms. Pharmacol Ther 2023; 244:108393. [PMID: 36965581 DOI: 10.1016/j.pharmthera.2023.108393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
High intensity focused ultrasound (HIFU) is a non-invasive and non-ionizing sonic energy-based therapeutic technology for inducing thermal and non-thermal effects in tissues. Depending on the parameters, HIFU can ablate tissues by heating them to >55 °C to induce denaturation and coagulative necrosis, improve radio- and chemo-sensitizations and local drug delivery from nanoparticles at moderate hyperthermia (~41-43 °C), and mechanically fragment cells using acoustic cavitation (also known as histotripsy). HIFU has already emerged as an attractive modality for treating human prostate cancer, veterinary cancers, and neuromodulation. Herein, we comprehensively review the role of HIFU in enhancing drug delivery and immunotherapy in soft and calcified tissues. Specifically, the ability of HIFU to improve adjuvant treatments from various classes of drugs is described. These crucial insights highlight the opportunities and challenges of HIFU technology and its potential to support new clinical trials and translation to patients.
Collapse
Affiliation(s)
- Harshini Ashar
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America.
| |
Collapse
|
11
|
Ni CX, Zhao Y, Qian H, Fu H, Yan YY, Qiu YS, Zhou CC, Huang F, Shen FM, Li DJ, Xu Q. Long survival in a pancreatic carcinoma patient with multi-organ toxicities after sintilimab treatment: A case report. Front Pharmacol 2023; 14:1121122. [PMID: 36744247 PMCID: PMC9894891 DOI: 10.3389/fphar.2023.1121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Pancreatic carcinoma is the leading cause of death among digestive malignancies in China. In particular, there is no breakthrough in prolonging the survival of pancreatic cancer patients with chemical and targeted therapies. Tumor immunotherapy brings opportunities and progress for the treatment of pancreatic cancer. Sintilimab is an innovative PD-1 inhibitor which was reported certain clinical benefits in multi-line treatments of advanced pancreatic cancer with gemcitabine. The combination therapy of PD-1 with gemcitabine plus high-intensity focused ultrasound (HIFU) in pancreatic cancer has not been reported. Here we report a case of a Chinese old patient diagnosed with metastatic pancreatic cancer. Two months after sintilimab treatment, the patient occurred severe immune colitis. The patient was diagnosed with immune ureteritis after 8 months of treatment. The immue-related adverse events (irAEs) refined after timely recognition and correct intervention by the clinician and clinical pharmacist. After first-line treatment of sintilimab plus gemcitabine combined with pancreatic HIFU, the patient achieved a remarkable benefit of 11-month progression-free survival (PFS) and 20-month overall survival (OS). The first-line treatment of sintilimab plus gemcitabine combined with HIFU demonstrates a potential therapeutic effect on metastatic pancreatic carcinoma with tolerable adverse reactions.
Collapse
Affiliation(s)
- Chen-Xu Ni
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Zhao
- Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Qian
- Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Fu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Ying Yan
- Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yu-Shuang Qiu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang Huang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Improvement of fibroid-associated symptoms and quality of life after US-guided high-intensity focused ultrasound (HIFU) of uterine fibroids. Sci Rep 2022; 12:21155. [PMID: 36476975 PMCID: PMC9729612 DOI: 10.1038/s41598-022-24994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Uterine fibroids are the most common benign uterine tumors and can cause various severe symptoms as abnormal menstrual bleeding or pelvic pain. Therefore, the primary objective in the treatment of uterine fibroids is a sufficient symptom relief. Ultrasound (US)-guided High-intensity focused ultrasound (HIFU) is an effective non-invasive treatment strategy for ablation of uterine fibroids that can achieve a significant tumor volume reduction. The aim of the study is to evaluate if US-guided HIFU treatment can reduce fibroid-associated symptoms leading to an improvement of health-related quality of life. Fifty-five women with symptomatic uterine fibroids underwent US-guided HIFU ablation. Clinical evaluation was performed on the basis of the Uterine Fibroid Symptom and Health-Related Quality of Life Questionnaire (UFS-QOL) at baseline, 6 weeks, 3, 6, 9 and 12 months after HIFU. Imaging follow-up included contrast-enhanced ultrasound (CEUS) and contrast-enhanced MRI. A significant reduction of the Symptom Severity Scale (SSS) was observed between 6 weeks and 12 months after HIFU (49.9 ± 19.4 at baseline vs. 42.2 ± 20.1 at 6 weeks and 23.6 ± 12.7 at 12 months after treatment, p < 0.001) correlating with a significant improvement (p < 0.001) of Health-related Quality of Life (HRQL) (52.5 ± 22.7 at baseline vs. 59.8 ± 22 at 6 weeks and 77.9 ± 17.3 at 12 months after treatment). Significant postinterventional improvement was observed in every subscale of HRQL. In the majority of patients, only minor, short-lasting and self-limiting side effects were observed, e.g. soft tissue edema of the anterior lower abdominal wall in the acoustic pathway or transient moderate lower abdominal pain as during menstruation. One patient with a very large fibroid experienced strong short-lasting pain after the procedure; two patients experienced post-procedurally a transient sciatic nerve irritation. US-guided HIFU of uterine fibroids reduces disease-related symptoms and improves health-related quality of life.
Collapse
|
13
|
deSouza NM, Gedroyc W, Rivens I, ter Haar G. Tissue specific considerations in implementing high intensity focussed ultrasound under magnetic resonance imaging guidance. Front Oncol 2022; 12:1037959. [PMID: 36387108 PMCID: PMC9663991 DOI: 10.3389/fonc.2022.1037959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
High-intensity focused ultrasound can ablate a target permanently, leaving tissues through which it passes thermally unaffected. When delivered under magnetic resonance (MR) imaging guidance, the change in tissue relaxivity on heating is used to monitor the temperatures achieved. Different tissue types in the pre-focal beam path result in energy loss defined by their individual attenuation coefficients. Furthermore, at interfaces with different acoustic impedances the beam will be both reflected and refracted, changing the position of the focus. For complex interfaces this effect is exacerbated. Moreover, blood vessels proximal to the focal region can dissipate heat, altering the expected region of damage. In the target volume, the temperature distribution depends on the thermal conductivity (or diffusivity) of the tissue and its heat capacity. These are different for vascular tissues, water and fat containing tissues and bone. Therefore, documenting the characteristics of the pre-focal and target tissues is critical for effective delivery of HIFU. MR imaging provides excellent anatomic detail and characterization of soft tissue components. It is an ideal modality for real-time planning and monitoring of HIFU ablation, and provides non-invasive temperature maps. Clinical applications involve soft-tissue (abdomino-pelvic applications) or bone (brain applications) pre-focally and at the target (soft-tissue tumors and bone metastases respectively). This article addresses the technical difficulties of delivering HIFU effectively when vascular tissues, densely cellular tissues, fat or bone are traversed pre-focally, and the clinical applications that target these tissues. The strengths and limitations of MR techniques used for monitoring ablation in these tissues are also discussed.
Collapse
Affiliation(s)
- Nandita M. deSouza
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Wladyslaw Gedroyc
- Faculty of Medicine, St. Mary’s Hospital, Imperial College, London, United Kingdom
| | - Ian Rivens
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Gail ter Haar
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
14
|
High Intensity Focused Ultrasound (HIFU) in Digestive Diseases: An Overview of Clinical Applications for Liver and Pancreatic Tumors. Ing Rech Biomed 2022. [DOI: 10.1016/j.irbm.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Lafond M, Lambin T, Drainville RA, Dupré A, Pioche M, Melodelima D, Lafon C. Pancreatic Ductal Adenocarcinoma: Current and Emerging Therapeutic Uses of Focused Ultrasound. Cancers (Basel) 2022; 14:2577. [PMID: 35681557 PMCID: PMC9179649 DOI: 10.3390/cancers14112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) diagnosis accompanies a somber prognosis for the patient, with dismal survival odds: 5% at 5 years. Despite extensive research, PDAC is expected to become the second leading cause of mortality by cancer by 2030. Ultrasound (US) has been used successfully in treating other types of cancer and evidence is flourishing that it could benefit PDAC patients. High-intensity focused US (HIFU) is currently used for pain management in palliative care. In addition, clinical work is being performed to use US to downstage borderline resectable tumors and increase the proportion of patients eligible for surgical ablation. Focused US (FUS) can also induce mechanical effects, which may elicit an anti-tumor response through disruption of the stroma and can be used for targeted drug delivery. More recently, sonodynamic therapy (akin to photodynamic therapy) and immunomodulation have brought new perspectives in treating PDAC. The aim of this review is to summarize the current state of those techniques and share our opinion on their future and challenges.
Collapse
Affiliation(s)
- Maxime Lafond
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Thomas Lambin
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - Robert Andrew Drainville
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Aurélien Dupré
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Mathieu Pioche
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - David Melodelima
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Cyril Lafon
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| |
Collapse
|
16
|
Sofuni A, Asai Y, Mukai S, Yamamoto K, Itoi T. High-intensity focused ultrasound therapy for pancreatic cancer. J Med Ultrason (2001) 2022:10.1007/s10396-022-01208-4. [PMID: 35551555 DOI: 10.1007/s10396-022-01208-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
Pancreatic cancer (PC) has one of the poorest prognoses among solid cancers, and its incidence has increased recently. Satisfactory outcomes are not achieved with current therapies; thus, novel treatments are urgently needed. High-intensity focused ultrasound (HIFU) is a novel therapy for ablating tissue from the outside of the body by focusing ultrasonic waves from multiple sources on the tumor. In this therapy, only the focal area is heated to 80-100 ºC, which causes coagulative necrosis of the tissue, with hardly any impact on the tissue outside the focal area. Although HIFU is a minimally invasive treatment and is expected to be useful, it is not yet generally known. Here, we discuss the usefulness of HIFU treatment for un-resectable advanced PC using the results of previous research, meta-analyses, and systematic reviews on its efficacy and safety. HIFU therapy for un-resectable PC is useful for its anti-tumor effect and pain relief, and is expected to prolong survival time and improve quality of life. Although HIFU for PC has several limitations and further study is needed, this technique can be safely performed on un-resectable advanced PC. In future, HIFU could be utilized as a minimally invasive treatment strategy for PC patients with a poor prognosis.
Collapse
Affiliation(s)
- Atsushi Sofuni
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Yasutsugu Asai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Shuntaro Mukai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Kenjiro Yamamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|
17
|
Mouratidis PXE, ter Haar G. Latest Advances in the Use of Therapeutic Focused Ultrasound in the Treatment of Pancreatic Cancer. Cancers (Basel) 2022; 14:638. [PMID: 35158903 PMCID: PMC8833696 DOI: 10.3390/cancers14030638] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Traditional oncological interventions have failed to improve survival for pancreatic cancer patients significantly. Novel treatment modalities able to release cancer-specific antigens, render immunologically "cold" pancreatic tumours "hot" and disrupt or reprogram the pancreatic tumour microenvironment are thus urgently needed. Therapeutic focused ultrasound exerts thermal and mechanical effects on tissue, killing cancer cells and inducing an anti-cancer immune response. The most important advances in therapeutic focused ultrasound use for initiation and augmentation of the cancer immunity cycle against pancreatic cancer are described. We provide a comprehensive review of the use of therapeutic focused ultrasound for the treatment of pancreatic cancer patients and describe recent studies that have shown an ultrasound-induced anti-cancer immune response in several tumour models. Published studies that have investigated the immunological effects of therapeutic focused ultrasound in pancreatic cancer are described. This article shows that therapeutic focused ultrasound has been deemed to be a safe technique for treating pancreatic cancer patients, providing pain relief and improving survival rates in pancreatic cancer patients. Promotion of an immune response in the clinic and sensitisation of tumours to the effects of immunotherapy in preclinical models of pancreatic cancer is shown, making it a promising candidate for use in the clinic.
Collapse
Affiliation(s)
- Petros X. E. Mouratidis
- Department of Physics, Division of Radiotherapy and Imaging, The Institute of Cancer Research: Royal Marsden Hospital, Sutton, London SM25NG, UK;
| | | |
Collapse
|
18
|
Liu B, Tan W, Zhang X, Peng Z, Cao J. Recognition study of denatured biological tissues based on multi-scale rescaled range permutation entropy. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:102-114. [PMID: 34902982 DOI: 10.3934/mbe.2022005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The recognition of denatured biological tissue is an indispensable part in the process of high intensity focused ultrasound treatment. As a nonlinear method, multi-scale permutation entropy (MPE) is widely used in the recognition of denatured biological tissue. However, the traditional MPE method neglects the amplitude information when calculating the time series complexity. The disadvantage will affect the recognition effect of denatured tissues. In order to solve the above problems, the method of multi-scale rescaled range permutation entropy (MRRPE) is proposed in this paper. The simulation results show that the MRRPE not only includes the amplitude information of the signal when calculating the signal complexity, but also extracts the extreme volatility characteristics of the signal effectively. The proposed method is applied to the HIFU echo signals during HIFU treatment, and the support vector machine (SVM) is used for recognition. The results show that compared with MPE and the multi-scale weighted permutation entropy (MWPE), the recognition rate of denatured biological tissue based on the MRRPE is higher, up to 96.57%, which can better recognize the non-denatured biological tissues and the denatured biological tissues.
Collapse
Affiliation(s)
- Bei Liu
- College of Mathematics and Physics, Hunan University of Arts and Science, Changde 415000, China
| | - Wenbin Tan
- College of Mathematics and Physics, Hunan University of Arts and Science, Changde 415000, China
| | - Xian Zhang
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment, Monitoring Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Ziqi Peng
- College of Mathematics and Physics, Hunan University of Arts and Science, Changde 415000, China
| | - Jing Cao
- College of Mathematics and Physics, Hunan University of Arts and Science, Changde 415000, China
| |
Collapse
|
19
|
Takagi R, Yoshinaka K, Washio T, Koseki Y. A visualization method for a wide range of rising temperature induced by high-intensity focused ultrasound using a tissue-mimicking phantom. Int J Hyperthermia 2021; 39:22-33. [PMID: 34936844 DOI: 10.1080/02656736.2021.2012603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
PURPOSE High-intensity focused ultrasound (HIFU) treatment requires prior evaluation of the HIFU transducer output. A method using micro-capsulated thermochromic liquid crystal (MTLC) to evaluate the temperature distribution in the media during HIFU exposure has been previously developed. However, the color-coded temperature range of commercial MTLC is approximately 10 °C, which is insufficient for temperature measurement for HIFU exposure. We created two layers of tissue-mimicking phantoms with different color-coded temperature ranges, and a new visualization method was developed by utilizing the axisymmetric pressure distribution of a HIFU focus. METHODS A two-layer phantom with two sensitivity ranges was created. The HIFU transducer was set to align the focal point to the boundary between the two layers. Images of the upper and lower layers were flipped along the boundary between the two layers such that they overlapped with each other, assuming the pressure distribution of HIFU to be axisymmetric. RESULTS The experimental and simulation results were compared to evaluate the accuracy of the phantom temperature measurement. The experimental time profile of the temperature and spatial distribution around the HIFU focus matched well with that of the simulation. However, there is room for improvement in the accuracy in the axial direction of HIFU focus. CONCLUSION Users can apply our proposed method in clinical practice to promptly assess the output of the HIFU transducer before treatment.
Collapse
Affiliation(s)
- Ryo Takagi
- Medical Devices Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Kiyoshi Yoshinaka
- Medical Devices Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Toshikatsu Washio
- Medical Devices Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yoshihiko Koseki
- Medical Devices Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
20
|
Cilleros C, Dupré A, Chen Y, Vincenot J, Rivoire M, Melodelima D. Intraoperative HIFU Ablation of the Pancreas Using a Toroidal Transducer in a Porcine Model. The First Step towards a Clinical Treatment of Locally Advanced Pancreatic Cancer. Cancers (Basel) 2021; 13:6381. [PMID: 34945001 PMCID: PMC8699564 DOI: 10.3390/cancers13246381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Apart from palliative chemotherapy, no other therapy has been proven effective for the treatment of locally advanced pancreatic tumors. In this study, an intraoperative high-intensity focused ultrasound (HIFU) device was tested in vivo to demonstrate the feasibility of treating the pancreatic parenchyma and tissues surrounding the superior mesenteric vessels prior to clinical translation of this technique. Twenty pigs were included and treated using a HIFU device equipped with a toroidal transducer and an integrated ultrasound imaging probe. Treatments were performed with energy escalation (from 30 kJ to 52 kJ). All treatments resulted in visible (macroscopically and in ultrasound images) homogeneous thermal damage, which was confirmed by histology. The dimensions of thermal lesions measured in ultrasound images and those measured macroscopically were correlated (r = 0.82, p < 0.05). No arterial spasms or occlusion were observed at the lowest energy setting. Temporary spasm of the peripancreatic artery was observed when using an energy setting greater than 30 kJ. The possibility of treating the pancreas and tissues around mesenteric vessels without vascular thrombosis holds great promise for the treatment of locally advanced pancreatic cancers. If clinically successful, chemotherapy followed by HIFU treatment could rapidly become a novel treatment option for locally advanced pancreatic cancer.
Collapse
Affiliation(s)
- Celia Cilleros
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
- EDAP TMS, 4 Rue du Dauphiné, F-69120 Vaulx-en-Velin, France;
| | - Aurélien Dupré
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| | - Yao Chen
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| | - Jeremy Vincenot
- EDAP TMS, 4 Rue du Dauphiné, F-69120 Vaulx-en-Velin, France;
| | - Michel Rivoire
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| | - David Melodelima
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| |
Collapse
|
21
|
Recker F, Thudium M, Strunk H, Tonguc T, Dohmen S, Luechters G, Bette B, Welz S, Salam B, Wilhelm K, Egger EK, Wüllner U, Attenberger U, Mustea A, Conrad R, Marinova M. Multidisciplinary management to optimize outcome of ultrasound-guided high-intensity focused ultrasound (HIFU) in patients with uterine fibroids. Sci Rep 2021; 11:22768. [PMID: 34815488 PMCID: PMC8611035 DOI: 10.1038/s41598-021-02217-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Little is known about the specific anaesthesiological and multidisciplinary management of high-intensity focused ultrasound (HIFU) in uterine fibroids. This observational single-center study is the first reporting on an interdisciplinary approach to optimize outcome following ultrasound (US)-guided HIFU in German-speaking countries. A sample of forty patients with symptomatic uterine fibroids was treated by HIFU. Relevant treatment parameters such as total treatment time for intervention, anaesthesia, and sonication time as well as total energy, body temperature, peri-interventional medication and complications were analyzed. Interventional variables did not correlate significantly either with opioid dose or with body temperature. The average fibroid volume reduction rate was 37.8% ± 23.5%, 48.5% ± 22.0% and 70.2% ± 25.5% after 3, 6 and 12 months, respectively. No major anaesthesiological complications occurred apart from an epileptic seizure prior to HIFU treatment in one patient. Peri-procedural hyperthermia (> 37.5 °C) occurred in two patients. Post-procedural two patients experienced a sciatic nerve irritation up to one year; one patient with very large treated fibroid experienced strong short-lasting post-procedural pain. There were two complication-free pregnancies of HIFU-treated patients. Multidisciplinary management is crucial to optimize safety and outcome of US-guided HIFU for uterine fibroids. Peri-procedural pain and temperature management are critical points where an adequate collaboration between anesthesiologist and interventionalist is mandatory.
Collapse
Affiliation(s)
- Florian Recker
- Department of Gynaecology and Gynaecological Oncology, University Hospital Bonn, Bonn, Germany
| | - Marcus Thudium
- Department of Anaesthesiology, University Hospital Bonn, Bonn, Germany
| | - Holger Strunk
- Department of Radiology, Städtisches Klinikum Solingen, Solingen, Germany
| | - Tolga Tonguc
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Sara Dohmen
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Guido Luechters
- Center for Development Research (ZEF), University Bonn, Bonn, Germany
| | - Birgit Bette
- Department of Anaesthesiology, University Hospital Bonn, Bonn, Germany
| | - Simone Welz
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Babak Salam
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Kai Wilhelm
- Department of Radiology, Johanniter Krankenhaus Bonn, Bonn, Germany
| | - Eva K Egger
- Department of Gynaecology and Gynaecological Oncology, University Hospital Bonn, Bonn, Germany
| | - Ullrich Wüllner
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Alexander Mustea
- Department of Gynaecology and Gynaecological Oncology, University Hospital Bonn, Bonn, Germany
| | - Rupert Conrad
- Clinic and Polyclinic for Psychosomatic Medicine and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Milka Marinova
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany. .,Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
22
|
Sofuni A, Asai Y, Tsuchiya T, Ishii K, Tanaka R, Tonozuka R, Honjo M, Mukai S, Nagai K, Yamamoto K, Matsunami Y, Kurosawa T, Kojima H, Homma T, Minami H, Nakatsubo R, Hirakawa N, Miyazawa H, Nagakawa Y, Tsuchida A, Itoi T. Novel Therapeutic Method for Unresectable Pancreatic Cancer-The Impact of the Long-Term Research in Therapeutic Effect of High-Intensity Focused Ultrasound (HIFU) Therapy. Curr Oncol 2021; 28:4845-4861. [PMID: 34898585 PMCID: PMC8628685 DOI: 10.3390/curroncol28060409] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/18/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
High-intensity focused ultrasound (HIFU) is a novel advanced therapy for unresectable pancreatic cancer (PC). HIFU therapy with chemotherapy is being promoted as a novel method to control local advancement by tumor ablation. We evaluated the therapeutic effects of HIFU therapy in locally advanced and metastatic PC. PC patients were treated with HIFU as an optional local therapy and systemic chemotherapy. The FEP-BY02 (Yuande Bio-Medical Engineering) HIFU device was used under ultrasound guidance. Of 176 PC patients, 89 cases were Stage III and 87 were Stage IV. The rate of complete tumor ablation was 90.3%, while that of symptom relief was 66.7%. The effectiveness on the primary lesions were as follows: complete response (CR): n = 0, partial response (PR): n = 21, stable disease (SD): n = 106, and progressive disease (PD): n = 49; the primary disease control rate was 72.2%. Eight patients underwent surgery. The median survival time (MST) after diagnosis for HIFU with chemotherapy compared to chemotherapy alone (100 patients in our hospital) was 648 vs. 288 days (p < 0.001). Compared with chemotherapy alone, the combination of HIFU therapy and chemotherapy demonstrated significant prolongation of prognosis. This study suggests that HIFU therapy has the potential to be a novel combination therapy for unresectable PC.
Collapse
Affiliation(s)
- Atsushi Sofuni
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Yasutsugu Asai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Takayoshi Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Kentaro Ishii
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Reina Tanaka
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Ryosuke Tonozuka
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Mitsuyoshi Honjo
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Shuntaro Mukai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Kazumasa Nagai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Kenjiro Yamamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Yukitoshi Matsunami
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Takashi Kurosawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Hiroyuki Kojima
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Toshihiro Homma
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Hirohito Minami
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Ryosuke Nakatsubo
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Noriyuki Hirakawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Hideaki Miyazawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Yuichi Nagakawa
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.N.); (A.T.)
| | - Akihiko Tsuchida
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.N.); (A.T.)
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| |
Collapse
|
23
|
Spanoudes K, Evripidou N, Giannakou M, Drakos T, Menikou G, Damianou C. A High Intensity Focused Ultrasound System for Veterinary Oncology Applications. J Med Ultrasound 2021; 29:195-202. [PMID: 34729329 PMCID: PMC8515634 DOI: 10.4103/jmu.jmu_130_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/05/2020] [Accepted: 11/18/2020] [Indexed: 11/04/2022] Open
Abstract
Background Magnetic resonance-guided focused ultrasound surgery is an incisionless energy-based thermal method that is used for ablating tumors in the veterinary clinic. Aims and Objectives In this article we describe a prototype of a veterinary system compatible with magnetic resonance imaging intended for small-to-medium-sized companion animals that was developed and tested in vivo in adult rabbits. Methods Real-time monitoring of the ablation during the experiment was possible with MR thermometry. Experiments involved thermal monitoring of sonications applied in the thigh of the rabbits. A 38-mm diameter transducer operating at 2.6 MHz was used with a 60-mm-focal length. The robotic system employed 3 linear axes and one angular axis. For this study, only X and Y axis were enabled. Due to the target size limitations, motion in Z and Θ was not needed. The functionality of the positioning device was evaluated by means of MR thermometry, demonstrating sufficient heating and accurate motion in both axes of operation. Results The postmortem findings confirm the ability of the system to induce thermal ablations in vivo in the absence of adverse effects. Conclusions The device is a reliable and affordable solution for companion animal hospitals, offering and additional tool for the veterinary oncology society.
Collapse
Affiliation(s)
- Kyriakos Spanoudes
- Department of Electrical Engineering, Cyprus University of Technology, Limassol, Cyprus.,Vet Ex Machina Ltd., Nicosia, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | | | - Theocharis Drakos
- Department of Electrical Engineering, Cyprus University of Technology, Limassol, Cyprus.,Medsonic Ltd., Limassol, Cyprus
| | - George Menikou
- Medical Physics Sector, General Hospital of Nicosia, Nicosia, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
24
|
Palumbo P, Daffinà J, Bruno F, Arrigoni F, Splendiani A, Di Cesare E, Barile A, Masciocchi C. Basics in Magnetic Resonance guided Focused Ultrasound: technical basis and clinical application. A brief overview. ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021403. [PMID: 34505842 PMCID: PMC8477067 DOI: 10.23750/abm.v92is5.11881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
First applications of high focused ultrasound as intracranial ablative therapy were firstly described in early 50’. Since then, the technological innovations have shown an increasingly safe and effective face of this technique. And in the last few years, Magnetic Resonance (MR) guided Focused Ultrasound (gFUS) has become a valid minimally invasive technique in the treatment of several diseases, from bone tumors to symptomatic uterine fibroids or essential tremors. MR guidance, through the tomographic view, offers the advantage of an accurate target detection and treatment planning. Moreover, real-time monitoring sequences allow to avoid non-target ablation. An adequate knowledge of FUS is essential to understand its clinical effectiveness. Therefore, this brief review aims to debate the physical characteristics of US and the main fields of clinical application.
Collapse
Affiliation(s)
- Pierpaolo Palumbo
- Department of Diagnostic Imaging, area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, Italy and Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy.
| | - Julia Daffinà
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Federico Bruno
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy and Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy.
| | - Francesco Arrigoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Alessandra Splendiani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Ernesto Di Cesare
- Department of Clinical Medicine, Public Health, Life and Environmental Science, University of L'Aquila, L'Aquila, Italy.
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Carlo Masciocchi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
25
|
Stanislavova N, Karamanliev M, Ivanov T, Yotsov T, Zhou K, Dimitrov D. Is high-intensity focused ultrasound (HIFU) an option for neoadjuvant therapy for borderline resectable pancreatic cancer patients? - a systematic review. Int J Hyperthermia 2021; 38:75-80. [PMID: 34420446 DOI: 10.1080/02656736.2021.1909150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Pancreatic cancer is with the poorest prognosis of all common cancers worldwide. Despite the advances in treatment the results are poor throughout the different methods. Pancreatic resection still yields the best outcome. However only a quarter of the patients present at operable stage. HIFU is a noninvasive technique that can be used to treat pancreatic cancer. AIM The aim of this review is to perform a systematic review on the data about the resection rate after HIFU ablation in patients with borderline resectable pancreatic cancer (BRPC) and the impact of this technique over the oncological results. MATERIALS AND METHODS The PubMed and Wanfang databases were searched using keywords: pancreatic cancer, HIFU ablation and high-intensity focused ultrasound. All found articles were reviewed. The systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standard guidelines. This study was financially supported by 2019 'Kuan-Ren Elite' Program of 2nd Affiliated Hospital of Chongqing Medical University, China (Grant no. KY2019G019). RESULTS The English database search showed 109 papers, of which 3 met the inclusion criteria. The Wanfang database resulted in 110 papers; however, none met the inclusion criteria of the review. From the included studies 97 patients underwent neoadjuvant HIFU ablation ± chemotherapy. Thirty-four patients reached resection (35.1%). In two patients, residual tumor (R) classification was not reported. R0 resection rate in all reported patients is 30.5% (29/95). R1 resection rate is 3.2% (3/95). CONCLUSION HIFU is found to be safe and feasible in locally advanced and metastatic pancreatic cancer with proven downstaging and downsizing effects. Further research on role of HIFU ablation as a neoadjuvant treatment for borderline resectable pancreatic cancer is needed.
Collapse
Affiliation(s)
- Nadya Stanislavova
- Faculty of Medicine, HIFU Center, University St. Marina Hospital, Medical University, Pleven, Bulgaria
| | - Martin Karamanliev
- Department of Surgical Oncology, Faculty of Medicine, Medical University, Pleven, Bulgaria
| | - Tsvetomir Ivanov
- Department of Surgical Oncology, Faculty of Medicine, Medical University, Pleven, Bulgaria
| | - Tsanko Yotsov
- Department of Surgical Oncology, Faculty of Medicine, Medical University, Pleven, Bulgaria
| | - Kun Zhou
- Clinical Center for Tumor Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dobromir Dimitrov
- Faculty of Medicine, HIFU Center, University St. Marina Hospital, Medical University, Pleven, Bulgaria.,Department of Surgical Oncology, Faculty of Medicine, Medical University, Pleven, Bulgaria
| |
Collapse
|
26
|
Tonguc T, Strunk H, Gonzalez-Carmona MA, Recker F, Lütjohann D, Thudium M, Conrad R, Becher MU, Savchenko O, Davidova D, Luechters G, Mustea A, Strassburg CP, Attenberger U, Pieper CC, Jenne J, Marinova M. US-guided high-intensity focused ultrasound (HIFU) of abdominal tumors: outcome, early ablation-related laboratory changes and inflammatory reaction. A single-center experience from Germany. Int J Hyperthermia 2021; 38:65-74. [PMID: 34420445 DOI: 10.1080/02656736.2021.1900926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION High-intensity focused ultrasound (HIFU) is an innovative noninvasive procedure for local ablation of different benign and malignant tumors. Preliminary data of animal studies suggest an ablation-associated immune response after HIFU that is induced by cell necrosis and release of intracellular components. The aim of this study is to evaluate if a HIFU-induced early sterile inflammatory reaction is initiated after ablation of uterine fibroids (UF) and pancreatic carcinoma (PaC) which might contribute to the therapeutic effect. MATERIAL AND METHODS A hundred patients with PaC and 30 patients with UF underwent US-guided HIFU treatment. Serum markers of inflammation (leukocytes, CRP, IL-6) and LDH in both collectives as well as tumor markers CA 19-9, CEA and CYFRA in PaC patients were determined in sub-cohorts before and directly after HIFU (0, 2, 5 and 20 h post-ablation) as well as at 3, 6, 9 and 12 months follow-up. Peri-/post interventional imaging included contrast-enhanced MRI of both cohorts and an additional CT scan of PaC patients. RESULTS An early post-ablation inflammatory response was observed in both groups with a significant increase of leukocytes, CRP and LDH within the first 20 h after HIFU. Interestingly, IL-6 was increased at 20 h after HIFU in PaC patients. A significant reduction of tumor volumes was observed during one year follow-up (p < .001) for both tumor entities demonstrating effective treatment outcome. CONCLUSION Tumor ablation with HIFU induces an early sterile inflammation that might serve as a precondition for long-term tumor immunity and a sustainable therapeutic effect.
Collapse
Affiliation(s)
- Tolga Tonguc
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Holger Strunk
- Department of Radiology, Städtisches Klinikum Solingen, Solingen, Germany
| | | | - Florian Recker
- Department of Gynaecology and Gynaecological Oncology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Dieter Lütjohann
- Department of Clinical Pharmacology and Laboratory Medicine, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Marcus Thudium
- Department of Anesthesiology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Rupert Conrad
- Clinic and Polyclinic for Psychosomatic Medicine and Psychotherapy, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Marc U Becher
- Department of Internal Medicine I, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Oleksandr Savchenko
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Darya Davidova
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Guido Luechters
- Center for Development Research (ZEF), University Bonn, Bonn, Germany
| | - Alexander Mustea
- Department of Gynaecology and Gynaecological Oncology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Christian P Strassburg
- Department of Internal Medicine I, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, University Bonn, Bonn, Germany
| | - Jürgen Jenne
- Fraunhofer Institute for Digital Medicine, MEVIS, Bremen, Germany
| | - Milka Marinova
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, University Bonn, Bonn, Germany
| |
Collapse
|
27
|
Zhao J, Shen H, Hu X, Wang Y, Yuan Y. The efficacy of a new high-intensity focused ultrasound therapy for metastatic pancreatic cancer. Int J Hyperthermia 2021; 38:288-295. [PMID: 33615955 DOI: 10.1080/02656736.2021.1876252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To compare the survival benefit, pain control and safety of low-power cumulative and traditional high-intensity focused ultrasound (HIFU) for metastatic pancreatic cancer. METHOD We retrospectively analyzed 55 patients with metastatic pancreatic cancer who received HIFU treatment between January 2008 and April 2014 in our department. 23 patients received low-power cumulative HIFU treatment (L group), 32 received the traditional HIFU treatment (T group). Performance status, cancer-related pain and serum biochemistry results were assessed before and after treatment. All patients were followed up until death. The survival rate and adverse events of the two groups were compared. RESULTS The baseline characteristics of the two groups were generally well balanced (p > 0.05). The average KPS score after treatment was significantly improved in both groups compared with the baseline score. 36 patients exhibited tumor-related pain at baseline. The pain response rate was significantly higher in the L group (92.3%) than in the T group (52.2%) (p = 0.025). The median overall survival (OS) for the L group was 7.0 months, which was significantly longer than that of the T group (p = 0.000). The 3-month and 6-month survival rates were higher in the L group. The adverse events in both groups included abdominal pain, elevated C-reactive protein (CRP) and elevated amylase. The incidence was lower in the L group than in the T group. CONCLUSION Compared with traditional HIFU treatment, low-power cumulative HIFU treatment showed a significantly higher pain relief rate and survival benefit with a better safety profile in patients with metastatic pancreatic cancer.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medical Oncology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Shen
- Department of Medical Oncology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoye Hu
- Department of Medical Oncology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Yuebing Wang
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
28
|
di Biase L, Falato E, Caminiti ML, Pecoraro PM, Narducci F, Di Lazzaro V. Focused Ultrasound (FUS) for Chronic Pain Management: Approved and Potential Applications. Neurol Res Int 2021; 2021:8438498. [PMID: 34258062 PMCID: PMC8261174 DOI: 10.1155/2021/8438498] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/19/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic pain is one of the leading causes of disability and disease burden worldwide, accounting for a prevalence between 6.9% and 10% in the general population. Pharmacotherapy alone results ineffective in about 70-60% of patients in terms of a satisfactory degree of pain relief. Focused ultrasound is a promising tool for chronic pain management, being approved for thalamotomy in chronic neuropathic pain and for bone metastases-related pain treatment. FUS is a noninvasive technique for neuromodulation and for tissue ablation that can be applied to several tissues. Transcranial FUS (tFUS) can lead to opposite biological effects, depending on stimulation parameters: from reversible neural activity facilitation or suppression (low-intensity, low-frequency ultrasound, LILFUS) to irreversible tissue ablation (high-intensity focused ultrasounds, HIFU). HIFU is approved for thalamotomy in neuropathic pain at the central nervous system level and for the treatment of facet joint osteoarthritis at the peripheral level. Potential applications include HIFU at the spinal cord level for selected cases of refractory chronic neuropathic pain, knee osteoarthritis, sacroiliac joint disease, intervertebral disc nucleolysis, phantom limb, and ablation of peripheral nerves. FUS at nonablative dosage, LILFUS, has potential reversible and tissue-selective effects. FUS applications at nonablative doses currently are at a research stage. The main potential applications include targeted drug and gene delivery through the Blood-Brain Barrier, assessment of pain thresholds and study of pain, and reversible peripheral nerve conduction block. The aim of the present review is to describe the approved and potential applications of the focused ultrasound technology in the field of chronic pain management.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Emma Falato
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Maria Letizia Caminiti
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Pasquale Maria Pecoraro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Flavia Narducci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| |
Collapse
|
29
|
Development of a Simple In Vitro Artery Model and an Evaluation of the Impact of Pulsed Flow on High-Intensity Focused Ultrasound Ablation. Ing Rech Biomed 2021. [DOI: 10.1016/j.irbm.2020.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Gray MD, Elbes D, Paverd C, Lyka E, Coviello CM, Cleveland RO, Coussios CC. Dual-Array Passive Acoustic Mapping for Cavitation Imaging With Enhanced 2-D Resolution. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:647-663. [PMID: 32845836 DOI: 10.1109/tuffc.2020.3019573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Passive acoustic mapping (PAM) techniques have been developed for the purposes of detecting, localizing, and quantifying cavitation activity during therapeutic ultrasound procedures. Implementation with conventional diagnostic ultrasound arrays has allowed planar mapping of bubble acoustic emissions to be overlaid with B-mode anatomical images, with a variety of beamforming approaches providing enhanced resolution at the cost of extended computation times. However, no passive signal processing techniques implemented to date have overcome the fundamental physical limitation of the conventional diagnostic array aperture that results in point spread functions with axial/lateral beamwidth ratios of nearly an order of magnitude. To mitigate this problem, the use of a pair of orthogonally oriented diagnostic arrays was recently proposed, with potential benefits arising from the substantially expanded range of observation angles. This article presents experiments and simulations intended to demonstrate the performance and limitations of the dual-array system concept. The key finding of this study is that source pair resolution of better than 1 mm is now possible in both dimensions of the imaging plane using a pair of 7.5-MHz center frequency conventional arrays at a distance of 7.6cm. With an eye toward accelerating computations for real-time applications, channel count reductions of up to a factor of eight induce negligible performance losses. Modest sensitivities to sound speed and relative array position uncertainties were identified, but if these can be kept on the order of 1% and 1 mm, respectively, then the proposed methods offer the potential for a step improvement in cavitation monitoring capability.
Collapse
|
31
|
Zhang H, Zhu X, Zeng Z, Gao X. Interventional therapy combined with radiotherapy for pancreatic carcinoma. INTEGRATIVE PANCREATIC INTERVENTION THERAPY 2021:523-539. [DOI: 10.1016/b978-0-12-819402-7.00023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Thudium M, Bette B, Tonguc T, Ghaei S, Conrad R, Becher MU, Mücke M, Luechters G, Strunk H, Marinova M. Multidisciplinary management and outcome in pancreatic cancer patients treated with high-intensity focused ultrasound. Int J Hyperthermia 2020; 37:456-462. [PMID: 32396479 DOI: 10.1080/02656736.2020.1762006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Introduction: High-intensity focused ultrasound (HIFU) for pancreatic cancer is a growing therapeutic field which has been proven to reduce cancer pain and provide a local tumor control additionally to standard palliative care. However, less is known about the multidisciplinary and especially anesthesiological management of HIFU treatment although an interdisciplinary approach is crucial for treatment success.Material and methods: Anesthesiological and radiological records of 71 HIFU-treated pancreatic cancer patients were analyzed with regard to the following items: intervention time, sonication time, total energy, anesthesia time, peri-interventional medication, body temperature maximum and minimum, pain scores before and 1 day, 6 weeks and 3 months after intervention, peri-interventional complications. Effects on pain scores were estimated with a mixed panel data model. Bivariate associations between interventional variables were examined with the Spearman's correlation.Results: HIFU treatment was performed without major adverse events. Peri-procedural hyperthermia >37.5 °C occurred in 2 patients, hypothermia <35 °C in 8 cases. Interventional variables did not correlate significantly with pain scores, opioid dose, nor body temperature. 85.5% of patients experienced significant early pain relief within the first week after intervention. Post-interventional pain relief is associated with morphine equivalent opioid dose (p = 0.025) and treatment time (p = 0.040).Conclusion: While HIFU can be considered safe and effective treatment option, procedure-associated pain and temperature management represent challenges for the interdisciplinary HIFU intervention team. Especially short-term pain relief depends on the combined effort of the radiologist and anesthesiologist.
Collapse
Affiliation(s)
- Marcus Thudium
- Department of Anesthesiology, University Hospital Bonn, Bonn, Germany
| | - Birgit Bette
- Department of Anesthesiology, University Hospital Bonn, Bonn, Germany
| | - Tolga Tonguc
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Shiwa Ghaei
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Rupert Conrad
- Clinic and Polyclinic for Psychosomatic Medicine and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Marc U Becher
- Clinic and Polyclinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Martin Mücke
- Center for Rare Diseases, University Hospital Bonn, Bonn, Germany
| | - Guido Luechters
- Center for Development Research (ZEF), University Bonn, Bonn, Germany
| | - Holger Strunk
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Milka Marinova
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
33
|
Sebeke LC, Rademann P, Maul AC, Schubert-Quecke C, Annecke T, Yeo SY, Castillo-Gómez JD, Schmidt P, Grüll H, Heijman E. Feasibility study of MR-guided pancreas ablation using high-intensity focused ultrasound in a healthy swine model. Int J Hyperthermia 2020; 37:786-798. [PMID: 32619373 DOI: 10.1080/02656736.2020.1782999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Purpose: Pancreatic cancer is typically diagnosed in a late stage with limited therapeutic options. For those patients, ultrasound-guided high-intensity focused ultrasound (US-HIFU) can improve local control and alleviate pain. However, MRI-guided HIFU (MR-HIFU) has not yet been studied extensively in this context. To facilitate related research and accelerate clinical translation, we report a workflow for the in vivo HIFU ablation of the porcine pancreas under MRI guidance.Materials and methods: The pancreases of five healthy German landrace pigs (35-58 kg) were sonicated using a clinical MR-HIFU system. Acoustic access to the pancreas was supported by a specialized diet and a hydrogel compression device for bowel displacement. Organ motion was suspended using periods of apnea. The size of the resulting thermal lesions was assessed using the thermal threshold- and dose profiles, non-perfused volume, and gross examination. The effect of the compression device on beam path length was assessed using MRI imaging.Results: Eight of ten treatments resulted in clearly visible damage in the target tissue upon gross examination. Five treatments resulted in coagulative necrosis. Good agreement between the four metrics for lesion size and a clear correlation between the delivered energy dose and the resulting lesion size were found. The compression device notably shortened the intra-abdominal beam path.Conclusions: We demonstrated a workflow for HIFU treatment of the porcine pancreas in-vivo under MRI-guidance. This development bears significance for the development of MR-guided HIFU interventions on the pancreas as the pig is the preferred animal model for the translation of pre-clinical research into clinical application.
Collapse
Affiliation(s)
- Lukas Christian Sebeke
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Pia Rademann
- Experimental Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Alexandra Claudia Maul
- Experimental Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Claudia Schubert-Quecke
- Experimental Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Thorsten Annecke
- Department of Anesthesiology and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Sin Yuin Yeo
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany.,Profound Medical GmbH, Hamburg, Germany
| | - Juan Daniel Castillo-Gómez
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Patrick Schmidt
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Holger Grüll
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Edwin Heijman
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany.,Philips Research Eindhoven, High Tech, Eindhoven, The Netherlands
| |
Collapse
|
34
|
Drost L, Hynynen K, Huang Y, Lucht B, Wong E, Czarnota G, Yee C, Wan BA, Ganesh V, Chow E, David E. Ultrasound-Guided Focused Ultrasound Treatment for Painful Bone Metastases: A Pilot Study. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1455-1463. [PMID: 32146008 DOI: 10.1016/j.ultrasmedbio.2020.01.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Focused ultrasound (FUS) for palliation of bone metastases has typically been performed under magnetic resonance guidance. To address limitations of this approach, this pilot study evaluated a stand-alone, portable FUS device guided by diagnostic ultrasound alone (ultrasound [US]-guided FUS). Nine patients were treated; safety and efficacy were assessed for 10 d after the procedure, and medical charts were evaluated to assess durability of pain response. The procedure was safe and tolerable, with four patients reporting minor skin-related irritations. Average pain score decreased from 6.9 at baseline to 3.2 at day 10; analgesic use on average also decreased from baseline to day 10. Six patients had durable pain relief as assessed after the follow-up period. Our study provides evidence that US-guided FUS is a safe, tolerable and versatile procedure. It appears to be effective in achieving durable pain response in patients with painful bone metastases. Further research is required to refine the technology and optimize its efficacy.
Collapse
Affiliation(s)
- Leah Drost
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Yuexi Huang
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Lucht
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Erin Wong
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gregory Czarnota
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Caitlin Yee
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Bo Angela Wan
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Vithusha Ganesh
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Edward Chow
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.
| | - Elizabeth David
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Yang T, Ng DM, Du N, He N, Dai X, Chen P, Wu F, Chen B, Fan X, Yan K, Zhou X, Dong M, Zheng Z, Gu L. HIFU for the treatment of difficult colorectal liver metastases with unsuitable indications for resection and radiofrequency ablation: a phase I clinical trial. Surg Endosc 2020; 35:2306-2315. [PMID: 32435962 DOI: 10.1007/s00464-020-07644-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The goal of this study is to evaluate the safety and efficacy of high intensity focused ultrasound (HIFU) for patients with colorectal liver metastases (CRLM) but were contraindicated for resection and radiofrequency ablation. METHODS Patients between 20 and 80 years of age with 1-3 liver metastases from colorectal cancer were selected. Included patients have had their primary lesions removed with no evidence of extrahepatic metastasis prior to the study. Ultrasound-guided HIFU was employed and target regions' ablation was achieved with repeated sonications from the deep to shallow regions of the tumors section by section. RESULTS Thirteen patients were enrolled. The most common adverse events (AEs) were pain (n = 8), followed by fatigue (n = 7), increased aspartate aminotransferase (AST) (n = 7), increased alanine aminotransferase (ALT) (n = 5), and skin edema (n = 4). No grade ≥ 3 AEs occurred and while most patients (76.9%) achieved a complete response, three patients achieved a partial response. The objective response rate was 100% after the first HIFU treatment. Nine patients relapsed but the tumors were mostly isolated to the liver (8/9). The median follow-up period was 25 months. The 2-year progression-free survival (PFS) was 16.7%, and the median PFS was 9 months. Notably, the 2-year overall survival (OS) was 77.8%, and the median OS was 25 months. CONCLUSION This study indicates that the HIFU treatment is safe, is able to achieve a good tumor response rate and long-term prognosis even when the foci were in high-risk locations, and should be considered for patients who were considered unsuitable for other local treatments.
Collapse
Affiliation(s)
- Tong Yang
- Department of Tumor HIFU Therapy, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Haishu District, Northwest Street 41, Ningbo, 315010, Zhejiang, China
| | | | - Nannan Du
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ning He
- Department of Tumor HIFU Therapy, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Xiaoyu Dai
- Department of Anus and Intestine Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Ping Chen
- Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Haishu District, Northwest Street 41, Ningbo, 315010, Zhejiang, China
| | - Feng Wu
- Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Haishu District, Northwest Street 41, Ningbo, 315010, Zhejiang, China
| | - Bo Chen
- Department of Medical Image, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Xiaoxiang Fan
- Department of Interventional Therapy, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Kun Yan
- Department of Medical Image, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Xinfeng Zhou
- Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Haishu District, Northwest Street 41, Ningbo, 315010, Zhejiang, China
| | - Mingjun Dong
- Department of Anus and Intestine Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Zhi Zheng
- Department of Tumor HIFU Therapy, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Lihu Gu
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Haishu District, Northwest Street 41, Ningbo, 315010, Zhejiang, China.
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Haishu District, Northwest Street 41, Ningbo, 315010, Zhejiang, China.
- Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Haishu District, Northwest Street 41, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
36
|
Shi S, Ni G, Ling L, Ding H, Zhou Y, Ding Z. High-Intensity Focused Ultrasound in the Treatment of Abdominal Wall Endometriosis. J Minim Invasive Gynecol 2020; 27:704-711. [DOI: 10.1016/j.jmig.2019.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 02/06/2019] [Accepted: 06/12/2019] [Indexed: 11/16/2022]
|
37
|
Lam NFD, Rivens I, Giles SL, Harris E, deSouza NM, ter Haar G. Prediction of pelvic tumour coverage by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) from referral imaging. Int J Hyperthermia 2020; 37:1033-1045. [PMID: 32873089 PMCID: PMC8352374 DOI: 10.1080/02656736.2020.1812736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Patient suitability for magnetic resonance-guided high intensity focused ultrasound (MRgHIFU) ablation of pelvic tumors is initially evaluated clinically for treatment feasibility using referral images, acquired using standard supine diagnostic imaging, followed by MR screening of potential patients lying on the MRgHIFU couch in a 'best-guess' treatment position. Existing evaluation methods result in ≥40% of referred patients being screened out because of tumor non-targetability. We hypothesize that this process could be improved by development of a novel algorithm for predicting tumor coverage from referral imaging. METHODS The algorithm was developed from volunteer images and tested with patient data. MR images were acquired for five healthy volunteers and five patients with recurrent gynaecological cancer. Subjects were MR imaged supine and in oblique-supine-decubitus MRgHIFU treatment positions. Body outline and bones were segmented for all subjects, with organs-at-risk and tumors also segmented for patients. Supine images were aligned with treatment images to simulate a treatment dataset. Target coverage (of patient tumors and volunteer intra-pelvic soft tissue), i.e. the volume reachable by the MRgHIFU focus, was quantified. Target coverage predicted from supine imaging was compared to that from treatment imaging. RESULTS Mean (±standard deviation) absolute difference between supine-predicted and treatment-predicted coverage for 5 volunteers was 9 ± 6% (range: 2-22%) and for 4 patients, was 12 ± 7% (range: 4-21%), excluding a patient with poor acoustic coupling (coverage difference was 53%). CONCLUSION Prediction of MRgHIFU target coverage from referral imaging appears feasible, facilitating further development of automated evaluation of patient suitability for MRgHIFU.
Collapse
Affiliation(s)
| | - Ian Rivens
- Joint Department of Physics, The Institute of Cancer Research, London, UK
| | - Sharon L. Giles
- The CRUK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Emma Harris
- Joint Department of Physics, The Institute of Cancer Research, London, UK
| | - Nandita M. deSouza
- The CRUK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Gail ter Haar
- Joint Department of Physics, The Institute of Cancer Research, London, UK
| |
Collapse
|
38
|
Maiettini D, Mauri G, Varano G, Bonomo G, Della Vigna P, Rebonato A, Orsi F. Pancreatic ablation: minimally invasive treatment options. Int J Hyperthermia 2019; 36:53-58. [DOI: 10.1080/02656736.2019.1647354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Daniele Maiettini
- Division of Interventional Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giovanni Mauri
- Division of Interventional Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Gianluca Varano
- Division of Interventional Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Guido Bonomo
- Division of Interventional Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Paolo Della Vigna
- Division of Interventional Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alberto Rebonato
- Department of Radiology, AO Ospedali Riuniti Marche Nord, Pesaro, Italy
| | - Franco Orsi
- Division of Interventional Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
39
|
Mauri G, Pacella CM, Papini E, Solbiati L, Goldberg SN, Ahmed M, Sconfienza LM. Image-Guided Thyroid Ablation: Proposal for Standardization of Terminology and Reporting Criteria. Thyroid 2019; 29:611-618. [PMID: 30803397 DOI: 10.1089/thy.2018.0604] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Image-guided tumor ablation is commonly performed in clinical practice. Trying to standardize terminology and data collection to enable a more reliable comparison among the different studies, in 2003, a document entitled "Image-Guided Tumor Ablation: Proposal for Standardization of Terms and Reporting Criteria" was published by the International Working Group on Image-Guided Tumor Ablation. Since then, ablations have evolved significantly, with the development of new technology and techniques and applications. This has included benign thyroid nodules, and their ablation has become increasingly accessible, not only among radiologists but also among other specialists involved in thyroid care, including endocrinologists and surgeons. This has resulted in further inhomogeneity in how data are presented and reported among different studies, resulting in a need for standardization to homogenize language and data reporting on the topic. Summary: In February 2018 in Milano, Italy, a meeting involving specialists concerned with minimally invasive treatments of thyroid lesions was organized, and the Italian Working Group on Minimally Invasive Treatments of the Thyroid was founded with the aim of establishing a collaborative network among all clinicians working in this field. The first work of this group is to present a proposal for standardization of terminology and reporting criteria on image-guided ablations to treat benign thyroid nodules. Conclusion: This proposal was drafted with the goal of providing guidance for standardized reporting of results in studies regarding image-guided thyroid ablations. We encourage adoption of this terminology worldwide, anticipating that this will facilitate improved communication and understanding within the field and stimulate further discussion on the topic over the next years.
Collapse
Affiliation(s)
- Giovanni Mauri
- 1 Divisione di Radiologia Interventistica, IEO, IRCCS Istituto Europeo di Oncologia, Milan, Italy
| | - Claudio Maurizio Pacella
- 2 Dipartimento di Diagnostica per Immagini and Ospedale Regina Apostolorum, Albano Laziale, Italy
| | - Enrico Papini
- 3 Dipartimento di Endocrinologia, Ospedale Regina Apostolorum, Albano Laziale, Italy
| | - Luigi Solbiati
- 4 Dipartimento di Scienze Biomediche, Humanitas University, and Dipartmento di Radiologia, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Shraga Nahum Goldberg
- 5 Department of Radiology, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
- 6 Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Muneeb Ahmed
- 6 Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Luca Maria Sconfienza
- 7 Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- 8 IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
40
|
Yan X, Zhao C, Tian C, Wen S, He X, Zhou Y. Ultrasound-guided high-intensity focused ultrasound ablation for treating uterine arteriovenous malformation. BJOG 2019; 124 Suppl 3:93-96. [PMID: 28856856 DOI: 10.1111/1471-0528.14749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To explore HIFU treatment for uterine arteriovenous malformation. DESIGN A case report. SETTING Gynaecological department in a university teaching hospital of China. POPULATION A patient with uterine arteriovenous malformation. METHODS The diagnosis of uterine arteriovenous malformation was made through MRI. Ultrasound-guided high-intensity focused ultrasound (USgHIFU) ablation was performed. MAIN OUTCOMES MEASURES HIFU is effective in treating uterine arteriovenous malformation. RESULTS The patient had reduction of the lesion volume and obvious symptom relief, without significant adverse effects. CONCLUSIONS HIFU can be used as a new treatment option for uterine arteriovenous malformation. TWEETABLE ABSTRACT Ultrasound-guided high-intensity focused ultrasound ablation is effective in treating uterine arteriovenous malformation.
Collapse
Affiliation(s)
- X Yan
- Seven Section of Department of Gynaecology, The Second Hospital of Hebei Medical University, Hebei, China
| | - C Zhao
- Seven Section of Department of Gynaecology, The Second Hospital of Hebei Medical University, Hebei, China
| | - C Tian
- Seven Section of Department of Gynaecology, The Second Hospital of Hebei Medical University, Hebei, China
| | - S Wen
- Seven Section of Department of Gynaecology, The Second Hospital of Hebei Medical University, Hebei, China
| | - X He
- Seven Section of Department of Gynaecology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Y Zhou
- Seven Section of Department of Gynaecology, The Second Hospital of Hebei Medical University, Hebei, China
| |
Collapse
|
41
|
Matoori S, Roveri M, Tiefenboeck P, Romagna A, Wuerthinger O, Kolokythas O, Froehlich JM. An MRI-guided HIFU-triggered wax-coated capsule for supertargeted drug release: a proof-of-concept study. Eur Radiol Exp 2019; 3:11. [PMID: 30838465 PMCID: PMC6401064 DOI: 10.1186/s41747-019-0090-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/05/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Externally controlling and monitoring drug release at a desired time and location is currently lacking in the gastrointestinal tract. The aim of the study was to develop a thermoresponsive wax-coated capsule and to trigger its release upon applying a magnetic resonance imaging (MRI)-guided high-intensity focused ultrasound (HIFU) pulse. METHODS Capsules containing a lyophilised gadolinium-based contrast agent (GBCA) were coated with a 1:1 (mass/mass) mixture of lanolin and cetyl alcohol (melting point ≈43 °C) and exposed to simulated gastric and intestinal fluids (United States Pharmacopoeia) at 37 °C for 2 and 24 h, respectively. In a HIFU gel phantom, wax-coated capsules (n = 3) were tracked based on their T1- and T2-hypointensity by 1.5-T T1- and T2-weighted MRI pre- and post-exposure to an MRI-guided HIFU pulse. RESULTS Lanolin/cetyl alcohol-coated capsules showed high resistance to simulated gastrointestinal fluids. In a gel phantom, an MRI-guided HIFU pulse punctured the wax coating, resulting in the hydration and release of the encapsulated lyophilised GBCA and yielding a T1-hyperintense signal close to the wax-coated capsule. CONCLUSION We provide the proof-of-concept of applying a non-invasive MRI-guided HIFU pulse to actively induce the disintegration of the wax-coated capsule, and a method to monitor the release of the cargo via T1-weighted MRI based on the hydration of an encapsulated lyophilised GBCA. The wax-coated capsule platform enables temporally and spatially supertargeted drug release via the oral route and promises to address a currently unmet clinical need for personalised local therapy in gastrointestinal diseases such as inflammatory bowel diseases and cancer.
Collapse
Affiliation(s)
- Simon Matoori
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland.
| | - Maurizio Roveri
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Peter Tiefenboeck
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Annatina Romagna
- Clinical Research Group, Klus Apotheke Zurich, Zurich, Switzerland
| | - Olha Wuerthinger
- Clinical Research Group, Klus Apotheke Zurich, Zurich, Switzerland
| | - Orpheus Kolokythas
- Department of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland
- Department of Radiology, University of Washington Medical Center, Seattle, WA, USA
| | - Johannes M Froehlich
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
- Clinical Research Group, Klus Apotheke Zurich, Zurich, Switzerland
- Department of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland
| |
Collapse
|
42
|
Lu J, Guo M, Wang H, Pan H, Wang L, Yu X, Zhang X. Association between Pancreatic Atrophy and Loss of Insulin Secretory Capacity in Patients with Type 2 Diabetes Mellitus. J Diabetes Res 2019; 2019:6371231. [PMID: 31467928 PMCID: PMC6701290 DOI: 10.1155/2019/6371231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/06/2019] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS To examine pancreatic volume (PV) changes among patients with different duration of type 2 diabetes and whether pancreatic atrophy was associated with loss of insulin secretory capacity. METHODS This cross-sectional study (203 patients with type 2 diabetes, 93 controls without diabetes) was conducted from January 2016 to December 2017. Patients with type 2 diabetes were divided into 3 groups: recently diagnosed (duration ≤ 2 years), midterm (duration 3-9 years), and long term (duration ≥ 10 years). All the patients were scanned with upper abdominal computerized tomography; PV was then calculated by an experienced technician. Absolute insulin deficiency was defined as fasting C - peptide < 0.9 ng/mL. RESULTS Compared with PV (cm3) in the controls, the mean PV was similar in patients with recently diagnosed type 2 diabetes (68.8 versus 71.0, P = 0.56) but significantly reduced in patients with midterm (68.8 versus 60.8, P < 0.05) and long-term (68.8 versus 53.1, P < 0.001) type 2 diabetes. A similar trend was observed for the PV index (PV adjusted for body surface area and body mass index). Furthermore, rates of pancreatic atrophy and absolute insulin deficiency increased with duration of diabetes. Multiple logistic regression analysis indicated that pancreatic atrophy was associated with higher likelihood of absolute insulin deficiency (odds ratio = 4.47, 95%confidence interval = 1.45-13.8). CONCLUSIONS PV was reduced in those with midterm and long-term type 2 diabetes compared to individuals without type 2 diabetes. Overall, pancreatic atrophy was associated with the loss of insulin secretory capacity in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Jun Lu
- Department of Endocrinology and Metabolism, Shanghai University of Medicine & Health Sciences Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai 201499, China
- Department of Comprehensive Diagnosis and Treatment for Diabetes, Shanghai University of Medicine & Health Sciences Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai 201499, China
| | - Meixiang Guo
- Department of Endocrinology and Metabolism, Shanghai University of Medicine & Health Sciences Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai 201499, China
- Department of Comprehensive Diagnosis and Treatment for Diabetes, Shanghai University of Medicine & Health Sciences Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai 201499, China
| | - Hongtao Wang
- Department of Endocrinology and Metabolism, Shanghai University of Medicine & Health Sciences Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai 201499, China
- Department of Comprehensive Diagnosis and Treatment for Diabetes, Shanghai University of Medicine & Health Sciences Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai 201499, China
| | - Haibin Pan
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai 201499, China
| | - Liang Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, Tennessee 37614, USA
| | - Xuemei Yu
- Department of Endocrinology and Metabolism, Shanghai University of Medicine & Health Sciences Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai 201499, China
- Department of Comprehensive Diagnosis and Treatment for Diabetes, Shanghai University of Medicine & Health Sciences Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai 201499, China
| | - Xueli Zhang
- Department of Comprehensive Diagnosis and Treatment for Diabetes, Shanghai University of Medicine & Health Sciences Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai 201499, China
| |
Collapse
|
43
|
Saccomandi P, Lapergola A, Longo F, Schena E, Quero G. Thermal ablation of pancreatic cancer: A systematic literature review of clinical practice and pre-clinical studies. Int J Hyperthermia 2018; 35:398-418. [PMID: 30428728 DOI: 10.1080/02656736.2018.1506165] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Pancreatic cancer is a challenging malignancy with low treatment option and poor life expectancy. Thermal ablation techniques were proposed as alternative treatment options, especially in advanced stages and for unfit-for-surgery patients. This systematic review describes the thermal ablative techniques -i.e., Laser (LA), Radiofrequency (RFA), Microwave (MWA) Ablation, High-Intensity Focused Ultrasound (HIFU) and cryoablation- available for pancreatic cancer treatment. Additionally, an analysis of the efficacy, complication rate and overall survival for each technique is conducted. MATERIAL AND METHODS This review collects the ex vivo, preclinical and clinical studies presenting the use of thermal techniques in the pancreatic cancer treatment, searched up to March 2018 in PubMed and Medline. Abstracts, letters-to-the-editor, expert opinions, reviews and non-English language manuscripts were excluded. RESULTS Sixty-five papers were included. For the ex vivo and preclinical studies, there are: 12 records for LA, 8 for RFA, 0 for MWA, 6 for HIFU, 1 for cryoablation and 3 for hybrid techniques. For clinical studies, 1 paper for LA, 14 for RFA, 1 for MWA, 17 for HIFU, 1 for cryoablation and 1 for hybrid techniques. CONCLUSIONS Important technological advances are presented in ex vivo and preclinical studies, as the real-time thermometry, nanotechnology and hybrid techniques to enhance the thermal outcome. Conversely, a lack of standardization in the clinical employment of the procedures emerged, leading to contrasting results on the safety and feasibility of some analyzed techniques. Uniform conclusions on the safety and feasibility of these techniques for pancreatic cancer will require further structured investigation.
Collapse
Affiliation(s)
- Paola Saccomandi
- a IHU-Strasbourg Institute of Image-Guided Surgery , Strasbourg , France.,b Departement of Mechanical Engineering, Politecnico di Milano , Milan , Italy
| | - Alfonso Lapergola
- a IHU-Strasbourg Institute of Image-Guided Surgery , Strasbourg , France.,c Università G. D'Annunzio , Chieti , Italy
| | - Fabio Longo
- a IHU-Strasbourg Institute of Image-Guided Surgery , Strasbourg , France.,d Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Rome , Italy
| | | | - Giuseppe Quero
- d Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Rome , Italy
| |
Collapse
|
44
|
Ji Y, Zhang Y, Zhu J, Zhu L, Zhu Y, Hu K, Zhao H. Response of patients with locally advanced pancreatic adenocarcinoma to high-intensity focused ultrasound treatment: a single-center, prospective, case series in China. Cancer Manag Res 2018; 10:4439-4446. [PMID: 30349376 PMCID: PMC6188211 DOI: 10.2147/cmar.s173740] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose Patients with unresectable locally advanced pancreatic cancer (LAPC) are still in dire need of effective therapies. We performed this cohort study in order to assess the efficacy and safety of high-intensity focused ultrasound (HIFU) ablation in treating patients with unresectable LAPC. Patients and methods Eighty-seven cases with unresectable LAPC from January 2014 to December 2016 were finally recruited according to the inclusion criteria. The primary end point of our study was OS of all the cases, and the secondary end points included 6-month and 12-month survival rate, tumor response rate, carbohydrate antigen (CA) 19-9 response rate, VAS, quality of life, and safety. Results All the 87 patients received HIFU ablation successfully, and were included in the efficacy and safety analysis. With a median follow-up of 16 months, median OS was estimated to be 12.2 months, with 95 % CI of 11.1–12.7 months. The 6-month and 12-month survival rates were 94.25% (95% CI =86.74–97.57) and 50.85% (95% CI =38.17–62.21), respectively. Multivariate analysis revealed that patients with VAS <4, Karnofsky performance status ≥80, and tumor size <3 cm have a significant improvement in their OS (adjusted HR [aHR] =0.26 [95% CI =0.12–0.57], P=0.001; aHR =0.34 [95% CI =0.17–0.68], P=0.02; and aHR =0.39 [95% CI =0.20–0.78], P=0.007; respectively). Tumor responses were observed in 32 (36.8%) of 87 patients and CA 19-9 response rate was 56.2%. Global health status, physical function, emotional function, and cognitive function of patients were significantly improved after HIFU treatment, and symptoms of fatigue and pain were significantly reduced. A total of 28.7% (25/87) of patients reported adverse events (AEs), mainly including fatigue (14/87), abdominal pain (7/87), fever (7/87), nausea (5/87), and rash (4/87). No severe AEs and HIFU-related deaths were reported. Conclusion HIFU ablation might be a potentially effective and safe therapeutic option for the patients with unresectable LAPC.
Collapse
Affiliation(s)
- Yongshuo Ji
- HIFU Center of Oncology Department, Huadong Hospital Affiliated to Fudan University, Shanghai 200000, China,
| | - Yu Zhang
- HIFU Center of Oncology Department, Huadong Hospital Affiliated to Fudan University, Shanghai 200000, China,
| | - Junqiu Zhu
- HIFU Center of Oncology Department, Huadong Hospital Affiliated to Fudan University, Shanghai 200000, China,
| | - Linglin Zhu
- HIFU Center of Oncology Department, Huadong Hospital Affiliated to Fudan University, Shanghai 200000, China,
| | - Yanfei Zhu
- HIFU Center of Oncology Department, Huadong Hospital Affiliated to Fudan University, Shanghai 200000, China,
| | - Kaimeng Hu
- Marketing Department, Shanghai A&S Science Technology Development Co., Ltd, Shanghai 200000, China
| | - Hong Zhao
- HIFU Center of Oncology Department, Huadong Hospital Affiliated to Fudan University, Shanghai 200000, China,
| |
Collapse
|
45
|
Canavese G, Ancona A, Racca L, Canta M, Dumontel B, Barbaresco F, Limongi T, Cauda V. Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2018; 340:155-172. [PMID: 30881202 PMCID: PMC6420022 DOI: 10.1016/j.cej.2018.01.060] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
At present, ultrasound radiation is broadly employed in medicine for both diagnostic and therapeutic purposes at various frequencies and intensities. In this review article, we focus on therapeutically-active nanoparticles (NPs) when stimulated by ultrasound. We first introduce the different ultrasound-based therapies with special attention to the techniques involved in the oncological field, then we summarize the different NPs used, ranging from soft materials, like liposomes or micro/nano-bubbles, to metal and metal oxide NPs. We therefore focus on the sonodynamic therapy and on the possible working mechanisms under debate of NPs-assisted sonodynamic treatments. We support the idea that various, complex and synergistics physical-chemical processes take place during acoustic cavitation and NP activation. Different mechanisms are therefore responsible for the final cancer cell death and strongly depends not only on the type and structure of NPs or nanocarriers, but also on the way they interact with the ultrasonic pressure waves. We conclude with a brief overview of the clinical applications of the various ultrasound therapies and the related use of NPs-assisted ultrasound in clinics, showing that this very innovative and promising approach is however still at its infancy in the clinical cancer treatment.
Collapse
Affiliation(s)
- Giancarlo Canavese
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Center for Sustainable Future Technologies CSFT@Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Turin, Italy
| | - Andrea Ancona
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Luisa Racca
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marta Canta
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Bianca Dumontel
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Federica Barbaresco
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Center for Sustainable Future Technologies CSFT@Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Turin, Italy
| |
Collapse
|
46
|
Irreversible Electroporation in Patients with Pancreatic Cancer: How Important Is the New Weapon? BIOMED RESEARCH INTERNATIONAL 2018; 2018:5193067. [PMID: 29854763 PMCID: PMC5944201 DOI: 10.1155/2018/5193067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/12/2018] [Indexed: 12/23/2022]
Abstract
Background Pancreatic cancer (PC) is a deadly disease with poor prognosis in the general population. We aimed to quantitate overall survival of patients with PC after irreversible electroporation (IRE) and the incidence of relevant complications. Methods We performed a literature search via five electronic databases (PubMed, Embase, Web of Science, Scopus, and Cochrane Library databases) up to August 2017. The primary outcomes were overall survival and prognosis. Secondary outcomes included the response of post-IRE complications. Fixed-effects or random-effects meta-analysis was conducted to pool these data. Results A total of 15 eligible articles involving 535 patients were included. The primary outcomes showed that the pooled prevalence estimates of overall survival were 94.1% (95% CI: 90.7–97.5), 80.9% (95% CI: 72.5–89.4), 54.5% (95% CI: 38.3–70.6), and 33.8% (95% CI: 14.2–53.5) at 3, 6, 12, and 24 months, and the pooled prevalence data of complete response (CR) at 2 months, partial response (PR) at 3 months, and progression at 3 months were 12.5% (95% CI: 2.9–22.2), 48.5% (95% CI: 39.4–57.6), and 19.7% (95% CI: 7.3–32.2), respectively. The secondary outcomes showed that the pooled prevalence values of post-IRE complications were abscess 6.6% (95% CI: 0.2–13), fistula 10.6% (95% CI: 2.5–18.7), pain 33.5% (95% CI: 14.5–52.5), infection 16.1% (95% CI: 3.9–28.4), thrombosis 4.9% (95% CI: 1.2–8.5), pancreatitis 7.2% (95% CI: 3.1–11.2), bleeding 4.2% (95% CI: −0.5–8.9), cholangitis 4.2% (95% CI: −0.5–8.9), nausea 9.6% (95% CI: 4.4–14.8), biliary obstruction 13.8% (95% CI: 4.2–23.3), chest tightness 7.6% (95% CI: 0.5–14.6), and hypoglycemia 5.9% (95% CI: −0.4–12.2). Conclusions This meta-analysis indicated a clear survival benefit for PC patients who received irreversible electroporation therapy, although future safety and effectivity monitoring from more large-scale studies will be needed.
Collapse
|
47
|
Civale J, Rivens I, Shaw A, Ter Haar G. Focused ultrasound transducer spatial peak intensity estimation: a comparison of methods. Phys Med Biol 2018; 63:055015. [PMID: 29437152 PMCID: PMC6298580 DOI: 10.1088/1361-6560/aaaf01] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Characterisation of the spatial peak intensity at the focus of high intensity focused ultrasound transducers is difficult because of the risk of damage to hydrophone sensors at the high focal pressures generated. Hill et al (1994 Ultrasound Med. Biol. 20 259-69) provided a simple equation for estimating spatial-peak intensity for solid spherical bowl transducers using measured acoustic power and focal beamwidth. This paper demonstrates theoretically and experimentally that this expression is only strictly valid for spherical bowl transducers without a central (imaging) aperture. A hole in the centre of the transducer results in over-estimation of the peak intensity. Improved strategies for determining focal peak intensity from a measurement of total acoustic power are proposed. Four methods are compared: (i) a solid spherical bowl approximation (after Hill et al 1994 Ultrasound Med. Biol. 20 259-69), (ii) a numerical method derived from theory, (iii) a method using measured sidelobe to focal peak pressure ratio, and (iv) a method for measuring the focal power fraction (FPF) experimentally. Spatial-peak intensities were estimated for 8 transducers at three drive powers levels: low (approximately 1 W), moderate (~10 W) and high (20-70 W). The calculated intensities were compared with those derived from focal peak pressure measurements made using a calibrated hydrophone. The FPF measurement method was found to provide focal peak intensity estimates that agreed most closely (within 15%) with the hydrophone measurements, followed by the pressure ratio method (within 20%). The numerical method was found to consistently over-estimate focal peak intensity (+40% on average), however, for transducers with a central hole it was more accurate than using the solid bowl assumption (+70% over-estimation). In conclusion, the ability to make use of an automated beam plotting system, and a hydrophone with good spatial resolution, greatly facilitates characterisation of the FPF, and consequently gives improved confidence in estimating spatial peak intensity from measurement of acoustic power.
Collapse
Affiliation(s)
- John Civale
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| | | | | | | |
Collapse
|
48
|
Mauri G, Nicosia L, Xu Z, Di Pietro S, Monfardini L, Bonomo G, Varano GM, Prada F, Della Vigna P, Orsi F. Focused ultrasound: tumour ablation and its potential to enhance immunological therapy to cancer. Br J Radiol 2018; 91:20170641. [PMID: 29168922 PMCID: PMC5965486 DOI: 10.1259/bjr.20170641] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/16/2017] [Accepted: 11/16/2017] [Indexed: 12/27/2022] Open
Abstract
Various kinds of image-guided techniques have been successfully applied in the last years for the treatment of tumours, as alternative to surgical resection. High intensity focused ultrasound (HIFU) is a novel, totally non-invasive, image-guided technique that allows for achieving tissue destruction with the application of focused ultrasound at high intensity. This technique has been successfully applied for the treatment of a large variety of diseases, including oncological and non-oncological diseases. One of the most fascinating aspects of image-guided ablations, and particularly of HIFU, is the reported possibility of determining a sort of stimulation of the immune system, with an unexpected "systemic" response to treatments designed to be "local". In the present article the mechanisms of action of HIFU are described, and the main clinical applications of this technique are reported, with a particular focus on the immune-stimulation process that might originate from tumour ablations.
Collapse
Affiliation(s)
- Giovanni Mauri
- Deparmtent of interventional radiology, European istitute of oncology, Milan, Italy
| | - Luca Nicosia
- Postgraduate School of Radiology, Università degli Studi di Milano, Milan, Italy
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Salvatore Di Pietro
- Postgraduate School of Radiology, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Monfardini
- Department of Radiology and diagnotic imaging, Poliambulazna di Brescia, Brescia, Italy
| | - Guido Bonomo
- Deparmtent of interventional radiology, European istitute of oncology, Milan, Italy
| | | | | | - Paolo Della Vigna
- Deparmtent of interventional radiology, European istitute of oncology, Milan, Italy
| | - Franco Orsi
- Deparmtent of interventional radiology, European istitute of oncology, Milan, Italy
| |
Collapse
|
49
|
Marinova M, Strunk HM, Rauch M, Henseler J, Clarens T, Brüx L, Dolscheid-Pommerich R, Conrad R, Cuhls H, Radbruch L, Schild HH, Mücke M. [High-intensity focused ultrasound (HIFU) for tumor pain relief in inoperable pancreatic cancer : Evaluation with the pain sensation scale (SES)]. Schmerz 2018; 31:31-39. [PMID: 27402264 DOI: 10.1007/s00482-016-0140-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND High-intensity focused ultrasound (HIFU) in combination with palliative standard therapy is an innovative and effective treatment option for pain reduction in patients with inoperable pancreatic cancer. OBJECTIVE Evaluation of the effects of additive ultrasound (US)-guided HIFU treatment in inoperable pancreatic cancer on the sensory and affective pain perception using validated questionnaries. MATERIAL AND METHODS In this study 20 patients with locally advanced inoperable pancreatic cancer and tumor-related pain were treated by US-guided HIFU (6 stage III, 12 stage IV according to UICC and 2 with local recurrence after surgery). Ablation was performed using the JC HIFU system (HAIFU, Chongqing, China) with an ultrasonic device for real-time imaging. Clinical assessment included evaluation of pain severity using validated questionnaires with particular attention to the pain sensation scale (SES) with its affective and sensory component and the numeric rating scale (NRS). RESULTS The average pain reduction after HIFU was 2.87 points on the NRS scale and 57.3 % compared to the mean baseline score (n = 15, 75 %) in 19 of 20 treated patients. Four patients did not report pain relief, however, the previous opioid medication could be stopped (n = 2) or the analgesic dosage could be reduced (n = 2). No pain reduction was achieved in one patient. Furthermore, after HIFU emotional as well as sensory pain aspects were significantly reduced (before vs. 1 week after HIFU, p < 0.05 for all pain scales). CONCLUSION US-guided HIFU can be used for effective and early pain relief and reduction of emotional and sensory pain sensation in patients with locally advanced pancreatic cancer.
Collapse
Affiliation(s)
- M Marinova
- Radiologische Klinik, Universitätsklinikum, Siegmund-Freud-Str. 25, 53105, Bonn, Deutschland.
| | - H M Strunk
- Radiologische Klinik, Universitätsklinikum, Siegmund-Freud-Str. 25, 53105, Bonn, Deutschland
| | - M Rauch
- Radiologische Klinik, Universitätsklinikum, Siegmund-Freud-Str. 25, 53105, Bonn, Deutschland
| | - J Henseler
- Radiologische Klinik, Universitätsklinikum, Siegmund-Freud-Str. 25, 53105, Bonn, Deutschland
| | - T Clarens
- Radiologische Klinik, Universitätsklinikum, Siegmund-Freud-Str. 25, 53105, Bonn, Deutschland
| | - L Brüx
- Radiologische Klinik, Universitätsklinikum, Siegmund-Freud-Str. 25, 53105, Bonn, Deutschland
| | - R Dolscheid-Pommerich
- Institut für Klinische Chemie und Pharmakologie, Universitätsklinikum, Bonn, Deutschland
| | - R Conrad
- Klinik und Poliklinik für Psychosomatische Medizin und Psychotherapie, Universitätsklinikum, Bonn, Deutschland
| | - H Cuhls
- Klinik und Poliklinik für Palliativmedizin, Universitätsklinikum, Bonn, Deutschland
| | - L Radbruch
- Klinik und Poliklinik für Palliativmedizin, Universitätsklinikum, Bonn, Deutschland
| | - H H Schild
- Radiologische Klinik, Universitätsklinikum, Siegmund-Freud-Str. 25, 53105, Bonn, Deutschland
| | - M Mücke
- Klinik und Poliklinik für Palliativmedizin, Universitätsklinikum, Bonn, Deutschland
- Institut für Hausarztmedizin, Universitätsklinikum, Bonn, Deutschland
| |
Collapse
|
50
|
Vogl TJ, Panahi B, Albrecht MH, Naguib NNN, Nour-Eldin NEA, Gruber-Rouh T, Thompson ZM, Basten LM. Microwave ablation of pancreatic tumors. MINIM INVASIV THER 2017; 27:33-40. [PMID: 29278340 DOI: 10.1080/13645706.2017.1420664] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To evaluate the clinical performance of percutaneous microwave ablation (MWA) for treatment of locally-advanced-pancreatic-cancer (LAPC). MATERIAL AND METHODS Twenty-two MWA sessions (August 2015-March 2017) in 20 patients with primary pancreatic cancer (13 men, 7 women, mean-age: 59.9 ± 8.6 years, range: 46-73 years), who had given informed consent, were retrospectively evaluated. All procedures were performed percutaneously under CT-guidance using the same high-frequency (2.45-GHz) MWA device. Tumor location and diameter, ablation diameter and volume, roundness, duration, technical success and efficacy, output energy, complications, and local tumor progression defined as a tumor focus connected to the edge of a previously technically efficient ablation zone were collected. RESULTS Seventeen pancreatic malignant tumors (77.3%) were located in the pancreatic head and five (22.7%) in the pancreatic tail. Initial Mean Tumor Diameter was 30 ± 6 mm. Technical success and efficacy were idem (100%). No major complications occurred. Two patients (9.1%) showed minor complications of severe local pain related to MWA. Post-ablation diameter was on average 34.4 ± 5.8 mm. Mean ablation volume was 7.8 ± 3.8 cm³. The mean transverse roundness index was 0.74 ± 0.14. Mean ablation time was 2.6 ± 0.96 min. The mean applied energy per treatment was 9627 ± 3953 J. Local tumor progression was documented in one case (10%) of the 10/22 available three-month follow-up imaging studies. CONCLUSION High-frequency (2.45 GHz) microwave ablation (MWA) for treatment of unresectable and non-metastatic locally-advanced-pancreatic-cancer (LAPC) shows promising results regarding feasibility and safety of percutaneous approach after short-term follow-up and should be further evaluated.
Collapse
Affiliation(s)
- Thomas J Vogl
- a Department of Diagnostic and Interventional Radiology , Frankfurt-University Hospital , Frankfurt am Main , Germany
| | - Bita Panahi
- a Department of Diagnostic and Interventional Radiology , Frankfurt-University Hospital , Frankfurt am Main , Germany
| | - Moritz H Albrecht
- a Department of Diagnostic and Interventional Radiology , Frankfurt-University Hospital , Frankfurt am Main , Germany
| | - Nagy Naguib Naeem Naguib
- a Department of Diagnostic and Interventional Radiology , Frankfurt-University Hospital , Frankfurt am Main , Germany
| | - Nour-Eldin A Nour-Eldin
- a Department of Diagnostic and Interventional Radiology , Frankfurt-University Hospital , Frankfurt am Main , Germany
| | - Tatjana Gruber-Rouh
- a Department of Diagnostic and Interventional Radiology , Frankfurt-University Hospital , Frankfurt am Main , Germany
| | - Zachary M Thompson
- b Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA
| | - Lajos M Basten
- a Department of Diagnostic and Interventional Radiology , Frankfurt-University Hospital , Frankfurt am Main , Germany
| |
Collapse
|