1
|
Xu L, Xu P, Wang J, Ji H, Zhang L, Tang Z. Advancements in clinical research and emerging therapies for triple-negative breast cancer treatment. Eur J Pharmacol 2025; 988:177202. [PMID: 39675457 DOI: 10.1016/j.ejphar.2024.177202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Triple-negative breast cancer (TNBC), defined by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) expression, is acknowledged as the most aggressive form of breast cancer (BC), comprising 15%-20% of all primary cases. Despite the prevalence of TNBC, effective and well-tolerated targeted therapies remain limited, with chemotherapy continuing to be the mainstay of treatment. However, the horizon is brightened by recent advancements in immunotherapy and antibody-drug conjugates (ADCs), which have garnered the U.S. Food and Drug Administration (FDA) approval for various stages of TNBC. Poly (ADP-ribose) polymerase inhibitors (PARPi), particularly for TNBC with BRCA mutations, present a promising avenue, albeit with the challenge of resistance that must be addressed. The success of phosphoinositide-3 kinase (PI3K) pathway inhibitors in hormone receptor (HR)-positive BC suggests potential applicability in TNBC, spurring optimism within the research community. This review endeavors to offer a comprehensive synthesis of both established and cutting-edge targeted therapies for TNBC. We delve into the specifics of PARPi, androgen receptor (AR) inhibitors, Cancer stem cells (CSCs), PI3K/Protein Kinase B (AKT)/mammalian target of rapamycin (mTOR), the transforming growth factor-beta (TGF-β), Ntoch, Wnt/β-catenin, hedgehog (Hh) pathway inhibitors, Epigenetic target-mediated drug delivery, ADCs, immune checkpoint inhibitors (ICIs)and novel immunotherapeutic solutions, contextualizing TNBC within current treatment paradigms. By elucidating the mechanisms of these drugs and their prospective clinical applications, we aim to shed light on the challenges and underscore the beacon of hope that translational research and innovative therapies represent for the oncology field.
Collapse
Affiliation(s)
- Lili Xu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Pengtao Xu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Jingsong Wang
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, 628000, China
| | - Hui Ji
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
2
|
Benvenuti G, Marzi S, Vidiri A, Baldi J, Ceddia S, Riva F, Covello R, Terrenato I, Anelli V. Prediction of tumor response to neoadjuvant chemotherapy in high-grade osteosarcoma using clustering-based analysis of magnetic resonance imaging: an exploratory study. LA RADIOLOGIA MEDICA 2024:10.1007/s11547-024-01921-9. [PMID: 39528860 DOI: 10.1007/s11547-024-01921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE To evaluate the ability of magnetic resonance imaging (MRI)-based clustering analysis to predict the pathological response to neoadjuvant chemotherapy (NACT) in patients with primary high-grade osteosarcoma. MATERIALS AND METHODS Twenty-two patients were included in this retrospective study. All patients underwent MRIs before and after NACT. The entire tumor volume was manually delineated on post-contrast T1-weighted images and subsegmented into three clusters using the K-means algorithm. Histogram-based parameters were calculated for each lesion. The response to NACT was obtained from the histopathological assessment of the tumor necrosis rate following resection. The Mann-Whitney test was used to compare poor and fair-to-good responders. The receiver operating characteristic curve was used to evaluate the diagnostic performance of the optimal parameters. RESULTS At baseline, poor responders showed a significantly larger volume of cluster1 (Vol1) than fair-to-good responders (p = 0.038). After NACT, they exhibited a lower 10th percentile (P10) and kurtosis (p = 0.038 and 0.002, respectively). Vol1 at baseline and P10 after NACT had an AUC of 77% (95% CI 56-98%). The kurtosis after NACT had the best discriminative power, with an AUC of 89.7% (95% CI 75-100%). CONCLUSION The MRI-based histogram and clustering analysis provided a good ability to differentiate between poor and fair-to-good responders before and after NACT. Further investigations using larger datasets are required to corroborate our findings.
Collapse
Affiliation(s)
- Giovanni Benvenuti
- Radiology and Diagnostic Imaging Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Simona Marzi
- Medical Physics Laboratory, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Antonello Vidiri
- Radiology and Diagnostic Imaging Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Jacopo Baldi
- Oncological Orthopaedics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Serena Ceddia
- Sarcomas and Rare Tumors Departmental Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Federica Riva
- Sarcomas and Rare Tumors Departmental Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
- Department of Clinical and Molecular Medicine, "La Sapienza" University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy
| | - Renato Covello
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Irene Terrenato
- Biostatistics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Vincenzo Anelli
- Radiology and Diagnostic Imaging Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
3
|
Mohamed RM, Panthi B, Adrada BE, Boge M, Candelaria RP, Chen H, Guirguis MS, Hunt KK, Huo L, Hwang KP, Korkut A, Litton JK, Moseley TW, Pashapoor S, Patel MM, Reed B, Scoggins ME, Son JB, Thompson A, Tripathy D, Valero V, Wei P, White J, Whitman GJ, Xu Z, Yang W, Yam C, Ma J, Rauch GM. Multiparametric MRI-based radiomic models for early prediction of response to neoadjuvant systemic therapy in triple-negative breast cancer. Sci Rep 2024; 14:16073. [PMID: 38992094 PMCID: PMC11239818 DOI: 10.1038/s41598-024-66220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is often treated with neoadjuvant systemic therapy (NAST). We investigated if radiomic models based on multiparametric Magnetic Resonance Imaging (MRI) obtained early during NAST predict pathologic complete response (pCR). We included 163 patients with stage I-III TNBC with multiparametric MRI at baseline and after 2 (C2) and 4 cycles of NAST. Seventy-eight patients (48%) had pCR, and 85 (52%) had non-pCR. Thirty-six multivariate models combining radiomic features from dynamic contrast-enhanced MRI and diffusion-weighted imaging had an area under the receiver operating characteristics curve (AUC) > 0.7. The top-performing model combined 35 radiomic features of relative difference between C2 and baseline; had an AUC = 0.905 in the training and AUC = 0.802 in the testing set. There was high inter-reader agreement and very similar AUC values of the pCR prediction models for the 2 readers. Our data supports multiparametric MRI-based radiomic models for early prediction of NAST response in TNBC.
Collapse
Affiliation(s)
- Rania M Mohamed
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bikash Panthi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beatriz E Adrada
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
| | - Medine Boge
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
- Koc University Hospital, Istanbul, Turkey
| | - Rosalind P Candelaria
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
| | - Huiqin Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary S Guirguis
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken-Pin Hwang
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tanya W Moseley
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanaz Pashapoor
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
| | - Miral M Patel
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
| | - Brandy Reed
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marion E Scoggins
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
| | - Jong Bum Son
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gary J Whitman
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
| | - Zhan Xu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Yang
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gaiane M Rauch
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA.
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Hu Y, Hu Q, Liu Z, Huang C, Xia L. Histogram analysis comparison of readout-segmented and single-shot echo-planar imaging for differentiating luminal from non-luminal breast cancer. Sci Rep 2024; 14:12135. [PMID: 38802446 PMCID: PMC11130195 DOI: 10.1038/s41598-024-62514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
To compare diffusion-kurtosis imaging (DKI) and diffusion-weighted imaging (DWI) parameters of single-shot echo-planar imaging (ss-EPI) and readout-segmented echo-planar imaging (rs-EPI) in the differentiation of luminal vs. non-luminal breast cancer using histogram analysis. One hundred and sixty women with 111 luminal and 49 non-luminal breast lesions were enrolled in this study. All patients underwent ss-EPI and rs-EPI sequences on a 3.0T scanner. Histogram metrics were derived from mean kurtosis (MK), mean diffusion (MD) and the apparent diffusion coefficient (ADC) maps of two DWI sequences respectively. Student's t test or Mann-Whitney U test was performed for differentiating luminal subtype from non-luminal subtype. The ROC curves were plotted for evaluating the diagnostic performances of significant histogram metrics in differentiating luminal from non-luminal BC. The histogram metrics MKmean, MK50th, MK75th of luminal BC were significantly higher than those of non-luminal BC for both two DWI sequences (all P<0.05). Histogram metrics from rs-EPI sequence had better diagnostic performance in differentiating luminal from non-Luminal breast cancer compared to those from ss-EPI sequence. MK75th derived from rs-EPI sequence was the most valuable single metric (AUC, 0.891; sensitivity, 78.4%; specificity, 87.8%) for differentiating luminal from non-luminal BC among all the histogram metrics. Histogram metrics of MK derived from rs-EPI yielded better diagnostic performance for distinguishing luminal from non-luminal BC than that from ss-EPI. MK75th was the most valuable metric among all the histogram metrics.
Collapse
Affiliation(s)
- Yiqi Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qilan Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhiqiang Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Cicheng Huang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Liming Xia
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Zeng F, Yang Z, Tang X, Lin L, Lin H, Wu Y, Wang Z, Chen M, Chen L, Chen L, Wu PY, Wang C, Xue Y. Whole-tumor histogram models based on quantitative maps from synthetic MRI for predicting axillary lymph node status in invasive ductal breast cancer. Eur J Radiol 2024; 172:111325. [PMID: 38262156 DOI: 10.1016/j.ejrad.2024.111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
PURPOSE To investigate the potential of using histogram analysis of synthetic MRI (SyMRI) images before and after contrast enhancement to predict axillary lymph node (ALN) status in patients with invasive ductal carcinoma (IDC). METHODS From January 2022 to October 2022, a total of 212 patients with IDC underwent breast MRI examination including SyMRI. Standard T2 weight images, DCE-MRI and quantitative maps of SyMRI were obtained. 13 features of the entire tumor were extracted from these quantitative maps, standard T2 weight images and DCE-MRI. Statistical analyses, including Student's t-test, Mann-Whiney U test, logistic regression, and receiver operating characteristic (ROC) curves, were used to evaluate the data. The mean values of SyMRI quantitative parameters derived from the conventional 2D region of interest (ROI) were also evaluated. RESULTS The combined model based on T1-Gd quantitative map (energy, minimum, and variance) and clinical features (age and multifocality) achieved the best diagnostic performance in the prediction of ALN between N0 (with non-metastatic ALN) and N+ group (metastatic ALN ≥ 1) with the AUC of 0.879. Among individual quantitative maps and standard sequence-derived models, the synthetic T1-Gd model showed the best performance for the prediction of ALN between N0 and N+ groups (AUC = 0.823). Synthetic T2_entropy and PD-Gd_energy were useful for distinguishing N1 group (metastatic ALN ≥ 1 and ≤ 3) from the N2-3 group (metastatic ALN > 3) with an AUC of 0.722. CONCLUSIONS Whole-tumor histogram features derived from quantitative parameters of SyMRI can serve as a complementary noninvasive method for preoperatively predicting ALN metastases.
Collapse
Affiliation(s)
- Fang Zeng
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Zheting Yang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Xiaoxue Tang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Lin Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Hailong Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Yue Wu
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Zongmeng Wang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Minyan Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China; Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province 350001, China
| | - Lili Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China; Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province 350001, China
| | - Lihong Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Pu-Yeh Wu
- GE Healthcare, Beijing 100176, China
| | - Chuang Wang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China; Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province 350001, China.
| | - Yunjing Xue
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China; School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian Province 350004, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), China.
| |
Collapse
|
6
|
Zhang W, Liang F, Zhao Y, Li J, He C, Zhao Y, Lai S, Xu Y, Ding W, Wei X, Jiang X, Yang R, Zhen X. Multiparametric MR-based feature fusion radiomics combined with ADC maps-based tumor proliferative burden in distinguishing TNBC versus non-TNBC. Phys Med Biol 2024; 69:055032. [PMID: 38306970 DOI: 10.1088/1361-6560/ad25c0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
Objective.To investigate the incremental value of quantitative stratified apparent diffusion coefficient (ADC) defined tumor habitats for differentiating triple negative breast cancer (TNBC) from non-TNBC on multiparametric MRI (mpMRI) based feature-fusion radiomics (RFF) model.Approach.466 breast cancer patients (54 TNBC, 412 non-TNBC) who underwent routine breast MRIs in our hospital were retrospectively analyzed. Radiomics features were extracted from whole tumor on T2WI, diffusion-weighted imaging, ADC maps and the 2nd phase of dynamic contrast-enhanced MRI. Four models including the RFFmodel (fused features from all MRI sequences), RADCmodel (ADC radiomics feature), StratifiedADCmodel (tumor habitas defined on stratified ADC parameters) and combinational RFF-StratifiedADCmodel were constructed to distinguish TNBC versus non-TNBC. All cases were randomly divided into a training (n= 337) and test set (n= 129). The four competing models were validated using the area under the curve (AUC), sensitivity, specificity and accuracy.Main results.Both the RFFand StratifiedADCmodels demonstrated good performance in distinguishing TNBC from non-TNBC, with best AUCs of 0.818 and 0.773 in the training and test sets. StratifiedADCmodel revealed significant different tumor habitats (necrosis/cysts habitat, chaotic habitat or proliferative tumor core) between TNBC and non-TNBC with its top three discriminative parameters (p <0.05). The integrated RFF-StratifiedADCmodel demonstrated superior accuracy over the other three models, with higher AUCs of 0.832 and 0.784 in the training and test set, respectively (p <0.05).Significance.The RFF-StratifiedADCmodel through integrating various tumor habitats' information from whole-tumor ADC maps-based StratifiedADCmodel and radiomics information from mpMRI-based RFFmodel, exhibits tremendous promise for identifying TNBC.
Collapse
Affiliation(s)
- Wanli Zhang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People's Republic of China
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Fangrong Liang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People's Republic of China
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Yue Zhao
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Jiamin Li
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People's Republic of China
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Chutong He
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People's Republic of China
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Yandong Zhao
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People's Republic of China
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Shengsheng Lai
- School of Medical Equipment, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, 510520, People's Republic of China
| | - Yongzhou Xu
- Philips Healthcare, Guangzhou, Guangdong, 510220, People's Republic of China
| | - Wenshuang Ding
- Department of Pathology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Xinhua Wei
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People's Republic of China
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Xinqing Jiang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People's Republic of China
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Ruimeng Yang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People's Republic of China
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Xin Zhen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| |
Collapse
|
7
|
Li W, Liu J, Wang S, Feng C. MTFN: multi-temporal feature fusing network with co-attention for DCE-MRI synthesis. BMC Med Imaging 2024; 24:47. [PMID: 38373915 PMCID: PMC10875895 DOI: 10.1186/s12880-024-01201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) plays an important role in the diagnosis and treatment of breast cancer. However, obtaining complete eight temporal images of DCE-MRI requires a long scanning time, which causes patients' discomfort in the scanning process. Therefore, to reduce the time, the multi temporal feature fusing neural network with Co-attention (MTFN) is proposed to generate the eighth temporal images of DCE-MRI, which enables the acquisition of DCE-MRI images without scanning. In order to reduce the time, multi-temporal feature fusion cooperative attention mechanism neural network (MTFN) is proposed to generate the eighth temporal images of DCE-MRI, which enables DCE-MRI image acquisition without scanning. METHODS In this paper, we propose multi temporal feature fusing neural network with Co-attention (MTFN) for DCE-MRI Synthesis, in which the Co-attention module can fully fuse the features of the first and third temporal image to obtain the hybrid features. The Co-attention explore long-range dependencies, not just relationships between pixels. Therefore, the hybrid features are more helpful to generate the eighth temporal images. RESULTS We conduct experiments on the private breast DCE-MRI dataset from hospitals and the multi modal Brain Tumor Segmentation Challenge2018 dataset (BraTs2018). Compared with existing methods, the experimental results of our method show the improvement and our method can generate more realistic images. In the meanwhile, we also use synthetic images to classify the molecular typing of breast cancer that the accuracy on the original eighth time-series images and the generated images are 89.53% and 92.46%, which have been improved by about 3%, and the classification results verify the practicability of the synthetic images. CONCLUSIONS The results of subjective evaluation and objective image quality evaluation indicators show the effectiveness of our method, which can obtain comprehensive and useful information. The improvement of classification accuracy proves that the images generated by our method are practical.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Intelligent Computing in Medical Image MIIC, Northeastern University, Shenyang, China
| | - Jiaye Liu
- School of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Shanshan Wang
- School of Computer Science and Engineering, Northeastern University, Shenyang, China.
| | - Chaolu Feng
- Key Laboratory of Intelligent Computing in Medical Image MIIC, Northeastern University, Shenyang, China
| |
Collapse
|
8
|
Qi X, Wang W, Pan S, Liu G, Xia L, Duan S, He Y. Predictive value of triple negative breast cancer based on DCE-MRI multi-phase full-volume ROI clinical radiomics model. Acta Radiol 2024; 65:173-184. [PMID: 38017694 DOI: 10.1177/02841851231215145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
BACKGROUND Since no studies compared the value of radiomics features of distinct phases of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for predicting triple-negative breast cancer (TNBC). PURPOSE To identify the optimal phase of DCE-MRI for diagnosing TNBC and, in combination with clinical factors, to develop a clinical-radiomics model to well predict TNBC. MATERIAL AND METHODS This retrospective study included 158 patients with pathology-confirmed breast cancer, including 38 cases of TNBC. The patients were randomly divided into the training and validation set (7:3). Eight radiomics models were built based on eight DCE-MR phases, and their performances were evaluated using receiver operating characteristic curve (ROC) and DeLong's test. The Radscore derived from the best radiomics model was integrated with independent clinical risk factors to construct a clinical-radiomics predictive model, and evaluate its performance using ROC analysis, calibration, and decision curve analyses. RESULTS WHO classification, margin, and T2-weighted (T2W) imaging signals were significantly correlated with TNBC and independent risk factors for TNBC (P<0.05). The clinical model yielded areas under the curve (AUCs) of 0.867 and 0.843 in the training and validation sets, respectively. The radiomics model based on DCEphase7 achieved the highest efficacy, with an AUC of 0.818 and 0.777. The AUC of the clinical-radiomics model was 0.936 and 0.886 in the training and validation sets, respectively. The decision curve showed the clinical utility of the clinical-radiomics model. CONCLUSION The radiomics features of DCE-MRI had the potential to predict TNBC and could improve the performance of clinical risk factors for preoperative personalized prediction of TNBC.
Collapse
Affiliation(s)
- Xuan Qi
- Department of Radiology, Ma'anshan People's Hospital, Maanshan, PR China
| | - Wuling Wang
- Department of Radiology, Ma'anshan People's Hospital, Maanshan, PR China
| | - Shuya Pan
- Department of Radiology, Ma'anshan People's Hospital, Maanshan, PR China
| | - Guangzhu Liu
- Ma'anshan Clinical College, Anhui Medical University, Hefei, PR China
| | - Liang Xia
- Department of Radiology, Sir Run Run Hospital affiliated to Nanjing Medical University, Nanjing, PR China
| | - Shaofeng Duan
- Precision Health Institution, GE Healthcare China, Shanghai, China
| | - Yongsheng He
- Department of Radiology, Ma'anshan People's Hospital, Maanshan, PR China
| |
Collapse
|
9
|
Li X, Chai W, Sun K, Zhu H, Yan F. Whole-tumor histogram analysis of multiparametric breast magnetic resonance imaging to differentiate pure mucinous breast carcinomas from fibroadenomas with high-signal intensity on T2WI. Magn Reson Imaging 2024; 106:8-17. [PMID: 38035946 DOI: 10.1016/j.mri.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE To investigate the utility of whole-tumor histogram analysis based on multiparametric MRI in distinguishing pure mucinous breast carcinomas (PMBCs) from fibroadenomas (FAs) with strong high-signal intensity on T2-weighted imaging (T2-SHi). MATERIAL AND METHODS The study included 20 patients (mean age, 55.80 ± 15.54 years) with single PBMCs and 29 patients (mean age, 42.31 ± 13.91 years) with single FAs exhibiting T2-SHi. A radiologist performed whole-tumor histogram analysis between PBMC and FA groups with T2-SHi using multiparametric MRI, including T2-weighted imaging (T2WI), diffusion weighted imaging (DWI) with apparent diffusion coefficient (ADC) maps, and the first (DCE_T1) and last (DCE_T4) phases of T1-weighted dynamic contrast-enhanced imaging (DCE) images, to extract 11 whole-tumor histogram parameters. Histogram parameters were compared between the two groups to identify significant variables using univariate analyses, and their diagnostic performance was assessed by receiver operating characteristic (ROC) curve analysis and logistic regression analyses. In addition, 15 breast lesions were randomly selected and histogram analysis was repeated by another radiologist to assess the intraclass correlation coefficient for each histogram feature. Pearson's correlation coefficients were used to analyze the correlations between histogram parameters and Ki-67 expression of PMBCs. RESULTS For T2WI images, mean, median, maximum, 90th percentile, variance, uniformity, and entropy significantly differed in PBMCs and FAs with T2-SHi (all P < 0.05), yielding a combined area under the curve (AUC) of 0.927. For ADC maps, entropy was significantly lower in FAs with T2-SHi than in PMBCs (P = 0.03). In both DCE_T1 and DCE_T4 sequences, FAs with T2-SHi showed significantly higher minimum values than PBMCs (P = 0.007 and 0.02, respectively). The highest AUC value of 0.956 (sensitivity, 0.862; specificity, 0.944; positive predictive value, 0.962; negative predictive value, 0.810) was obtained when all significant histogram parameters were combined. CONCLUSIONS Whole-tumor histogram analysis using multiparametric MRI is valuable for differentiating PBMCs from FAs with T2-SHi.
Collapse
Affiliation(s)
- Xue Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Weimin Chai
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| | - Kun Sun
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| | - Hong Zhu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| |
Collapse
|
10
|
Liu Z, Yao B, Wen J, Wang M, Ren Y, Chen Y, Hu Z, Li Y, Liang D, Liu X, Zheng H, Luo D, Zhang N. Voxel-wise mapping of DCE-MRI time-intensity-curve profiles enables visualizing and quantifying hemodynamic heterogeneity in breast lesions. Eur Radiol 2024; 34:182-192. [PMID: 37566270 DOI: 10.1007/s00330-023-10102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/03/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVES To propose a novel model-free data-driven approach based on the voxel-wise mapping of DCE-MRI time-intensity-curve (TIC) profiles for quantifying and visualizing hemodynamic heterogeneity and to validate its potential clinical applications. MATERIALS AND METHODS From December 2018 to July 2022, 259 patients with 325 pathologically confirmed breast lesions who underwent breast DCE-MRI were retrospectively enrolled. Based on the manually segmented breast lesions, the TIC of each voxel within the 3D whole lesion was classified into 19 subtypes based on wash-in rate (nonenhanced, slow, medium, and fast), wash-out enhancement (persistent, plateau, and decline), and wash-out stability (steady and unsteady), and the composition ratio of these 19 subtypes for each lesion was calculated as a new feature set (type-19). The three-type TIC classification, semiquantitative parameters, and type-19 features were used to build machine learning models for identifying lesion malignancy and classifying histologic grades, proliferation status, and molecular subtypes. RESULTS The type-19 feature-based model significantly outperformed models based on the three-type TIC method and semiquantitative parameters both in distinguishing lesion malignancy (respectively; AUC = 0.875 vs. 0.831, p = 0.01 and 0.875vs. 0.804, p = 0.03), predicting tumor proliferation status (AUC = 0.890 vs. 0.548, p = 0.006 and 0.890 vs. 0.596, p = 0.020), but not in predicting histologic grades (p = 0.820 and 0.970). CONCLUSION In addition to conventional methods, the proposed computational approach provides a novel, model-free, data-driven approach to quantify and visualize hemodynamic heterogeneity. CLINICAL RELEVANCE STATEMENT Voxel-wise intra-lesion mapping of TIC profiles allows for visualization of hemodynamic heterogeneity and its composition ratio for differentiation of malignant and benign breast lesions. KEY POINTS • Voxel-wise TIC profiles were mapped, and their composition ratio was compared between various breast lesions. • The model based on the composition ratio of voxel-wise TIC profiles significantly outperformed the three-type TIC classification model and the semiquantitative parameters model in lesion malignancy differentiation and tumor proliferation status prediction in breast lesions. • This novel, data-driven approach allows the intuitive visualization and quantification of the hemodynamic heterogeneity of breast lesions.
Collapse
Affiliation(s)
- Zhou Liu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 113 Baohe Avenue, 518116, Shenzhen, China
| | - Bingyu Yao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China
- College of Computer and Information Engineering, Xiamen University of Technology, 600 Ligong Road, Xiamen, China
| | - Jie Wen
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 113 Baohe Avenue, 518116, Shenzhen, China
| | - Meng Wang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 113 Baohe Avenue, 518116, Shenzhen, China
| | - Ya Ren
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 113 Baohe Avenue, 518116, Shenzhen, China
| | - Yuming Chen
- College of Computer and Information Engineering, Xiamen University of Technology, 600 Ligong Road, Xiamen, China
| | - Zhanli Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China
| | - Ye Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China
| | - Dehong Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 113 Baohe Avenue, 518116, Shenzhen, China.
| | - Na Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China.
| |
Collapse
|
11
|
Campana A, Gandomkar Z, Giannotti N, Reed W. The use of radiomics in magnetic resonance imaging for the pre-treatment characterisation of breast cancers: A scoping review. J Med Radiat Sci 2023; 70:462-478. [PMID: 37534540 PMCID: PMC10715343 DOI: 10.1002/jmrs.709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Radiomics is an emerging field that aims to extract and analyse a comprehensive set of quantitative features from medical images. This scoping review is focused on MRI-based radiomic features for the molecular profiling of breast tumours and the implications of this work for predicting patient outcomes. A thorough systematic literature search and outcome extraction were performed to identify relevant studies published in MEDLINE/PubMed (National Centre for Biotechnology Information), EMBASE and Scopus from 2015 onwards. The following information was retrieved from each article: study purpose, study design, extracted radiomic features, machine learning technique(s), sample size/characteristics, statistical result(s) and implications on patient outcomes. Based on the study purpose, four key themes were identified in the included 63 studies: tumour subtype classification (n = 35), pathologically complete response (pCR) prediction (n = 15), lymph node metastasis (LNM) detection (n = 7) and recurrence rate prediction (n = 6). In all four themes, reported accuracies widely varied among the studies, for example, area under receiver characteristics curve (AUC) for detecting LNM ranged from 0.72 to 0.91 and the AUC for predicting pCR ranged from 0.71 to 0.99. In all four themes, combining radiomic features with clinical data improved the predictive models. Preliminary results of this study showed radiomics potential to characterise the whole tumour heterogeneity, with clear implications for individual-targeted treatment. However, radiomics is still in the pre-clinical phase, currently with an insufficient number of large multicentre studies and those existing studies are often limited by insufficient methodological transparency and standardised workflow. Consequently, the clinical translation of existing studies is currently limited.
Collapse
Affiliation(s)
- Annalise Campana
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Ziba Gandomkar
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Nicola Giannotti
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Warren Reed
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
12
|
Lai S, Liang F, Zhang W, Zhao Y, Li J, Zhao Y, Xu Y, Ding W, Zhan J, Zhen X, Yang R. Evaluation of molecular receptors status in breast cancer using an mpMRI-based feature fusion radiomics model: mimicking radiologists' diagnosis. Front Oncol 2023; 13:1219071. [PMID: 38074664 PMCID: PMC10698551 DOI: 10.3389/fonc.2023.1219071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/31/2023] [Indexed: 08/31/2024] Open
Abstract
OBJECTIVE To investigate the performance of a novel feature fusion radiomics (RFF) model that incorporates features from multiparametric MRIs (mpMRI) in distinguishing different statuses of molecular receptors in breast cancer (BC) preoperatively. METHODS 460 patients with 466 pathology-confirmed BCs who underwent breast mpMRI at 1.5T in our center were retrospectively included hormone receptor (HR) positive (HR+) (n=336) and HR negative (HR-) (n=130). The HR- patients were further categorized into human epidermal growth factor receptor 2 (HER-2) enriched BC (HEBC) (n=76) and triple negative BC (TNBC) (n=54). All lesions were divided into a training/validation cohort (n=337) and a test cohort (n=129). Volumes of interest (VOIs) delineation, followed by radiomics feature extraction, was performed on T2WI, DWI600 (b=600 s/mm2), DWI800 (b=800 s/mm2), ADC map, and DCE1-6 (six continuous DCE-MRI) images of each lesion. Simulating a radiologist's work pattern, 150 classification base models were constructed and analyzed to determine the top four optimum sequences for classifying HR+ vs. HR-, TNBC vs. HEBC, TNBC vs. non-TNBC in a random selected training cohort (n=337). Building upon these findings, the optimal single sequence models (Rss) and combined sequences models (RFF) were developed. The AUC, sensitivity, accuracy and specificity of each model for subtype differentiation were evaluated. The paired samples Wilcoxon signed rank test was used for performance comparison. RESULTS During the three classification tasks, the optimal single sequence for classifying HR+ vs. HR- was DWI600, while the ADC map, derived from DWI800 performed the best in distinguishing TNBC vs. HEBC, as well as identifying TNBC vs. non-TNBC, with corresponding training AUC values of 0.787, 0.788, and 0.809, respectively. Furthermore, the integration of the top four sequences in RFF models yielded improved performance, achieving AUC values of 0.809, 0.805 and 0.847, respectively. Consistent results was observed in both the training/validation and testing cohorts, with AUC values of 0.778, 0.787, 0.818 and 0.726, 0.773, 0.773, respectively (all p < 0.05 except HR+ vs. HR-). CONCLUSION The RFF model, integrating mpMRI radiomics features, demonstrated promising ability to mimic radiologists' diagnosis for preoperative identification of molecular receptors of BC.
Collapse
Affiliation(s)
- Shengsheng Lai
- School of Medical Equipment, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, China
| | - Fangrong Liang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Radiology, Guangzhou First People’s Hospital, Guangzhou, Guangdong, China
| | - Wanli Zhang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Radiology, Guangzhou First People’s Hospital, Guangzhou, Guangdong, China
| | - Yue Zhao
- Department of Radiology, Guangzhou First People’s Hospital, Guangzhou, Guangdong, China
| | - Jiamin Li
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Radiology, Guangzhou First People’s Hospital, Guangzhou, Guangdong, China
| | - Yandong Zhao
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Radiology, Guangzhou First People’s Hospital, Guangzhou, Guangdong, China
| | - Yongzhou Xu
- Department of Clinical & Technique Support, Philips Healthcare, Guangzhou, Guangdong, China
| | - Wenshuang Ding
- Department of Pathology, Guangzhou First People’s Hospital, Guangzhou, Guangdong, China
| | - Jie Zhan
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xin Zhen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Ruimeng Yang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Radiology, Guangzhou First People’s Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Fan Y, Zhao D, Su J, Yuan W, Niu S, Guo W, Jiang W. Radiomic Signatures Based on Mammography and Magnetic Resonance Imaging as New Markers for Estimation of Ki-67 and HER-2 Status in Breast Cancer. J Comput Assist Tomogr 2023; 47:890-897. [PMID: 37948363 DOI: 10.1097/rct.0000000000001502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
OBJECTIVE The aim of the study is to investigate the values of intratumoral and peritumoral regions based on mammography and magnetic resonance imaging for the prediction of Ki-67 and human epidermal growth factor (HER-2) status in breast cancer (BC). METHODS Two hundred BC patients were consecutively enrolled between January 2017 and March 2021 and divided into training (n = 133) and validation (n = 67) groups. All the patients underwent breast mammography and magnetic resonance imaging screening. Features were derived from intratumoral and peritumoral regions of the tumor and selected using the least absolute shrinkage and selection operator regression to build radiomic signatures (RSs). Receiver operating characteristic curve analysis and the DeLong test were performed to assess and compare each RS. RESULTS For each modality, the combined RSs integrating features from intratumoral and peritumoral regions always showed better prediction performance for predicting Ki-67 and HER-2 status compared with the RSs derived from intratumoral or peritumoral regions separately. The multimodality and multiregional combined RSs achieved the best prediction performance for predicting the Ki-67 and HER-2 status with an area under the receiver operating characteristic curve of 0.888 and 0.868 in the training cohort and 0.800 and 0.848 in the validation cohort, respectively. CONCLUSIONS Peritumoral areas provide complementary information to intratumoral regions of BC. The developed multimodality and multiregional combined RSs have good potential for noninvasive evaluation of Ki-67 and HER-2 status in BC.
Collapse
Affiliation(s)
- Ying Fan
- From the School of Intelligent Medicine, China Medical University, Shenyang
| | - Dan Zhao
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning
| | - Juan Su
- From the School of Intelligent Medicine, China Medical University, Shenyang
| | - Wendi Yuan
- From the School of Intelligent Medicine, China Medical University, Shenyang
| | - Shuxian Niu
- From the School of Intelligent Medicine, China Medical University, Shenyang
| | - Wei Guo
- College of Computer Science, Shenyang Aerospace University, Shenyang
| | - Wenyan Jiang
- Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, People's Republic. China
| |
Collapse
|
14
|
Panthi B, Mohamed RM, Adrada BE, Boge M, Candelaria RP, Chen H, Hunt KK, Huo L, Hwang KP, Korkut A, Lane DL, Le-Petross HC, Leung JWT, Litton JK, Pashapoor S, Perez F, Son JB, Sun J, Thompson A, Tripathy D, Valero V, Wei P, White J, Xu Z, Yang W, Zhou Z, Yam C, Rauch GM, Ma J. Longitudinal dynamic contrast-enhanced MRI radiomic models for early prediction of response to neoadjuvant systemic therapy in triple-negative breast cancer. Front Oncol 2023; 13:1264259. [PMID: 37941561 PMCID: PMC10628525 DOI: 10.3389/fonc.2023.1264259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Early prediction of neoadjuvant systemic therapy (NAST) response for triple-negative breast cancer (TNBC) patients could help oncologists select individualized treatment and avoid toxic effects associated with ineffective therapy in patients unlikely to achieve pathologic complete response (pCR). The objective of this study is to evaluate the performance of radiomic features of the peritumoral and tumoral regions from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquired at different time points of NAST for early treatment response prediction in TNBC. This study included 163 Stage I-III patients with TNBC undergoing NAST as part of a prospective clinical trial (NCT02276443). Peritumoral and tumoral regions of interest were segmented on DCE images at baseline (BL) and after two (C2) and four (C4) cycles of NAST. Ten first-order (FO) radiomic features and 300 gray-level-co-occurrence matrix (GLCM) features were calculated. Area under the receiver operating characteristic curve (AUC) and Wilcoxon rank sum test were used to determine the most predictive features. Multivariate logistic regression models were used for performance assessment. Pearson correlation was used to assess intrareader and interreader variability. Seventy-eight patients (48%) had pCR (52 training, 26 testing), and 85 (52%) had non-pCR (57 training, 28 testing). Forty-six radiomic features had AUC at least 0.70, and 13 multivariate models had AUC at least 0.75 for training and testing sets. The Pearson correlation showed significant correlation between readers. In conclusion, Radiomic features from DCE-MRI are useful for differentiating pCR and non-pCR. Similarly, predictive radiomic models based on these features can improve early noninvasive treatment response prediction in TNBC patients undergoing NAST.
Collapse
Affiliation(s)
- Bikash Panthi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rania M. Mohamed
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Beatriz E. Adrada
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Medine Boge
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Koc University Hospital, Istanbul, Türkiye
| | - Rosalind P. Candelaria
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Huiqin Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ken-Pin Hwang
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Deanna L. Lane
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Huong C. Le-Petross
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jessica W. T. Leung
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jennifer K. Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sanaz Pashapoor
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Frances Perez
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jong Bum Son
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jia Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alastair Thompson
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jason White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhan Xu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wei Yang
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zijian Zhou
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gaiane M. Rauch
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
15
|
Liu Z, Duan T, Zhang Y, Weng S, Xu H, Ren Y, Zhang Z, Han X. Radiogenomics: a key component of precision cancer medicine. Br J Cancer 2023; 129:741-753. [PMID: 37414827 PMCID: PMC10449908 DOI: 10.1038/s41416-023-02317-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Radiogenomics, focusing on the relationship between genomics and imaging phenotypes, has been widely applied to address tumour heterogeneity and predict immune responsiveness and progression. It is an inevitable consequence of current trends in precision medicine, as radiogenomics costs less than traditional genetic sequencing and provides access to whole-tumour information rather than limited biopsy specimens. By providing voxel-by-voxel genetic information, radiogenomics can allow tailored therapy targeting a complete, heterogeneous tumour or set of tumours. In addition to quantifying lesion characteristics, radiogenomics can also be used to distinguish benign from malignant entities, as well as patient characteristics, to better stratify patients according to disease risk, thereby enabling more precise imaging and screening. Here, we have characterised the radiogenomic application in precision medicine using a multi-omic approach. we outline the main applications of radiogenomics in diagnosis, treatment planning and evaluations in the field of oncology with the aim of developing quantitative and personalised medicine. Finally, we discuss the challenges in the field of radiogenomics and the scope and clinical applicability of these methods.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Tian Duan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
16
|
Zhou J, Xie T, Shan H, Cheng G. HLA-DQA1 expression is associated with prognosis and predictable with radiomics in breast cancer. Radiat Oncol 2023; 18:117. [PMID: 37434241 DOI: 10.1186/s13014-023-02314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/05/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND High HLA-DQA1 expression is associated with a better prognosis in many cancers. However, the association between HLA-DQA1 expression and prognosis of breast cancer and the noninvasive assessment of HLA-DQA1 expression are still unclear. This study aimed to reveal the association and investigate the potential of radiomics to predict HLA-DQA1 expression in breast cancer. METHODS In this retrospective study, transcriptome sequencing data, medical imaging data, clinical and follow-up data were downloaded from the TCIA ( https://www.cancerimagingarchive.net/ ) and TCGA ( https://portal.gdc.cancer.gov/ ) databases. The clinical characteristic differences between the high HLA-DQA1 expression group (HHD group) and the low HLA-DQA1 expression group were explored. Gene set enrichment analysis, Kaplan‒Meier survival analysis and Cox regression were performed. Then, 107 dynamic contrast-enhanced magnetic resonance imaging features were extracted, including size, shape and texture. Using recursive feature elimination and gradient boosting machine, a radiomics model was established to predict HLA-DQA1 expression. Receiver operating characteristic (ROC) curves, precision-recall curves, calibration curves, and decision curves were used for model evaluation. RESULTS The HHD group had better survival outcomes. The differentially expressed genes in the HHD group were significantly enriched in oxidative phosphorylation (OXPHOS) and estrogen response early and late signalling pathways. The radiomic score (RS) output from the model was associated with HLA-DQA1 expression. The area under the ROC curves (95% CI), accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the radiomic model were 0.866 (0.775-0.956), 0.825, 0.939, 0.7, 0.775, and 0.913 in the training set and 0.780 (0.629-0.931), 0.659, 0.81, 0.5, 0.63, and 0.714 in the validation set, respectively, showing a good prediction effect. CONCLUSIONS High HLA-DQA1 expression is associated with a better prognosis in breast cancer. Quantitative radiomics as a noninvasive imaging biomarker has potential value for predicting HLA-DQA1 expression.
Collapse
Affiliation(s)
- JingYu Zhou
- Department of Radiology, Peking University Shenzhen Hospital, LianHua Road, Shenzhen, 518000, Guangdong, China
| | - TingTing Xie
- Department of Radiology, Peking University Shenzhen Hospital, LianHua Road, Shenzhen, 518000, Guangdong, China
| | - HuiMing Shan
- Department of Radiology, Peking University Shenzhen Hospital, LianHua Road, Shenzhen, 518000, Guangdong, China
| | - GuanXun Cheng
- Department of Radiology, Peking University Shenzhen Hospital, LianHua Road, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
17
|
Pesapane F, De Marco P, Rapino A, Lombardo E, Nicosia L, Tantrige P, Rotili A, Bozzini AC, Penco S, Dominelli V, Trentin C, Ferrari F, Farina M, Meneghetti L, Latronico A, Abbate F, Origgi D, Carrafiello G, Cassano E. How Radiomics Can Improve Breast Cancer Diagnosis and Treatment. J Clin Med 2023; 12:jcm12041372. [PMID: 36835908 PMCID: PMC9963325 DOI: 10.3390/jcm12041372] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and probability of recurrence. Radiomics is a quantitative approach to medical imaging, which aims to enhance the existing data available to clinicians by means of advanced mathematical analysis using artificial intelligence. Various published studies from different fields in imaging have highlighted the potential of radiomics to enhance clinical decision making. In this review, we describe the evolution of AI in breast imaging and its frontiers, focusing on handcrafted and deep learning radiomics. We present a typical workflow of a radiomics analysis and a practical "how-to" guide. Finally, we summarize the methodology and implementation of radiomics in breast cancer, based on the most recent scientific literature to help researchers and clinicians gain fundamental knowledge of this emerging technology. Alongside this, we discuss the current limitations of radiomics and challenges of integration into clinical practice with conceptual consistency, data curation, technical reproducibility, adequate accuracy, and clinical translation. The incorporation of radiomics with clinical, histopathological, and genomic information will enable physicians to move forward to a higher level of personalized management of patients with breast cancer.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
- Correspondence: ; Tel.: +39-02-574891
| | - Paolo De Marco
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Anna Rapino
- Postgraduation School in Radiodiagnostics, University of Milan, 20122 Milan, Italy
| | - Eleonora Lombardo
- UOC of Diagnostic Imaging, Policlinico Tor Vergata University, 00133 Rome, Italy
| | - Luca Nicosia
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Priyan Tantrige
- Department of Radiology, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Anna Carla Bozzini
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Valeria Dominelli
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Chiara Trentin
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Federica Ferrari
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Mariagiorgia Farina
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Lorenza Meneghetti
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Antuono Latronico
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesca Abbate
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Daniela Origgi
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Gianpaolo Carrafiello
- Department of Radiology, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
18
|
Li X, Hu Y, Xie Y, Lu R, Li Q, Tao H, Chen S. Whole-tumor histogram analysis of diffusion-weighted imaging and dynamic contrast-enhanced MRI for soft tissue sarcoma: correlation with HIF-1alpha expression. Eur Radiol 2022; 33:3961-3973. [PMID: 36462043 DOI: 10.1007/s00330-022-09296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/02/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022]
Abstract
OBJECTIVE To investigate the correlation of histogram metrics from diffusion-weighted imaging (DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters with HIF-1alpha expression in soft tissue sarcoma (STS). METHODS We enrolled 71 patients with STS who underwent 3.0-T MRI, including conventional MRI, DWI, and DCE-MRI sequences. Location, maximum tumor diameter, envelope, T2-weighted tumor heterogeneity, peritumoral edema, peritumoral enhancement, necrosis, tail-like pattern, bone invasion, and vessel/nerve invasion and/or encasement were determined using conventional MRI images. The whole-tumor histogram metrics were calculated on the apparent diffusion coefficient (ADC), Ktrans, Kep, and Ve maps. Independent-samples t test and one-way ANOVA were used for testing the differences between normally distributed categorical data with HIF-1alpha expression. Pearson and Spearman correlations and multiple linear regression analyses were performed to determine the correlations between histogram metrics and HIF-1alpha expression. Survival curves were plotted using the Kaplan-Meier method. RESULTS Regarding conventional MRI features, only highly heterogeneous on T2-weighted images (55.6 ± 19.9% vs. 45.4 ± 20.5%, p = 0.041) and more than 50% necrotic area (57.3 ± 20.4% vs. 43.9 ± 19.7%, p = 0.002) were prone to indicate STS with higher HIF-1alpha expression. Histogram metrics obtained from ADC (mean, median, 10th, and 25th percentile values), Ktrans (mean, median, 75th, and 90th percentile values), and Kep (90th percentile values) were significantly correlated with HIF-1alpha expression. Multiple linear regression analysis demonstrated that more than 50% necrosis, ADCskewness, Ktrans90th, and grade III were independently associated with HIF-1alpha expression. CONCLUSION DWI and DCE-MRI histogram parameters were significantly correlated with HIF-1alpha expression in STS. KEY POINTS • DWI and DCE-MRI histogram parameters are correlated with HIF-1alpha expression in STS. • More than 50% necrosis, ADCskewness, Ktrans90th, and grade III were independently associated with HIF-1alpha expression in STS.
Collapse
Affiliation(s)
- Xiangwen Li
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, China
| | - Yiwen Hu
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, China
| | - Yuxue Xie
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, China
| | - Rong Lu
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, China
| | - Qing Li
- MR Collaborations, Siemens Healthineers Ltd., Shanghai, China
| | - Hongyue Tao
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, China.
| | - Shuang Chen
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 2 middle Wulumuqizhong Road, Shanghai, China.
| |
Collapse
|
19
|
Multiparametric MRI Features of Breast Cancer Molecular Subtypes. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121716. [PMID: 36556918 PMCID: PMC9785392 DOI: 10.3390/medicina58121716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Background and Objectives: Breast cancer (BC) molecular subtypes have unique incidence, survival and response to therapy. There are five BC subtypes described by immunohistochemistry: luminal A, luminal B HER2 positive and HER2 negative, triple negative (TNBC) and HER2-enriched. Multiparametric breast MRI (magnetic resonance imaging) provides morphological and functional characteristics of breast tumours and is nowadays recommended in the preoperative setting. Aim: To evaluate the multiparametric MRI features (T2-WI, ADC values and DCE) of breast tumours along with breast density and background parenchymal enhancement (BPE) features among different BC molecular subtypes. Materials and Methods: This was a retrospective study which included 344 patients. All underwent multiparametric breast MRI (T2WI, ADC and DCE sequences) and features were extracted according to the latest BIRADS lexicon. The inter-reader agreement was assessed using the intraclass coefficient (ICC) between the ROI of ADC obtained from the two breast imagers (experienced and moderately experienced). Results: The study population was divided as follows: 89 (26%) with luminal A, 39 (11.5%) luminal B HER2 positive, 168 (48.5%) luminal B HER2 negative, 41 (12%) triple negative (TNBC) and 7 (2%) with HER2 enriched. Luminal A tumours were associated with special histology type, smallest tumour size and persistent kinetic curve (all p-values < 0.05). Luminal B HER2 negative tumours were associated with lowest ADC value (0.77 × 10−3 mm2/s2), which predicts the BC molecular subtype with an accuracy of 0.583. TNBC were associated with asymmetric and moderate/marked BPE, round/oval masses with circumscribed margins and rim enhancement (all p-values < 0.05). HER2 enriched BC were associated with the largest tumour size (mean 37.28 mm, p-value = 0.02). Conclusions: BC molecular subtypes can be associated with T2WI, ADC and DCE MRI features. ADC can help predict the luminal B HER2 negative cases.
Collapse
|
20
|
Whole-tumor apparent diffusion coefficient (ADC) analyses of breast lesions based on simultaneous multi-slice readout-segmented echo-planar diffusion-weighted imaging. Magn Reson Imaging 2022; 94:119-126. [PMID: 36191856 DOI: 10.1016/j.mri.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/28/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE We aimed to evaluate the effectiveness of simultaneous multi-slice readout-segmented echo-planar diffusion-weighted imaging (SMS rs-EPI DWI), compared with readout-segmented echo-planar diffusion-weighted imaging (NOSMS rs-EPI DWI), in discriminating between benign and malignant breast lesions. MATERIALS AND METHODS This retrospective study evaluated breast lesions from 185 consecutive patients who had undergone preoperative breast MRI. The NOSMS rs-EPI DWI and the prototype SMS rs-EPI DWI sequences were performed on a 1.5-T MR scanner. Two independent radiologists evaluated the image quality of the two sequences using a 5-point scale (1 = poor, 5 = excellent) and then assessed the scores through visual grading characteristics analysis (VGC). The values of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and whole-tumor-based histogram parameter (ADCmedian) were compared between the two sequences using the Wilcoxon test. Then ROC curves were used for statistical analysis. RESULTS The visual assessment showed that the SMS rs-EPI yielded superior overall image quality and lesion delineation than the NOSMS rs-EPI (AUCVGC = 0.980 and 0.984, respectively; all Ps < 0.001). There were no significant differences in relevant artifacts between the two sequences (AUCVGC = 0.531, P = 0.462). The SNR values for SMS rs-EPI DWI were significantly lower than for NOSMS rs-EPI DWI (P = 0.019) while there was no significant difference in CNR values between the two sequences (P = 0.955). In addition, evaluation of the diagnostic performance demonstrated that the difference in ADCmedian values for both DWI sequences between the malignant and benign lesions was statistically significant (P < 0.001). In contrast, the AUC for ADCmedian was higher with SMS rs-EPI than NOSMS rs-EPI (0.879 for SMS vs. 0.839 for NOSMS, P = 0.025). CONCLUSION The SMS technique could further improve the image quality and the diagnostic performance of rs-EPI DWI in a comparable time.
Collapse
|
21
|
Li C, Li W, Liu C, Zheng H, Cai J, Wang S. Artificial intelligence in multi-parametric magnetic resonance imaging: A review. Med Phys 2022; 49:e1024-e1054. [PMID: 35980348 DOI: 10.1002/mp.15936] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/06/2022] Open
Abstract
Multi-parametric magnetic resonance imaging (mpMRI) is an indispensable tool in the clinical workflow for the diagnosis and treatment planning of various diseases. Machine learning-based artificial intelligence (AI) methods, especially those adopting the deep learning technique, have been extensively employed to perform mpMRI image classification, segmentation, registration, detection, reconstruction, and super-resolution. The current availability of increasing computational power and fast-improving AI algorithms have empowered numerous computer-based systems for applying mpMRI to disease diagnosis, imaging-guided radiotherapy, patient risk and overall survival time prediction, and the development of advanced quantitative imaging technology for magnetic resonance fingerprinting. However, the wide application of these developed systems in the clinic is still limited by a number of factors, including robustness, reliability, and interpretability. This survey aims to provide an overview for new researchers in the field as well as radiologists with the hope that they can understand the general concepts, main application scenarios, and remaining challenges of AI in mpMRI. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Cheng Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wen Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chenyang Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shanshan Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Peng Cheng Laboratory, Shenzhen, 518066, China.,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China
| |
Collapse
|
22
|
Sun K, Zhu H, Xia B, Li X, Chai W, Fu C, Thomas B, Liu W, Grimm R, Elisabeth W, Yan F. Image quality and whole-lesion histogram and texture analysis of diffusion-weighted imaging of breast MRI based on advanced ZOOMit and simultaneous multislice readout-segmented echo-planar imaging. Front Oncol 2022; 12:913072. [PMID: 36033543 PMCID: PMC9411810 DOI: 10.3389/fonc.2022.913072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives To investigate the image quality and diagnostic capability a of whole-lesion histogram and texture analysis of advanced ZOOMit (A-ZOOMit) and simultaneous multislice readout-segmented echo-planar imaging (SMS-RS-EPI) to differentiate benign from malignant breast lesions. Study design From February 2020 to October 2020, diffusion-weighted imaging (DWI) using SMS-RS-EPI and A-ZOOMit were performed on 167 patients. Three breast radiologists independently ranked the image datasets. The inter-/intracorrelation coefficients (ICCs) of mean image quality scores and lesion conspicuity scores were calculated between these three readers. Histogram and texture features were extracted from the apparent diffusion coefficient (ADC) maps, respectively, based on a WL analysis. Student’s t-tests, one-way ANOVAs, Mann–Whitney U tests, and receiver operating characteristic curves were used for statistical analysis. Results The overall image quality scores and lesion conspicuity scores for A-ZOOMit and SMS-RS-EPI showed statistically significant differences (4.92 ± 0.27 vs. 3.92 ± 0.42 and 4.93 ± 0.29 vs. 3.87 ± 0.47, p < 0.0001). The ICCs for the image quality and lesion conspicuity scores had good agreements among the three readers (all ICCs >0.75). To differentiate benign and malignant breast lesions, the entropy of ADCA-Zoomit had the highest area (0.78) under the ROC curve. Conclusions A-ZOOMit achieved higher image quality and lesion conspicuity than SMS-RS-EPI. Entropy based on A-ZOOMit is recommended for differentiating benign from malignant breast lesions.
Collapse
Affiliation(s)
- Kun Sun
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Kun Sun,
| | - Hong Zhu
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bingqing Xia
- Department of Radiology, International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinyue Li
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weimin Chai
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Caixia Fu
- MR Application Development, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Benkert Thomas
- MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany
| | - Wei Liu
- MR Application Development, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany
| | - Weiland Elisabeth
- MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Chen H, Li W, Wan C, Zhang J. Correlation of dynamic contrast-enhanced MRI and diffusion-weighted MR imaging with prognostic factors and subtypes of breast cancers. Front Oncol 2022; 12:942943. [PMID: 35992872 PMCID: PMC9389013 DOI: 10.3389/fonc.2022.942943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Objective To determine the preoperative magnetic resonance imaging (MRI) findings of breast cancer on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted magnetic resonance imaging (DWI) in different molecular subtypes. Materials and methods A retrospective study was conducted on 116 breast cancer subjects who underwent preoperative MRI and surgery or biopsy. Three radiologists retrospectively assessed the morphological and kinetic characteristics on DCE-MRI and tumor detectability on DWI, by using apparent diffusion coefficient (ADC) values of lesions. The clinicopathologic and MRI features of four subtypes were compared. The correlation between clinical and MRI findings with molecular subtypes was evaluated using the chi-square and ANOVA tests, while the Mann–Whitney test was used to analyze the relationship between ADC and prognostic factors. Results One hundred and sixteen women diagnosed with breast cancer confirmed by surgery or biopsy had the following subtypes of breast cancer: luminal A (27, 23.3%), luminal B (56, 48.2%), HER2 positive (14, 12.1%), and triple-negative breast cancer (TNBC) (19, 16.4%), respectively. Among the subtypes, significant differences were found in axillary node metastasis, histological grade, tumor shape, rim enhancement, margin, lesion type, intratumoral T2 signal intensity, Ki-67 index, and paratumoral enhancement (p < 0.001, p < 0.001, p < 0.001, p < 0.001, p < 0.001, p < 0.001, p < 0.001, p < 0.001, and p = 0.02, respectively). On DWI, the mean ADC value of TNBC (0.910 × 10−3 mm2/s) was the lowest compared to luminal A (1.477×10−3 mm2/s), luminal B (0.955 × 10−3 mm2/s), and HER2 positive (0.996 × 10−3 mm2/s) (p < 0.001). Analysis of the correlation between different prognostic factors and ADC value showed that only axillary lymph node status and ADC value had a statistically significant difference (p = 0.009). Conclusion The morphologic features of MRI can be used as imaging biomarkers to identify the molecular subtypes of breast cancer. In addition, quantitative assessments of ADC values on DWI may also provide biological clues about molecular subtypes.
Collapse
Affiliation(s)
- Hui Chen
- Department of Oncology, Tianmen First People’s Hospital, Tianmen, China
| | - Wei Li
- Department of Oncology, Tianmen First People’s Hospital, Tianmen, China
| | - Chao Wan
- Department of Oncology, Tianmen First People’s Hospital, Tianmen, China
| | - Jue Zhang
- Department of CT/MRI, Tianmen First People's Hospital, Tianmen, China
- *Correspondence: Jue Zhang,
| |
Collapse
|
24
|
Mendez AM, Fang LK, Meriwether CH, Batasin SJ, Loubrie S, Rodríguez-Soto AE, Rakow-Penner RA. Diffusion Breast MRI: Current Standard and Emerging Techniques. Front Oncol 2022; 12:844790. [PMID: 35880168 PMCID: PMC9307963 DOI: 10.3389/fonc.2022.844790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The role of diffusion weighted imaging (DWI) as a biomarker has been the subject of active investigation in the field of breast radiology. By quantifying the random motion of water within a voxel of tissue, DWI provides indirect metrics that reveal cellularity and architectural features. Studies show that data obtained from DWI may provide information related to the characterization, prognosis, and treatment response of breast cancer. The incorporation of DWI in breast imaging demonstrates its potential to serve as a non-invasive tool to help guide diagnosis and treatment. In this review, current technical literature of diffusion-weighted breast imaging will be discussed, in addition to clinical applications, advanced techniques, and emerging use in the field of radiomics.
Collapse
Affiliation(s)
- Ashley M. Mendez
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Lauren K. Fang
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Claire H. Meriwether
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Summer J. Batasin
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Stéphane Loubrie
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Ana E. Rodríguez-Soto
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Rebecca A. Rakow-Penner
- Department of Radiology, University of California San Diego, La Jolla, CA, United States,Department of Bioengineering, University of California San Diego, La Jolla, CA, United States,*Correspondence: Rebecca A. Rakow-Penner,
| |
Collapse
|
25
|
The value of whole-tumor histogram and texture analysis based on apparent diffusion coefficient (ADC) maps for the discrimination of breast fibroepithelial lesions: corresponds to clinical management decisions. Jpn J Radiol 2022; 40:1263-1271. [DOI: 10.1007/s11604-022-01304-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/03/2022] [Indexed: 10/17/2022]
|
26
|
Drees D, Eilers F, Jiang X. Hierarchical Random Walker Segmentation for Large Volumetric Biomedical Images. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:4431-4446. [PMID: 35763479 DOI: 10.1109/tip.2022.3185551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The random walker method for image segmentation is a popular tool for semi-automatic image segmentation, especially in the biomedical field. However, its linear asymptotic run time and memory requirements make application to 3D datasets of increasing sizes impractical. We propose a hierarchical framework that, to the best of our knowledge, is the first attempt to overcome these restrictions for the random walker algorithm and achieves sublinear run time and constant memory complexity. The goal of this framework is- rather than improving the segmentation quality compared to the baseline method- to make interactive segmentation on out-of-core datasets possible. The method is evaluated quantitatively on synthetic data and the CT-ORG dataset where the expected improvements in algorithm run time while maintaining high segmentation quality are confirmed. The incremental (i.e., interaction update) run time is demonstrated to be in seconds on a standard PC even for volumes of hundreds of gigabytes in size. In a small case study the applicability to large real world from current biomedical research is demonstrated. An implementation of the presented method is publicly available in version 5.2 of the widely used volume rendering and processing software Voreen (https://www.uni-muenster.de/Voreen/).
Collapse
|
27
|
Wang W, Jiao Y, Zhang L, Fu C, Zhu X, Wang Q, Gu Y. Multiparametric MRI-based radiomics analysis: differentiation of subtypes of cervical cancer in the early stage. Acta Radiol 2022; 63:847-856. [PMID: 33975448 DOI: 10.1177/02841851211014188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND There are significant differences in outcomes for different histological subtypes of cervical cancer (CC). Yet, it is difficult to distinguish CC subtypes using non-invasive methods. PURPOSE To investigate whether multiparametric magnetic resonance imaging (MRI)-based radiomics analysis can differentiate CC subtypes and explore tumor heterogeneity. MATERIAL AND METHODS This study retrospectively analyzed 96 patients with CC (squamous cell carcinoma [SCC] = 50, adenocarcinoma [AC] = 46) who underwent pelvic MRI before surgery. Radiomics features were extracted from the tumor volumes on five sequences (sagittal T2-weighted imaging [T2SAG], transverse T2-weighted imaging [T2TRA], sagittal contrast-enhanced T1-weighted imaging [CESAG], transverse contrast-enhanced T1-weighted imaging [CETRA], and apparent diffusion coefficient [ADC]). Clustering and logistic regression were used to examine the distinguishing capabilities of radiomics features extracted from five different MR sequences. RESULTS Among the 105 extracted radiomics features, there were 51, 38, 37, and 2 features that showed intergroup differences for T2SAG, T2TRA, ADC, and CESAG, respectively (all P < 0.05). AC had greater textural heterogeneity than SCC (P < 0.05). Upon unsupervised clustering of significantly different features, T2SAG achieved the highest accuracy (0.844; sensitivity = 0.920; specificity = 0.761). The largest area under the curve (AUC) for classification ability was 0.86 for T2SAG. Hence, the radiomics model from five combined MR sequences (AUC = 0.89; accuracy = 0.81; sensitivity = 0.67; specificity = 0.94) exhibited better differentiation ability than any MR sequence alone. CONCLUSION Multiparametric MRI-based radiomics models may be a promising method to differentiate AC and SCC. AC showed more heterogeneous features than SCC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Radiology, Fudan University Shanghai Cancer Center (FUSCC), Shanghai, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - YiNing Jiao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - LiChi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Caixia Fu
- MR Applications Development, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, PR China
| | - XiaoLi Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China
- Department of Pathology, Fudan University Shanghai Cancer Center (FUSCC), Shanghai, PR China
| | - Qian Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center (FUSCC), Shanghai, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China
| |
Collapse
|
28
|
Li X, Zhu H, Sun K, Chai W, Fu C, Yan F. Is simultaneous multi-slice readout-segmented echo-planar imaging valuable for predicting molecular subtypes of breast cancer? Eur J Radiol 2022; 150:110232. [DOI: 10.1016/j.ejrad.2022.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/15/2022] [Accepted: 02/25/2022] [Indexed: 11/03/2022]
|
29
|
Kazama T, Takahara T, Hashimoto J. Breast Cancer Subtypes and Quantitative Magnetic Resonance Imaging: A Systemic Review. Life (Basel) 2022; 12:life12040490. [PMID: 35454981 PMCID: PMC9028183 DOI: 10.3390/life12040490] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Magnetic resonance imaging (MRI) is the most sensitive imaging modality for breast cancer detection. This systematic review investigated the role of quantitative MRI features in classifying molecular subtypes of breast cancer. We performed a literature search of articles published on the application of quantitative MRI features in invasive breast cancer molecular subtype classification in PubMed from 1 January 2002 to 30 September 2021. Of the 1275 studies identified, 106 studies with a total of 12,989 patients fulfilled the inclusion criteria. Bias was assessed based using the Quality Assessment of Diagnostic Studies. All studies were case-controlled and research-based. Most studies assessed quantitative MRI features using dynamic contrast-enhanced (DCE) kinetic features and apparent diffusion coefficient (ADC) values. We present a summary of the quantitative MRI features and their correlations with breast cancer subtypes. In DCE studies, conflicting results have been reported; therefore, we performed a meta-analysis. Significant differences in the time intensity curve patterns were observed between receptor statuses. In 10 studies, including a total of 1276 lesions, the pooled difference in proportions of type Ⅲ curves (wash-out) between oestrogen receptor-positive and -negative cancers was not significant (95% confidence interval (CI): [−0.10, 0.03]). In nine studies, including a total of 1070 lesions, the pooled difference in proportions of type 3 curves between human epidermal growth factor receptor 2-positive and -negative cancers was significant (95% CI: [0.01, 0.14]). In six studies including a total of 622 lesions, the pooled difference in proportions of type 3 curves between the high and low Ki-67 groups was significant (95% CI: [0.17, 0.44]). However, the type 3 curve itself is a nonspecific finding in breast cancer. Many studies have examined the relationship between mean ADC and breast cancer subtypes; however, the ADC values overlapped significantly between subtypes. The heterogeneity of ADC using kurtosis or difference, diffusion tensor imaging parameters, and relaxation time was reported recently with promising results; however, current evidence is limited, and further studies are required to explore these potential applications.
Collapse
Affiliation(s)
- Toshiki Kazama
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara 259-1193, Japan;
- Correspondence: ; Tel.: +81-463-93-1121
| | - Taro Takahara
- Department of Biomedical Engineering, Tokai University School of Engineering, Hiratsuka 259-1207, Japan;
| | - Jun Hashimoto
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara 259-1193, Japan;
| |
Collapse
|
30
|
Meyer HJ, Wienke A, Surov A. Diffusion-Weighted Imaging of Different Breast Cancer Molecular Subtypes: A Systematic Review and Meta-Analysis. Breast Care (Basel) 2022; 17:47-54. [PMID: 35355697 PMCID: PMC8914237 DOI: 10.1159/000514407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/08/2021] [Indexed: 02/03/2023] Open
Abstract
Background Magnetic resonance imaging can be used to diagnose breast cancer (BC). Diffusion-weighted imaging (DWI) and the apparent diffusion coefficient (ADC) can be used to reflect tumor microstructure. Objectives This analysis aimed to compare ADC values between molecular subtypes of BC based on a large sample of patients. Method The MEDLINE library and Scopus database were screened for the associations between ADC and molecular subtypes of BC up to April 2020. The primary end point of the systematic review was the ADC value in different BC subtypes. Overall, 28 studies were included. Results The included studies comprised a total of 2,990 tumors. Luminal A type was diagnosed in 865 cases (28.9%), luminal B in 899 (30.1%), human epidermal growth factor receptor (Her2)-enriched in 597 (20.0%), and triple-negative in 629 (21.0%). The mean ADC values of the subtypes were as follows: luminal A: 0.99 × 10-3 mm2/s (95% CI 0.94-1.04), luminal B: 0.97 × 10-3 mm2/s (95% CI 0.89-1.05), Her2-enriched: 1.02 × 10-3 mm2/s (95% CI 0.95-1.08), and triple-negative: 0.99 × 10-3 mm2/s (95% CI 0.91-1.07). Conclusions ADC values cannot be used to discriminate between molecular subtypes of BC.
Collapse
Affiliation(s)
- Hans-Jonas Meyer
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany
| | - Andreas Wienke
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexey Surov
- Department of Radiology and Nuclear Medicine, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
31
|
Kim YS, Lee SE, Chang JM, Kim SY, Bae YK. Ultrasonographic morphological characteristics determined using a deep learning-based computer-aided diagnostic system of breast cancer. Medicine (Baltimore) 2022; 101:e28621. [PMID: 35060538 PMCID: PMC8772632 DOI: 10.1097/md.0000000000028621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/23/2021] [Indexed: 01/05/2023] Open
Abstract
To investigate the correlations between ultrasonographic morphological characteristics quantitatively assessed using a deep learning-based computer-aided diagnostic system (DL-CAD) and histopathologic features of breast cancer.This retrospective study included 282 women with invasive breast cancer (<5 cm; mean age, 54.4 [range, 29-85] years) who underwent surgery between February 2016 and April 2017. The morphological characteristics of breast cancer on B-mode ultrasonography were analyzed using DL-CAD, and quantitative scores (0-1) were obtained. Associations between quantitative scores and tumor histologic type, grade, size, subtype, and lymph node status were compared.Two-hundred and thirty-six (83.7%) tumors were invasive ductal carcinoma, 18 (6.4%) invasive lobular carcinoma, and 28 (9.9%) micropapillary, apocrine, and mucinous. The mean size was 1.8 ± 1.0 (standard deviation) cm, and 108 (38.3%) cases were node positive. Irregular shape score was associated with tumor size (P < .001), lymph nodes status (P = .001), and estrogen receptor status (P = .016). Not-circumscribed margin (P < .001) and hypoechogenicity (P = .003) scores correlated with tumor size, and non-parallel orientation score correlated with histologic grade (P = .024). Luminal A tumors exhibited more irregular features (P = .048) with no parallel orientation (P = .002), whereas triple-negative breast cancer showed a rounder/more oval and parallel orientation.Quantitative morphological characteristics of breast cancers determined using DL-CAD correlated with histopathologic features and could provide useful information about breast cancer phenotypes.
Collapse
Affiliation(s)
- Young Seon Kim
- Department of Radiology, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, South Korea
| | - Seung Eun Lee
- Department of Radiology, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jung Min Chang
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Soo-Yeon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Young Kyung Bae
- Department of Pathology, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, South Korea
| |
Collapse
|
32
|
Tsuchiya M, Masui T, Terauchi K, Yamada T, Katyayama M, Ichikawa S, Noda Y, Goshima S. MRI-based radiomics analysis for differentiating phyllodes tumors of the breast from fibroadenomas. Eur Radiol 2022; 32:4090-4100. [DOI: 10.1007/s00330-021-08510-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
|
33
|
Zhang L, Fan M, Wang S, Xu M, Li L. Radiomic Analysis of Pharmacokinetic Heterogeneity Within Tumor Based on the Unsupervised Decomposition of Dynamic Contrast-Enhanced MRI for Predicting Histological Characteristics of Breast Cancer. J Magn Reson Imaging 2021; 55:1636-1647. [PMID: 34773446 DOI: 10.1002/jmri.27993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast tumor heterogeneity is associated with histological characteristics. However, pharmacokinetic (PK) heterogeneity within tumor might merit further exploration. PURPOSE To enhance the predictive power of molecular subtypes, Ki-67, and tumor grade by analyzing PK heterogeneity within tumor based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). STUDY TYPE Retrospective. POPULATION Two hundred and eight biopsy-proven breast cancer patients, randomly divided into a training cohort (N = 144) and a testing cohort (N = 64). FIELD STRENGTH/SEQUENCE T1 -weighted DCE-MRI at 3.0 T. ASSESSMENT A convex analysis of mixtures-compartmental modeling decomposition method was used to estimate the PK parameter (i.e., the volume transfer constant Ktrans ) in tumor subregions with distinct physiological kinetic patterns, including fast-flow kinetics, slow-flow kinetics, and plasma input. Radiomic features based on the PK parameter were calculated from each tumor subregion. STATISTICAL TESTS The training cohort was used to build random forest classifiers based on the optimal features determined by the 5-fold cross-validation method. The performance was assessed on the testing cohort using the area under the receiver operating characteristic curve (AUC). The AUCs derived from the tumor subregion-based PK parameter were compared with those of the original images of the entire tumor using the DeLong test. A P-value of <0.05 was considered statistically significant. RESULTS The tumor subregion-based PK parameter, which yielded the highest AUCs of 0.8782, 0.7568, 0.7019, 0.7963, 0.8080, and 0.7375 for luminal A, luminal B, basal-like, human epidermal growth factor receptor 2, Ki-67, and tumor grade, respectively, obtained better diagnostic performance than the original images in the entire tumor (highest AUCs = 0.8612, 0.6191, 0.5593, 0.7704, 0.7494, and 0.6261, respectively). In particular, statistically significant improvement in the diagnostic performance was obtained for luminal B. DATA CONCLUSION Radiomic analysis of PK heterogeneity within tumor can enhance the predictive performance of radiomic models compared with that of the entire tumor. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Liangliang Zhang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China
| | - Ming Fan
- Institute of Biomedical Engineering and Instrumentation, School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Shiwei Wang
- Department of Radiology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Maosheng Xu
- Department of Radiology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lihua Li
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China.,Institute of Biomedical Engineering and Instrumentation, School of Automation, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
34
|
Histogram analysis of diffusion-weighted imaging and dynamic contrast-enhanced MRI for predicting occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma. Eur Radiol 2021; 32:2739-2747. [PMID: 34642806 DOI: 10.1007/s00330-021-08310-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To investigate the feasibility of whole-tumor histogram analysis of diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) MRI for predicting occult lymph node metastasis (LNM) in early-stage oral tongue squamous cell cancer (OTSCC). MATERIALS AND METHODS This retrospective study included 55 early-stage OTSCC (cT1-2N0M0) patients; 34 with pathological LNM and 21 without. Eight whole-tumor histogram features were extracted from quantitative apparent diffusion coefficient (ADC) maps and two semi-quantitative DCE parametric maps (wash-in and wash-out). The clinicopathological factors and histogram features were compared between the two groups. Stepwise logistic regression was used to identify independent predictors. Receiver operating characteristic curves were generated to assess the performances of significant variables and a combined model for predicting occult LNM. RESULTS MRI-determined depth of invasion and ADCentropy was significantly higher in the LNM group, with respective areas under the curve (AUCs) of 0.67 and 0.69, and accuracies of 0.73 and 0.73. ADC10th. ADCuniformity and wash-inskewness were significantly lower in the LNM group, with respective AUCs of 0.68, 0.71, and 0.69, and accuracies of 0.65, 0.71, and 0.64. Histogram features from wash-out maps were not significantly associated with cervical node status. In the logistic regression analysis, ADC10th, ADCuniformity, and wash-inskewness were independent predictors. The combined model yielded the best predictive performance, with an AUC of 0.87 and an accuracy of 0.82. CONCLUSIONS Whole-tumor histogram analysis of ADC and wash-in maps is a feasible tool for preoperative evaluation of cervical node status in early-stage OTSCC. KEY POINTS • Histogram analysis of parametric maps from DWI and DCE-MRI may assist the prediction of occult LNM in early-stage OTSCC. • ADC10th, ADCuniformity, and wash-inskewness were independent predictors. • The combined model exhibited good predictive performance, with an accuracy of 0.82.
Collapse
|
35
|
Niu S, Wang X, Zhao N, Liu G, Kan Y, Dong Y, Cui EN, Luo Y, Yu T, Jiang X. Radiomic Evaluations of the Diagnostic Performance of DM, DBT, DCE MRI, DWI, and Their Combination for the Diagnosisof Breast Cancer. Front Oncol 2021; 11:725922. [PMID: 34568055 PMCID: PMC8461299 DOI: 10.3389/fonc.2021.725922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/23/2021] [Indexed: 12/29/2022] Open
Abstract
Objectives This study aims to evaluate digital mammography (DM), digital breast tomosynthesis (DBT), dynamic contrast-enhanced (DCE), and diffusion-weighted (DW) MRI, individually and combined, for the values in the diagnosis of breast cancer, and propose a visualized clinical-radiomics nomogram for potential clinical uses. Methods A total of 120 patients were enrolled between September 2017 and July 2018, all underwent preoperative DM, DBT, DCE, and DWI scans. Radiomics features were extracted and selected using the least absolute shrinkage and selection operator (LASSO) regression. A radiomics nomogram was constructed integrating the radiomics signature and important clinical predictors, and assessed with the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). Results The radiomics signature derived from DBT plus DM generated a lower area under the ROC curve (AUC) and sensitivity, but a higher specificity compared with that from DCE plus DWI. The nomogram integrating the combined radiomics signature, age, and menstruation status achieved the best diagnostic performance in the training (AUCs, nomogram vs. combined radiomics signature vs. clinical model, 0.975 vs. 0.964 vs. 0.782) and validation (AUCs, nomogram vs. combined radiomics signature vs. clinical model, 0.983 vs. 0.978 vs. 0.680) cohorts. DCA confirmed the potential clinical usefulness of the nomogram. Conclusions The DBT plus DM provided a lower AUC and sensitivity, but a higher specificity than DCE plus DWI for detecting breast cancer. The proposed clinical-radiomics nomogram has diagnostic advantages over each modality, and can be considered as an efficient tool for breast cancer screening.
Collapse
Affiliation(s)
- Shuxian Niu
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Xiaoyu Wang
- Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Nannan Zhao
- Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Guanyu Liu
- Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yangyang Kan
- Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yue Dong
- Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - E-Nuo Cui
- School of Computer Science and Engineering, Shenyang University, Shenyang, China
| | - Yahong Luo
- Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Tao Yu
- Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiran Jiang
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| |
Collapse
|
36
|
Xing P, Chen L, Yang Q, Song T, Ma C, Grimm R, Fu C, Wang T, Peng W, Lu J. Differentiating prostate cancer from benign prostatic hyperplasia using whole-lesion histogram and texture analysis of diffusion- and T2-weighted imaging. Cancer Imaging 2021; 21:54. [PMID: 34579789 PMCID: PMC8477463 DOI: 10.1186/s40644-021-00423-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 09/03/2021] [Indexed: 11/24/2022] Open
Abstract
Background To explore the usefulness of analyzing histograms and textures of apparent diffusion coefficient (ADC) maps and T2-weighted (T2W) images to differentiate prostatic cancer (PCa) from benign prostatic hyperplasia (BPH) using histopathology as the reference. Methods Ninety patients with PCa and 112 patients with BPH were included in this retrospective study. Differences in whole-lesion histograms and texture parameters of ADC maps and T2W images between PCa and BPH patients were evaluated using the independent samples t-test. The diagnostic performance of ADC maps and T2W images in being able to differentiate PCa from BPH was assessed using receiver operating characteristic (ROC) curves. Results The mean, median, 5th, and 95th percentiles of ADC values in images from PCa patients were significantly lower than those from BPH patients (p < 0.05). Significant differences were observed in the means, standard deviations, medians, kurtosis, skewness, and 5th percentile values of T2W image between PCa and BPH patients (p < 0.05). The ADC5th showed the largest AUC (0.906) with a sensitivity of 83.3 % and specificity of 89.3 %. The diagnostic performance of the T2W image histogram and texture analysis was moderate and had the largest AUC of 0.634 for T2WKurtosis with a sensitivity and specificity of 48.9% and 79.5 %, respectively. The diagnostic performance of the combined ADC5th & T2WKurtosis parameters was also similar to that of the ADC5th & ADCDiff−Variance. Conclusions Histogram and texture parameters derived from the ADC maps and T2W images for entire prostatic lesions could be used as imaging biomarkers to differentiate PCa and BPH biologic characteristics, however, histogram parameters outperformed texture parameters in the diagnostic performance.
Collapse
Affiliation(s)
- Pengyi Xing
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, No.168 Changhai Road, 200433, Shanghai, China
| | - Luguang Chen
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, No.168 Changhai Road, 200433, Shanghai, China
| | - Qingsong Yang
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, No.168 Changhai Road, 200433, Shanghai, China
| | - Tao Song
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, No.168 Changhai Road, 200433, Shanghai, China
| | - Chao Ma
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, No.168 Changhai Road, 200433, Shanghai, China
| | - Robert Grimm
- Application Predevelopment, Siemens Healthcare, Erlangen, Germany
| | - Caixia Fu
- MR Application Development, Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, China
| | - Tiegong Wang
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, No.168 Changhai Road, 200433, Shanghai, China
| | - Wenjia Peng
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, No.168 Changhai Road, 200433, Shanghai, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, No.168 Changhai Road, 200433, Shanghai, China.
| |
Collapse
|
37
|
Ozturk M, Polat AV, Selcuk MB. Whole-lesion ADC histogram analysis versus single-slice ADC measurement for the differentiation of benign and malignant soft tissue tumors. Eur J Radiol 2021; 143:109934. [PMID: 34500411 DOI: 10.1016/j.ejrad.2021.109934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/25/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate and compare the diagnostic performances of whole-lesion apparent diffusion coefficient (ADC) histogram analysis and single-slice ADC measurement in the differentiation of benign and malignant soft tissue tumors. METHODS Fifty-three patients (mean age: 48.5 ± 21.4) with soft tissue tumors (27 benign and 26 malignant) were evaluated with diffusion-weighted MRI. Whole-lesion ADC histogram parameters (mean, median, 10th percentile, 90th percentile, minimum, maximum, range, mean absolute deviation, interquartile range, kurtosis, skewness, root mean squared, variance and inhomogeneity) of the lesions were measured using the whole solid tumor volume region of interest (ROI). In other sessions, five ROIs were manually drawn on the tumor slices, and mean ADC and minimum ADC of the measurements were calculated. Diagnostic accuracies of the two methods were assessed and compared. RESULTS Mean, median, minimum, 10th percentile, 90th percentile, range, root mean squared and inhomogeneity of ADC histogram analysis, and mean ADC and minimum ADC of single-slice ADC measurement were significantly different between malignant and benign lesions (p < 0.001 - p = 0.002). Among the ADC histogram parameters, 10th percentile had the highest diagnostic performance (AUC = 0.825) followed by mean (AUC = 0.792) and median (AUC = 0.789). For the single-slice ADC measurement, the AUC of mean ADC and minimum ADC were 0.842 and 0.786, respectively. Mean ADC of single-slice measurement had a similar diagnostic performance with the 10th percentile, mean, and median of ADC histogram analysis (p = 0.070-1.000). CONCLUSIONS Both whole-lesion ADC histogram analysis and single-slice ADC measurement can differentiate benign and malignant soft tissue tumors with similar diagnostic performances.
Collapse
Affiliation(s)
- Mesut Ozturk
- Radiology Clinic, Samsun Gazi State Hospital, Samsun, Turkey; Department of Radiology, Ondokuz Mayis University, Faculty of Medicine, Samsun, Turkey.
| | - Ahmet Veysel Polat
- Department of Radiology, Ondokuz Mayis University, Faculty of Medicine, Samsun, Turkey
| | - Mustafa Bekir Selcuk
- Department of Radiology, Ondokuz Mayis University, Faculty of Medicine, Samsun, Turkey
| |
Collapse
|
38
|
Xie T, Zhao Q, Fu C, Grimm R, Gu Y, Peng W. Improved value of whole-lesion histogram analysis on DCE parametric maps for diagnosing small breast cancer (≤ 1 cm). Eur Radiol 2021; 32:1634-1643. [PMID: 34505195 DOI: 10.1007/s00330-021-08244-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To determine if whole-lesion histogram analysis on dynamic contrast-enhanced (DCE) parametric maps help to improve the diagnostic accuracy of small suspicious breast lesions (≤ 1 cm). METHODS This retrospective study included 99 female patients with 114 lesions (40 malignant and 74 benign lesions) suspicious on magnetic resonance imaging (MRI).Two radiologists reviewed all lesions and descripted the morphologic and kinetic characteristics according to BI-RADS by consensus. Whole lesions were segmented on DCE parametric maps (washin and washout), and quantitative histogram features were extracted. Univariate analysis and multivariate logistic regression analysis with forward stepwise covariate selection were performed to identify significant variables. Diagnostic performance was assessed and compared with that of qualitative BI-RADS assessment and quantitative histogram analysis by ROC analysis. RESULTS For malignancy defined as a washout or plateau pattern, the qualitative kinetic pattern showed a significant difference between the two groups (p = 0.023), yielding an AUC of 0.603 (95% confidence interval [CI]: 0.507, 0.694). The mean and median of washout were independent quantitative predictors of malignancy (p = 0.002, 0.010), achieving an AUC of 0.796 (95% CI: 0. 709, 0.865). The AUC of the quantitative model was better than that of the qualitative model (p < 0.001). CONCLUSIONS Compared with the qualitative BI-RADS assessment, quantitative whole-lesion histogram analysis on DCE parametric maps was better to discriminate between small benign and malignant breast lesions (≤ 1 cm) initially defined as suspicious on DCE-MRI. KEY POINTS • For malignancy defined as a washout or plateau, the kinetic pattern may provide information to diagnose small breast cancer. • The mean and median of washout map were significantly lower for small malignant breast lesions than for benign lesions. • Quantitative histogram analysis on MRI parametric maps improves diagnostic accuracy for small breast cancer, which may obviate unnecessary biopsy.
Collapse
Affiliation(s)
- Tianwen Xie
- Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Qiufeng Zhao
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Caixia Fu
- MR Applications Development, Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, People's Republic of China
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Weijun Peng
- Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
39
|
Huang Y, Wei L, Hu Y, Shao N, Lin Y, He S, Shi H, Zhang X, Lin Y. Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer. Front Oncol 2021; 11:706733. [PMID: 34490107 PMCID: PMC8416497 DOI: 10.3389/fonc.2021.706733] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/28/2021] [Indexed: 12/30/2022] Open
Abstract
Objective To investigate whether radiomics features extracted from multi-parametric MRI combining machine learning approach can predict molecular subtype and androgen receptor (AR) expression of breast cancer in a non-invasive way. Materials and Methods Patients diagnosed with clinical T2–4 stage breast cancer from March 2016 to July 2020 were retrospectively enrolled. The molecular subtypes and AR expression in pre-treatment biopsy specimens were assessed. A total of 4,198 radiomics features were extracted from the pre-biopsy multi-parametric MRI (including dynamic contrast-enhancement T1-weighted images, fat-suppressed T2-weighted images, and apparent diffusion coefficient map) of each patient. We applied several feature selection strategies including the least absolute shrinkage and selection operator (LASSO), and recursive feature elimination (RFE), the maximum relevance minimum redundancy (mRMR), Boruta and Pearson correlation analysis, to select the most optimal features. We then built 120 diagnostic models using distinct classification algorithms and feature sets divided by MRI sequences and selection strategies to predict molecular subtype and AR expression of breast cancer in the testing dataset of leave-one-out cross-validation (LOOCV). The performances of binary classification models were assessed via the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). And the performances of multiclass classification models were assessed via AUC, overall accuracy, precision, recall rate, and F1-score. Results A total of 162 patients (mean age, 46.91 ± 10.08 years) were enrolled in this study; 30 were low-AR expression and 132 were high-AR expression. HR+/HER2− cancers were diagnosed in 56 cases (34.6%), HER2+ cancers in 81 cases (50.0%), and TNBC in 25 patients (15.4%). There was no significant difference in clinicopathologic characteristics between low-AR and high-AR groups (P > 0.05), except the menopausal status, ER, PR, HER2, and Ki-67 index (P = 0.043, <0.001, <0.001, 0.015, and 0.006, respectively). No significant difference in clinicopathologic characteristics was observed among three molecular subtypes except the AR status and Ki-67 (P = <0.001 and 0.012, respectively). The Multilayer Perceptron (MLP) showed the best performance in discriminating AR expression, with an AUC of 0.907 and an accuracy of 85.8% in the testing dataset. The highest performances were obtained for discriminating TNBC vs. non-TNBC (AUC: 0.965, accuracy: 92.6%), HER2+ vs. HER2− (AUC: 0.840, accuracy: 79.0%), and HR+/HER2− vs. others (AUC: 0.860, accuracy: 82.1%) using MLP as well. The micro-AUC of MLP multiclass classification model was 0.896, and the overall accuracy was 0.735. Conclusions Multi-parametric MRI-based radiomics combining with machine learning approaches provide a promising method to predict the molecular subtype and AR expression of breast cancer non-invasively.
Collapse
Affiliation(s)
- Yuhong Huang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lihong Wei
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yalan Hu
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nan Shao
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingyu Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaofu He
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoling Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Bitencourt A, Daimiel Naranjo I, Lo Gullo R, Rossi Saccarelli C, Pinker K. AI-enhanced breast imaging: Where are we and where are we heading? Eur J Radiol 2021; 142:109882. [PMID: 34392105 PMCID: PMC8387447 DOI: 10.1016/j.ejrad.2021.109882] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022]
Abstract
Significant advances in imaging analysis and the development of high-throughput methods that can extract and correlate multiple imaging parameters with different clinical outcomes have led to a new direction in medical research. Radiomics and artificial intelligence (AI) studies are rapidly evolving and have many potential applications in breast imaging, such as breast cancer risk prediction, lesion detection and classification, radiogenomics, and prediction of treatment response and clinical outcomes. AI has been applied to different breast imaging modalities, including mammography, ultrasound, and magnetic resonance imaging, in different clinical scenarios. The application of AI tools in breast imaging has an unprecedented opportunity to better derive clinical value from imaging data and reshape the way we care for our patients. The aim of this study is to review the current knowledge and future applications of AI-enhanced breast imaging in clinical practice.
Collapse
Affiliation(s)
- Almir Bitencourt
- Department of Imaging, A.C.Camargo Cancer Center, Sao Paulo, SP, Brazil; Dasa, Sao Paulo, SP, Brazil
| | - Isaac Daimiel Naranjo
- Department of Radiology, Breast Imaging Service, Guy's and St. Thomas' NHS Trust, Great Maze Pond, London, UK
| | - Roberto Lo Gullo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Katja Pinker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
41
|
Characterization of breast cancer subtypes based on quantitative assessment of intratumoral heterogeneity using dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging. Eur Radiol 2021; 32:822-833. [PMID: 34345946 DOI: 10.1007/s00330-021-08166-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/18/2021] [Accepted: 06/19/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate whether intratumoral heterogeneity, assessed via dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI), reflects the molecular subtypes of invasive breast cancers. MATERIAL AND METHODS We retrospectively evaluated data from 248 consecutive women (mean age ± standard deviation, 54.6 ± 12.2 years) with invasive breast cancer who underwent preoperative DCE-MRI and DWI between 2019 and 2020. To evaluate intratumoral heterogeneity, kinetic heterogeneity (a measure of heterogeneity in the proportions of tumor pixels with delayed washout, plateau, and persistent components within a tumor) was assessed with DCE-MRI using a commercially available computer-aided diagnosis system. Apparent diffusion coefficients (ADCs) were obtained using a region-of-interest technique, and ADC heterogeneity was calculated using the following formula: (ADCmax-ADCmin)/ADCmean. Possible associations between imaging-based heterogeneity values and breast cancer subtypes were analyzed. RESULTS Of the 248 invasive breast cancers, 61 (24.6%) were classified as luminal A, 130 (52.4%) as luminal B, 25 (10.1%) as HER2-enriched, and 32 (12.9%) as triple-negative breast cancer (TNBC). There were significant differences in the kinetic and ADC heterogeneity values among tumor subtypes (p < 0.001 and p = 0.023, respectively). The TNBC showed higher kinetic and ADC heterogeneity values, whereas the HER2-enriched subtype showed higher kinetic heterogeneity values compared to the luminal subtypes. Multivariate linear analysis showed that the HER2-enriched (p < 0.001) and TNBC subtypes (p < 0.001) were significantly associated with higher kinetic heterogeneity values. The TNBC subtype (p = 0.042) was also significantly associated with higher ADC heterogeneity values. CONCLUSIONS Quantitative assessments of heterogeneity in enhancement kinetics and ADC values may provide biological clues regarding the molecular subtypes of breast cancer. KEY POINTS • Higher kinetic heterogeneity was associated with HER2-enriched and triple-negative breast cancer. • Higher ADC heterogeneity was associated with triple-negative breast cancer. • Aggressive breast cancer subtypes exhibited higher intratumoral heterogeneity based on MRI.
Collapse
|
42
|
Recent Radiomics Advancements in Breast Cancer: Lessons and Pitfalls for the Next Future. ACTA ACUST UNITED AC 2021; 28:2351-2372. [PMID: 34202321 PMCID: PMC8293249 DOI: 10.3390/curroncol28040217] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Radiomics is an emerging translational field of medicine based on the extraction of high-dimensional data from radiological images, with the purpose to reach reliable models to be applied into clinical practice for the purposes of diagnosis, prognosis and evaluation of disease response to treatment. We aim to provide the basic information on radiomics to radiologists and clinicians who are focused on breast cancer care, encouraging cooperation with scientists to mine data for a better application in clinical practice. We investigate the workflow and clinical application of radiomics in breast cancer care, as well as the outlook and challenges based on recent studies. Currently, radiomics has the potential ability to distinguish between benign and malignant breast lesions, to predict breast cancer’s molecular subtypes, the response to neoadjuvant chemotherapy and the lymph node metastases. Even though radiomics has been used in tumor diagnosis and prognosis, it is still in the research phase and some challenges need to be faced to obtain a clinical translation. In this review, we discuss the current limitations and promises of radiomics for improvement in further research.
Collapse
|
43
|
Whole Volume Apparent Diffusion Coefficient (ADC) Histogram as a Quantitative Imaging Biomarker to Differentiate Breast Lesions: Correlation with the Ki-67 Proliferation Index. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4970265. [PMID: 34258262 PMCID: PMC8249125 DOI: 10.1155/2021/4970265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022]
Abstract
Objectives To evaluate the value of the whole volume apparent diffusion coefficient (ADC) histogram in distinguishing between benign and malignant breast lesions and differentiating different molecular subtypes of breast cancers and to assess the correlation between ADC histogram parameters and Ki-67 expression in breast cancers. Methods The institutional review board approved this retrospective study. Between September 2016 and February 2019, 189 patients with 84 benign lesions and 105 breast cancers underwent magnetic resonance imaging (MRI). Volumetric ADC histograms were created by placing regions of interest (ROIs) on the whole lesion. The relationships between the ADC parameters and Ki-67 were analysed using Spearman's correlation analysis. Results Of the 189 breast lesions included, there were significant differences in patient age (P < 0.001) and lesion size (P = 0.006) between the benign and malignant lesions. The results also demonstrated significant differences in all ADC histogram parameters between benign and malignant lesions (all P < 0.001). The median and mean ADC histogram parameters performed better than the other ADC histogram parameters (AUCs were 0.943 and 0.930, respectively). The receiver operating characteristic (ROC) analysis revealed that the 10th percentile ADC value and entropy could determine the human epidermal growth factor receptor 2 (HER-2) status (both P = 0.001) and estrogen receptor (ER)/progesterone receptor (PR) status (P = 0.020 and P = 0.041, respectively). Among all breast cancer lesions, 35 tumours in the low-proliferation group (Ki − 67 < 14%) and 70 tumours in the high-proliferation group (Ki − 67 ≥ 14) were analysed with ROC curves and correlation analyses. The ROC analysis revealed that entropy and skewness could determine the Ki-67 status (P = 0.007 and P < 0.001, respectively), and there were weak correlations between ADC entropy (r = 0.383) and skewness (r = 0.209) and the Ki-67 index. Conclusion The volumetric ADC histogram could serve as an imaging marker to determine breast lesion characteristics and may be a supplemental method in predicting tumour proliferation in breast cancer.
Collapse
|
44
|
Chen Q, Xia J, Zhang J. Identify the triple-negative and non-triple-negative breast cancer by using texture features of medicale ultrasonic image: A STROBE-compliant study. Medicine (Baltimore) 2021; 100:e25878. [PMID: 34087829 PMCID: PMC8183753 DOI: 10.1097/md.0000000000025878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 04/17/2021] [Indexed: 01/04/2023] Open
Abstract
The study aimed to explore the value of ultrasound (US) texture analysis in the differential diagnosis of triple-negative breast cancer (TNBC) and non-TNBC.Retrospective analysis was done on 93 patients with breast cancer (35 patients with TNBC and 38 patients with non-TNBC) who were admitted to Taizhou people's hospital from July 2015 to June 2019. All lesions were pathologically proven at surgery. US images of all patients were collected. Texture analysis of US images was performed using MaZda software package. The differences between textural features in TNBC and non-TNBC were assessed. Receiver operating characteristic curve analysis was used to compare the diagnostic performance of textural parameters showing significant difference.Five optimal texture feature parameters were extracted from gray level run-length matrix, including gray level non-uniformity (GLNU) in horizontal direction, vertical gray level non-uniformity, GLNU in the 45 degree direction, run length non-uniformity in 135 degree direction, GLNU in the 135 degree direction. All these texture parameters were statistically higher in TNBC than in non-TNBC (P <.05). Receiver operating characteristic curve analysis indicated that at a threshold of 268.9068, GLNU in horizontal direction exhibited best diagnostic performance for differentiating TNBC from non-TNBC. Logistic regression model established based on all these parameters showed a sensitivity of 69.3%, specificity of 91.4% and area under the curve of 0.834.US texture features were significantly different between TNBC and non-TNBC, US texture analysis can be used for preliminary differentiation of TNBC from non-TNBC.
Collapse
Affiliation(s)
| | | | - Jun Zhang
- Department of Nuclear Medicine, Taizhou people's Hospital affiliated to Medical College of Yangzhou University Taizhou, China
| |
Collapse
|
45
|
Comparison of clinical and magnetic resonance imaging findings of triple-negative breast cancer with non-triple-negative tumours. Pol J Radiol 2021; 86:e269-e276. [PMID: 34136044 PMCID: PMC8186308 DOI: 10.5114/pjr.2021.106137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose Triple-negative breast cancer (TNBC) has some distinctive features. The aim of the study was to compare clinical and breast magnetic resonance imaging (MRI) findings of TNBC with non-triple-negative breast cancer (nTNBC) in molecular subtypes such as ADC (apparent diffusion coefficient) values, T2-weighted (T2W) image intensity, shape, margin, lymph node involvement, grade, multifocality, multicentricity, bilaterality, and enhancement pattern differences between tumour subtypes. Material and methods A total of 141 patients who underwent breast biopsy at our institution between January 2010 and June 2018 were included in this study. Patients were divided into molecular subtypes according to hormone receptor status, and Ki-67 index. Tumour grade, enhancement patterns, age, lymph node involvement, ADC values, breast imaging reporting and data system (BI-RADS) category, bilaterality, multifocality, multicentricity, margin, shape, and T2W image intensity were evaluated for these subtypes. Results ADC values were higher in triple-negative tumours than in luminal A and luminal B tumours (p = 0.010 and p = 0.002, respectively). Circumscribed margin, type 2 enhancement curve, and rim enhancement were significantly higher in triple-negative tumours (p < 0.001). No significant difference was found between the groups in terms of other MRI findings including bilaterality, multifocality, multicentricity, shape, and T2W image intensity (p > 0.05). Conclusions ADC values, circumscribed margin, and rim enhancement can provide important information about the tumour's biological behaviour and the course of the disease.
Collapse
|
46
|
Li Q, Xiao Q, Yang M, Chai Q, Huang Y, Wu PY, Niu Q, Gu Y. Histogram analysis of quantitative parameters from synthetic MRI: Correlations with prognostic factors and molecular subtypes in invasive ductal breast cancer. Eur J Radiol 2021; 139:109697. [PMID: 33857828 DOI: 10.1016/j.ejrad.2021.109697] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate intra-tumoral heterogeneity through a histogram analysis of quantitative parameters obtained from synthetic MRI (magnetic resonance imaging), and determine correlations of these histogram characteristics with prognostic factors and molecular subtypes of invasive ductal carcinoma (IDC). METHODS A total of 122 IDC from 122 women who underwent preoperative synthetic MRI and DCE (dynamic contrast enhancement)-MRI were investigated. The synthetic MRI parameters (T1, T2, and PD (proton density)) were obtained. For each parameter, the minimum, 10th percentile, mean, median, 90th percentile, maximum, skewness, and kurtosis values of tumor were calculated, and correlations with prognostic factors and subtypes were assessed. The Mann-Whitney U test or the Student's t test were utilized to analyze the association between the histogram features of synthetic MRI parameters and prognostic factors. The Kruskal-Wallis test followed by the post-hoc test was used to analyze differences of synthetic MRI parameters among molecular subtypes. RESULTS IDC with high histopathologic grade showed statistically higher PDmaxium, T1mean and T1median values than those with low grade (p = 0.003, p = 0.007, p = 0.003). The T110th were significantly higher in cancers with PR (progesterone receptor) negativity than those with PR positivity (p = 0.005). ER-negative cancers had significant higher values of T210th, T2mean, and T2median than ER-positive cancers (p = 0.006, 0.002, and 0.006, respectively). The values of PDmedian were significantly higher in IDC with HER2 (human epidermal growth factor receptor 2) positivity than those with HER2 negativity (p = 0.001). When discriminating molecular subtypes of IDC, the T2mean achieved the highest performance. The T2mean values of TN (triple-negative), luminal B and luminal A types are arranged in descending order (p < 0.0001). CONCLUSIONS Histogram features derived from synthetic MRI quantifies the distributions of tissue relaxation time and proton density, and may serve as a potential biomarker for discriminating histopathological grade, hormone receptor status, HER2 expression status and breast cancer subtypes.
Collapse
Affiliation(s)
- Qin Li
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qin Xiao
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Meng Yang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qinghuan Chai
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Huang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Qingliang Niu
- Department of Radiology, WeiFang Traditional Chinese Hospital, Weizhou Road No. 1055, Weifang, Shandong, China.
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Yurtsever I, Sari L, Gultekin MA, Toprak H, Turk HM, Aliyev A, Peker AA, Yabaci A, Alkan A. Diffusion Tensor Imaging of Brain Metastases in Patients with Breast Cancer According to Molecular Subtypes. Curr Med Imaging 2021; 17:120-128. [PMID: 32564758 DOI: 10.2174/1573405616666200621195655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE Recent studies have shown that diffusion tensor imaging (DTI) parameters are used to follow the patients with breast cancer and correlate well as a prognostic parameter of breast cancer. However, as far as we know, there is no data to compare the DTI features of breast cancer brain metastases according to molecular subtypes in the literature. Our aim is to evaluate whether there are any differences in DTI parameters of brain metastases in patients with breast cancer according to molecular subtypes. METHODS Twenty-seven patients with breast cancer and 82 metastatic brain lesions were included. We classified subjects into three subgroups according to their hormone expression; Group 0, triple- negative (n; 6, 19 lesions), group 1, HER2-positive (n;16, 54 lesions) and group 2, hormone-- positive group (n; 5, 9 lesions). The apparent diffusion coefficient (ADC), fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) values in DTI were measured and compared between three groups. RESULTS ADC, AD and RD values of group 2 were significantly lower compared to group 0. No significant differences were found in FA, ADC, AD and RD values between the group 0 and 1 and the group 1 and 2. CONCLUSION Metastasis of aggressive triple-negative breast cancer showed higher ADC values compared to the less aggressive hormone-positive group. Higher ADC values in brain metastases of breast cancer may indicate a poor prognosis, so DTI findings could play a role in planning appropriate treatment.
Collapse
Affiliation(s)
- Ismail Yurtsever
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Lutfullah Sari
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Mehmet Ali Gultekin
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Huseyin Toprak
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Haci Mehmet Turk
- Department of Medical Oncology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Altay Aliyev
- Department of Medical Oncology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Abdusselim Adil Peker
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Aysegul Yabaci
- Department of Biostatistics, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Alpay Alkan
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
48
|
Leithner D, Bernard-Davila B, Martinez DF, Horvat JV, Jochelson MS, Marino MA, Avendano D, Ochoa-Albiztegui RE, Sutton EJ, Morris EA, Thakur SB, Pinker K. Radiomic Signatures Derived from Diffusion-Weighted Imaging for the Assessment of Breast Cancer Receptor Status and Molecular Subtypes. Mol Imaging Biol 2021; 22:453-461. [PMID: 31209778 PMCID: PMC7062654 DOI: 10.1007/s11307-019-01383-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose To compare annotation segmentation approaches and to assess the value of radiomics analysis applied to diffusion-weighted imaging (DWI) for evaluation of breast cancer receptor status and molecular subtyping. Procedures In this IRB-approved HIPAA-compliant retrospective study, 91 patients with treatment-naïve breast malignancies proven by image-guided breast biopsy, (luminal A, n = 49; luminal B, n = 8; human epidermal growth factor receptor 2 [HER2]-enriched, n = 11; triple negative [TN], n = 23) underwent multiparametric magnetic resonance imaging (MRI) of the breast at 3 T with dynamic contrast-enhanced MRI, T2-weighted and DW imaging. Lesions were manually segmented on high b-value DW images and segmentation ROIS were propagated to apparent diffusion coefficient (ADC) maps. In addition in a subgroup (n = 79) where lesions were discernable on ADC maps alone, these were also directly segmented there. To derive radiomics signatures, the following features were extracted and analyzed: first-order histogram (HIS), co-occurrence matrix (COM), run-length matrix (RLM), absolute gradient, autoregressive model (ARM), discrete Haar wavelet transform (WAV), and lesion geometry. Fisher, probability of error and average correlation, and mutual information coefficients were used for feature selection. Linear discriminant analysis followed by k-nearest neighbor classification with leave-one-out cross-validation was applied for pairwise differentiation of receptor status and molecular subtyping. Histopathologic results were considered the gold standard. Results For lesion that were segmented on DWI and segmentation ROIs were propagated to ADC maps the following classification accuracies > 90% were obtained: luminal B vs. HER2-enriched, 94.7 % (based on COM features); luminal B vs. others, 92.3 % (COM, HIS); and HER2-enriched vs. others, 90.1 % (RLM, COM). For lesions that were segmented directly on ADC maps, better results were achieved yielding the following classification accuracies: luminal B vs. HER2-enriched, 100 % (COM, WAV); luminal A vs. luminal B, 91.5 % (COM, WAV); and luminal B vs. others, 91.1 % (WAV, ARM, COM). Conclusions Radiomic signatures from DWI with ADC mapping allows evaluation of breast cancer receptor status and molecular subtyping with high diagnostic accuracy. Better classification accuracies were obtained when breast tumor segmentations could be performed on ADC maps.
Collapse
Affiliation(s)
- Doris Leithner
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA.,Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Blanca Bernard-Davila
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA
| | - Danny F Martinez
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA
| | - Joao V Horvat
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA
| | - Maxine S Jochelson
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA
| | - Maria Adele Marino
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA.,Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Messina, Italy
| | - Daly Avendano
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA.,Department of Breast Imaging, Breast Cancer Center TecSalud, ITESM Monterrey, Monterrey, Nuevo Leon, Mexico
| | - R Elena Ochoa-Albiztegui
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA
| | - Elizabeth J Sutton
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA
| | - Elizabeth A Morris
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA
| | - Sunitha B Thakur
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA.,Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA. .,Department of Biomedical Imaging and Image-guided Therapy, Molecular and Gender Imaging Service, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
49
|
Huang Y, Zheng C, Zhang X, Cheng Z, Yang Z, Hao Y, Shen J. The Usefulness of Bayesian Network in Assessing the Risk of Triple-Negative Breast Cancer. Acad Radiol 2020; 27:e282-e291. [PMID: 32035756 DOI: 10.1016/j.acra.2019.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/12/2019] [Accepted: 12/25/2019] [Indexed: 12/31/2022]
Abstract
RATIONALE AND OBJECTIVES To evaluate a Bayesian network (BN) model learned from epidemiological and clinical information, and various MRI parameters for predicting the risk of triple-negative breast cancer (TNBC). MATERIALS AND METHODS For this retrospective study, 214 women (mean age ± standard deviation, 50.5±10.6 years) with breast cancer were included between April 2016 and April 2018. All patients underwent MRI, including dynamic contrast-enhanced (DCE)-MRI. The morphologic MRI features, the pattern of the time-signal intensity curve (TIC) and the kinetic parameters were obtained for each lesion. The epidemiological and clinical parameters and those imaging parameters were used to construct BN model to estimate TNBC risk. ROC curves upon probability estimates were used to determine the performance of the BN using area under the ROC curves (Az), sensitivity, specificity, and accuracy. RESULTS A BN model consisted of 16 epidemiological and clinical characteristics, morphologic MRI features, and quantitative DCE-MRI parameters were established. The posttest probability table showed that patients with age <35 years, mass-like lesions, type I TIC, and MaxCon ≥ 0.186 were at the highest risk of TNBC. The constructed BN model had an Az of 0.663 (95% confidence interval [CI]: 0.654, 0.672), sensitivity of 0.660 (95% CI: 0.644, 0.675), specificity of 0.740 (95% CI: 0.726, 0.753) and accuracy of 0.724 (95% CI: 0.714, 0.733) in classifying TNBC. CONCLUSION The BN model integrating epidemiological and clinical characteristics, morphologic and kinetic MRI parameters provide a noninvasive analytical approach for preoperative prediction of the risk of TNBC.
Collapse
Affiliation(s)
- Yun Huang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan II Road, Guangzhou 510080, China
| | - Chushan Zheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Xiang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Ziliang Cheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Zehong Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Yuantao Hao
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan II Road, Guangzhou 510080, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China.
| |
Collapse
|
50
|
Multi-parametric MRI lesion heterogeneity biomarkers for breast cancer diagnosis. Phys Med 2020; 80:101-110. [PMID: 33137621 DOI: 10.1016/j.ejmp.2020.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To identify intra-lesion imaging heterogeneity biomarkers in multi-parametric Magnetic Resonance Imaging (mpMRI) for breast lesion diagnosis. METHODS Dynamic Contrast Enhanced (DCE) and Diffusion Weighted Imaging (DWI) of 73 female patients, with 85 histologically verified breast lesions were acquired. Non-rigid multi-resolution registration was utilized to spatially align sequences. Four (4) DCE (2nd post-contrast frame, Initial-Enhancement, Post-Initial-Enhancement and Signal-Enhancement-Ratio) and one (1) DWI (Apparent-Diffusion-Coefficient) representations were analyzed, considering a representative lesion slice. 11 1st-order-statistics and 16 texture features (Gray-Level-Co-occurrence-Matrix (GLCM) and Gray-Level-Run-Length-Matrix (GLRLM) based) were derived from lesion segments, provided by Fuzzy C-Means segmentation, across the 5 representations, resulting in 135 features. Least-Absolute-Shrinkage and Selection-Operator (LASSO) regression was utilized to select optimal feature subsets, subsequently fed into 3 classification schemes: Logistic-Regression (LR), Random-Forest (RF), Support-Vector-Machine-Sequential-Minimal-Optimization (SVM-SMO), assessed with Receiver-Operating-Characteristic (ROC) analysis. RESULTS LASSO regression resulted in 7, 6 and 7 features subsets from DCE, DWI and mpMRI, respectively. Best classification performance was obtained by the RF multi-parametric scheme (Area-Under-ROC-Curve, (AUC) ± Standard-Error (SE), AUC ± SE = 0.984 ± 0.025), as compared to DCE (AUC ± SE = 0.961 ± 0.030) and DWI (AUC ± SE = 0.938 ± 0.032) and statistically significantly higher as compared to DWI. The selected mpMRI feature subset highlights the significance of entropy (1st-order-statistics and 2nd-order-statistics (GLCM)) and percentile features extracted from 2nd post-contrast frame, PIE, SER maps and ADC map. CONCLUSION Capturing breast intra-lesion heterogeneity, across mpMRI lesion segments with 1st-order-statistics and texture features (GLCM and GLRLM based), offers a valuable diagnostic tool for breast cancer.
Collapse
|