1
|
Wang Q, Li Z, Huang Y, Li C, Li Y, Peng Y, Sheng Z, Liang Y. A novel androgen-independent radiotracer with dual targeting of NTSR1 and PSMA for PET/CT imaging of prostate cancer. Eur J Med Chem 2025; 282:117050. [PMID: 39577227 DOI: 10.1016/j.ejmech.2024.117050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024]
Abstract
A substantial proportion of patients with prostate cancer (PCa) develop treatment resistance or mortality after androgen deprivation therapy (ADT). Current methods for identifying and locating recurrent lesions using prostate-specific membrane antigen (PSMA)-based positron emission tomography (PET) imaging, which relies on androgen levels, often result in diagnostic delays. Therefore, the development of an androgen-independent radiotracer is critical for the early identification of recurrent lesions. The neurotensin receptor 1 (NTSR1) is highly expressed in androgen-independent PCa lesions. Here, we synthesized a bispecific ligand targeting PSMA and NTSR1 by solid-phase peptide synthesis and formulated a68Ga-labeled bispecific radiotracer, ([68Ga]Ga-NT-PSMA). This radiotracer exhibited a high radiochemical yield (71.27 % ± 1.58 %) and demonstrated an affinity for NTSR1 (39.32 ± 2.98 nM) and PSMA (63.47 ± 5.14 nM) in vitro. Small animal PET imaging showed comparable uptake of [68Ga]Ga-NT-PSMA and the monomeric radiotracer [68Ga]Ga-DOTA-NT20.3 in mice bearing androgen-independent PC3 (3.64 ± 0.49 %ID/g vs. 5.60 ± 1.42 %ID/g, nonsignificant [ns]) and DU145 tumors (2.49 ± 0.20 %ID/g vs. 2.34 ± 0.18 %ID/g, ns) at 90 min post-injection. In androgen-dependent 22Rv1 xenografts, [68Ga]Ga-NT-PSMA uptake was lower (1.94 ± 0.29 %ID/g) than [68Ga]Ga-PSMA-11 (3.94 ± 0.26 %ID/g, P < 0.001). Nevertheless, [68Ga]Ga-NT-PSMA effectively imaged all three xenograft types with high contrast, an achievement not possible with monomeric radiotracers alone. These results indicate that imaging with [68Ga]Ga-NT-PSMA is independent of the androgen dependence of the model, highlighting its potential as a promising nuclear medicine diagnostic tool for the early identification and localization of castration-resistant PCa lesions.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, PR China
| | - Zhongjing Li
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, PR China
| | - Yong Huang
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, PR China
| | - Chengze Li
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, PR China
| | - Yiluo Li
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, PR China
| | - Yi Peng
- Department of Pharmacy, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, PR China
| | - Zonghai Sheng
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, PR China.
| | - Ying Liang
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, PR China.
| |
Collapse
|
2
|
Puik JR, Poels TT, Hooijer GKJ, Cysouw MCF, Verheij J, Wilmink JW, Giovannetti E, Kazemier G, Sarasqueta AF, Oprea-Lager DE, Swijnenburg RJ. 18F-Prostate-Specific Membrane Antigen PET/CT imaging for potentially resectable pancreatic cancer (PANSCAN-2): a phase I/II study. Cancer Imaging 2025; 25:2. [PMID: 39810252 PMCID: PMC11734402 DOI: 10.1186/s40644-025-00822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Current diagnostic imaging modalities have limited ability to differentiate between malignant and benign pancreaticobiliary disease, and lack accuracy in detecting lymph node metastases. 18F-Prostate-Specific Membrane Antigen (PSMA) PET/CT is an imaging modality used for staging of prostate cancer, but has incidentally also identified PSMA-avid pancreatic lesions, histologically characterized as pancreatic ductal adenocarcinoma (PDAC). This phase I/II study aimed to assess the feasibility of 18F-PSMA PET/CT to detect PDAC. METHODS Seventeen patients with clinically resectable PDAC underwent 18F-PSMA PET/CT prior to surgical resection. Images were analyzed both visually and (semi)quantitatively by deriving the maximum standardized uptake value (SUVmax) and tumor-to-background ratio (TBR). TBR was defined as the ratio between SUVmax of the primary tumor divided by SUVmax of the aortic blood pool. Finally, tracer uptake on PET was correlated to tissue expression of PSMA in surgical specimens. RESULTS Out of 17 PSMA PET/CT scans, 13 scans demonstrated positive PSMA tracer uptake, with a mean SUVmax of 5.0 ± 1.3. The suspected primary tumor was detectable (TBR ≥ 2) with a mean TBR of 3.3 ± 1.3. For histologically confirmed PDAC, mean SUVmax and mean TBR were 4.9 ± 1.2 and 3.3 ± 1.5, respectively. Although eight patients had histologically confirmed regional lymph node metastases and two patients had distant metastases, none of these metastases demonstrated 18F-PSMA uptake. There was no correlation between 18F-PSMA PET/CT SUVmax and tissue expression of PSMA in surgical specimens. CONCLUSIONS 18F-PSMA PET/CT was able to detect several pancreaticobiliary cancers, including PDAC. However, uptake was generally low, not specific to PDAC and no tracer uptake was observed in lymph node or distant metastases. The added value of PSMA PET in this setting appears to be limited. TRIAL REGISTRATION The trial is registered as PANSCAN-2 in the European Clinical Trials Database (EudraCT number: 2020-002185-14).
Collapse
Affiliation(s)
- Jisce R Puik
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Thomas T Poels
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Gerrit K J Hooijer
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Pathology, UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Matthijs C F Cysouw
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Joanne Verheij
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Pathology, UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Johanna W Wilmink
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Elisa Giovannetti
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, Pisa, Italy
| | - Geert Kazemier
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Arantza Farina Sarasqueta
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Pathology, UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Daniela E Oprea-Lager
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands.
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Puik JR, Le C, Kazemier G, Oprea-Lager DE, Swijnenburg RJ, Giovannetti E, Griffioen AW, Huijbers EJ. Prostate-specific membrane antigen as target for vasculature-directed therapeutic strategies in solid tumors. Crit Rev Oncol Hematol 2025; 205:104556. [PMID: 39551117 DOI: 10.1016/j.critrevonc.2024.104556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Prostate-specific membrane antigen (PSMA) is one of the few biomarkers which has been successfully translated to the clinic as theranostic biomarker for patients with prostate cancer. In the context of prostate cancer, PSMA is overexpressed on the cell membrane of tumor cells, making it a viable target for interventions with urea-based small molecule inhibitors or antibodies conjugated to radioactive isotopes. Interestingly, in several non-prostatic cancers, expression of PSMA appears to be associated with the tumor neovasculature. This offers novel therapeutic opportunities for treatments targeting the vasculature in non-prostatic cancers. In this review, we discuss PSMA and its potential as target for vasculature-directed therapeutic approaches, including radioligand therapy, fusion protein vaccination and CAR T-cell therapy.
Collapse
Affiliation(s)
- Jisce R Puik
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Surgery, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Chung Le
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Geert Kazemier
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Surgery, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Daniela E Oprea-Lager
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Rutger-Jan Swijnenburg
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Surgery, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Elisa Giovannetti
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands; Cancer Pharmacology Lab, Associazione Italiana per la Ricerca sul Cancro (AIRC), Fondazione Pisana per la Scienza, University of Pisa, Pisa, Italy.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Plesmanlaan 125, Amsterdam, the Netherlands
| | - Elisabeth Jm Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Plesmanlaan 125, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Yang W, Hu P, Zuo C. Application of imaging technology for the diagnosis of malignancy in the pancreaticobiliary duodenal junction (Review). Oncol Lett 2024; 28:596. [PMID: 39430731 PMCID: PMC11487531 DOI: 10.3892/ol.2024.14729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
The pancreaticobiliary duodenal junction (PBDJ) is the connecting area of the pancreatic duct, bile duct and duodenum. In a broad sense, it refers to a region formed by the head of the pancreas, the pancreatic segment of the common bile duct and the intraduodenal segment, the descending and the horizontal part of the duodenum, and the soft tissue around the pancreatic head. In a narrow sense, it refers to the anatomical Vater ampulla. Due to its complex and variable anatomical features, and the diversity of pathological changes, it is challenging to make an early diagnosis of malignancy at the PBDJ and define the histological type. The unique anatomical structure of this area may be the basis for the occurrence of malignant tumors. Therefore, understanding and subclassifying the anatomical configuration of the PBDJ is of great significance for the prevention and treatment of malignant tumors at their source. The present review comprehensively discusses commonly used imaging techniques and other new technologies for diagnosing malignancy at the PBDJ, offering evidence for physicians and patients to select appropriate examination methods.
Collapse
Affiliation(s)
- Wanyi Yang
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Province, Changsha, Hunan 410013, P.R. China
- Graduates Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410013, P.R. China
| | - Pingsheng Hu
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Province, Changsha, Hunan 410013, P.R. China
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Province, Changsha, Hunan 410013, P.R. China
- Graduates Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
5
|
Shrestha B, Stern NB, Zhou A, Dunn A, Porter T. Current trends in the characterization and monitoring of vascular response to cancer therapy. Cancer Imaging 2024; 24:143. [PMID: 39438891 PMCID: PMC11515715 DOI: 10.1186/s40644-024-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024] Open
Abstract
Tumor vascular physiology is an important determinant of disease progression as well as the therapeutic outcome of cancer treatment. Angiogenesis or the lack of it provides crucial information about the tumor's blood supply and therefore can be used as an index for cancer growth and progression. While standalone anti-angiogenic therapy demonstrated limited therapeutic benefits, its combination with chemotherapeutic agents improved the overall survival of cancer patients. This could be attributed to the effect of vascular normalization, a dynamic process that temporarily reverts abnormal vasculature to the normal phenotype maximizing the delivery and intratumor distribution of chemotherapeutic agents. Longitudinal monitoring of vascular changes following antiangiogenic therapy can indicate an optimal window for drug administration and estimate the potential outcome of treatment. This review primarily focuses on the status of various imaging modalities used for the longitudinal characterization of vascular changes before and after anti-angiogenic therapies and their clinical prospects.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Noah B Stern
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tyrone Porter
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
6
|
Srinivasan R, Cook GJR, Patel N, Subesinghe M. Prostate specific membrane antigen (PSMA) avid nonprostatic benign and malignant disease: a pictorial review. Clin Radiol 2024; 79:639-656. [PMID: 38926052 DOI: 10.1016/j.crad.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Prostate specific membrane antigen (PSMA) positron emission tomography-computed tomography (PET-CT) is revolutionising the management of prostate cancer (PC) in primary staging and assessment of biochemical recurrence (BCR) through its higher diagnostic accuracy compared to both conventional imaging and previously available PET radiopharmaceuticals. PSMA is a transmembrane glycoprotein, highly expressed in prostate cancer, with its extracellular domain the target for PSMA PET radiopharmaceuticals. However, PSMA expression is not prostate specific and resultant PSMA uptake on PET-CT is not restricted to pathologies arising from the prostate gland. The increasing use of PSMA PET-CT has revealed PSMA uptake in a variety of non-prostatic benign and malignant diseases, which adds complexity to PET-CT interpretation and subsequent clinical management. This pictorial review will provide a thorough knowledge and understanding of the comprehensive range of PSMA avid non-prostatic benign and malignant diseases demonstrable on PSMA PET-CT, whilst highlighting the complimentary nature of other imaging modalities.
Collapse
Affiliation(s)
- R Srinivasan
- King's College London & Guy's and St Thomas' PET Centre, London, UK; Department of Radiology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - G J R Cook
- King's College London & Guy's and St Thomas' PET Centre, London, UK; Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - N Patel
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M Subesinghe
- King's College London & Guy's and St Thomas' PET Centre, London, UK; Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| |
Collapse
|
7
|
Santo G, Di Santo G, Zelger B, Virgolini I. Incidental Finding of a Pancreatic Adenocarcinoma on [68Ga]Ga-PSMA-11 PET/CT in a mCRPC patient under [177Lu]Lu-PSMA-617 Radioligand Therapy. Nuklearmedizin 2024; 63:219-220. [PMID: 38190993 DOI: 10.1055/a-2221-3220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Affiliation(s)
- Giulia Santo
- Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | | | - Bettina Zelger
- Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Irene Virgolini
- Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Miceli A, Liberini V, Pepe G, Dondi F, Vento A, Jonghi Lavarini L, Celesti G, Gazzilli M, Serani F, Guglielmo P, Buschiazzo A, Filice R, Alongi P, Laudicella R, Santo G. Prostate-Specific Membrane Antigen Positron Emission Tomography Oncological Applications beyond Prostate Cancer in Comparison to Other Radiopharmaceuticals. Diagnostics (Basel) 2024; 14:1002. [PMID: 38786300 PMCID: PMC11119694 DOI: 10.3390/diagnostics14101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA) is a type II transmembrane glycoprotein overexpressed on the surface of tumor cells in most of the patients affected by prostate adenocarcinoma (PCa). However, PSMA expression has also been demonstrated in the endothelial cells of newly formed vessels of various solid tumors, suggesting a role for PSMA in neoangiogenesis. In this scenario, gallium-68 (68Ga) or fluoro-18 (18F)-labeled PSMA positron emission tomography (PET) may play a role in tumors other than PCa, generally evaluated employing other radiopharmaceuticals targeting different pathways. This review aims to investigate the detection rate of PSMA-PET compared to other radiopharmaceuticals (especially [18F]FDG) in non-prostate tumors to identify patients who may benefit from the use of such a theragnostic agent. METHODS We performed a bibliographic search on three different databases until February 2024 using the following terms: "positron emission tomography", "PET", "PET/CT", "Prostate-specific membrane antigen", "PSMA", "non-prostate", "not prostate cancer", "solid tumor", "FDG", "Fluorodeoxyglucose", "FAPi", "FET", "MET", "DOPA", "choline", "FCH", "FES", "DOTATOC", "DOTANOC", and "DOTATATE". Only original articles edited in English with at least 10 patients were included. RESULTS Out of a total of 120 articles, only 25 original articles comparing PSMA with other radiotracers were included in this study. The main evidence was demonstrated in renal cell carcinoma, where PSMA showed a higher detection rate compared to [18F]FDG PET/CT, with implications for patient management. PSMA PET may also improve the assessment of other entities, such as gliomas, in defining regions of early neoangiogenesis. Further data are needed to evaluate the potential role of PSMA-PET in triple-negative breast cancer as a novel therapeutic vascular target. Finally, unclear applications of PSMA-PET include thyroid and gastrointestinal tumors. CONCLUSIONS The present review shows the potential use of PSMA-labeled PET/CT in solid tumors beyond PCa, underlining its value over other radiopharmaceuticals (mainly [18F]FDG). Prospective clinical trials with larger sample sizes are crucial to further investigate these possible clinical applications.
Collapse
Affiliation(s)
- Alberto Miceli
- Nuclear Medicine Unit, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy;
| | - Virginia Liberini
- Nuclear Medicine Unit, ASO S.Croce e Carle Cuneo, 12100 Cuneo, Italy; (V.L.); (A.B.)
| | - Giovanna Pepe
- Nuclear Medicine Unit, Fondazione IRCCS Policlinico San Matteo—Pavia V.le Camillo Golgi, 27100 Pavia, Italy;
| | - Francesco Dondi
- Nuclear Medicine Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy;
| | - Antonio Vento
- Nuclear Medicine Unit, ASP 1—P.O. San Giovanni di Dio, 92100 Agrigento, Italy;
| | | | - Greta Celesti
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, University of Messina, 98122 Messina, Italy; (G.C.); (R.L.)
| | - Maria Gazzilli
- Nuclear Medicine Unit, ASL Bari—Di Venere Bari, 70131 Bari, Italy;
| | - Francesca Serani
- Nuclear Medicine Unit, Presidio Ospedaliero Santo Spirito, 65124 Pescara, Italy;
| | - Priscilla Guglielmo
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Ambra Buschiazzo
- Nuclear Medicine Unit, ASO S.Croce e Carle Cuneo, 12100 Cuneo, Italy; (V.L.); (A.B.)
| | - Rossella Filice
- Nuclear Medicine Unit, University Hospital “Paolo Giaccone”, Via del Vespro 129, 90127 Palermo, Italy;
| | - Pierpaolo Alongi
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy;
| | - Riccardo Laudicella
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, University of Messina, 98122 Messina, Italy; (G.C.); (R.L.)
| | - Giulia Santo
- Nuclear Medicine Unit, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
9
|
Pedrazzoli S. Currently Debated Topics on Surgical Treatment of Pancreatic Ductal Adenocarcinoma: A Narrative Review on Surgical Treatment of Borderline Resectable, Locally Advanced, and Synchronous or Metachronous Oligometastatic Tumor. J Clin Med 2023; 12:6461. [PMID: 37892599 PMCID: PMC10607532 DOI: 10.3390/jcm12206461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Previously considered inoperable patients (borderline resectable, locally advanced, synchronous oligometastatic or metachronous pancreatic adenocarcinoma (PDAC)) are starting to become resectable thanks to advances in chemo/radiotherapy and the reduction in operative mortality. METHODS This narrative review presents a chosen literature selection, giving a picture of the current state of treatment of these patients. RESULTS Neoadjuvant therapy (NAT) is generally recognized as the treatment of choice before surgery. However, despite the increased efficacy, the best pathological response is still limited to 10.9-27.9% of patients. There are still limited data on the selection of possible NAT responders and how to diagnose non-responders early. Multidetector computed tomography has high sensitivity and low specificity in evaluating resectability after NAT, limiting the resection rate of resectable patients. Ca 19-9 and Positron emission tomography are giving promising results. The prediction of early recurrence after a radical resection of synchronous or metachronous metastatic PDAC, thus identifying patients with poor prognosis and saving them from a resection of little benefit, is still ongoing, although some promising data are available. CONCLUSION In conclusion, high-level evidence demonstrating the benefit of the surgical treatment of such patients is still lacking and should not be performed outside of high-volume centers with interdisciplinary teams of surgeons and oncologists.
Collapse
|
10
|
Boopathi E, Den RB, Thangavel C. Innate Immune System in the Context of Radiation Therapy for Cancer. Cancers (Basel) 2023; 15:3972. [PMID: 37568788 PMCID: PMC10417569 DOI: 10.3390/cancers15153972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Radiation therapy (RT) remains an integral component of modern oncology care, with most cancer patients receiving radiation as a part of their treatment plan. The main goal of ionizing RT is to control the local tumor burden by inducing DNA damage and apoptosis within the tumor cells. The advancement in RT, including intensity-modulated RT (IMRT), stereotactic body RT (SBRT), image-guided RT, and proton therapy, have increased the efficacy of RT, equipping clinicians with techniques to ensure precise and safe administration of radiation doses to tumor cells. In this review, we present the technological advancement in various types of RT methods and highlight their clinical utility and associated limitations. This review provides insights into how RT modulates innate immune signaling and the key players involved in modulating innate immune responses, which have not been well documented earlier. Apoptosis of cancer cells following RT triggers immune systems that contribute to the eradication of tumors through innate and adoptive immunity. The innate immune system consists of various cell types, including macrophages, dendritic cells, and natural killer cells, which serve as key mediators of innate immunity in response to RT. This review will concentrate on the significance of the innate myeloid and lymphoid lineages in anti-tumorigenic processes triggered by RT. Furthermore, we will explore essential strategies to enhance RT efficacy. This review can serve as a platform for researchers to comprehend the clinical application and limitations of various RT methods and provides insights into how RT modulates innate immune signaling.
Collapse
Affiliation(s)
- Ettickan Boopathi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert B. Den
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Chellappagounder Thangavel
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
11
|
Borhani A, Afyouni S, Attari MMA, Mohseni A, Catalano O, Kamel IR. PET/MR enterography in inflammatory bowel disease: A review of applications and technical considerations. Eur J Radiol 2023; 163:110846. [PMID: 37121100 DOI: 10.1016/j.ejrad.2023.110846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Positron emission tomography (PET) magnetic resonance (MR) enterography is a novel hybrid imaging technique that is gaining popularity in the study of complex inflammatory disorders of the gastrointestinal system, such as inflammatory bowel disease (IBD). This imaging technique combines the metabolic information of PET imaging with the spatial resolution and soft tissue contrast of MR imaging. Several studies have suggested potential roles for PET/MR imaging in determining the activity status of IBD, evaluating treatment response, stratifying risk, and predicting long-term clinical outcomes. However, there are challenges in generalizing findings due to limited studies, technical aspects of hybrid MR/PET imaging, and clinical indications of this imaging modality. This review aims to further elucidate the possible role of PET/MR in IBD, highlight important technical aspects of imaging, and address potential pitfalls and prospects of this modality in IBDs.
Collapse
Affiliation(s)
- Ali Borhani
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States
| | - Shadi Afyouni
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States
| | - Mohammad Mirza Aghazadeh Attari
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States
| | - Alireza Mohseni
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States
| | - Onofrio Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Ihab R Kamel
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
12
|
68 Ga-Prostate-Specific Membrane Antigen PET/CT in Ovarian Tumors : Potential to Differentiate Benign and Malignant Tumors Before Surgery: A Preliminary Report. Clin Nucl Med 2023; 48:e60-e66. [PMID: 36512649 DOI: 10.1097/rlu.0000000000004486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF THE REPORT Ovarian cancer is usually diagnosed in an advanced stage of disease due to the absence of specific symptoms and a lack of sensitive diagnostic methods. Prostate-specific membrane antigen (PSMA) is expressed on prostate cancer cells but can be found in other tumors such as ovarian cancer.The aim of this pilot study was to evaluate the feasibility of using 68 Ga-PSMA-11 PET/CT in detection of ovarian neoplasm before surgical treatment. PATIENTS AND METHODS Eight women with mean age of 56.0 ± 16.2 years were included in the study. All patients underwent transvaginal ultrasound followed by CT scan of the chest and abdomen as qualification for surgery. Within a 1-week interval, PET/CT was performed on a Siemens Biograph scanner, 60 minutes after injection of 2 MBq/kg 68 Ga-PSMA-11. RESULTS In 3 cases (37.5%), the 68 Ga-PSMA-11 PET/CT was positive, whereas histological examination confirmed 2 serous ovarian cancer cases and 1 ovarian borderline tumor. The SUV max in the serous ovarian cancer was 8.7 and 4.1, and in the borderline ovarian tumor, it was 13.8. No correlation was found between antigen CA-125 level and 68 Ga-PSMA expression. Range of tumor SUV max was not correlated with stage of disease. The remaining 62.5% (5/8) were negative in 68 Ga-PSMA-11 PET/CT, and histopathology confirmed benign pelvic tumor. CONCLUSIONS The initial experience supports the potential to use 68 Ga-PSMA-11 in ovarian cancer to differentiate malignant and benign tumors before surgery.This study was approved by the Ethical Committee of the Medical University of Warsaw (KB/2/A/2018).
Collapse
|
13
|
Prostate-Specific Membrane Antigen Targeted Pet/CT Imaging in Patients with Colon, Gastric and Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14246209. [PMID: 36551695 PMCID: PMC9777210 DOI: 10.3390/cancers14246209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Current imaging modalities frequently misjudge disease stage in colorectal, gastric and pancreatic cancer. As treatment decisions are dependent on disease stage, incorrect staging has serious consequences. Previous preclinical research and case reports indicate that prostate-specific membrane antigen (PSMA)-targeted PET/CT imaging might provide a solution to some of these challenges. This prospective clinical study aims to assess the feasibility of [18F]DCFPyL PET/CT imaging to target and visualize primary colon, gastric and pancreatic cancer. In this prospective clinical trial, patients with colon, gastric and pancreatic cancer were included and underwent both [18F]DCFPyL and [18F]FDG PET/CT scans prior to surgical resection or (for gastric cancer) neoadjuvant therapy. Semiquantitative analysis of immunohistochemical PSMA staining was performed on the surgical resection specimens, and the results were correlated to imaging parameters. The results of this study demonstrate detection of the primary tumor by [18F]DCFPyL PET/CT in 7 out of 10 patients with colon, gastric and pancreatic cancer, with a mean tumor-to-blood pool ratio (TBR) of 3.3 and mean SUVmax of 3.6. However, due to the high surrounding uptake, visual distinction of these tumors was difficult, and the SUVmax and TBR on [18F]FDG PET/CT were significantly higher than on [18F]DCFPyL PET/CT. In addition, no correlation between PSMA expression in the resection specimen and SUVmax on [18F]DCFPyL PET/CT was found. In conclusion, the detection of several gastrointestinal cancers using [18F]DCFPyL PET/CT is feasible. However, low tumor expression and high uptake physiologically in organs/background hamper the clear distinction of the tumor. As a result, [18F]FDG PET/CT was superior in detecting colon, gastric and pancreatic cancers.
Collapse
|
14
|
Late-Term Findings of Pancreatitis on 68 Ga-PSMA PET/CT in a Patient With Prostate Cancer. Clin Nucl Med 2022; 47:e733-e734. [PMID: 36026591 DOI: 10.1097/rlu.0000000000004371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT The 68 Ga-PSMA PET/CT imaging modality is used to evaluate biochemical recurrence, response to treatment, and staging in prostate cancer. Prostate-specific membrane antigen (PSMA) receptor activation can be seen in benign and malignant diseases as well as in many physiological tissues. Many pitfalls and artifacts have been reported when reporting 68 Ga-PSMA PET/CT. In this case, diffuse moderate PSMA receptor activation in pancreatic tissue due to the previous pancreatitis is presented in 68 Ga-PSMA PET/CT imaging modality that was performed for restaging of prostate cancer.
Collapse
|
15
|
PSMA Expression in Solid Tumors beyond the Prostate Gland: Ready for Theranostic Applications? J Clin Med 2022; 11:jcm11216590. [PMID: 36362824 PMCID: PMC9657217 DOI: 10.3390/jcm11216590] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
In the past decades, the expanding use of prostate-specific membrane antigen (PSMA) imaging for prostate cancer has led to the incidental detection of a lot of extra-prostatic malignancies showing an increased uptake of PSMA. Due to these incidental findings, the increasing amount of immunohistochemistry studies and the deeper knowledge of the mechanisms of expression of this antigen, it is now clear that “PSMA” is a misnomer, since it is not specific to the prostate gland. Nevertheless, this lack of specificity could represent an interesting opportunity to bring new insights on the biology of PSMA and its sites of expression to image and treat new conditions, particularly several cancers. In this review, we will describe the main extra-prostatic cancers that exhibit PSMA expression and that can be studied with PSMA-based positron emission tomography–computed tomography (PET/CT) as an additional or alternative tool to conventional imaging. In particular, we will focus on cancers in which a radioligand therapy with 177lutetium has been attempted, aiming to provide an overview of the possible future theragnostic applications of PSMA.
Collapse
|
16
|
Boinapally S, Lisok A, Lofland G, Minn I, Yan Y, Jiang Z, Shin MJ, Merino VF, Zheng L, Brayton C, Pomper MG, Banerjee SR. Hetero-bivalent agents targeting FAP and PSMA. Eur J Nucl Med Mol Imaging 2022; 49:4369-4381. [PMID: 35965291 DOI: 10.1007/s00259-022-05933-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE We developed a theranostic radiopharmaceutical that engages two key cell surface proteases, fibroblast activation protein alpha (FAP) and prostate-specific membrane antigen (PSMA), each frequently overexpressed within the tumor microenvironment (TME). The latter is also expressed in most prostate tumor epithelium. To engage a broader spectrum of cancers for imaging and therapy, we conjugated small-molecule FAP and PSMA-targeting moieties using an optimized linker to provide 64Cu-labeled compounds. METHODS We synthesized FP-L1 and FP-L2 using two linker constructs attaching the FAP and PSMA-binding pharmacophores. We determined in vitro inhibition constants (Ki) for FAP and PSMA. Cell uptake assays and flow cytometry were conducted in human glioma (U87), melanoma (SK-MEL-24), prostate cancer (PSMA + PC3 PIP and PSMA - PC3 flu), and clear cell renal cell carcinoma lines (PSMA + /PSMA - 786-O). Quantitative positron emission tomography/computed tomography (PET/CT) and tissue biodistribution studies were performed using U87, SK-MEL-24, PSMA + PC3 PIP, and PSMA + 786-O experimental xenograft models and the KPC genetically engineered mouse model of pancreatic cancer. RESULTS 64Cu-FP-L1 and 64Cu-FP-L2 were produced in high radiochemical yields (> 98%) and molar activities (> 19 MBq/nmol). Ki values were in the nanomolar range for both FAP and PSMA. PET imaging and biodistribution studies revealed high and specific targeting of 64Cu-FP-L1 and 64Cu-FP-L2 for FAP and PSMA. 64Cu-FP-L1 displayed more favorable pharmacokinetics than 64Cu-FP-L2. In the U87 tumor model at 2 h post-injection, tumor uptake of 64Cu-FP-L1 (10.83 ± 1.02%ID/g) was comparable to 64Cu-FAPI-04 (9.53 ± 2.55%ID/g). 64Cu-FP-L1 demonstrated high retention 5.34 ± 0.29%ID/g at 48 h in U87 tumor. Additionally, 64Cu-FP-L1 showed high retention in PSMA + PC3 PIP tumor (12.06 ± 0.78%ID/g at 2 h and 10.51 ± 1.82%ID/g at 24 h). CONCLUSIONS 64Cu-FP-L1 demonstrated high and specific tumor targeting of FAP and PSMA. This compound should enable imaging of lesions expressing FAP, PSMA, or both on the tumor cell surface or within the TME. FP-L1 can readily be converted into a theranostic for the management of heterogeneous tumors.
Collapse
Affiliation(s)
- Srikanth Boinapally
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Alla Lisok
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Gabriela Lofland
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Yu Yan
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Zirui Jiang
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Min Jay Shin
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Vanessa F Merino
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Cory Brayton
- Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA. .,Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| | - Sangeeta Ray Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA. .,Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
17
|
Prostate-Specific Membrane Antigen (PSMA) Expression in Tumor-Associated Neovasculature Is an Independent Prognostic Marker in Patients with Ovarian Cancer. J Pers Med 2022; 12:jpm12040551. [PMID: 35455669 PMCID: PMC9025859 DOI: 10.3390/jpm12040551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) is present in the tumor-associated neovasculature of many cancer types. Current data in ovarian cancer are limited and controversial; thus, the aim of this study was to investigate PSMA expression in a larger and homogenous patient cohort. This might lead to further studies investigating the use of imaging and therapeutic modalities targeting PSMA. Eighty patients with advanced stage high-grade serous ovarian cancers were included. Using immunohistochemistry, PSMA and CD31, a marker for endothelial cells, were examined in whole tissue sections. Percentage and intensity of PSMA expression were determined in the neovasculature. Expression levels were correlated with clinicopathological parameters and survival. Low (≤10%), medium (20–80%), and high (≥90%) PSMA expression was found in 14, 46, and 20 ovarian cancer samples, respectively. PSMA expression was confined to tumor-associated neovasculature and significantly correlated with progression-free (HR 2.24, 95% CI 1.32–3.82, p = 0.003) and overall survival (HR 2.73, 95% CI 1.41–5.29, p = 0.003) in multivariate models, considering age, FIGO stage, and residual disease. This is the first study showing a clinical relevance for PSMA in patients with ovarian cancer. PSMA was detected in the vast majority of cancer samples and showed an impact on survival.
Collapse
|
18
|
Mit der Ga-68-PSMA-PET/CT maligne und benigne Pankreastumoren zuverlässig unterscheiden. ROFO-FORTSCHR RONTG 2022. [DOI: 10.1055/a-1556-5457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Poels TT, Vuijk FA, de Geus-Oei LF, Vahrmeijer AL, Oprea-Lager DE, Swijnenburg RJ. Molecular Targeted Positron Emission Tomography Imaging and Radionuclide Therapy of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:6164. [PMID: 34944781 PMCID: PMC8699493 DOI: 10.3390/cancers13246164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an inauspicious prognosis, mainly due to difficulty in early detection of the disease by the current imaging modalities. The upcoming development of tumour-specific tracers provides an alternative solution for more accurate diagnostic imaging techniques for staging and therapy response monitoring. The future goal to strive for, in a patient with PDAC, should definitely be first to receive a diagnostic dose of an antibody labelled with a radionuclide and to subsequently receive a therapeutic dose of the same labelled antibody with curative intent. In the first part of this paper, we summarise the available evidence on tumour-targeted diagnostic tracers for molecular positron emission tomography (PET) imaging that have been tested in humans, together with their clinical indications. Tracers such as radiolabelled prostate-specific membrane antigen (PSMA)-in particular, 18F-labelled PSMA-already validated and successfully implemented in clinical practice for prostate cancer, also seem promising for PDAC. In the second part, we discuss the theranostic applications of these tumour-specific tracers. Although targeted radionuclide therapy is still in its infancy, lessons can already be learned from early publications focusing on dose fractioning and adding a radiosensitiser, such as gemcitabine.
Collapse
Affiliation(s)
- Thomas T. Poels
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Floris A. Vuijk
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (F.A.V.); (A.L.V.)
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (F.A.V.); (A.L.V.)
| | - Daniela E. Oprea-Lager
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
20
|
van Dam MA, Vuijk FA, Stibbe JA, Houvast RD, Luelmo SAC, Crobach S, Shahbazi Feshtali S, de Geus-Oei LF, Bonsing BA, Sier CFM, Kuppen PJK, Swijnenburg RJ, Windhorst AD, Burggraaf J, Vahrmeijer AL, Mieog JSD. Overview and Future Perspectives on Tumor-Targeted Positron Emission Tomography and Fluorescence Imaging of Pancreatic Cancer in the Era of Neoadjuvant Therapy. Cancers (Basel) 2021; 13:6088. [PMID: 34885196 PMCID: PMC8656821 DOI: 10.3390/cancers13236088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Despite recent advances in the multimodal treatment of pancreatic ductal adenocarcinoma (PDAC), overall survival remains poor with a 5-year cumulative survival of approximately 10%. Neoadjuvant (chemo- and/or radio-) therapy is increasingly incorporated in treatment strategies for patients with (borderline) resectable and locally advanced disease. Neoadjuvant therapy aims to improve radical resection rates by reducing tumor mass and (partial) encasement of important vascular structures, as well as eradicating occult micrometastases. Results from recent multicenter clinical trials evaluating this approach demonstrate prolonged survival and increased complete surgical resection rates (R0). Currently, tumor response to neoadjuvant therapy is monitored using computed tomography (CT) following the RECIST 1.1 criteria. Accurate assessment of neoadjuvant treatment response and tumor resectability is considered a major challenge, as current conventional imaging modalities provide limited accuracy and specificity for discrimination between necrosis, fibrosis, and remaining vital tumor tissue. As a consequence, resections with tumor-positive margins and subsequent early locoregional tumor recurrences are observed in a substantial number of patients following surgical resection with curative intent. Of these patients, up to 80% are diagnosed with recurrent disease after a median disease-free interval of merely 8 months. These numbers underline the urgent need to improve imaging modalities for more accurate assessment of therapy response and subsequent re-staging of disease, thereby aiming to optimize individual patient's treatment strategy. In cases of curative intent resection, additional intra-operative real-time guidance could aid surgeons during complex procedures and potentially reduce the rate of incomplete resections and early (locoregional) tumor recurrences. In recent years intraoperative imaging in cancer has made a shift towards tumor-specific molecular targeting. Several important molecular targets have been identified that show overexpression in PDAC, for example: CA19.9, CEA, EGFR, VEGFR/VEGF-A, uPA/uPAR, and various integrins. Tumor-targeted PET/CT combined with intraoperative fluorescence imaging, could provide valuable information for tumor detection and staging, therapy response evaluation with re-staging of disease and intraoperative guidance during surgical resection of PDAC. METHODS A literature search in the PubMed database and (inter)national trial registers was conducted, focusing on studies published over the last 15 years. Data and information of eligible articles regarding PET/CT as well as fluorescence imaging in PDAC were reviewed. Areas covered: This review covers the current strategies, obstacles, challenges, and developments in targeted tumor imaging, focusing on the feasibility and value of PET/CT and fluorescence imaging for integration in the work-up and treatment of PDAC. An overview is given of identified targets and their characteristics, as well as the available literature of conducted and ongoing clinical and preclinical trials evaluating PDAC-targeted nuclear and fluorescent tracers.
Collapse
Affiliation(s)
- Martijn A. van Dam
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Floris A. Vuijk
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Judith A. Stibbe
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Ruben D. Houvast
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Saskia A. C. Luelmo
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Stijn Crobach
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, University Medical Center Leiden, 2333 ZA Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
| | - Bert A. Bonsing
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | | | - Albert D. Windhorst
- Department of Radiology, Section of Nuclear Medicine, Amsterdam UMC, Location VUmc, 1081 HV Amsterdam, The Netherlands;
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - J. Sven D. Mieog
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| |
Collapse
|
21
|
Ghidini M, Vuozzo M, Galassi B, Mapelli P, Ceccarossi V, Caccamo L, Picchio M, Dondossola D. The Role of Positron Emission Tomography/Computed Tomography (PET/CT) for Staging and Disease Response Assessment in Localized and Locally Advanced Pancreatic Cancer. Cancers (Basel) 2021; 13:4155. [PMID: 34439307 PMCID: PMC8394552 DOI: 10.3390/cancers13164155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022] Open
Abstract
Pancreatic Cancer (PC) has a poor prognosis, with a 5-year survival rate of only 9%. Even after radical surgical procedures, PC patients have poor survival rates, with a high chance of relapse (70-80%). Imaging is involved in all aspects of the clinical management of PC, including detection and characterization of primary tumors and their resectability, assessment of vascular, perineural and lymphatic invasion and detection of distant metastases. The role of Positron Emission Tomography/Computed Tomography (PET/CT) in detecting PC is still controversial, with the international guidelines not recommending its routine use. However, in resectable PC, PET/CT may play a role in assessing PC stage and grade and potential resectability after neoadjuvant treatment. Quantitative image analysis (radiomics) and new PET/CT radiotracers account for future developments in metabolic imaging and may further improve the relevance of this technique in several aspects of PC. In the present review, the current state of the art and future directions of PET/CT in resectable PC are presented.
Collapse
Affiliation(s)
- Michele Ghidini
- Operative Unit of Oncology, Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Marta Vuozzo
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany;
- University Medical Center, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Barbara Galassi
- Operative Unit of Oncology, Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Paola Mapelli
- Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.M.); (M.P.)
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Virginia Ceccarossi
- Dipartimento di Chirurgia Generale e dei Trapianti di Fegato, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (V.C.); (L.C.); (D.D.)
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20122 Milan, Italy
| | - Lucio Caccamo
- Dipartimento di Chirurgia Generale e dei Trapianti di Fegato, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (V.C.); (L.C.); (D.D.)
| | - Maria Picchio
- Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.M.); (M.P.)
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Daniele Dondossola
- Dipartimento di Chirurgia Generale e dei Trapianti di Fegato, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (V.C.); (L.C.); (D.D.)
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|