1
|
Miao Q, Hua S, Gong Y, Lyu Z, Qian P, Liu C, Jin W, Hu P, Qi H. Free-Breathing Non-Contrast T1ρ Dispersion MRI of Myocardial Interstitial Fibrosis in Comparison with Extracellular Volume Fraction. J Cardiovasc Magn Reson 2024:101093. [PMID: 39245148 DOI: 10.1016/j.jocmr.2024.101093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Myocardial fibrosis is a common feature in various cardiac diseases. It causes adverse cardiac remodeling and is associated with poor clinical outcomes. Late gadolinium enhancement (LGE) and extracellular volume fraction (ECV) are the standard MRI techniques for detecting focal and diffuse myocardial fibrosis. However, these contrast-enhanced techniques require the administration of gadolinium contrast agents, which is not applicable to patients with gadolinium contraindications. To eliminate the need of contrast agents, we develop and apply an endogenous free-breathing T1ρ dispersion imaging technique (FB-MultiMap) for diagnosing diffuse myocardial fibrosis in a cohort with suspected cardiomyopathies. METHODS The proposed FB-MultiMap technique, enabling T2, T1ρ and their difference (myocardial fibrosis index, mFI) quantification in a single scan was developed in phantoms and 15 healthy subjects. In the clinical study, 55 patients with suspected cardiomyopathies were imaged using FB-MultiMap, conventional native T1 mapping, LGE, and ECV imaging. The accuracy of the endogenous parameters for predicting increased ECV was evaluated using receiver operating characteristic (ROC) curve analysis. In addition, the correlation of native T1, T1ρ, and mFI with ECV was respectively assessed using Pearson correlation coefficients. RESULTS FB-MultiMap showed a good agreement with conventional separate breath-hold mapping techniques in phantoms and healthy subjects. Considering all the patients, T1ρ was more accurate than mFI and native T1 for predicting increased ECV, with area under the curve (AUC) values of 0.91, 0.79 and 0.75, respectively, and showed stronger correlation with ECV (correlation coefficient r: 0.72 vs. 0.52 vs. 0.40). In the subset of 47 patients with normal T2 values, the diagnostic performance of mFI was significantly strengthened (AUC=0.90, r=0.83), outperforming T1ρ and native T1. CONCLUSION The proposed free-breathing T1ρ dispersion imaging technique enabling simultaneous quantification of T2, T1ρ and mFI in a single scan has shown great potential for diagnosing diffuse myocardial fibrosis in patients with complex cardiomyopathies without contrast agents.
Collapse
Affiliation(s)
- Qinfang Miao
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Sha Hua
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Gong
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenfeng Lyu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Pengfang Qian
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Chun Liu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Wei Jin
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Hu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Haikun Qi
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
2
|
Wang K, Zhang Y, Zhang W, Jin H, An J, Cheng J, Zheng J. Role of endogenous T1ρ and its dispersion imaging in differential diagnosis of cardiac amyloidosis. J Cardiovasc Magn Reson 2024; 26:101080. [PMID: 39127261 PMCID: PMC11422604 DOI: 10.1016/j.jocmr.2024.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) has demonstrated excellent performance in the diagnosis of cardiac amyloidosis (CA). However, misdiagnosis occasionally occurs because the morphological and functional features of CA are non-specific. This study was performed to determine the value of non-contrast CMR T1ρ in the diagnosis of CA. METHODS This prospective study included 45 patients with CA, 30 patients with hypertrophic cardiomyopathy (HCM), and 10 healthy controls (HCs). All participants underwent cine (whole heart), T1ρ mapping, pre- and post-contrast T1 mapping imaging (three slices), and late gadolinium enhancement using a 3T whole-body magnetic resonance imaging system. All participants underwent T1ρ at two spin-locking frequencies: 0 and 298 Hz. Extracellular volume (ECV) maps were obtained using pre- and post-contrast T1 maps. The myocardial T1ρ dispersion map, termed myocardial dispersion index (MDI), was also calculated. All parameters were measured in the left ventricular myocardial wall. Participants in the HC group were scanned twice on different days to assess the reproducibility of T1ρ measurements. RESULTS Excellent reproducibility was observed upon evaluation of the coefficient of variation between two scans (T1ρ [298 Hz]: 3.1%; T1ρ [0 Hz], 2.5%). The ECV (HC: 27.4 ± 2.8% vs HCM: 32.6 ± 5.8% vs CA: 46 ± 8.9%; p < 0.0001), T1ρ [0 Hz] (HC: 35.8 ± 1.7 ms vs HCM: 40.0 ± 4.5 ms vs CA: 51.4 ± 4.4 ms; p < 0.0001) and T1ρ [298 Hz] (HC: 41.9 ± 1.6 ms vs HCM: 48.8 ± 6.2 ms vs CA: 54.4 ± 5.2 ms; p < 0.0001) progressively increased from the HC group to the HCM group, and then the CA group. The MDI progressively decreased from the HCM group to the HC group, and then the CA group (HCM: 8.8 ± 2.8 ms vs HC: 6.1 ± 0.9 ms vs CA: 3.4 ± 2.1 ms; p < 0.0001). For differential diagnosis, the combination of MDI and T1ρ [298 Hz] showed the greatest sensitivity (98.3%) and specificity (95.5%) between CA and HCM, compared with the native T1 and ECV. CONCLUSION The T1ρ and MDI approaches can be used as non-contrast CMR imaging biomarkers to improve the differential diagnosis of patients with CA.
Collapse
Affiliation(s)
- Keyan Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenbo Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongrui Jin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing An
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Jingliang Cheng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
3
|
Fatehi Hassanabad A, Zarzycki AN, Fedak PWM. Cellular and molecular mechanisms driving cardiac tissue fibrosis: On the precipice of personalized and precision medicine. Cardiovasc Pathol 2024; 71:107635. [PMID: 38508436 DOI: 10.1016/j.carpath.2024.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Cardiac fibrosis is a significant contributor to heart failure, a condition that continues to affect a growing number of patients worldwide. Various cardiovascular comorbidities can exacerbate cardiac fibrosis. While fibroblasts are believed to be the primary cell type underlying fibrosis, recent and emerging data suggest that other cell types can also potentiate or expedite fibrotic processes. Over the past few decades, clinicians have developed therapeutics that can blunt the development and progression of cardiac fibrosis. While these strategies have yielded positive results, overall clinical outcomes for patients suffering from heart failure continue to be dire. Herein, we overview the molecular and cellular mechanisms underlying cardiac tissue fibrosis. To do so, we establish the known mechanisms that drive fibrosis in the heart, outline the diagnostic tools available, and summarize the treatment options used in contemporary clinical practice. Finally, we underscore the critical role the immune microenvironment plays in the pathogenesis of cardiac fibrosis.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anna N Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Huang H, Pu J, Zhou Y, Fan Y, Zhang Y, Li Y, Chen Y, Wang Y, Yu X, Dmitry B, Zhou Z, Wang J. A spontaneous hyperglycaemic cynomolgus monkey presents cognitive deficits, neurological dysfunction and cataract. Clin Exp Pharmacol Physiol 2024; 51:e13863. [PMID: 38650114 DOI: 10.1111/1440-1681.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Chronic hyperglycaemia is a chief feature of diabetes mellitus and complicates with many systematic anomalies. Non-human primates (NHPs) are excellent for studying hyperglycaemia or diabetes and associated comorbidities, but lack behavioural observation. In the study, behavioural, brain imaging and histological analysis were performed in a case of spontaneously hyperglycaemic (HGM) Macaca fascicularis. The results were shown that the HGM monkey had persistent body weight loss, long-term hyperglycaemia, insulin resistance, dyslipidemia, but normal concentrations of insulin, C-peptide, insulin autoantibody, islet cell antibody and glutamic acid decarboxylase antibody. Importantly, an impaired working memory in a delayed response task and neurological dysfunctions were found in the HGM monkey. The tendency for atrophy in hippocampus was observed by magnetic resonance imaging. Lenticular opacification, lens fibres disruptions and vacuole formation also occurred to the HGM monkey. The data suggested that the spontaneous HGM monkey might present diabetes-like characteristics and associated neurobehavioral anomalies in this case. This study first reported cognitive deficits in a spontaneous hyperglycaemia NHPs, which might provide evidence to use macaque as a promising model for translational research in diabetes and neurological complications.
Collapse
Affiliation(s)
- Hongdi Huang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jianglin Pu
- Deparment of Nephrology, The First Affiliated Hospital of Kunming Medical University and Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, China
| | - Yufang Zhou
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yang Fan
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yali Zhang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yanling Li
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yangzhuo Chen
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun Wang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiaomei Yu
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Bulgin Dmitry
- Research Institute of Medical Primatology, National Research Centre "Kurchatov Institute", Sochi, Russia
| | - Zhu Zhou
- Deparment of Nephrology, The First Affiliated Hospital of Kunming Medical University and Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, China
| | - Jianhong Wang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
5
|
Yang R, Chen Z, Pan J, Yang S, Hu F. Non-contrast T1ρ dispersion versus Gd-EOB-DTPA-enhanced T1mapping for the risk stratification of non-alcoholic fatty liver disease in rabbit models. Magn Reson Imaging 2024; 107:130-137. [PMID: 38278311 DOI: 10.1016/j.mri.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
PURPOSE To investigate the diagnostic efficacy of T1ρ dispersion and Gd-EOB-DTPAenhanced T1mapping in the identification of early liver fibrosis (LF) and non-alcoholic steatohepatitis (NASH) in a non-alcoholic fatty liver disease (NAFLD) rabbit model induced by a high-fat diet using histopathological findings as the standard reference. METHODS A total of sixty rabbits were randomly allocated into the standard control group (n = 12) and the NAFLD model groups (8 rabbits per group) corresponding to different high-fat high cholesterol diet feeding weeks. All rabbits underwent noncontrast transverse T1ρ mapping with varying spin-locking frequencies (FSL = 0 Hz and 500 Hz), native T1 mapping, and Gd-EOB-DTPA-enhanced T1 mapping during the hepatobiliary phase. The histopathological findings were assessed based on the NASH CRN Scoring System. Statistical analyses were conducted using the intraclass correlation coefficient, analysis of variance, multiple linear regression, and receiver operating characteristics. RESULTS Except for native T1, T1ρ, T1ρ dispersion, HBP T1, and △T1 values significantly differed among different liver fibrosis groups (F = 14.414, 18.736, 10.15, and 9.799, respectively; all P < 0.05). T1ρ, T1ρ dispersion, HBP T1, and △T1 values also exhibited significant differences among different NASH groups (F = 4.138, 4.594, 21.868, and 22.678, respectively; all P < 0.05). In the multiple regression analysis, liver fibrosis was the only factor that independently influenced T1ρ dispersion (R2 = 0.746, P = 0.000). Among all metrics, T1ρ dispersion demonstrated the best area under curve (AUC) for identifying early LF (≥ F1 stage) and significant LF (≥ F2 stage) (AUC, 0.849 and 0.916, respectively). The performance of △T1 and HBP T1 (AUC, 0.948 and 0.936, respectively) were better than that of T1ρ and T1ρ dispersion (AUC, 0.762 and 0.769, respectively) for diagnosing NASH. CONCLUSION T1⍴ dispersion may be suitable for detecting liver fibrosis in the complex background of NAFLD, while Gd-EOB-DTPA enhanced T1 mapping is superior to nonenhanced T1⍴ mapping (T1⍴ and T1⍴ dispersion) for identifying NASH.
Collapse
Affiliation(s)
- Ru Yang
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, No.278, Baoguang Road, Xindu District, Chengdu, Sichuan, China
| | - Zhongshan Chen
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, No.278, Baoguang Road, Xindu District, Chengdu, Sichuan, China
| | - Jin Pan
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, No.278, Baoguang Road, Xindu District, Chengdu, Sichuan, China
| | - Shimin Yang
- Shanghai United Imaging Healthcare Co., Ltd., No.2258, Chengbei Road, Shanghai, China
| | - Fubi Hu
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, No.278, Baoguang Road, Xindu District, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Shu H, Xu H, Pan Z, Liu Y, Deng W, Zhao R, Sun Y, Wang Z, Yang J, Gao H, Yao K, Zheng J, Yu Y, Li X. Early detection of myocardial involvement by non-contrast T1ρ mapping of cardiac magnetic resonance in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1335899. [PMID: 38510696 PMCID: PMC10952821 DOI: 10.3389/fendo.2024.1335899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024] Open
Abstract
Objective This study aims to determine the effectiveness of T1ρ in detecting myocardial fibrosis in type 2 diabetes mellitus (T2DM) patients by comparing with native T1 and extracellular volume (ECV) fraction. Methods T2DM patients (n = 35) and healthy controls (n = 30) underwent cardiac magnetic resonance. ECV, T1ρ, native T1, and global longitudinal strain (GLS) values were assessed. Diagnostic performance was analyzed using receiver operating curves. Results The global ECV and T1ρ of T2DM group (ECV = 32.1 ± 3.2%, T1ρ = 51.6 ± 3.8 msec) were significantly higher than those of controls (ECV = 26.2 ± 1.6%, T1ρ = 46.8 ± 2.0 msec) (all P < 0.001), whether there was no significant difference in native T1 between T2DM and controls (P = 0.264). The GLS decreased significantly in T2DM patients compared with controls (-16.5 ± 2.4% vs. -18.3 ± 2.6%, P = 0.015). The T1ρ and native T1 were associated with ECV (Pearson's r = 0.50 and 0.25, respectively, both P < 0.001); the native T1, T1ρ, and ECV were associated with hemoglobin A1c (Pearson's r = 0.41, 0.52, and 0.61, respectively, all P < 0.05); and the ECV was associated with diabetes duration (Pearson's r = 0.41, P = 0.016). The AUC of ECV, T1ρ, GLS, and native T1 were 0.869, 0.810, 0.659, and 0.524, respectively. Conclusion In T2DM patients, T1ρ may be a new non-contrast cardiac magnetic resonance technique for identifying myocardial diffuse fibrosis, and T1ρ may be more sensitive than native T1 in the detection of myocardial diffuse fibrosis.
Collapse
Affiliation(s)
- Hongmin Shu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Huimin Xu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Zixiang Pan
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Yan Liu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Wei Deng
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Ren Zhao
- Department of Cardiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Sun
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhen Wang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Jinxiu Yang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Hui Gao
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Kaixuan Yao
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Yongqiang Yu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Xiaohu Li
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| |
Collapse
|
7
|
Deng W, Wang Z, Jia Z, Liu F, Wu J, Yang J, An S, Yu Y, Han Y, Zhao R, Li X. Cardiac T1ρ Mapping Values Affected by Age and Sex in a Healthy Chinese Cohort. J Magn Reson Imaging 2024. [PMID: 38168067 DOI: 10.1002/jmri.29196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND To facilitate the clinical use of cardiac T1ρ, it is important to understand the impact of age and sex on T1ρ values of the myocardium. PURPOSE To investigate the impact of age and gender on myocardial T1ρ values. STUDY TYPE Cross-sectional. POPULATION Two hundred ten healthy Han Chinese volunteers without cardiovascular risk factors (85 males, mean age 34.4 ± 12.5 years; 125 females, mean age 37.9 ± 14.8 years). FIELD STRENGTH/SEQUENCE 1.5 T; T1ρ-prepared steady-state free precession (T1ρ mapping) sequence. ASSESSMENT Basal, mid, and apical short-axis left ventricular T1ρ maps were acquired. T1ρ maps acquired with spin-lock frequencies of 5 and 400 Hz were subtracted to create a myocardial fibrosis index (mFI) map. T1ρ and mFI values across different age decades, sex, and slice locations were compared. STATISTICAL TESTS Shapiro-Wilk test, Student's t test, Mann-Whitney U test, linear regression analysis, one-way analysis of variance and intraclass correlation coefficient. SIGNIFICANCE P value <0.05. RESULTS Women had significantly higher T1ρ and mFI values than men (50.3 ± 2.0 msec vs. 47.7 ± 2.4 msec and 4.7 ± 1.0 msec vs. 4.3 ± 1.1 msec, respectively). Additionally, in males and females combined, there was a significant positive but weak correlation between T1ρ values and age (r = 0.27), while no correlation was observed between the mFI values and age (P = 0.969). DATA CONCLUSION We report potential reference values for cardiac T1ρ by sex, age distribution, and slice location in a Chinese population. T1ρ was significantly correlated with age and sex, while mFI was only associated with sex. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Wei Deng
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Zhen Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Zhuoran Jia
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fang Liu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jian Wu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinxiu Yang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Shutian An
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Yuchi Han
- Cardiovascular Division, Wexner Medical Center, College of Medicine, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| |
Collapse
|
8
|
Chen YC, Zheng G, Donner DG, Wright DK, Greenwood JP, Marwick TH, McMullen JR. Cardiovascular magnetic resonance imaging for sequential assessment of cardiac fibrosis in mice: technical advancements and reverse translation. Am J Physiol Heart Circ Physiol 2024; 326:H1-H24. [PMID: 37921664 PMCID: PMC11213480 DOI: 10.1152/ajpheart.00437.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Cardiovascular magnetic resonance (CMR) imaging has become an essential technique for the assessment of cardiac function and morphology, and is now routinely used to monitor disease progression and intervention efficacy in the clinic. Cardiac fibrosis is a common characteristic of numerous cardiovascular diseases and often precedes cardiac dysfunction and heart failure. Hence, the detection of cardiac fibrosis is important for both early diagnosis and the provision of guidance for interventions/therapies. Experimental mouse models with genetically and/or surgically induced disease have been widely used to understand mechanisms underlying cardiac fibrosis and to assess new treatment strategies. Improving the appropriate applications of CMR to mouse studies of cardiac fibrosis has the potential to generate new knowledge, and more accurately examine the safety and efficacy of antifibrotic therapies. In this review, we provide 1) a brief overview of different types of cardiac fibrosis, 2) general background on magnetic resonance imaging (MRI), 3) a summary of different CMR techniques used in mice for the assessment of cardiac fibrosis including experimental and technical considerations (contrast agents and pulse sequences), and 4) provide an overview of mouse studies that have serially monitored cardiac fibrosis during disease progression and/or therapeutic interventions. Clinically established CMR protocols have advanced mouse CMR for the detection of cardiac fibrosis, and there is hope that discovery studies in mice will identify new antifibrotic therapies for patients, highlighting the value of both reverse translation and bench-to-bedside research.
Collapse
Affiliation(s)
- Yi Ching Chen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Gang Zheng
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - John P Greenwood
- Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Thomas H Marwick
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Department of Cardiology, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
9
|
Zhang HK, Shi CY, Liu DT, Gao HQ, Zhao QQ, Zhang N, Yang L, Li GQ, Wang YL, Du Y, Li Q, Bo KR, Zhuang B, Fan ZM, Sun ZH, Xu L. Dynamic changes in cardiac morphology, function, and diffuse myocardial fibrosis duration of diabetes in type 1 and type 2 diabetic mice models using 7.0 T CMR and echocardiography. Front Endocrinol (Lausanne) 2023; 14:1278619. [PMID: 38027188 PMCID: PMC10663371 DOI: 10.3389/fendo.2023.1278619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background Diabetes mellitus (DM) is associated with an increased risk of cardiovascular disease (CVD). Hence, early detection of cardiac changes by imaging is crucial to reducing cardiovascular complications. Purpose Early detection of cardiac changes is crucial to reducing cardiovascular complications. The study aimed to detect the dynamic change in cardiac morphology, function, and diffuse myocardial fibrosis(DMF) associated with T1DM and T2DM mice models. Materials and methods 4-week-old C57Bl/6J male mice were randomly divided into control (n=30), T1DM (n=30), and T2DM (n=30) groups. A longitudinal study was conducted every 4 weeks using serial 7.0T CMR and echocardiography imaging. Left ventricular ejection fraction (LV EF), tissue tracking parameters, and DMF were measured by cine CMR and extracellular volume fraction (ECV). Global peak circumferential strain (GCPS), peak systolic strain rate (GCPSSR) values were acquired by CMR feature tracking. LV diastolic function parameter (E/E') was acquired by echocardiography. The correlations between the ECV and cardiac function parameters were assessed by Pearson's test. Results A total of 6 mice were included every 4 weeks in control, T1DM, and T2DM groups for analysis. Compared to control group, an increase was detected in the LV mass and E/E' ratio, while the values of GCPS, GCPSSR decreased mildly in DM. Compared to T2DM group, GCPS and GCPSSR decreased earlier in T1DM(GCPS 12W,P=0.004; GCPSSR 12W,P=0.04). ECV values showed a significant correlation with GCPS and GCPSSR in DM groups. Moreover, ECV values showed a strong positive correlation with E/E'(T1DM,r=0.757,P<0.001;T2DM, r=0.811,P<0.001). Conclusion The combination of ECV and cardiac mechanical parameters provide imaging biomakers for pathophysiology, early diagnosis of cardiac morphology, function and early intervention in diabetic cardiomyopathy in the future.
Collapse
Affiliation(s)
- Hong-Kai Zhang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Chun-Yan Shi
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Dong-Ting Liu
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Hui-Qiang Gao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Beijing, China
| | - Qian-Qian Zhao
- Department of Cardiology, Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Nan Zhang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Lin Yang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Guo-Qi Li
- Beijing Institute of Heart, Lung, and Vascular Diseases, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Yue-Li Wang
- Echocardiographic Medical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yu Du
- Department of Cardiology, Clinical Center for Coronary Heart Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qing Li
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Kai-Rui Bo
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Baiyan Zhuang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Zhan-Ming Fan
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Zhong-Hua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Perth, WA, Australia
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Coletti C, Fotaki A, Tourais J, Zhao Y, van de Steeg-Henzen C, Akçakaya M, Tao Q, Prieto C, Weingärtner S. Robust cardiac T 1 ρ $$ {\mathrm{T}}_{1_{\boldsymbol{\rho}}} $$ mapping at 3T using adiabatic spin-lock preparations. Magn Reson Med 2023; 90:1363-1379. [PMID: 37246420 PMCID: PMC10984724 DOI: 10.1002/mrm.29713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE The aim of this study is to develop and optimize an adiabaticT 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ (T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ ) mapping method for robust quantification of spin-lock (SL) relaxation in the myocardium at 3T. METHODS Adiabatic SL (aSL) preparations were optimized for resilience againstB 0 $$ {\mathrm{B}}_0 $$ andB 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities using Bloch simulations. OptimizedB 0 $$ {\mathrm{B}}_0 $$ -aSL, Bal-aSL andB 1 $$ {\mathrm{B}}_1 $$ -aSL modules, each compensating for different inhomogeneities, were first validated in phantom and human calf. MyocardialT 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ mapping was performed using a single breath-hold cardiac-triggered bSSFP-based sequence. Then, optimizedT 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ preparations were compared to each other and to conventional SL-preparedT 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ maps (RefSL) in phantoms to assess repeatability, and in 13 healthy subjects to investigate image quality, precision, reproducibility and intersubject variability. Finally, aSL and RefSL sequences were tested on six patients with known or suspected cardiovascular disease and compared with LGE,T 1 $$ {\mathrm{T}}_1 $$ , and ECV mapping. RESULTS The highestT 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ preparation efficiency was obtained in simulations for modules comprising 2 HS pulses of 30 ms each. In vivoT 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ maps yielded significantly higher quality than RefSL maps. Average myocardialT 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ values were 183.28± $$ \pm $$ 25.53 ms, compared with 38.21± $$ \pm $$ 14.37 ms RefSL-preparedT 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ .T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ maps showed a significant improvement in precision (avg. 14.47± $$ \pm $$ 3.71% aSL, 37.61± $$ \pm $$ 19.42% RefSL, p < 0.01) and reproducibility (avg. 4.64± $$ \pm $$ 2.18% aSL, 47.39± $$ \pm $$ 12.06% RefSL, p < 0.0001), with decreased inter-subject variability (avg. 8.76± $$ \pm $$ 3.65% aSL, 51.90± $$ \pm $$ 15.27% RefSL, p < 0.0001). Among aSL preparations,B 0 $$ {\mathrm{B}}_0 $$ -aSL achieved the better inter-subject variability. In patients,B 1 $$ {\mathrm{B}}_1 $$ -aSL preparations showed the best artifact resilience among the adiabatic preparations.T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ times show focal alteration colocalized with areas of hyper-enhancement in the LGE images. CONCLUSION Adiabatic preparations enable robust in vivo quantification of myocardial SL relaxation times at 3T.
Collapse
Affiliation(s)
- Chiara Coletti
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Anastasia Fotaki
- Department of Biomedical Engineering, King’s College London, London, United Kingdom
| | - Joao Tourais
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Yidong Zhao
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | | | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering and Center for Magnetic Resonance Research, University of Minnesota, Minnesota, USA
| | - Qian Tao
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Claudia Prieto
- Department of Biomedical Engineering, King’s College London, London, United Kingdom
- School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Milleniun Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - Sebastian Weingärtner
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
11
|
Liu XL, Wang GZ, Rui MP, Fan D, Zhang J, Zhu ZH, Perez R, Wang T, Yang LC, Lyu L, Zheng J, Wang G. Imaging characterization of myocardial function, fibrosis, and perfusion in a nonhuman primate model with heart failure-like features. Front Cardiovasc Med 2023; 10:1214249. [PMID: 37663419 PMCID: PMC10471131 DOI: 10.3389/fcvm.2023.1214249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction The availability of a human-like chronic heart failure (HF) animal model was critical for affiliating development of novel therapeutic drug treatments. With the close physiology relatedness to humans, the non-human primate (NHP) HF model would be valuable to better understand the pathophysiology and pharmacology of HF. The purpose of this work was to present preliminary cardiac image findings using echocardiography and cardiovascular magnetic resonance (CMR) in a HF-like cynomolgus macaque model. Methods The NHP diet-induced model developed cardiac phenotypes that exhibited diastolic dysfunction with reduced left ventricular ejection fraction (LVEF) or preserved LVEF. Twenty cynomolgus monkeys with cardiac dysfunction were selected by echocardiography and subsequently separated into two groups, LVEF < 65% (termed as HFrEF, n = 10) and LVEF ≥ 65% with diastolic dysfunction (termed as HFpEF, n = 10). Another group of ten healthy monkeys was used as the healthy control. All monkeys underwent a CMR study to measure global longitudinal strain (GLS), myocardial extracellular volume (ECV), and late gadolinium enhancement (LGE). In healthy controls and HFpEF group, quantitative perfusion imaging scans at rest and under dobutamine stress were performed and myocardial perfusion reserve (MPR) was subsequently obtained. Results No LGE was observed in any monkey. Monkeys with HF-like features were significantly older, compared to the healthy control group. There were significant differences among the three groups in ECV (20.79 ± 3.65% in healthy controls; 27.06 ± 3.37% in HFpEF group, and 31.11 ± 4.50% in HFrEFgroup, p < 0.001), as well as for stress perfusion (2.40 ± 0.34 ml/min/g in healthy controls vs. 1.28 ± 0.24 ml/min/g in HFpEF group, p < 0.01) and corresponding MPR (1.83 ± 0.3 vs. 1.35 ± 0.29, p < 0.01). After adjusting for age, ECV (p = 0.01) and MPR (p = 0.048) still showed significant differences among the three groups. Conclusion Our preliminary imaging findings demonstrated cardiac dysfunction, elevated ECV, and/or reduced MPR in this HF-like NHP model. This pilot study laid the foundation for further mechanistic research and the development of a drug testing platform for distinct HF pathophysiology.
Collapse
Affiliation(s)
- Xing-Li Liu
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Guan-Zhong Wang
- Department of Pharmocolgy, Kunming Biomed International of TriApex Group, Kunming, China
| | - Mao-Ping Rui
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Dong Fan
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jie Zhang
- Department of Pharmocolgy, Kunming Biomed International of TriApex Group, Kunming, China
| | - Zheng-Hua Zhu
- Department of Pharmocolgy, Kunming Biomed International of TriApex Group, Kunming, China
| | - Rosario Perez
- Department of Pharmocolgy, Kunming Biomed International of TriApex Group, Kunming, China
| | - Tony Wang
- Department of Pharmocolgy, Kunming Biomed International of TriApex Group, Kunming, China
| | - Li-Chuan Yang
- Department of Pharmocolgy, Kunming Biomed International of TriApex Group, Kunming, China
| | - Liang Lyu
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University in Saint Louis, St. Louis, MO, United States
| | - Gang Wang
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
12
|
Meléndez GC, Kavanagh K, Gharraee N, Lacy JL, Goslen KH, Block M, Whitfield J, Widiapradja A, Levick SP. Replacement substance P reduces cardiac fibrosis in monkeys with type 2 diabetes. Biomed Pharmacother 2023; 160:114365. [PMID: 36758315 DOI: 10.1016/j.biopha.2023.114365] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM)-associated cardiac fibrosis contributes to heart failure. We previously showed that diabetic mice with cardiomyopathy, including cardiac fibrosis, exhibit low levels of the neuropeptide substance P; exogenous replacement of substance P reversed cardiac fibrosis, independent of body weight, blood glucose and blood pressure. We sought to elucidate the effectiveness and safety of replacement substance P to ameliorate or reverse cardiac fibrosis in type 2 diabetic monkeys. METHODS Four female T2DM African Green monkeys receive substance P (0.5 mg/Kg/day S.Q. injection) for 8 weeks. We obtained cardiac magnetic resonance imaging and blood samples to assess left ventricular function and fibrosis by T1 map-derived extracellular volume as well as circulating procollagen type I C-terminal propeptide. Hematological parameters for toxicities were also assessed in these monkeys and compared with three female T2DM monkeys receiving saline S.Q. as a safety comparison group. RESULTS Diabetic monkeys receiving replacement substance P exhibited a ∼20% decrease in extracellular volume (p = 0.01), concomitant with ∼25% decrease procollagen type I C-terminal propeptide levels (p = 0.008). Left ventricular ejection fraction was unchanged with substance P (p = 0.42); however, circumferential strain was improved (p < 0.01). Complete blood counts, glycosylated hemoglobin A1c, lipids, liver and pancreatic enzymes, and inflammation markers were unchanged (p > 0.05). CONCLUSIONS Replacement substance P reversed cardiac fibrosis in a large preclinical model of type 2 diabetes, independent of glycemic control. No hematological or organ-related toxicity was associated with replacement substance P. These results strongly support a potential application for replacement substance P as safe therapy for diabetic cardiac fibrosis.
Collapse
Affiliation(s)
- Giselle C Meléndez
- Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Kylie Kavanagh
- Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; College of Health and Medicine, The University of Tasmania, Hobart, TAS, Australia
| | - Nazli Gharraee
- Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jessica L Lacy
- Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kevin H Goslen
- Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Masha Block
- Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jordyn Whitfield
- Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Alexander Widiapradja
- Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Scott P Levick
- Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
13
|
Dong Z, Yin G, Yang K, Jiang K, Wu Z, Chen X, Song Y, Yu S, Wang J, Yang S, Ma X, Xu Y, Zhao K, Lu M, Xu X, Zhao S. Endogenous assessment of late gadolinium enhancement grey zone in patients with non-ischaemic cardiomyopathy with T1ρ and native T1 mapping. Eur Heart J Cardiovasc Imaging 2023; 24:492-502. [PMID: 35793269 DOI: 10.1093/ehjci/jeac128] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/22/2022] [Accepted: 06/06/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS This study aims to validate and compare the feasibility of T1ρ and native longitudinal relaxation time (T1) mapping in detection of myocardial fibrosis in patients with non-ischaemic cardiomyopathy, focusing on the performance of both methods in identifying late gadolinium enhancement (LGE) grey zone. METHODS AND RESULTS Twenty-seven hypertrophic cardiomyopathy (HCM) patients, 16 idiopathic dilated cardiomyopathy (DCM) patients, and 18 healthy controls were prospectively enrolled for native T1 and T1ρ mapping imaging and then all the patients underwent enhancement scan for LGE extent and extracellular volume (ECV) values. In LGE positive patients, the LGE areas were divided into LGE core (6 SDs above remote myocardium) and grey zone (2-6 SDs above remote myocardium) according to the signal intensity of LGE. Both HCM and DCM patients showed significantly higher native T1 values and T1ρ values than controls no matter the presence of LGE (all P < 0.01). There were significant differences in native T1 and T1ρ values among four different types of myocardia (LGE core, grey zone, remote area and control, P < 0.0001). However, the T1ρ values of grey zone were significantly higher than control (P < 0.01), while the native T1 values were not (P = 0.089). T1ρ values were significantly associated with both native T1 values (r = 0.54, P < 0.001) and ECV values (r = 0.54, P < 0.001). CONCLUSION T1ρ mapping is a feasible method to detect myocardial fibrosis in patients with non-ischaemic cardiomyopathy no matter the presence of LGE. Compared with native T1, T1ρ may serve as a better discriminator in the identification of LGE grey zone.
Collapse
Affiliation(s)
- Zhixiang Dong
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Gang Yin
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Kai Yang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Ke Jiang
- Philips Healthcare, Tianze Road No.16, Chaoyang District, Beijing 100020, China
| | - Zhigang Wu
- Philips Healthcare, Tianze Road No.16, Chaoyang District, Beijing 100020, China
| | - Xiuyu Chen
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Yanyan Song
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Shiqing Yu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Jiaxin Wang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Shujuan Yang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Xuan Ma
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Yangfei Xu
- Department of Cardiology, Chizhou People's Hospital, Baiya Middle Road No.3, Guichi District, Anhui 247099, China
| | - Kankan Zhao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen 518055, China
| | - Minjie Lu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Xiaodong Xu
- Department of Cardiology, Chizhou People's Hospital, Baiya Middle Road No.3, Guichi District, Anhui 247099, China
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| |
Collapse
|
14
|
Li Z, Han D, Qi T, Deng J, Li L, Gao C, Gao W, Chen H, Zhang L, Chen W. Hemoglobin A1c in type 2 diabetes mellitus patients with preserved ejection fraction is an independent predictor of left ventricular myocardial deformation and tissue abnormalities. BMC Cardiovasc Disord 2023; 23:49. [PMID: 36698087 PMCID: PMC9878773 DOI: 10.1186/s12872-023-03082-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Early detection of subclinical myocardial dysfunction in patients with type 2 diabetes mellitus (T2DM) is essential for preventing heart failure. This study aims to search for predictors of left ventricular (LV) myocardial deformation and tissue abnormalities in T2DM patients with preserved ejection fraction by using CMR T1 mapping and feature tracking. METHODS 70 patients and 44 sex- and age-matched controls (Cs) were recruited and underwent CMR examination to obtain LV myocardial extracellular volume fraction (ECV) and global longitudinal strain (GLS). The patients were subdivided into three groups, including 19 normotensive T2DM patients (G1), 19 hypertensive T2DM patients (G2) and 32 hypertensive patients (HT). The baseline biochemical indices were collected before CMR examination. RESULTS LV ECV in T2DM patients was significantly higher than that in Cs (30.75 ± 3.65% vs. 26.33 ± 2.81%; p < 0.05). LV GLS in T2DM patients reduced compared with that in Cs (-16.51 ± 2.53% vs. -19.66 ± 3.21%, p < 0.001). In the subgroup analysis, ECV in G2 increased compared with that in G1 (31.92 ± 3.05% vs. 29.59 ± 3.90%, p = 0.032) and that in HT, too (31.92 ± 3.05% vs. 29.22 ± 6.58%, p = 0.042). GLS in G2 significantly reduced compared with that in G1 (-15.75 ± 2.29% vs. -17.27 ± 2.57%, p < 0.05) and in HT, too (-15.75 ± 2.29% vs. -17.54 ± 3.097%, p < 0.05). In T2DM group, including both G1 and G2, hemoglobin A1c (HbA1c) can independently forecast the increase in ECV (β = 0.274, p = 0.001) and decrease in GLS (β = 0.383, p = 0.018). CONCLUSIONS T2DM patients with preserved ejection fraction show increased ECV but deteriorated GLS, which may be exacerbated by hypertension of these patients. Hemoglobin A1c is an index that can independently predict T2DM patients' LV myocardial deformation and tissue abnormalities.
Collapse
Affiliation(s)
- Zhiming Li
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Dan Han
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Tianfu Qi
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Jie Deng
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Lili Li
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Chao Gao
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Wei Gao
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
- Department of Radiology, First People's Hospital of Honghe State, 1 Xiyuan Road, Honghe, 661100, China
| | - Haiyan Chen
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Lihua Zhang
- Department of General Medicine, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China.
| | - Wei Chen
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China.
| |
Collapse
|
15
|
Zhang H, Shi C, Yang L, Zhang N, Li G, Zhou Z, Gao Y, Liu D, Xu L, Fan Z. Quantification of Early Diffuse Myocardial Fibrosis Through 7.0 T Cardiac Magnetic Resonance T1 Mapping in a Type 1 Diabetic Mellitus Mouse Model. J Magn Reson Imaging 2023; 57:167-177. [PMID: 35436040 DOI: 10.1002/jmri.28207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Diffuse myocardial interstitial fibrosis (DMIF) is a key factor for heart failure (HF) in diabetic cardiomyopathy. MRI T1-mapping technique can quantitatively evaluate DMIF. PURPOSE To evaluate of early DMIF in a type 1 diabetes mellitus (T1DM) mouse model through 7.0 T MRI T1 mapping. STUDY TYPE Prospective. ANIMAL MODEL A total of 50 8-week-old C57Bl/6J male mice were divided into control (n = 20) and T1DM (n = 30) groups. FIELD STRENGTH/SEQUENCE A 7.0 T small animal MRI; gradient echo Look-Locker inversion recovery T1-mapping sequence; cine MRI. Scans were acquired in control and T1DM mice every 4 weeks until 24 weeks. ASSESSMENT End-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF), left ventricle (LV) mass, fractional shortening (FS), and E/A ratio. They were evaluated through echocardiography and cine MRI. The extracellular volume fraction (ECV) was calculated. Sirius Red staining was performed and calculated collagen volume fraction (CVF). STATISTICAL TESTS Differences in ECV and CVF between two groups were analyzed using one-way analysis of variance. The correlation between ECV and CVF was assessed using Pearson's correlations. RESULTS Compared with the control group, a progressive decrease in FS, EF, and E/A ratio was observed in the T1DM group. Both ECV and CVF values gradually increased during diabetes progression. A significant increase in ECV and CVF values was observed at 12 weeks (ECV: 32.5% ± 1.6% vs. 28.1% ± 1.8%; CVF: 6.9% ± 1.8% vs. 3.3% ± 1.1%). ECV showed a strong correlation with CVF (r = 0.856). DATA CONCLUSION ECV is an accurate and feasible imaging marker that can be used to quantitatively assess DMIF changes over time in T1DM mice. ECV has potential to accurately detect DMIF in the early stage and may be a useful imaging tool to assess the need for early intervention in T1DM mice. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Hongkai Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Beijing, China, 100029
| | - Chunyan Shi
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Beijing, China, 100029
| | - Lin Yang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Beijing, China, 100029
| | - Nan Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Beijing, China, 100029
| | - Guoqi Li
- Beijing Institute of Heart, Lung & Vascular Diseases, The Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Zhen Zhou
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Beijing, China, 100029
| | - Yifeng Gao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Beijing, China, 100029
| | - Dongting Liu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Beijing, China, 100029
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Beijing, China, 100029
| | - Zhanming Fan
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Beijing, China, 100029
| |
Collapse
|
16
|
Normal Values of Magnetic Resonance T
1
ρ
Relaxation Times in the Adult Heart at 1.5 T
MRI. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022] Open
|
17
|
Relationship Between Epicardial Adipose Tissue and Biventricular Longitudinal Strain and Strain Rate in Patients with Type 2 Diabetes Mellitus. Acad Radiol 2022; 30:833-840. [PMID: 36115736 DOI: 10.1016/j.acra.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Epicardial adipose tissue (EAT) has been reported to be increased in patients with type 2 diabetes mellitus (T2DM). EAT thickness may impact left ventricular (LV) diastolic function. However, the association between EAT and right ventricular (RV) function in T2DM is unclear. We hypothesized an association between EAT volume and biventricular longitudinal strain and strain rate in patients with T2DM. MATERIALS AND METHODS A total of 20 controls and 69 T2DM patients with preserved LV ejection fraction (EF) who underwent cardiac magnetic resonance (CMR) were included. Biventricular function was evaluated by CMR Tissue-Tracking derived strain analysis, including LV global peak systolic longitudinal strain (LVGLS), peak diastolic longitudinal strain rate (LVLSR), RVGLS and RVLSR. RESULTS Compared to controls, patients with T2DM had significantly higher EAT volumes with lower LVGLS, LVLSR, RVGLS and RVLSR (all p<0.05). EAT volume was significantly correlated with LVGLS, LVLSR, RVGLS and RVLSR in T2DM patients (r=-0.45, -0.39, -0.59, -0.50, all p<0.001). Multivariate linear regression analysis revealed that EAT volume was significantly associated with LVGLS (β=0.38, p=0.001), LVLSR (β=-0.35, p=0.003), RVGLS (β=0.64, p<0.001) and RVLSR (β=-0.43, p<0.001) independently of traditional risk factors in patients with T2DM. CONCLUSION Patients with T2DM had higher EAT levels and lower biventricular function than controls. EAT volume was independently associated with biventricular longitudinal strain and strain rate in T2DM patients.
Collapse
|
18
|
Gram M, Gensler D, Albertova P, Gutjahr FT, Lau K, Arias-Loza PA, Jakob PM, Nordbeck P. Quantification correction for free-breathing myocardial T 1ρ mapping in mice using a recursively derived description of a T 1ρ* relaxation pathway. J Cardiovasc Magn Reson 2022; 24:30. [PMID: 35534901 PMCID: PMC9082875 DOI: 10.1186/s12968-022-00864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Fast and accurate T1ρ mapping in myocardium is still a major challenge, particularly in small animal models. The complex sequence design owing to electrocardiogram and respiratory gating leads to quantification errors in in vivo experiments, due to variations of the T1ρ relaxation pathway. In this study, we present an improved quantification method for T1ρ using a newly derived formalism of a T1ρ* relaxation pathway. METHODS The new signal equation was derived by solving a recursion problem for spin-lock prepared fast gradient echo readouts. Based on Bloch simulations, we compared quantification errors using the common monoexponential model and our corrected model. The method was validated in phantom experiments and tested in vivo for myocardial T1ρ mapping in mice. Here, the impact of the breath dependent spin recovery time Trec on the quantification results was examined in detail. RESULTS Simulations indicate that a correction is necessary, since systematically underestimated values are measured under in vivo conditions. In the phantom study, the mean quantification error could be reduced from - 7.4% to - 0.97%. In vivo, a correlation of uncorrected T1ρ with the respiratory cycle was observed. Using the newly derived correction method, this correlation was significantly reduced from r = 0.708 (p < 0.001) to r = 0.204 and the standard deviation of left ventricular T1ρ values in different animals was reduced by at least 39%. CONCLUSION The suggested quantification formalism enables fast and precise myocardial T1ρ quantification for small animals during free breathing and can improve the comparability of study results. Our new technique offers a reasonable tool for assessing myocardial diseases, since pathologies that cause a change in heart or breathing rates do not lead to systematic misinterpretations. Besides, the derived signal equation can be used for sequence optimization or for subsequent correction of prior study results.
Collapse
Affiliation(s)
- Maximilian Gram
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Experimental Physics 5, University of Würzburg, Würzburg, Germany
| | - Daniel Gensler
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Würzburg, Germany
| | - Petra Albertova
- Experimental Physics 5, University of Würzburg, Würzburg, Germany
| | - Fabian Tobias Gutjahr
- Experimental Physics 5, University of Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Würzburg, Germany
| | - Kolja Lau
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Paula-Anahi Arias-Loza
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Würzburg, Germany
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | | | - Peter Nordbeck
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
19
|
Ogier AC, Bustin A, Cochet H, Schwitter J, van Heeswijk RB. The Road Toward Reproducibility of Parametric Mapping of the Heart: A Technical Review. Front Cardiovasc Med 2022; 9:876475. [PMID: 35600490 PMCID: PMC9120534 DOI: 10.3389/fcvm.2022.876475] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 01/02/2023] Open
Abstract
Parametric mapping of the heart has become an essential part of many cardiovascular magnetic resonance imaging exams, and is used for tissue characterization and diagnosis in a broad range of cardiovascular diseases. These pulse sequences are used to quantify the myocardial T1, T2, T2*, and T1ρ relaxation times, which are unique surrogate indices of fibrosis, edema and iron deposition that can be used to monitor a disease over time or to compare patients to one another. Parametric mapping is now well-accepted in the clinical setting, but its wider dissemination is hindered by limited inter-center reproducibility and relatively long acquisition times. Recently, several new parametric mapping techniques have appeared that address both of these problems, but substantial hurdles remain for widespread clinical adoption. This review serves both as a primer for newcomers to the field of parametric mapping and as a technical update for those already well at home in it. It aims to establish what is currently needed to improve the reproducibility of parametric mapping of the heart. To this end, we first give an overview of the metrics by which a mapping technique can be assessed, such as bias and variability, as well as the basic physics behind the relaxation times themselves and what their relevance is in the prospect of myocardial tissue characterization. This is followed by a summary of routine mapping techniques and their variations. The problems in reproducibility and the sources of bias and variability of these techniques are reviewed. Subsequently, novel fast, whole-heart, and multi-parametric techniques and their merits are treated in the light of their reproducibility. This includes state of the art segmentation techniques applied to parametric maps, and how artificial intelligence is being harnessed to solve this long-standing conundrum. We finish up by sketching an outlook on the road toward inter-center reproducibility, and what to expect in the future.
Collapse
Affiliation(s)
- Augustin C. Ogier
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Aurelien Bustin
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, Pessac, France
| | - Hubert Cochet
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, Pessac, France
| | - Juerg Schwitter
- Cardiac MR Center, Cardiology Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Ruud B. van Heeswijk
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Ruud B. van Heeswijk
| |
Collapse
|
20
|
Noncontrast T1ρ dispersion imaging is sensitive to diffuse fibrosis: A cardiovascular magnetic resonance study at 3T in hypertrophic cardiomyopathy. Magn Reson Imaging 2022; 91:1-8. [PMID: 35525524 DOI: 10.1016/j.mri.2022.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE To determine the sensitivity of a noncontrast T1 dispersion cardiovascular magnetic resonance technique for detecting diffuse fibrosis in hypertrophic cardiomyopathy (HCM). METHODS Thirty-two adult HCM patients and ten age- and gender-matched healthy volunteers were prospectively included in this study. Patients and controls underwent cine, T1ρ-mapping, and pre- and post-contrast T1-mapping imaging using a 3-T magnetic resonance system. Myocardial extracellular volume fraction (ECV) maps were obtained using pre- and post-contrast T1 maps to determine reference values for diffuse fibrosis. Myocardial T1ρ and T1ρ dispersion maps called myocardial fibrosis index (mFI) maps provided 570 myocardial segments for Pearson or Spearman correlation analysis. The left ventricle myocardia of the HCM patients were divided into 16 segments that were further classified as either normal-thickness myocardium (<15 mm) (HCM-N) or hypertrophic myocardium (≥15 mm) (HCM-H). RESULTS ECV and mFI values increased progressively on a per-segment basis from healthy controls to the HCM-N group and then to the HCM-H group (ECV: 27.4 ± 2.8% vs. 31.1 ± 4.2% vs. 37.6 ± 6.9%, respectively [P < 0.0001]; mFI: 6.1 ± 0.9 ms vs. 8 ± 1.9 ms vs. 11 ± 3.3 ms, respectively [P < 0.0001]). There was a strong positive correlation between the segmented ECV and the mFI (r = 0.878). The mFI was equally or significantly better than the ECV for differentiating fibrosis content in HCM-N and HCM-H according to their receiver operating characteristic curves. CONCLUSION A T1ρ dispersion imaging mFI can sensitively detect diffuse myocardial fibrosis in HCM, even in HCM-N.
Collapse
|
21
|
Bustin A, Toupin S, Sridi S, Yerly J, Bernus O, Labrousse L, Quesson B, Rogier J, Haïssaguerre M, van Heeswijk R, Jaïs P, Cochet H, Stuber M. Endogenous assessment of myocardial injury with single-shot model-based non-rigid motion-corrected T1 rho mapping. J Cardiovasc Magn Reson 2021; 23:119. [PMID: 34670572 PMCID: PMC8529795 DOI: 10.1186/s12968-021-00781-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance T1ρ mapping may detect myocardial injuries without exogenous contrast agent. However, multiple co-registered acquisitions are required, and the lack of robust motion correction limits its clinical translation. We introduce a single breath-hold myocardial T1ρ mapping method that includes model-based non-rigid motion correction. METHODS A single-shot electrocardiogram (ECG)-triggered balanced steady state free precession (bSSFP) 2D adiabatic T1ρ mapping sequence that collects five T1ρ-weighted (T1ρw) images with different spin lock times within a single breath-hold is proposed. To address the problem of residual respiratory motion, a unified optimization framework consisting of a joint T1ρ fitting and model-based non-rigid motion correction algorithm, insensitive to contrast change, was implemented inline for fast (~ 30 s) and direct visualization of T1ρ maps. The proposed reconstruction was optimized on an ex vivo human heart placed on a motion-controlled platform. The technique was then tested in 8 healthy subjects and validated in 30 patients with suspected myocardial injury on a 1.5T CMR scanner. The Dice similarity coefficient (DSC) and maximum perpendicular distance (MPD) were used to quantify motion and evaluate motion correction. The quality of T1ρ maps was scored. In patients, T1ρ mapping was compared to cine imaging, T2 mapping and conventional post-contrast 2D late gadolinium enhancement (LGE). T1ρ values were assessed in remote and injured areas, using LGE as reference. RESULTS Despite breath holds, respiratory motion throughout T1ρw images was much larger in patients than in healthy subjects (5.1 ± 2.7 mm vs. 0.5 ± 0.4 mm, P < 0.01). In patients, the model-based non-rigid motion correction improved the alignment of T1ρw images, with higher DSC (87.7 ± 5.3% vs. 82.2 ± 7.5%, P < 0.01), and lower MPD (3.5 ± 1.9 mm vs. 5.1 ± 2.7 mm, P < 0.01). This resulted in significantly improved quality of the T1ρ maps (3.6 ± 0.6 vs. 2.1 ± 0.9, P < 0.01). Using this approach, T1ρ mapping could be used to identify LGE in patients with 93% sensitivity and 89% specificity. T1ρ values in injured (LGE positive) areas were significantly higher than in the remote myocardium (68.4 ± 7.9 ms vs. 48.8 ± 6.5 ms, P < 0.01). CONCLUSIONS The proposed motion-corrected T1ρ mapping framework enables a quantitative characterization of myocardial injuries with relatively low sensitivity to respiratory motion. This technique may be a robust and contrast-free adjunct to LGE for gaining new insight into myocardial structural disorders.
Collapse
Affiliation(s)
- Aurélien Bustin
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, Avenue du Haut Lévêque, 33604, Pessac, France.
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604, Pessac, France.
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Solenn Toupin
- Siemens Healthcare France, 93210, Saint-Denis, France
| | - Soumaya Sridi
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604, Pessac, France
| | - Jérôme Yerly
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Olivier Bernus
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, Avenue du Haut Lévêque, 33604, Pessac, France
| | - Louis Labrousse
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, Avenue du Haut Lévêque, 33604, Pessac, France
- Department of Cardiac Surgery, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604, Pessac, France
| | - Bruno Quesson
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, Avenue du Haut Lévêque, 33604, Pessac, France
| | - Julien Rogier
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, Avenue du Haut Lévêque, 33604, Pessac, France
| | - Michel Haïssaguerre
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, Avenue du Haut Lévêque, 33604, Pessac, France
- Department of Cardiac Electrophysiology, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux,, Avenue de Magellan, 33604, Pessac, France
| | - Ruud van Heeswijk
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pierre Jaïs
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, Avenue du Haut Lévêque, 33604, Pessac, France
- Department of Cardiac Electrophysiology, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux,, Avenue de Magellan, 33604, Pessac, France
| | - Hubert Cochet
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, Avenue du Haut Lévêque, 33604, Pessac, France
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604, Pessac, France
| | - Matthias Stuber
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, Avenue du Haut Lévêque, 33604, Pessac, France
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| |
Collapse
|
22
|
Tuleta I, Frangogiannis NG. Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities. Adv Drug Deliv Rev 2021; 176:113904. [PMID: 34331987 PMCID: PMC8444077 DOI: 10.1016/j.addr.2021.113904] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/02/2023]
Abstract
In patients with diabetes, myocardial fibrosis may contribute to the pathogenesis of heart failure and arrhythmogenesis, increasing ventricular stiffness and delaying conduction. Diabetic myocardial fibrosis involves effects of hyperglycemia, lipotoxicity and insulin resistance on cardiac fibroblasts, directly resulting in increased matrix secretion, and activation of paracrine signaling in cardiomyocytes, immune and vascular cells, that release fibroblast-activating mediators. Neurohumoral pathways, cytokines, growth factors, oxidative stress, advanced glycation end-products (AGEs), and matricellular proteins have been implicated in diabetic fibrosis; however, the molecular links between the metabolic perturbations and activation of a fibrogenic program remain poorly understood. Although existing therapies using glucose- and lipid-lowering agents and neurohumoral inhibition may act in part by attenuating myocardial collagen deposition, specific therapies targeting the fibrotic response are lacking. This review manuscript discusses the clinical significance, molecular mechanisms and cell biology of diabetic cardiac fibrosis and proposes therapeutic targets that may attenuate the fibrotic response, preventing heart failure progression.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA.
| |
Collapse
|
23
|
Minciună IA, Hilda Orășan O, Minciună I, Lazar AL, Sitar-Tăut AV, Oltean M, Tomoaia R, Puiu M, Sitar-Tăut DA, Pop D, Cozma A. Assessment of subclinical diabetic cardiomyopathy by speckle-tracking imaging. Eur J Clin Invest 2021; 51:e13475. [PMID: 33326612 DOI: 10.1111/eci.13475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/28/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diastolic dysfunction is traditionally believed to be the first subclinical manifestation of diabetic cardiomyopathy (DCM), leading to systolic dysfunction and then overt heart failure. However, in the last few years, several studies suggested that systolic subclinical dysfunction measured by speckle-tracking echocardiography (STE) may appear ahead of diastolic dysfunction. In this review, the main endpoint is to show whether subclinical myocardial systolic dysfunction appears ahead of diastolic dysfunction and the implication this may have on the evolution and management of DCM. MATERIALS AND METHODS We performed a search in PubMed for all relevant publications on the assessment of DCM by STE from 1 June 2015 to 1 June 2020. RESULTS AND CONCLUSIONS The results illustrate that subclinical systolic dysfunction assessed by STE is present in early DCM stages, with or without the association of diastolic dysfunction. This could be a promising perspective for the early management of patients with DCM leading to the prevention of the overt form of disease.
Collapse
Affiliation(s)
- Ioan-Alexandru Minciună
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Cardiology Department, Rehabilitation Hospital, Cluj-Napoca, Romania
| | - Olga Hilda Orășan
- Internal Medicine Department, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Iulia Minciună
- Regional Institute of Gastroenterology and Hepatology ''Octavian Fodor'', Cluj-Napoca, Romania
| | - Andrada-Luciana Lazar
- Dermatology Department, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adela Viviana Sitar-Tăut
- Internal Medicine Department, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Monica Oltean
- Heart Institute ''Nicolae Stancioiu'', Cluj-Napoca, Romania
| | - Raluca Tomoaia
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Cardiology Department, Rehabilitation Hospital, Cluj-Napoca, Romania
| | - Mihai Puiu
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Cardiology Department, Rehabilitation Hospital, Cluj-Napoca, Romania
| | - Dan-Andrei Sitar-Tăut
- Faculty of Economics and Business Administration, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Dana Pop
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Cardiology Department, Rehabilitation Hospital, Cluj-Napoca, Romania
| | - Angela Cozma
- Internal Medicine Department, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
24
|
Hectors SJ. Is MRI relaxometry parameter T 1ρ specific to fibrosis or confounded by concomitant pathological features? Quant Imaging Med Surg 2020; 10:2408-2410. [PMID: 33269241 PMCID: PMC7596401 DOI: 10.21037/qims-20-1089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Stefanie J Hectors
- Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
25
|
Chen Y, Zeng W, Chen W, Zhang Y, Zhu T, Sun J, Liang Z, Wang L, Yang Z, Wu B, Song B, Wang F, Liang Y, Gong L, Zheng J, Gao F. Evaluating the correlation of the impairment between skeletal muscle and heart using MRI in a spontaneous type 2 diabetes mellitus rhesus monkey model. Acta Diabetol 2020; 57:673-679. [PMID: 31938886 DOI: 10.1007/s00592-019-01460-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023]
Abstract
AIMS To investigate the correlation of impairment in skeletal muscle and heart in spontaneous type 2 diabetes mellitus (T2DM) rhesus monkeys using magnetic resonance image (MRI). METHODS Fifteen T2DM monkeys and fourteen healthy control (HC) monkeys were included. The microcirculation of skeletal muscle [skeletal muscle blood flow (SMBF), skeletal muscle oxygen extraction fraction (SMOEF)] and the function and strain of heart were evaluated by MRI. Three regions of interests were chosen on the soleus muscle (SOL), gastrocnemius muscle (GAS) and tibialis anterior muscle (TA) for image analysis. RESULTS Eight T2DM monkeys and eight HC monkeys were obtained the full data. The SMBF reserves and SMOEF reserves were found significantly decreased in T2DM during inflation in SOL, GAS and TA muscles (all p < 0.05), and the SMBF reserves decreased during hyperemia in GAS and TA muscles (all p < 0.05). In these monkeys, the global peak longitudinal strain (longitudinal PS), peak systolic longitudinal strain rate (longitudinal PSSR) and peak diastolic longitudinal strain rate (longitudinal PDSR) were seen significantly different in T2DM compared to HC monkeys (all p < 0.05). The longitudinal PSSR was found negatively correlated with SMBF reserves in SOL, GAS and TA during inflation in all monkeys. CONCLUSIONS The impaired microcirculation of skeletal muscle and the myocardial deformation were found in T2DM monkeys with normal ejection fraction. And a negative correlation was existed in the longitudinal PSSR and the SMBF reserves.
Collapse
Affiliation(s)
- Yushu Chen
- Department of Radiology, Sichuan University West China Hospital, 37 Guoxuexiang, Chengdu, 610041, Sichuan, China
| | - Wen Zeng
- Sichuan Primed Shines Biotech Co., Ltd., Chengdu, China
| | - Wei Chen
- Department of Radiology, Sichuan University West China Hospital, 37 Guoxuexiang, Chengdu, 610041, Sichuan, China
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu Zhang
- Department of Radiology, Sichuan University West China Hospital, 37 Guoxuexiang, Chengdu, 610041, Sichuan, China
| | - Tong Zhu
- Department of Radiology, Sichuan University West China Hospital, 37 Guoxuexiang, Chengdu, 610041, Sichuan, China
| | - Jiayu Sun
- Department of Radiology, Sichuan University West China Hospital, 37 Guoxuexiang, Chengdu, 610041, Sichuan, China
| | - Zhigang Liang
- Sichuan Primed Shines Biotech Co., Ltd., Chengdu, China
| | - Lei Wang
- Department of Radiology, Sichuan University West China Hospital, 37 Guoxuexiang, Chengdu, 610041, Sichuan, China
| | - Zunyuan Yang
- Sichuan Primed Shines Biotech Co., Ltd., Chengdu, China
| | - Bing Wu
- Department of Radiology, Sichuan University West China Hospital, 37 Guoxuexiang, Chengdu, 610041, Sichuan, China
| | - Bin Song
- Department of Radiology, Sichuan University West China Hospital, 37 Guoxuexiang, Chengdu, 610041, Sichuan, China
| | - Fangtong Wang
- Sichuan Primed Shines Biotech Co., Ltd., Chengdu, China
| | - Yinan Liang
- Sichuan Primed Shines Biotech Co., Ltd., Chengdu, China
| | - Li Gong
- Sichuan Primed Shines Biotech Co., Ltd., Chengdu, China
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Fabao Gao
- Department of Radiology, Sichuan University West China Hospital, 37 Guoxuexiang, Chengdu, 610041, Sichuan, China.
- Sichuan Primed Shines Biotech Co., Ltd., Chengdu, China.
| |
Collapse
|
26
|
Abstract
The term diabetic cardiomyopathy is defined as the presence of abnormalities in myocardial structure and function that occur in the absence of, or in addition to, well-established cardiovascular risk factors. A key contributor to this abnormal structural-functional relation is the complex interplay of myocardial metabolic remodeling, defined as the loss the flexibility in myocardial substrate metabolism and its downstream detrimental effects, such as mitochondrial dysfunction, inflammation, and fibrosis. In parallel with the growth in understanding of these biological underpinnings has been developmental advances in imaging tools such as positron emission tomography and magnetic resonance imaging and spectroscopy that permit the detection and in many cases quantification, of the processes that typifies the myocardial metabolic remodeling in diabetic cardiomyopathy. The imaging readouts can be obtained in both preclinical models of diabetes mellitus and patients with diabetes mellitus facilitating the bi-directional movement of information between bench and bedside. Moreover, imaging biomarkers provided by these tools are now being used to enhance discovery and development of therapies designed to reduce the myocardial effects of diabetes mellitus through metabolic modulation. In this review, the use of these imaging tools in the patient with diabetes mellitus from a mechanistic, therapeutic effect, and clinical management perspective will be discussed.
Collapse
Affiliation(s)
- Linda R Peterson
- From the Cardiovascular Division, Department of Medicine (L.R.P.), Washington University School of Medicine, St Louis, MO
| | - Robert J Gropler
- Division of Radiological Sciences, Edward Mallinckrodt Institute of Radiology (R.J.G.), Washington University School of Medicine, St Louis, MO
| |
Collapse
|