1
|
So BCL, Cheung HCY, Zheng YP, Kwok MMY, Man EYK, Mok FT, Ng GCN, Sze NNL, Tang SWS, Ng SSM. Effect of moderate-intensity aquatic treadmill exercise on cognitive function and cerebral blood flow for healthy older adults. Exp Gerontol 2024; 197:112605. [PMID: 39395580 DOI: 10.1016/j.exger.2024.112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
To compare the effect of moderate-intensity aquatic treadmill exercise (ATM) on cerebral blood flow (CBF) and cognitive function in healthy older adults to that of moderate-intensity land-based treadmill exercise (LTM). This randomized controlled trial study was conducted between May 2023 and Oct 2023. Twenty-eight participants aged 60-80 were randomly assigned to either ATM group (N = 14) or LTM group (N = 14). Cognitive function and cerebral blood flow were assessed before and after the exercise. The outcome measures used in this study were the Digit Symbol Substitution Test (DSST) and the Digit Span Test (DST) to assess cognitive performance, and the mean middle cerebral artery blood velocity (MCAvmean) to evaluate CBF. A mixed effects model was used to analyze the within-group and between-group differences in cognitive function and CBF outcomes pre-to-post treadmill by SPSS. The DSST demonstrated a statistically significant improvement within both the ATM [β ± SE: -13.643 ± 2.407, 95 % CI: -18.749, -8.537] and LTM [β ± SE: -19.25 ± 3.66, 95 % CI: -26.424, -12.076] groups, indicating clinical significance in both groups. Both ATM and LTM groups exhibited post-exercise improvements within their respective groups for forward Digit Span Test (FDST) [ATM β ± SE: -0.143 ± 0.362, 95 % CI: -0.92, 0.634; LTM β ± SE: -0.286 ± 0.37, 95 % CI: -1.078, 0.506] and backward Digit Span Test (BDST) (ATM β ± SE: -1.741 ± 5.377, 95 % CI: -13.27, 9.792; LTM β ± SE: -6.729 ± 5.370, 95 % CI: -4.788, 18.24). In terms of MCAvmean, there is a higher improvement of CBF in ATM group [β ± SE: -138.669 ± 67.9217, 95 % CI: -288.164, 10.826] than LTM group [β ± SE: -9.305 ± 70.076, 95 % CI: -153.617, 135.007]. Hence, a single bout of moderate-intensity ATM and LTM can enhance cognitive function and CBF in healthy older adults, suggesting their potential as preventive strategies against age-related declines.
Collapse
Affiliation(s)
- Billy C L So
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Research Institute for Sports Science Technology, The Hong Kong Polytechnic University, Hong Kong.
| | | | - Y P Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong
| | - Manny M Y Kwok
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Eugenie Y K Man
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Fabiola Tang Mok
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Gerald C N Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Nicco N L Sze
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Stella W S Tang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
2
|
Yu X, Xu D, Hu J, Yu Y, Wang L, Jiang B, Zhang M. Exploring the Impact of Hemoglobin on Cerebral Blood Flow in Arterial Territories and Surgical Outcomes: Potential Implications for Moyamoya Disease Treatment. J Am Heart Assoc 2024; 13:e035387. [PMID: 39344645 DOI: 10.1161/jaha.124.035387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/01/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Changes in levels of hemoglobin would result in alterations of cerebral blood flow (CBF). However, the impact of hemoglobin on CBF in moyamoya disease (MMD) remains largely unknown. This study sought to determine whether CBF would be influenced by hemoglobin before surgical revascularization and to analyze the relationships between hemoglobin and CBF with clinical outcome after surgery in patients with MMD. METHODS AND RESULTS We prospectively enrolled adult patients with MMD undergoing surgical revascularization between June 2020 and December 2022. Preoperative CBF was measured in the territories of anterior, middle, and posterior cerebral arteries (ACA, MCA, and PCA, respectively) using 3-dimensional pseudo-continuous arterial spin labeling magnetic resonance imaging. Clinical outcome at 1 year after surgery was evaluated using the modified Rankin Scale. A total of 60 patients with MMD were included, with 25% (n=15) experiencing unfavorable outcomes. Patients with MMD exhibited lower CBF (ACA: P=0.007; MCA: P<0.001; PCA: P=0.014), compared with healthy controls (n=40). Hemoglobin was negatively and significantly associated with CBF (ACA: β=-0.45, P<0.001; MCA: β=-0.38, P<0.001; PCA: β=-0.54, P<0.001). CBF rather than hemoglobin was significantly related with clinical outcome (ACA: P<0.001; MCA: P<0.001; PCA: P=0.001), and CBF showed high discrimination in predicting clinical outcome (ACA: area under the curve, 0.84; MCA: area under the curve, 0.84; PCA: area under the curve, 0.80). CONCLUSIONS Our findings demonstrate that hemoglobin significantly influences CBF, and CBF has a high predictive value for clinical outcome in MMD. The optimal hemoglobin level before surgical revascularization should be further investigated.
Collapse
Affiliation(s)
- Xinfeng Yu
- Department of Radiology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Duo Xu
- Department of Radiology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Junwen Hu
- Department of Neurosurgery The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Yannan Yu
- Department of Radiology University of California San Francisco San Francisco CA
| | - Lin Wang
- Department of Neurosurgery The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Biao Jiang
- Department of Radiology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Minming Zhang
- Department of Radiology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
3
|
Ölmestig J, Mortensen KN, Fagerlund B, Naveed N, Nordling MM, Christensen H, Iversen HK, Poulsen MB, Siebner HR, Kruuse C. Cerebral blood flow and cognition after 3 months tadalafil treatment in small vessel disease (ETLAS-2): study protocol for a randomized controlled trial. Trials 2024; 25:570. [PMID: 39210472 PMCID: PMC11360322 DOI: 10.1186/s13063-024-08402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Targeted treatment is highly warranted for cerebral small vessel disease, a causal factor of one in four strokes and a major contributor to vascular dementia. Patients with cerebral small vessel disease have impaired cerebral blood flow and vessel reactivity. Tadalafil is a specific phosphodiesterase 5 inhibitor shown to improve vascular reactivity in the brain. METHODS The ETLAS-2 trial is a phase 2 double-blind, randomized placebo-controlled, parallel trial with the feasibility of tadalafil as the primary outcome. The trial aims to include 100 patients with small vessel occlusion stroke or transitory ischemic attacks and signs of cerebral small vessel disease more than 6 months before administration of study medication. Patients are treated for 3 months with tadalafil 20 mg or placebo daily and undergo magnetic resonance imaging (MRI) to evaluate changes in small vessel disease according to the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE) criteria as well as cerebral blood flow, cerebrovascular reactivity, and neurovascular coupling in a functional MRI sub-study. The investigation includes comprehensive cognitive testing using paper-pencil tests and Cambridge Neuropsychological Test Automated Battery (CANTAB) tests in a cognitive sub-study. DISCUSSION The ETLAS-2 trial tests the feasibility of long-term treatment with tadalafil and explores vascular and cognitive effects in cerebral small vessel disease in trial sub-studies. The study aims to propose a new treatment target and improve the understanding of small vessel disease. Currently, 64 patients have been included and the trial is estimated to be completed in the year 2024. TRIAL REGISTRATION Clinicaltrials.gov, NCT05173896. Registered on 30 December 2021.
Collapse
Affiliation(s)
- Joakim Ölmestig
- Neurovascular Research Unit, Department of Neurology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
| | - Kristian Nygaard Mortensen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
| | - Birgitte Fagerlund
- Child and Adolescent Mental Health Center, Copenhagen University Hospital, Mental Health Services CPH, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Nadia Naveed
- Department of Radiology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Mette Maria Nordling
- Department of Radiology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Hanne Christensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Helle Klingenberg Iversen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Mai Bang Poulsen
- Department of Neurology, Copenhagen University Hospital-North Zealand, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Christina Kruuse
- Neurovascular Research Unit, Department of Neurology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
- Department of Brain and Spinal Cord Injury, Neuroscience Centre, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
4
|
Padrela B, Mahroo A, Tee M, Sneve MH, Moyaert P, Geier O, Kuijer JPA, Beun S, Nordhøy W, Zhu YD, Buck MA, Hoinkiss DC, Konstandin S, Huber J, Wiersinga J, Rikken R, de Leeuw D, Grydeland H, Tippett L, Cawston EE, Ozturk-Isik E, Linn J, Brandt M, Tijms BM, van de Giessen EM, Muller M, Fjell A, Walhovd K, Bjørnerud A, Pålhaugen L, Selnes P, Clement P, Achten E, Anazodo U, Barkhof F, Hilal S, Fladby T, Eickel K, Morgan C, Thomas DL, Petr J, Günther M, Mutsaerts HJMM. Developing blood-brain barrier arterial spin labelling as a non-invasive early biomarker of Alzheimer's disease (DEBBIE-AD): a prospective observational multicohort study protocol. BMJ Open 2024; 14:e081635. [PMID: 38458785 DOI: 10.1136/bmjopen-2023-081635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Loss of blood-brain barrier (BBB) integrity is hypothesised to be one of the earliest microvascular signs of Alzheimer's disease (AD). Existing BBB integrity imaging methods involve contrast agents or ionising radiation, and pose limitations in terms of cost and logistics. Arterial spin labelling (ASL) perfusion MRI has been recently adapted to map the BBB permeability non-invasively. The DEveloping BBB-ASL as a non-Invasive Early biomarker (DEBBIE) consortium aims to develop this modified ASL-MRI technique for patient-specific and robust BBB permeability assessments. This article outlines the study design of the DEBBIE cohorts focused on investigating the potential of BBB-ASL as an early biomarker for AD (DEBBIE-AD). METHODS AND ANALYSIS DEBBIE-AD consists of a multicohort study enrolling participants with subjective cognitive decline, mild cognitive impairment and AD, as well as age-matched healthy controls, from 13 cohorts. The precision and accuracy of BBB-ASL will be evaluated in healthy participants. The clinical value of BBB-ASL will be evaluated by comparing results with both established and novel AD biomarkers. The DEBBIE-AD study aims to provide evidence of the ability of BBB-ASL to measure BBB permeability and demonstrate its utility in AD and AD-related pathologies. ETHICS AND DISSEMINATION Ethics approval was obtained for 10 cohorts, and is pending for 3 cohorts. The results of the main trial and each of the secondary endpoints will be submitted for publication in a peer-reviewed journal.
Collapse
Affiliation(s)
- Beatriz Padrela
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Amnah Mahroo
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Mervin Tee
- National University Health System, Singapore
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Paulien Moyaert
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Oliver Geier
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Joost P A Kuijer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Soetkin Beun
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Wibeke Nordhøy
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Yufei David Zhu
- Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Mareike A Buck
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Bremen, Bremen, Germany
| | | | - Simon Konstandin
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Jörn Huber
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Julia Wiersinga
- Department of Internal Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Roos Rikken
- Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | | | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Lynette Tippett
- The University of Auckland School of Psychology, Auckland, New Zealand
| | - Erin E Cawston
- The University of Auckland Department of Pharmacology and Clinical Pharmacology, Auckland, New Zealand
| | - Esin Ozturk-Isik
- Bogazici University Institute of Biomedical Engineering, Istanbul, Turkey
| | - Jennifer Linn
- Department of Neurology, Faculty of Medicine, Babylon, Iraq
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Moritz Brandt
- Department of Neurology, Faculty of Medicine, Babylon, Iraq
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Betty M Tijms
- Neurology, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | | | - Majon Muller
- Department of Internal Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Anders Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Kristine Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Atle Bjørnerud
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
- University of Oslo, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Patricia Clement
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Eric Achten
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Udunna Anazodo
- Lawson Health Research Institute, London, Ontario, Canada
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
- University College London, London, UK
| | - Saima Hilal
- National University Health System, Singapore
- Department of Pharmacology, National University of Singapore, Singapore
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
- University of Oslo, Oslo, Norway
| | - Klaus Eickel
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Applied Sciences Bremerhaven, Bremerhaven, Germany
| | - Catherine Morgan
- The University of Auckland School of Psychology, Auckland, New Zealand
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, University College London, London, UK
| | - Jan Petr
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Bremen, Bremen, Germany
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| |
Collapse
|
5
|
Mitchell RHB, Grigorian A, Robertson A, Toma S, Luciw NJ, Karthikeyan S, Mutsaerts HJMM, Fiksenbaum L, Metcalfe AWS, MacIntosh BJ, Goldstein BI. Sex differences in cerebral blood flow among adolescents with bipolar disorder. Bipolar Disord 2024; 26:33-43. [PMID: 37217255 DOI: 10.1111/bdi.13326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
BACKGROUND Abnormalities in cerebral blood flow (CBF) are common in bipolar disorder (BD). Despite known differences in CBF between healthy adolescent males and females, sex differences in CBF among adolescents with BD have never been studied. OBJECTIVE To examine sex differences in CBF among adolescents with BD versus healthy controls (HC). METHODS CBF images were acquired using arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) in 123 adolescents (72 BD: 30M, 42F; 51 HC: 22M, 29F) matched for age (13-20 years). Whole brain voxel-wise analysis was performed in a general linear model with sex and diagnosis as fixed factors, sex-diagnosis interaction effect, and age as a covariate. We tested for main effects of sex, diagnosis, and their interaction. Results were thresholded at cluster forming p = 0.0125, with posthoc Bonferroni correction (p = 0.05/4 groups). RESULTS A main effect of diagnosis (BD > HC) was observed in the superior longitudinal fasciculus (SLF), underlying the left precentral gyrus (F =10.24 (3), p < 0.0001). A main effect of sex (F > M) on CBF was detected in the precuneus/posterior cingulate cortex (PCC), left frontal and occipital poles, left thalamus, left SLF, and right inferior longitudinal fasciculus (ILF). No regions demonstrated a significant sex-by-diagnosis interaction. Exploratory pairwise testing in regions with a main effect of sex revealed greater CBF in females with BD versus HC in the precuneus/PCC (F = 7.1 (3), p < 0.01). CONCLUSION Greater CBF in female adolescents with BD versus HC in the precuneus/PCC may reflect the role of this region in the neurobiological sex differences of adolescent-onset BD. Larger studies targeting underlying mechanisms, such as mitochondrial dysfunction or oxidative stress, are warranted.
Collapse
Affiliation(s)
- Rachel H B Mitchell
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Anahit Grigorian
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Andrew Robertson
- Department of Kinesiology, Research Institute for Aging, University of Waterloo, Ontario, Canada
| | - Simina Toma
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Nicholas J Luciw
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Sudhir Karthikeyan
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Henri J M M Mutsaerts
- Radiology and Nuclear Medicine Vrje Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Lisa Fiksenbaum
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, Ontario, Canada
| | - Arron W S Metcalfe
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program , Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program , Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Benjamin I Goldstein
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Dounavi ME, Mak E, Swann P, Low A, Muniz-Terrera G, McKeever A, Pope M, Williams GB, Wells K, Lawlor B, Naci L, Malhotra P, Mackay C, Koychev I, Ritchie K, Su L, Ritchie CW, O’Brien JT. Differential association of cerebral blood flow and anisocytosis in APOE ε4 carriers at midlife. J Cereb Blood Flow Metab 2023; 43:1672-1684. [PMID: 37132287 PMCID: PMC10581239 DOI: 10.1177/0271678x231173587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
Cerebral hemodynamic alterations have been observed in apolipoprotein ε4 (APOE4) carriers at midlife, however the physiological underpinnings of this observation are poorly understood. Our goal was to investigate cerebral blood flow (CBF) and its spatial coefficient of variation (CoV) in relation to APOE4 and a measure of erythrocyte anisocytosis (red blood cell distribution width - RDW) in a middle-aged cohort. Data from 563 participants in the PREVENT-Dementia study scanned with 3 T MRI cross-sectionally were analysed. Voxel-wise and region-of-interest analyses within nine vascular regions were run to detect areas of altered perfusion. Within the vascular regions, interaction terms between APOE4 and RDW in predicting CBF were examined. Areas of hyperperfusion in APOE4 carriers were detected mainly in frontotemporal regions. The APOE4 allele differentially moderated the association between RDW and CBF, an association which was more prominent in the distal vascular territories (p - [0.01, 0.05]). The CoV was not different between the considered groups. We provide novel evidence that in midlife, RDW and CBF are differentially associated in APOE4 carriers and non-carriers. This association is consistent with a differential hemodynamic response to hematological alterations in APOE4 carriers.
Collapse
Affiliation(s)
- Maria-Eleni Dounavi
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Elijah Mak
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Peter Swann
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Audrey Low
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Anna McKeever
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Marianna Pope
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Guy B Williams
- Department of Clinical Neurosciences and Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Katie Wells
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | - Brian Lawlor
- Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Lorina Naci
- Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Paresh Malhotra
- Division of Brain Science, Imperial College Healthcare NHS Trust, UK
| | - Clare Mackay
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Li Su
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Craig W Ritchie
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | - John T O’Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Tomoto T, Lu M, Khan AM, Liu J, Pasha EP, Tarumi T, Zhang R. Cerebral blood flow and cerebrovascular resistance across the adult lifespan: A multimodality approach. J Cereb Blood Flow Metab 2023; 43:962-976. [PMID: 36708213 PMCID: PMC10196748 DOI: 10.1177/0271678x231153741] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 01/29/2023]
Abstract
Cerebral blood flow (CBF) decreases across the adult lifespan; however, more studies are needed to understand the underlying mechanisms. This study measured CBF and cerebrovascular resistance (CVR) using a multimodality approach in 185 healthy adults (21-80 years). Color-coded duplex ultrasonography and phase-contrast MRI were used to measure CBF, CBF velocity, and vessel diameters of the internal carotid (ICA) and vertebral arteries (VA). MRI arterial spin labeling was used to measure brain perfusion. Transcranial Doppler was used to measure CBF velocity at the middle cerebral artery. Structural MRI was used to measure brain volume. CBF was presented as total blood flow (mL/min) and normalized CBF (nCBF, mL/100g/min). Mean arterial pressure was measured to calculate CVR. Age was associated with decreased CBF by ∼3.5 mL/min/year and nCBF by ∼0.19 mL/100g/min/year across the methods. CVR increased by ∼0.011 mmHg/mL/100g/min/year. Blood flow velocities in ICA and VA decreased with age ranging from 0.07-0.15 cm/s/year, while the vessel diameters remained similar among age groups. These findings suggest that age-related decreases in CBF can be attributed mainly to decreases in blood flow velocity in the large cerebral arteries and that increased CVR likely reflects the presence of cerebral vasoconstrictions in the small cerebral arterioles and/or capillaries.
Collapse
Affiliation(s)
- Tsubasa Tomoto
- Institute for Exercise and
Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas,
Texas, USA
- Human Informatics and Interaction
Research Institute, National Institute of Advanced Industrial Science and
Technology, Tsukuba, Ibaraki, Japan
- Department of Neurology, University
of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Marilyn Lu
- Department of Neurology, University
of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ayaz M Khan
- Department of Diagnostic Imaging,
St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jie Liu
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey, USA
| | - Evan P Pasha
- Institute for Exercise and
Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas,
Texas, USA
- Department of Neurology, University
of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Takashi Tarumi
- Institute for Exercise and
Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas,
Texas, USA
- Human Informatics and Interaction
Research Institute, National Institute of Advanced Industrial Science and
Technology, Tsukuba, Ibaraki, Japan
- Department of Neurology, University
of Texas Southwestern Medical Center, Dallas, Texas, USA
- Graduate School of Comprehensive
Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Rong Zhang
- Institute for Exercise and
Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas,
Texas, USA
- Department of Neurology, University
of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine,
University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Jiang C, Meng Q, Zhao K, Zhao H, Zheng Z, Wu W, Zhao X. Vulnerable carotid plaque characteristics on magnetic resonance vessel wall imaging: potential predictors for hemodynamic instability during carotid artery stenting. Quant Imaging Med Surg 2023; 13:3441-3450. [PMID: 37284123 PMCID: PMC10240037 DOI: 10.21037/qims-22-865] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/07/2023] [Indexed: 10/12/2024]
Abstract
BACKGROUND This cross-sectional study sought to explore the possible risk factors assessed with magnetic resonance (MR) vessel wall imaging for hemodynamic instability (HI) during carotid artery stenting (CAS). METHODS Patients with carotid stenosis who were referred for CAS from January 2017 to December 2019 were recruited and underwent carotid MR vessel wall imaging. The vulnerable plaque features, including lipid-rich necrotic core (LRNC), intraplaque hemorrhage (IPH), fibrous cap rupture, and plaque morphology, were evaluated. The HI was defined as a drop of systolic blood pressure (SBP) of ≥30 mmHg or the lowest SBP measurement of <90 mmHg after stent implantation. The carotid plaque characteristics were compared between the HI and non-HI groups. The association between carotid plaque characteristics and HI was analyzed. RESULTS A total of 56 participants (mean age 68.7±8.3 years; 44 males) were recruited. Patients in the HI group (n=26, 46%) had a significantly greater wall area [median 43.2 (IQR, 34.9-50.5) vs. 35.9 (IQR, 32.3-39.4) mm2; P=0.008], total vessel area (79.7±17.2 vs. 69.9±17.3 mm2; P=0.03), prevalence of IPH (62% vs. 30%; P=0.02), prevalence of vulnerable plaque (77% vs. 43%; P=0.01), and volume of LRNC [median 344.7 (IQR, 155.1-665.7) vs. 103.1 (IQR, 53.9-162.9) mm3; P=0.001] in carotid plaque compared to those in non-HI group (n=30, 54%). Carotid LRNC volume (OR =1.005, 95% CI: 1.001-1.009; P=0.01) and presence of vulnerable plaque (OR =4.038, 95% CI: 0.955-17.070; P=0.06) were significantly and marginally associated with HI, respectively. CONCLUSIONS Carotid plaque burden and vulnerable plaque features, particularly a larger LRNC, might be effective predictors for HI during the CAS procedure.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Qi Meng
- Department of Ultrasound, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Keqiang Zhao
- Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Hongliang Zhao
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhuozhao Zheng
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Weiwei Wu
- Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| |
Collapse
|
9
|
Nair P, Prasad K, Balasundaram P, Vibha D, Nand Dwivedi S, Gaikwad SB, Srivastava AK, Verma V. Multimodal imaging of the aging brain: Baseline findings of the LoCARPoN study. AGING BRAIN 2023; 3:100075. [PMID: 37180873 PMCID: PMC10173278 DOI: 10.1016/j.nbas.2023.100075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
We quantified and investigated multimodal brain MRI measures in the LoCARPoN Study due to lack of normative data among Indians. A total of 401 participants (aged 50-88 years) without stroke or dementia completed MRI investigation. We assessed 31 brain measures in total using four brain MRI modalities, including macrostructural (global & lobar volumes, white matter hyperintensities [WMHs]), microstructural (global and tract-specific white matter fractional anisotropy [WM-FA] and mean diffusivity [MD]) and perfusion measures (global and lobar cerebral blood flow [CBF]). The absolute brain volumes of males were significantly larger than those of females, but such differences were relatively small (<1.2% of intracranial volume). With increasing age, lower macrostructural brain volumes, lower WM-FA, greater WMHs, higher WM-MD were found (P = 0.00018, Bonferroni threshold). Perfusion measures did not show significant differences with increasing age. Hippocampal volume showed the greatest association with age, with a reduction of approximately 0.48%/year. This preliminary study augments and provides insight into multimodal brain measures during the nascent stages of aging among the Indian population (South Asian ethnicity). Our findings establish the groundwork for future hypothetical testing studies.
Collapse
Affiliation(s)
- Pallavi Nair
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Kameshwar Prasad
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
- Department of Neurology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
- Corresponding author at: Director’s Cell, Rajendra Institute of Medical Sciences, Ranchi 834009, Jharkhand, India.
| | - Parthiban Balasundaram
- Department of Neuroradiology, All India Institute of Medical Sciences, New Delhi, India
- Department of Neuroradiology, Kings College Hospital, London, UK
| | - Deepti Vibha
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Sada Nand Dwivedi
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | | | - Achal K. Srivastava
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Vivek Verma
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Binnie LR, Pauls MMH, Benjamin P, Dhillon MPK, Betteridge S, Clarke B, Ghatala R, Hainsworth FAH, Howe FA, Khan U, Kruuse C, Madigan JB, Moynihan B, Patel B, Pereira AC, Rostrup E, Shtaya ABY, Spilling CA, Trippier S, Williams R, Isaacs JD, Barrick TR, Hainsworth AH. Test-retest reliability of arterial spin labelling for cerebral blood flow in older adults with small vessel disease. Transl Stroke Res 2022; 13:583-594. [PMID: 35080734 PMCID: PMC9232403 DOI: 10.1007/s12975-021-00983-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 12/03/2022]
Abstract
Cerebral small vessel disease (SVD) is common in older people and is associated with lacunar stroke, white matter hyperintensities (WMH) and vascular cognitive impairment. Cerebral blood flow (CBF) is reduced in SVD, particularly within white matter.Here we quantified test-retest reliability in CBF measurements using pseudo-continuous arterial spin labelling (pCASL) in older adults with clinical and radiological evidence of SVD (N=54, mean (SD): 66.9 (8.7) years, 15 females/39 males). We generated whole-brain CBF maps on two visits at least 7 days apart (mean (SD): 20 (19), range 7-117 days).Test-retest reliability for CBF was high in all tissue types, with intra-class correlation coefficient [95%CI]: 0.758 [0.616, 0.852] for whole brain, 0.842 [0.743, 0.905] for total grey matter, 0.771 [0.636, 0.861] for deep grey matter (caudate-putamen and thalamus), 0.872 [0.790, 0.923] for normal-appearing white matter (NAWM) and 0.780 [0.650, 0.866] for WMH (all p<0.001). ANCOVA models indicated significant decline in CBF in total grey matter, deep grey matter and NAWM with increasing age and diastolic blood pressure (all p<0.001). CBF was lower in males relative to females (p=0.013 for total grey matter, p=0.004 for NAWM).We conclude that pCASL has high test-retest reliability as a quantitative measure of CBF in older adults with SVD. These findings support the use of pCASL in routine clinical imaging and as a clinical trial endpoint.All data come from the PASTIS trial, prospectively registered at: https://eudract.ema.europa.eu (2015-001235-20, registered 13/05/2015), http://www.clinicaltrials.gov (NCT02450253, registered 21/05/2015).
Collapse
Affiliation(s)
- Lauren R Binnie
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Mathilde M H Pauls
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Philip Benjamin
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Department of Neuroradiology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Mohani-Preet K Dhillon
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Shai Betteridge
- Department of Neuropsychology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Brian Clarke
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Rita Ghatala
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Fearghal A H Hainsworth
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Franklyn A Howe
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Usman Khan
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Christina Kruuse
- Department of Neurology and Neurovascular Research Unit, Herlev Gentofte Hospital, Herlev, Denmark
| | - Jeremy B Madigan
- Department of Neuroradiology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Barry Moynihan
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Bhavini Patel
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Anthony C Pereira
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Egill Rostrup
- Mental Health Centre, University of Copenhagen, Glostrup, Denmark
| | - Anan B Y Shtaya
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Catherine A Spilling
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Sarah Trippier
- South London Stroke Research Network, St George's Hospital, London, UK
| | - Rebecca Williams
- South London Stroke Research Network, St George's Hospital, London, UK
| | - Jeremy D Isaacs
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Thomas R Barrick
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Atticus H Hainsworth
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK.
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK.
| |
Collapse
|
11
|
Liu J, Yang X, Li Y, Xu H, Ren J, Zhou P. Cerebral Blood Flow Alterations in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Arterial Spin Labeling Studies. Front Aging Neurosci 2022; 14:847218. [PMID: 35250549 PMCID: PMC8888831 DOI: 10.3389/fnagi.2022.847218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveArterial spin labeling (ASL) studies have revealed inconsistent regional cerebral blood flow (CBF) alterations in patients with type 2 diabetes mellitus (T2DM). The aim of this systematic review and meta-analysis was to identify concordant regional CBF alterations in T2DM.MethodsA systematic review was conducted to the published literatures comparing cerebral perfusion between patients with T2DM and healthy controls using ASL. The seed-based d mapping (SDM) was further used to perform quantitative meta-analysis on voxel-based literatures and to estimate the regional CBF alterations in patients with T2DM. Metaregression was performed to explore the associations between clinical characteristics and cerebral perfusion alterations.ResultsA total of 13 studies with 14 reports were included in the systematic review and 7 studies with 7 reports were included in the quantitative meta-analysis. The qualitative review found widespread CBF reduction in cerebral lobes in T2DM. The meta-analysis found increased regional CBF in right supplementary motor area and decreased regional CBF in bilateral middle occipital gyrus, left caudate nucleus, right superior parietal gyrus, and left calcarine fissure/surrounding cortex in T2DM.ConclusionThe patterns of cerebral perfusion alterations, characterized by the decreased CBF in occipital and parietal lobes, might be the neuropathology of visual impairment and cognitive aging in T2DM.
Collapse
|
12
|
Oghagbon EK, Prieto-Pino J, Dogoh F, Ogiator M, Giménez-Llort L. Diabetes/Dementia in Sub-saharian Africa and Nigerian Women in the Eye of Storm. Curr Alzheimer Res 2021; 19:161-170. [PMID: 34784865 DOI: 10.2174/1567205018666211116093747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/01/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
In the next few years, the prevalence of diabetes mellitus (DM) is projected to dramatically increase globally, but most of the cases will occur in low-to-middle-income countries. Some of the major risk factors for diabetes accelerate the development of dementia in African-Americans, thus leading to a higher prevalence of dementia than Caucasians. Sub-Saharan Africa women have a disproportionately two-to-eight fold increased prevalence of dementia. In the eye of this storm, Nigeria holds the highest number of diabetics on the African continent, and its prevalence is rising in parallel to obesity, hypertension, and the population's aging. The socio-economic impact of the rising prevalence of DM and dementia will be huge and unsustainable for the healthcare system in Nigeria, as has been recognized in developed economies. Here, we analyze the current situation of women's health in Nigeria and explore future perspectives and directions. The complex interplay of factors involved in diabetes and dementia in Nigerian women include key biological agents (metabolic syndrome, vascular damage, inflammation, oxidative stress, insulin resistance), nutritional habits, lifestyle, and anemia, that worsen with comorbidities. In addition, restricted resources, lack of visibility, and poor management result in a painful chain that increases the risk and burden of disease in Nigerian women from youth to elderly ages. Heath policies to increase the ra- tio of mental health professionals per number of patients, mostly in rural areas, foment of proactive primary care centers, and interventions targeting adolescents and adult women and other specific mothers-children pairs are strongly required for a sustainable development goal.
Collapse
Affiliation(s)
- Efosa K Oghagbon
- Department of Chemical Pathology, Faculty of Basic & Allied Medical Sciences, College of Health Sciences, Benue State University, Makurdi. Nigeria
| | - José Prieto-Pino
- Department of Psychiatry and Forensic Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona. Spain
| | - Faeren Dogoh
- Department of Chemical Pathology, Benue State University Teaching Hospital, Makurdi. Nigeria
| | - Monday Ogiator
- Department of Internal Medicine, Benue State University Teaching Hospital, Makurdi. Nigeria
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona. Spain
| |
Collapse
|
13
|
Dounavi ME, Low A, McKiernan EF, Mak E, Muniz-Terrera G, Ritchie K, Ritchie CW, Su L, O’Brien JT. Evidence of cerebral hemodynamic dysregulation in middle-aged APOE ε4 carriers: The PREVENT-Dementia study. J Cereb Blood Flow Metab 2021; 41:2844-2855. [PMID: 34078163 PMCID: PMC8543665 DOI: 10.1177/0271678x211020863] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
Accumulating evidence suggests vascular dysregulation in preclinical Alzheimer's disease. In this study, cerebral hemodynamics and their coupling with cognition in middle-aged apolipoprotein ε4 carriers (APOEε4+) were investigated. Longitudinal 3 T T1-weighted and arterial spin labelling MRI data from 158 participants (40-59 years old) in the PREVENT-Dementia study were analysed (125 two-year follow-up). Cognition was evaluated using the COGNITO battery. Cerebral blood flow (CBF) and cerebrovascular resistance index (CVRi) were quantified for the flow territories of the anterior, middle and posterior cerebral arteries. CBF was corrected for underlying atrophy and individual hematocrit. Hemodynamic measures were the dependent variables in linear regression models, with age, sex, years of education and APOEε4 carriership as predictors. Further analyses were conducted with cognitive outcomes as dependent variables, using the same model as before with additional APOEε4 × hemodynamics interactions. At baseline, APOEε4+ showed increased CBF and decreased CVRi compared to non-carriers in the anterior and middle cerebral arteries, suggestive of potential vasodilation. Hemodynamic changes were similar between groups. Interaction analysis revealed positive associations between CBF changes and performance changes in delayed recall (for APOEε4 non-carriers) and verbal fluency (for APOEε4 carriers) cognitive tests. These observations are consistent with neurovascular dysregulation in middle-aged APOEε4+.
Collapse
Affiliation(s)
- Maria-Eleni Dounavi
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Audrey Low
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Elizabeth F McKiernan
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Elijah Mak
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Karen Ritchie
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK
- INSERM, Montpellier, France
| | - Craig W Ritchie
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | - Li Su
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - John T. O’Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Ibaraki M, Nakamura K, Matsubara K, Shinohara Y, Kinoshita T. Effect of hematocrit on cerebral blood flow measured by pseudo-continuous arterial spin labeling MRI: A comparative study with 15O-water positron emission tomography. Magn Reson Imaging 2021; 84:58-68. [PMID: 34562565 DOI: 10.1016/j.mri.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION In cerebral blood flow (CBF) quantification with pseudo-continuous arterial spin labeling (pCASL) MRI, arterial blood T1 (T1a) is usually fixed to a typical value (e.g., 1650 ms). However, individual T1a depends strongly on hematocrit (Hct) level. To investigate the utility of Hct-based T1a as an alternative to the fixed T1a method, we performed a comparative study with 15O-water positron emission tomography (PET). METHODS For patients with unilateral occlusion or stenosis of major arteries, hemispheric CBF on the healthy side was measured using pCASL and 15O-water PET. The pCASL CBFs were calculated with both (a) fixed T1a (1650 ms) and (b) individual T1a estimated from blood-sampled Hct (Hct-based T1a). Correlation coefficients of Hct-CBF were calculated and compared between pCASL and PET. RESULTS In pCASL, CBF with fixed T1a showed a strong negative correlation with Hct (r = -0.568), which was reduced with individual Hct-based T1a (r = -0.341 to -0.190), consistent with the Hct-CBF relation measured with PET (r = -0.349). DISCUSSION AND CONCLUSION We demonstrated that Hct-based T1a resulted in smaller inter-individual variations in pCASL CBF and an inverse Hct-CBF relationship more similar to that of PET. Care must be taken in the interpretation of pCASL CBF imaging in relation to Hct level even in subjects without anemia. Further comparative studies are needed to investigate whether advanced techniques improve pCASL CBF quantification at the individual level.
Collapse
Affiliation(s)
- Masanobu Ibaraki
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| | - Kazuhiro Nakamura
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| | - Keisuke Matsubara
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| | - Yuki Shinohara
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| | - Toshibumi Kinoshita
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| |
Collapse
|
15
|
Graff BJ, Payne SJ, El-Bouri WK. The Ageing Brain: Investigating the Role of Age in Changes to the Human Cerebral Microvasculature With an in silico Model. Front Aging Neurosci 2021; 13:632521. [PMID: 34421568 PMCID: PMC8374868 DOI: 10.3389/fnagi.2021.632521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/12/2021] [Indexed: 11/25/2022] Open
Abstract
Ageing causes extensive structural changes to the human cerebral microvasculature, which have a significant effect on capillary bed perfusion and oxygen transport. Current models of brain capillary networks in the literature focus on healthy adult brains and do not capture the effects of ageing, which is critical when studying neurodegenerative diseases. This study builds upon a statistically accurate model of the human cerebral microvasculature based on ex-vivo morphological data. This model is adapted for “healthy” ageing using in-vivo measurements from mice at three distinct age groups—young, middle-aged, and old. From this new model, blood and molecular exchange parameters are calculated such as permeability and surface-area-to-volume ratio, and compared across the three age groups. The ability to alter the model vessel-by-vessel is used to create a continuous gradient of ageing. It was found that surface-area-to-volume ratio reduced in old age by 6% and permeability by 24% from middle-age to old age, and variability within the networks also increased with age. The ageing gradient indicated a threshold in the ageing process around 75 years old, after which small changes have an amplified effect on blood flow properties. This gradient enables comparison of studies measuring cerebral properties at discrete points in time. The response of middle aged and old aged capillary beds to micro-emboli showed a lower robustness of the old age capillary bed to vessel occlusion. As the brain ages, there is thus increased vulnerability of the microvasculature—with a “tipping point” beyond which further remodeling of the microvasculature has exaggerated effects on the brain. When developing in-silico models of the brain, age is a very important consideration to accurately assess risk factors for cognitive decline and isolate early biomarkers of microvascular health.
Collapse
Affiliation(s)
- Barnaby J Graff
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Stephen J Payne
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Wahbi K El-Bouri
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.,Liverpool Centre for Cardiovascular Science, University of Liverpool & Liverpool Heart and Chest Hospital, Liverpool, United Kingdom.,Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
16
|
Clark LR, Zuelsdorff M, Norton D, Johnson SC, Wyman MF, Hancock LM, Carlsson CM, Asthana S, Flowers-Benton S, Gleason CE, Johnson HM. Association of Cardiovascular Risk Factors with Cerebral Perfusion in Whites and African Americans. J Alzheimers Dis 2021; 75:649-660. [PMID: 32310160 DOI: 10.3233/jad-190360] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Midlife cardiovascular risk factors increase risk for Alzheimer's disease (AD). Despite disproportionately high cardiovascular disease and dementia rates, African Americans are under-represented in studies of AD risk and research-based guidance on targeting vascular risk factors is lacking. OBJECTIVE This study investigated relationships between specific cardiovascular risk factors and cerebral perfusion in White and African American adults enriched for AD risk. METHODS Participants included 397 cognitively unimpaired White (n = 330) and African American (n = 67) adults enrolled in the Wisconsin Alzheimer's Disease Research Center who underwent pseudo-continuous arterial spin labeling MRI. Multiple linear regression models examined independent relationships between cardiovascular risk factors and mean cerebral perfusion. Subsequent interaction and stratified models assessed the role for APOE genotype and race. RESULTS When risk factor p-values were FDR-adjusted, diastolic blood pressure was significantly associated with mean perfusion. Tobacco use, triglycerides, waist-to-hip ratio, and a composite risk score were not associated with perfusion. Without FDR adjustment, a relationship was also observed between perfusion and obesity, cholesterol, and fasting glucose. Neither APOE genotype nor race moderated relationships between risk factors and perfusion. CONCLUSION Higher diastolic blood pressure predicted lower perfusion more strongly than other cardiovascular risk factors. This relationship did not vary by racial group or genetic risk for AD, although the African American sample had greater vascular risk burden and lower perfusion rates. Our findings highlight the need to prioritize inclusion of underrepresented groups in neuroimaging studies and to continue exploring the link between modifiable risk factors, cerebrovascular health, and AD risk in underrepresented populations.
Collapse
Affiliation(s)
- Lindsay R Clark
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Megan Zuelsdorff
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin School of Nursing, Madison, WI, USA
| | - Derek Norton
- Department of Biostatistics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mary F Wyman
- Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA.,Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Laura M Hancock
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Cynthia M Carlsson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Susan Flowers-Benton
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Carey E Gleason
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Heather M Johnson
- Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
17
|
Alisch JSR, Khattar N, Kim RW, Cortina LE, Rejimon AC, Qian W, Ferrucci L, Resnick SM, Spencer RG, Bouhrara M. Sex and age-related differences in cerebral blood flow investigated using pseudo-continuous arterial spin labeling magnetic resonance imaging. Aging (Albany NY) 2021; 13:4911-4925. [PMID: 33596183 PMCID: PMC7950235 DOI: 10.18632/aging.202673] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Adequate cerebral blood flow (CBF) is essential to a healthy central nervous system (CNS). Previous work suggests that CBF differs between men and women, and declines with age and certain pathologies, but a highly controlled systematic study across a wide age range, and incorporating white matter (WM) regions, has not been undertaken. Here, we investigate age- and sex-related differences in CBF in gray matter (GM) and WM regions in a cohort (N = 80) of cognitively unimpaired individuals over a wide age range. In agreement with literature, we find that GM regions exhibited lower CBF with age. In contrast, WM regions exhibited higher CBF with age in various cerebral regions. We attribute this new finding to increased oligodendrocyte metabolism to maintain myelin homeostasis in the setting of increased myelin turnover with age. Further, consistent with prior studies, we found that CBF was higher in women than in men in all brain structures investigated. Our work provides new insights into the effects of age and sex on CBF. In addition, our results provide reference CBF values for the standard ASL protocol recommended by the ISMRM Perfusion Study Group and the European ASL in Dementia consortium. Thus, these results provide a foundation for further investigations of CNS perfusion in a variety of settings, including aging, cerebrovascular diseases, and dementias.
Collapse
Affiliation(s)
- Joseph S R Alisch
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Nikkita Khattar
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Richard W Kim
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Luis E Cortina
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Abinand C Rejimon
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Wenshu Qian
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Luigi Ferrucci
- Laboratory Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| |
Collapse
|
18
|
Roberts DR, Collins HR, Lee JK, Taylor JA, Turner M, Zaharchuk G, Wintermark M, Antonucci MU, Mulder ER, Gerlach DA, Asemani D, McGregor HR, Seidler RD. Altered cerebral perfusion in response to chronic mild hypercapnia and head-down tilt Bed rest as an analog for Spaceflight. Neuroradiology 2021; 63:1271-1281. [PMID: 33587162 DOI: 10.1007/s00234-021-02660-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/26/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE Following prolonged stays on the International Space Station (ISS), some astronauts exhibit visual acuity changes, ophthalmological findings, and mildly elevated intracranial pressures as part of a novel process called spaceflight-associated neuro-ocular syndrome (SANS). To determine the pathophysiology of SANS, NASA conducted a multi-investigator study in which 11 healthy participants underwent head-down tilt bed rest, mimicking microgravity-induced cephalad fluid shifts, combined with elevated ambient CO2 levels similar to those on the ISS (HDT+CO2). As part of that study, we examined the effects of HDT+CO2 on cerebral perfusion. METHODS Using arterial spin labeling, we compared cerebral perfusion before, during, and after HDT+CO2 in participants who developed SANS (n = 5) with those who did not (n = 6). RESULTS All participants demonstrated a decrease in perfusion during HDT+CO2 (mean decrease of 25.1% at HDT7 and 16.2% at HDT29); however, the timing and degree of change varied between the groups. At day 7 of HDT+CO2, the SANS group experienced a greater reduction in perfusion than the non-SANS group (p =.05, 95% CI:-0.19 to 16.11, d=.94, large effect). Conversely, by day 29 of HDT+CO2, the SANS group had significantly higher perfusion (approaching their baseline) than the non-SANS group (p = .04, 95% CI:0.33 to 13.07, d=1.01, large effect). CONCLUSION Compared with baseline and recovery, HDT+CO2 resulted in reduced cerebral perfusion which varied based on SANS status. Further studies are needed to unravel the relative role of HDT vs hypercapnia, to determine if these perfusion changes are clinically relevant, and whether perfusion changes contribute to the development of SANS during spaceflight.
Collapse
Affiliation(s)
- Donna R Roberts
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA. .,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | - Heather R Collins
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Jessica K Lee
- German Aerospace Center (DLR, Institute of Aerospace Medicine), Cologne, Germany.,Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - James A Taylor
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Matthew Turner
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Greg Zaharchuk
- Department of Radiology, Division of Neuroradiology, Stanford University, Stanford, CA, USA
| | - Max Wintermark
- Department of Radiology, Division of Neuroradiology, Stanford University, Stanford, CA, USA
| | - Michael U Antonucci
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Edwin R Mulder
- German Aerospace Center (DLR, Institute of Aerospace Medicine), Cologne, Germany
| | - Darius A Gerlach
- German Aerospace Center (DLR, Institute of Aerospace Medicine), Cologne, Germany
| | - Davud Asemani
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Heather R McGregor
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Juttukonda MR, Li B, Almaktoum R, Stephens KA, Yochim KM, Yacoub E, Buckner RL, Salat DH. Characterizing cerebral hemodynamics across the adult lifespan with arterial spin labeling MRI data from the Human Connectome Project-Aging. Neuroimage 2021; 230:117807. [PMID: 33524575 PMCID: PMC8185881 DOI: 10.1016/j.neuroimage.2021.117807] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Arterial spin labeling (ASL) magnetic resonance imaging (MRI) has become a popular approach for studying cerebral hemodynamics in a range of disorders and has recently been included as part of the Human Connectome Project-Aging (HCP-A). Due to the high spatial resolution and multiple post-labeling delays, ASL data from HCP-A holds promise for localization of hemodynamic signals not only in gray matter but also in white matter. However, gleaning information about white matter hemodynamics with ASL is challenging due in part to longer blood arrival times in white matter compared to gray matter. In this work, we present an analytical approach for deriving measures of cerebral blood flow (CBF) and arterial transit times (ATT) from the ASL data from HCP-A and report on gray and white matter hemodynamics in a large cohort (n = 234) of typically aging adults (age 36–90 years). Pseudo-continuous ASL data were acquired with labeling duration = 1500 ms and five post-labeling delays = 200 ms, 700 ms, 1200, 1700 ms, and 2200 ms. ATT values were first calculated on a voxel-wise basis through normalized cross-correlation analysis of the acquired signal time course in that voxel and an expected time course based on an acquisition-specific Bloch simulation. CBF values were calculated using a two-compartment model and with age-appropriate blood water longitudinal relaxation times. Using this approach, we found that white matter CBF reduces (ρ = 0.39) and white matter ATT elongates (ρ = 0.42) with increasing age (p < 0.001). In addition, CBF is lower and ATTs are longer in white matter compared to gray matter across the adult lifespan (Wilcoxon signed-rank tests; p < 0.001). We also found sex differences with females exhibiting shorter white matter ATTs than males, independently of age (Wilcoxon rank-sum test; p < 0.001). Finally, we have shown that CBF and ATT values are spatially heterogeneous, with significant differences in cortical versus subcortical gray matter and juxtacortical versus periventricular white matter. These results serve as a characterization of normative physiology across the human lifespan against which hemodynamic impairment due to cerebrovascular or neurodegenerative diseases could be compared in future studies.
Collapse
Affiliation(s)
- Meher R Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States; Department of Radiology, Harvard Medical School, Boston, MA, United States.
| | - Binyin Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States; Department of Neurology, Ruijin Hospital & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Randa Almaktoum
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States
| | - Kimberly A Stephens
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States
| | - Kathryn M Yochim
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnessota, Minneapolis, MN, United States
| | - Randy L Buckner
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States; Department of Psychology, Harvard University, Cambridge, MA, United States; Department of Neuroscience, Harvard University, Cambridge, MA, United States
| | - David H Salat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States; Department of Radiology, Harvard Medical School, Boston, MA, United States; Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, United States
| |
Collapse
|
20
|
Arterial hypertension and cerebral hemodynamics: impact of head-down tilt on cerebral blood flow (arterial spin-labeling-MRI) in healthy and hypertensive patients. J Hypertens 2020; 39:979-986. [PMID: 33306520 DOI: 10.1097/hjh.0000000000002709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Hypertension affects cerebrovascular autoregulation and increases the risk of cerebrovascular events and dementia. Notably, it is associated with cerebrovascular remodeling and lower resting cerebral blood flow (CBF). We wanted to determine, using arterial spin-labeling-MRI, the impact of a head-down tilt (HDT) dynamic maneuver on CBF in hypertensive patients. METHODS The current prospective study measured 36 patients' CBFs (18 normotensive individuals; 18 hypertensive patients) on 1.5T arterial spin-labeling-MRI in the supine position and after 4 min at -15° HDT. We reconstructed CBF maps of left and right subcortical nuclear gray matter, cortical gray matter and white matter (16 structures) to explore cerebrovascular autoregulation modification under dynamic conditions. RESULTS Normotensive and hypertensive participants had no significant CBF differences in the supine position. After HDT, CBF mean variations (CBF-mVs) across all structures declined (mean -5.8%) for the whole population (n = 36), with -6.6 and -7.6% decreases, respectively, in white matter and gray matter (P < 0.001). Left and right accumbens nuclei had the largest changes (-9.6 and -9.2%, respectively; P < 0.001). No CBF-mV difference (0/16) was found in hypertensive patients after HDT, whereas normotensive participants' CBF-mVs changed significantly in four structures (left and right accumbens, putamen and left caudate nucleus) and gray matter. Hypertensive patients exhibited fewer CBF-mVs in left caudate nuclei (P = 0.039) and cortical gray matter (P = 0.013). Among hypertensive patients, people with diabetes had smaller CBF-mVs than people without diabetes. CONCLUSION Our results highlight the significantly different CBF reactions to HDT of normotensive and hypertensive participants. They support the hypothesis that hypertension is responsible for deficient cerebrovascular autoregulation.
Collapse
|
21
|
Park M, Kim JW, Ahn SJ, Cha YJ, Suh SH. Aging Is Positively Associated with Peri-Sinus Lymphatic Space Volume: Assessment Using 3T Black-Blood MRI. J Clin Med 2020; 9:jcm9103353. [PMID: 33086702 PMCID: PMC7590154 DOI: 10.3390/jcm9103353] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/08/2020] [Accepted: 10/17/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Aging is a major risk factor for many neurological disorders and is associated with dural lymphatic dysfunction. We sought to evaluate the association of aging with the volume of the peri-sinus lymphatic space using contrast-enhanced 3T T1-weighted black-blood magnetic resonance imaging (MRI). METHODS In this retrospective study, 165 presumed neurologically normal subjects underwent brain MRIs for cancer staging between April and November 2018. The parasagittal peri-sinus lymphatic space was evaluated using contrast-enhanced 3D T1-weighted black-blood MRIs, and volumes were measured with semiautomatic method. We compared the volumes of normalized peri-sinus lymphatic spaces between the elderly (≥65 years, n = 72) and non-elderly (n = 93) groups and performed multivariate logistic regression analyses to assess if aging is independently associated with the volume of normalized peri-sinus lymphatic spaces. RESULTS The normalized peri-sinus lymphatic space volume was significantly higher in the elderly than in the non-elderly (mean, 3323 ± 758.7 mL vs. 2968.7 ± 764.3 mL, p = 0.047). After adjusting the intracranial volume, age age was the strongest factor independently associated with peri-sinus lymphatic space volume (β coefficient, 28.4 (5.7-51.2), p = 0.015) followed by male sex (β coefficient, 672.4 (113.5-1230.8), p = 0.019). CONCLUSIONS We found that the peri-sinus dural lymphatic space volume was higher in the elderly group than in the non-elderly group, and the increased peri-sinus lymphatic space was independently associated with aging. These findings indicate that the peri-sinus lymphatic space may be related with the aging process and lymphatic system dysfunction as well.
Collapse
Affiliation(s)
- Mina Park
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (M.P.); (J.W.K.); (S.H.S.)
| | - Jin Woo Kim
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (M.P.); (J.W.K.); (S.H.S.)
| | - Sung Jun Ahn
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (M.P.); (J.W.K.); (S.H.S.)
- Correspondence: ; Tel.: +82-2-2019-3510; Fax: +82-2-3462-5472
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Sang Hyun Suh
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (M.P.); (J.W.K.); (S.H.S.)
| |
Collapse
|
22
|
Kleinloog JPD, Mensink RP, Ivanov D, Adam JJ, Uludağ K, Joris PJ. Aerobic Exercise Training Improves Cerebral Blood Flow and Executive Function: A Randomized, Controlled Cross-Over Trial in Sedentary Older Men. Front Aging Neurosci 2019; 11:333. [PMID: 31866855 PMCID: PMC6904365 DOI: 10.3389/fnagi.2019.00333] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022] Open
Abstract
Background Physical activity may attenuate age-related cognitive decline by improving cerebrovascular function. The aim of this study was therefore to investigate effects of aerobic exercise training on cerebral blood flow (CBF), which is a sensitive physiological marker of cerebrovascular function, in sedentary older men. Methods Seventeen apparently healthy men, aged 60–70 years and with a BMI between 25 and 35 kg/m2, were included in a randomized, controlled cross-over trial. Study participants were randomly allocated to a fully-supervised, progressive, aerobic exercise training or no-exercise control period for 8 weeks, separated by a 12-week wash-out period. Measurements at the end of each period included aerobic fitness evaluated using peak oxygen consumption during incremental exercise (VO2peak), CBF measured with pseudo-continuous arterial spin labeling magnetic resonance imaging, and post-load glucose responses determined using an oral glucose tolerance test (OGTT). Furthermore, cognitive performance was assessed in the domains of executive function, memory, and psychomotor speed. Results VO2peak significantly increased following aerobic exercise training compared to no-exercise control by 262 ± 236 mL (P < 0.001). CBF was increased by 27% bilaterally in the frontal lobe, particularly the subcallosal and anterior cingulate gyrus (cluster volume: 1008 mm3; P < 0.05), while CBF was reduced by 19% in the right medial temporal lobe, mainly temporal fusiform gyrus (cluster volume: 408 mm3; P < 0.05). Mean post-load glucose concentrations determined using an OGTT decreased by 0.33 ± 0.63 mmol/L (P = 0.049). Furthermore, executive function improved as the latency of response was reduced by 5% (P = 0.034), but no changes were observed in memory or psychomotor speed. Conclusion Aerobic exercise training improves regional CBF in sedentary older men. These changes in CBF may underlie exercise-induced beneficial effects on executive function, which could be partly mediated by improvements in glucose metabolism. This clinical trial is registered on ClinicalTrials.gov as NCT03272061.
Collapse
Affiliation(s)
- Jordi P D Kleinloog
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Jos J Adam
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Kamil Uludağ
- Department of Biomedical Engineering, N Center, Sungkyunkwan University, Suwon, South Korea.,Techna Institute & Koerner Scientist in MR Imaging, University Health Network, Toronto, ON, Canada
| | - Peter J Joris
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|