1
|
Körbelin J, Arrulo A, Schwaninger M. Gene therapy targeting the blood-brain barrier. VITAMINS AND HORMONES 2024; 126:191-217. [PMID: 39029973 DOI: 10.1016/bs.vh.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Endothelial cells are the building blocks of vessels in the central nervous system (CNS) and form the blood-brain barrier (BBB). An intact BBB limits permeation of large hydrophilic molecules into the CNS. Thus, the healthy BBB is a major obstacle for the treatment of CNS disorders with antibodies, recombinant proteins or viral vectors. Several strategies have been devised to overcome the barrier. A key principle often consists in attaching the therapeutic compound to a ligand of receptors expressed on the BBB, for example, the transferrin receptor (TfR). The fusion molecule will bind to TfR on the luminal side of brain endothelial cells, pass the endothelial layer by transcytosis and be delivered to the brain parenchyma. However, attempts to endow therapeutic compounds with the ability to cross the BBB can be difficult to implement. An alternative and possibly more straight-forward approach is to produce therapeutic proteins in the endothelial cells that form the barrier. These cells are accessible from blood circulation and have a large interface with the brain parenchyma. They may be an ideal production site for therapeutic protein and afford direct supply to the CNS.
Collapse
Affiliation(s)
- Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, UKE Hamburg-Eppendorf, Hamburg, Germany
| | - Adriana Arrulo
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany; DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel, Germany.
| |
Collapse
|
2
|
Gonzalez TJ, Mitchell-Dick A, Blondel LO, Fanous MM, Hull JA, Oh DK, Moller-Tank S, Castellanos Rivera RM, Piedrahita JA, Asokan A. Structure-guided AAV capsid evolution strategies for enhanced CNS gene delivery. Nat Protoc 2023; 18:3413-3459. [PMID: 37735235 DOI: 10.1038/s41596-023-00875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 06/13/2023] [Indexed: 09/23/2023]
Abstract
Over the past 5 years, our laboratory has systematically developed a structure-guided library approach to evolve new adeno-associated virus (AAV) capsids with altered tissue tropism, higher transduction efficiency and the ability to evade pre-existing humoral immunity. Here, we provide a detailed protocol describing two distinct evolution strategies using structurally divergent AAV serotypes as templates, exemplified by improving CNS gene transfer efficiency in vivo. We outline four major components of our strategy: (i) structure-guided design of AAV capsid libraries, (ii) AAV library production, (iii) library cycling in single versus multiple animal models, followed by (iv) evaluation of lead AAV vector candidates in vivo. The protocol spans ~95 d, excluding gene expression analysis in vivo, and can vary depending on user experience, resources and experimental design. A distinguishing attribute of the current protocol is the focus on providing biomedical researchers with 3D structural information to guide evolution of precise 'hotspots' on AAV capsids. Furthermore, the protocol outlines two distinct methods for AAV library evolution consisting of adenovirus-enabled infectious cycling in a single species and noninfectious cycling in a cross-species manner. Notably, our workflow can be seamlessly merged with other RNA transcript-based library strategies and tailored for tissue-specific capsid selection. Overall, the procedures outlined herein can be adapted to expand the AAV vector toolkit for genetic manipulation of animal models and development of human gene therapies.
Collapse
Affiliation(s)
- Trevor J Gonzalez
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Leo O Blondel
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Marco M Fanous
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Joshua A Hull
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Daniel K Oh
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Sven Moller-Tank
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Jorge A Piedrahita
- North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - Aravind Asokan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Massimini M, Bachetti B, Dalle Vedove E, Benvenga A, Di Pierro F, Bernabò N. A Set of Dysregulated Target Genes to Reduce Neuroinflammation at Molecular Level. Int J Mol Sci 2022; 23:ijms23137175. [PMID: 35806178 PMCID: PMC9266409 DOI: 10.3390/ijms23137175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Increasing evidence links chronic neurodegenerative diseases with neuroinflammation; it is known that neuroprotective agents are capable of modulating the inflammatory processes, that occur with the onset of neurodegeneration pathologies. Here, with the intention of providing a means for active compounds’ screening, a dysregulation of neuronal inflammatory marker genes was induced and subjected to neuroprotective active principles, with the aim of selecting a set of inflammatory marker genes linked to neurodegenerative diseases. Considering the important role of microglia in neurodegeneration, a murine co-culture of hippocampal cells and inflamed microglia cells was set up. The evaluation of differentially expressed genes and subsequent in silico analysis showed the main dysregulated genes in both cells and the principal inflammatory processes involved in the model. Among the identified genes, a well-defined set was chosen, selecting those in which a role in human neurodegenerative progression in vivo was already defined in literature, matched with the rate of prediction derived from the Principal Component Analysis (PCA) of in vitro treatment-affected genes variation. The obtained panel of dysregulated target genes, including Cxcl9 (Chemokine (C-X-C motif) ligand 9), C4b (Complement Component 4B), Stc1 (Stanniocalcin 1), Abcb1a (ATP Binding Cassette Subfamily B Member 1), Hp (Haptoglobin) and Adm (Adrenomedullin), can be considered an in vitro tool to select old and new active compounds directed to neuroinflammation.
Collapse
Affiliation(s)
- Marcella Massimini
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
- Correspondence:
| | - Benedetta Bachetti
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Elena Dalle Vedove
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Alessia Benvenga
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Francesco Di Pierro
- Velleja Research, 20125 Milan, Italy;
- Digestive Endoscopy Unit and Gastroenterology, Fondazione Poliambulanza, 25124 Brescia, Italy
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy;
| |
Collapse
|
4
|
Delgado-Chaves FM, Gómez-Vela F, Divina F, García-Torres M, Rodriguez-Baena DS. Computational Analysis of the Global Effects of Ly6E in the Immune Response to Coronavirus Infection Using Gene Networks. Genes (Basel) 2020; 11:E831. [PMID: 32708319 PMCID: PMC7397019 DOI: 10.3390/genes11070831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022] Open
Abstract
Gene networks have arisen as a promising tool in the comprehensive modeling and analysis of complex diseases. Particularly in viral infections, the understanding of the host-pathogen mechanisms, and the immune response to these, is considered a major goal for the rational design of appropriate therapies. For this reason, the use of gene networks may well encourage therapy-associated research in the context of the coronavirus pandemic, orchestrating experimental scrutiny and reducing costs. In this work, gene co-expression networks were reconstructed from RNA-Seq expression data with the aim of analyzing the time-resolved effects of gene Ly6E in the immune response against the coronavirus responsible for murine hepatitis (MHV). Through the integration of differential expression analyses and reconstructed networks exploration, significant differences in the immune response to virus were observed in Ly6E Δ H S C compared to wild type animals. Results show that Ly6E ablation at hematopoietic stem cells (HSCs) leads to a progressive impaired immune response in both liver and spleen. Specifically, depletion of the normal leukocyte mediated immunity and chemokine signaling is observed in the liver of Ly6E Δ H S C mice. On the other hand, the immune response in the spleen, which seemed to be mediated by an intense chromatin activity in the normal situation, is replaced by ECM remodeling in Ly6E Δ H S C mice. These findings, which require further experimental characterization, could be extrapolated to other coronaviruses and motivate the efforts towards novel antiviral approaches.
Collapse
|
5
|
Abstract
Genetic alleles that contribute to enhanced susceptibility or resistance to viral infections and virally induced diseases have often been first identified in mice before humans due to the significant advantages of the murine system for genetic studies. Herein we review multiple discoveries that have revealed significant insights into virus-host interactions, all made using genetic mapping tools in mice. Factors that have been identified include innate and adaptive immunity genes that contribute to host defense against pathogenic viruses such as herpes viruses, flaviviruses, retroviruses, and coronaviruses. Understanding the genetic mechanisms that affect infectious disease outcomes will aid the development of personalized treatment and preventive strategies for pathogenic infections.
Collapse
Affiliation(s)
- Melissa Kane
- Center for Microbial Pathogenesis, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA
| | - Tatyana V Golovkina
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637, USA;
| |
Collapse
|
6
|
Batista AR, King OD, Reardon CP, Davis C, Shankaracharya, Philip V, Gray-Edwards H, Aronin N, Lutz C, Landers J, Sena-Esteves M. Ly6a Differential Expression in Blood-Brain Barrier Is Responsible for Strain Specific Central Nervous System Transduction Profile of AAV-PHP.B. Hum Gene Ther 2019; 31:90-102. [PMID: 31696742 DOI: 10.1089/hum.2019.186] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adeno-associated virus (AAV) gene therapy for neurological diseases was revolutionized by the discovery that AAV9 crosses the blood-brain barrier (BBB) after systemic administration. Transformative results have been documented in various inherited diseases, but overall neuronal transduction efficiency is relatively low. The recent development of AAV-PHP.B with ∼60-fold higher efficiency than AAV9 in transducing the adult mouse brain was the major first step toward acquiring the ability to deliver genes to the majority of cells in the central nervous system (CNS). However, little is known about the mechanism utilized by AAV to cross the BBB, and how it may diverge across species. In this study, we show that AAV-PHP.B is ineffective for systemic CNS gene transfer in the inbred strains BALB/cJ, BALB/cByJ, A/J, NOD/ShiLtJ, NZO/HILtJ, C3H/HeJ, and CBA/J mice, but it is highly potent in C57BL/6J, FVB/NJ, DBA/2J, 129S1/SvImJ, and AKR/J mice and also the outbred strain CD-1. We used the power of classical genetics to uncover the molecular mechanisms AAV-PHP.B engages to transduce CNS at high efficiency, and by quantitative trait locus mapping we identify a 6 Mb region in chromosome 15 with an logarithm of the odds (LOD) score ∼20, including single nucleotide polymorphisms in the coding region of 9 different genes. Comparison of the publicly available data on the genome sequence of 16 different mouse strains, combined with RNA-seq data analysis of brain microcapillary endothelia, led us to conclude that the expression level of Ly6a is likely the determining factor for differential efficacy of AAV-PHP.B in transducing the CNS across different mouse strains.
Collapse
Affiliation(s)
- Ana Rita Batista
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Oliver D King
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Christopher P Reardon
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Crystal Davis
- Rare and Orphan Disease Center, The Jackson Laboratory, Bar Harbor, Maine
| | - Shankaracharya
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Vivek Philip
- Rare and Orphan Disease Center, The Jackson Laboratory, Bar Harbor, Maine
| | - Heather Gray-Edwards
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Cathleen Lutz
- Rare and Orphan Disease Center, The Jackson Laboratory, Bar Harbor, Maine
| | - John Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
7
|
Emerging Role of LY6E in Virus-Host Interactions. Viruses 2019; 11:v11111020. [PMID: 31684192 PMCID: PMC6893646 DOI: 10.3390/v11111020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022] Open
Abstract
As a canonical lymphocyte antigen-6/urokinase-type plasminogen activator receptor Ly6/uPAR family protein, lymphocyte antigen 6 complex, locus E (LY6E), plays important roles in immunological regulation, T cell physiology, and oncogenesis. Emerging evidence indicates that LY6E is also involved in the modulation of viral infection. Consequently, viral infection and associated pathogenesis have been associated with altered LY6E gene expression. The interaction between viruses and the host immune system has offered insights into the biology of LY6E. In this review, we summarize the current knowledge of LY6E in the context of viral infection, particularly viral entry.
Collapse
|
8
|
CD4-Dependent Modulation of HIV-1 Entry by LY6E. J Virol 2019; 93:JVI.01866-18. [PMID: 30674630 DOI: 10.1128/jvi.01866-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/16/2019] [Indexed: 01/06/2023] Open
Abstract
Lymphocyte antigen 6E (LY6E) is a GPI-anchored, interferon-inducible protein that has been shown to modulate viral infection in a cell type-dependent manner. Our recent work showed that LY6E promotes HIV-1 infection in some high-CD4-expressing cells, including human peripheral blood mononuclear cells (PBMCs) and the SupT1 cell line. In this work, we provide evidence that LY6E inhibits HIV-1 entry and spread in low-CD4-expressing Jurkat cells and human monocyte-derived macrophages (MDMs) through downregulation of the viral receptor CD4. We found that knockdown of LY6E in Jurkat cells and MDMs increases HIV-1 infection, yet overexpression of LY6E in Jurkat cells inhibits HIV-1 entry and replication. LY6E was found to be colocalized with CD4 on the plasma membrane of Jurkat cells and MDMs and enhances CD4 internalization. We artificially manipulated the CD4 level in Jurkat and SupT1 cells and found that overexpression of CD4 in Jurkat cells overcomes the inhibitory effect of LY6E; conversely, blocking the function of CD4 in SupT1 with a neutralizing antibody eliminates the enhancement of LY6E on HIV-1 entry. The CD4-dependent inhibitory phenotype of LY6E in low-CD4-expressing human MDMs can be recapitulated for a panel of transmitted founder viruses and laboratory-adapted HIV-1 strains. Given that HIV-1 can target low-CD4-expressing cells during acute infection yet replicates efficiently in high-CD4-expressing T cells at the late stage of disease, our observation that LY6E differentially modulates HIV-1 replication in a CD4-dependent manner has implications for understanding the complex roles of interferon (IFN)-induced proteins in AIDS pathogenesis.IMPORTANCE The role of IFN-induced genes (ISGs) in viral infection remains incompletely understood. While most ISGs are antiviral, some ISGs have been shown to promote viral infection, including HIV-1 infection. We previously showed that IFN-inducible LY6E protein promotes HIV-1 infection in human PMBCs and high-CD4-expressing SupT1 cells. Here we found that LY6E inhibits HIV-1 entry and replication in low-CD4-expressing MDMs and Jurkat cells. Mechanistically, we demonstrated that LY6E downregulates the cell surface receptor CD4, thus impairing the virus binding to target cells. This is in contrast to the situation of high-CD4-expressing cells, where LY6E predominantly promotes viral membrane fusion. The opposing role of IFN-inducible LY6E in modulating HIV-1 infection highlights the complex roles of ISGs in viral infection and viral pathogenesis.
Collapse
|
9
|
Hordeaux J, Yuan Y, Clark PM, Wang Q, Martino RA, Sims JJ, Bell P, Raymond A, Stanford WL, Wilson JM. The GPI-Linked Protein LY6A Drives AAV-PHP.B Transport across the Blood-Brain Barrier. Mol Ther 2019; 27:912-921. [PMID: 30819613 DOI: 10.1016/j.ymthe.2019.02.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Efficient delivery of gene therapy vectors across the blood-brain barrier (BBB) is the holy grail of neurological disease therapies. A variant of the neurotropic vector adeno-associated virus (AAV) serotype 9, called AAV-PHP.B, was shown to very efficiently deliver transgenes across the BBB in C57BL/6J mice. Based on our recent observation that this phenotype is mouse strain dependent, we used whole-exome sequencing-based genetics to map this phenotype to a specific haplotype of lymphocyte antigen 6 complex, locus A (Ly6a) (stem cell antigen-1 [Sca-1]), which encodes a glycosylphosphatidylinositol (GPI)-anchored protein whose function had been thought to be limited to the biology of hematopoiesis. Additional biochemical and genetic studies definitively linked high BBB transport to the binding of AAV-PHP.B with LY6A (SCA-1). These studies identify, for the first time, a ligand for this GPI-anchored protein and suggest a role for it in BBB transport that could be hijacked by viruses in natural infections or by gene therapy vectors to treat neurological diseases.
Collapse
Affiliation(s)
- Juliette Hordeaux
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yuan Yuan
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Peter M Clark
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Qiang Wang
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - R Alexander Martino
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joshua J Sims
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Angela Raymond
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - William L Stanford
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Mar KB, Rinkenberger NR, Boys IN, Eitson JL, McDougal MB, Richardson RB, Schoggins JW. LY6E mediates an evolutionarily conserved enhancement of virus infection by targeting a late entry step. Nat Commun 2018; 9:3603. [PMID: 30190477 PMCID: PMC6127192 DOI: 10.1038/s41467-018-06000-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 08/03/2018] [Indexed: 01/07/2023] Open
Abstract
Interferons (IFNs) contribute to cell-intrinsic antiviral immunity by inducing hundreds of interferon-stimulated genes (ISGs). In a screen to identify antiviral ISGs, we unexpectedly found that LY6E, a member of the LY6/uPAR family, enhanced viral infection. Here, we show that viral enhancement by ectopically expressed LY6E extends to several cellular backgrounds and affects multiple RNA viruses. LY6E does not impair IFN antiviral activity or signaling, but rather promotes viral entry. Using influenza A virus as a model, we narrow the enhancing effect of LY6E to uncoating after endosomal escape. Diverse mammalian orthologs of LY6E also enhance viral infectivity, indicating evolutionary conservation of function. By structure-function analyses, we identify a single amino acid in a predicted loop region that is essential for viral enhancement. Our study suggests that LY6E belongs to a class of IFN-inducible host factors that enhance viral infectivity without suppressing IFN antiviral activity. The interferon-induced gene LY6E increases virus infection, but the underlying mechanism is poorly understood. Here, Mar et al. show that LY6E enhances uncoating of influenza A virus after endosomal escape and that viral enhancement by LY6E is conserved across evolution.
Collapse
Affiliation(s)
- Katrina B Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - Nicholas R Rinkenberger
- Department of Microbiology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - Ian N Boys
- Department of Microbiology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - Jennifer L Eitson
- Department of Microbiology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - Matthew B McDougal
- Department of Microbiology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - R Blake Richardson
- Department of Microbiology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA.
| |
Collapse
|
11
|
Yu J, Liang C, Liu SL. Interferon-inducible LY6E Protein Promotes HIV-1 Infection. J Biol Chem 2017; 292:4674-4685. [PMID: 28130445 DOI: 10.1074/jbc.m116.755819] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/24/2017] [Indexed: 11/06/2022] Open
Abstract
LY6E is a glycosylphosphatidylinositol-anchored, IFN-inducible protein that regulates T lymphocytes proliferation, differentiation, and development. Single-nucleotide polymorphism rs2572886 in the LY6 family protein locus has been shown to associate with accelerated progression to AIDS. In this study, we show that LY6E promotes HIV, type 1 (HIV-1) infection by enhancing viral entry and gene expression. Knockdown of LY6E in human peripheral blood mononuclear, SupT1, and THP-1 cells diminishes HIV-1 replication. Virion-cell and cell-cell fusion experiments revealed that LY6E promotes membrane fusion of the viral entry step. Interestingly, we find that LTR-driven HIV-1 gene expression is also enhanced by LY6E, suggesting additional roles of LY6E in HIV-1 replication. HIV-1 infection induces LY6E expression in human peripheral blood mononuclear cells, concomitant with increased production of type I IFN and some classical IFN-stimulated genes. Altogether, our results demonstrate that IFN-inducible LY6E promotes HIV-1 entry and replication and highlight a positive regulatory role of IFN-induced proteins in HIV-1 infection. Our work emphasizes the complexity of IFN-mediated signaling in HIV-host interaction and AIDS pathogenesis.
Collapse
Affiliation(s)
- Jingyou Yu
- From the Center for Retrovirus Research.,Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Chen Liang
- the McGill AIDS Centre, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada, and.,the Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Shan-Lu Liu
- From the Center for Retrovirus Research, .,Center for Microbial Interface Biology, and
| |
Collapse
|
12
|
Runx1 downregulates stem cell and megakaryocytic transcription programs that support niche interactions. Blood 2016; 127:3369-81. [PMID: 27076172 DOI: 10.1182/blood-2015-09-668129] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/31/2016] [Indexed: 12/20/2022] Open
Abstract
Disrupting mutations of the RUNX1 gene are found in 10% of patients with myelodysplasia (MDS) and 30% of patients with acute myeloid leukemia (AML). Previous studies have revealed an increase in hematopoietic stem cells (HSCs) and multipotent progenitor (MPP) cells in conditional Runx1-knockout (KO) mice, but the molecular mechanism is unresolved. We investigated the myeloid progenitor (MP) compartment in KO mice, arguing that disruptions at the HSC/MPP level may be amplified in downstream cells. We demonstrate that the MP compartment is increased by more than fivefold in Runx1 KO mice, with a prominent skewing toward megakaryocyte (Meg) progenitors. Runx1-deficient granulocyte-macrophage progenitors are characterized by increased cloning capacity, impaired development into mature cells, and HSC and Meg transcription signatures. An HSC/MPP subpopulation expressing Meg markers was also increased in Runx1-deficient mice. Rescue experiments coupled with transcriptome analysis and Runx1 DNA-binding assays demonstrated that granulocytic/monocytic (G/M) commitment is marked by Runx1 suppression of genes encoding adherence and motility proteins (Tek, Jam3, Plxnc1, Pcdh7, and Selp) that support HSC-Meg interactions with the BM niche. In vitro assays confirmed that enforced Tek expression in HSCs/MPPs increases Meg output. Interestingly, besides this key repressor function of Runx1 to control lineage decisions and cell numbers in progenitors, our study also revealed a critical activating function in erythroblast differentiation, in addition to its known importance in Meg and G/M maturation. Thus both repressor and activator functions of Runx1 at multiple hematopoietic stages and lineages likely contribute to the tumor suppressor activity in MDS and AML.
Collapse
|
13
|
Gonzalez-Pena D, Nixon SE, O’Connor JC, Southey BR, Lawson MA, McCusker RH, Borras T, Machuca D, Hernandez AG, Dantzer R, Kelley KW, Rodriguez-Zas SL. Microglia Transcriptome Changes in a Model of Depressive Behavior after Immune Challenge. PLoS One 2016; 11:e0150858. [PMID: 26959683 PMCID: PMC4784788 DOI: 10.1371/journal.pone.0150858] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/20/2016] [Indexed: 12/20/2022] Open
Abstract
Depression symptoms following immune response to a challenge have been reported after the recovery from sickness. A RNA-Seq study of the dysregulation of the microglia transcriptome in a model of inflammation-associated depressive behavior was undertaken. The transcriptome of microglia from mice at day 7 after Bacille Calmette Guérin (BCG) challenge was compared to that from unchallenged Control mice and to the transcriptome from peripheral macrophages from the same mice. Among the 562 and 3,851 genes differentially expressed between BCG-challenged and Control mice in microglia and macrophages respectively, 353 genes overlapped between these cells types. Among the most differentially expressed genes in the microglia, serum amyloid A3 (Saa3) and cell adhesion molecule 3 (Cadm3) were over-expressed and coiled-coil domain containing 162 (Ccdc162) and titin-cap (Tcap) were under-expressed in BCG-challenged relative to Control. Many of the differentially expressed genes between BCG-challenged and Control mice were associated with neurological disorders encompassing depression symptoms. Across cell types, S100 calcium binding protein A9 (S100A9), interleukin 1 beta (Il1b) and kynurenine 3-monooxygenase (Kmo) were differentially expressed between challenged and control mice. Immune response, chemotaxis, and chemokine activity were among the functional categories enriched by the differentially expressed genes. Functional categories enriched among the 9,117 genes differentially expressed between cell types included leukocyte regulation and activation, chemokine and cytokine activities, MAP kinase activity, and apoptosis. More than 200 genes exhibited alternative splicing events between cell types including WNK lysine deficient protein kinase 1 (Wnk1) and microtubule-actin crosslinking factor 1(Macf1). Network visualization revealed the capability of microglia to exhibit transcriptome dysregulation in response to immune challenge still after resolution of sickness symptoms, albeit lower than that observed in macrophages. The persistent transcriptome dysregulation in the microglia shared patterns with neurological disorders indicating that the associated persistent depressive symptoms share a common transcriptome basis.
Collapse
Affiliation(s)
- Dianelys Gonzalez-Pena
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Scott E. Nixon
- Illinois Informatics Institute, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Jason C. O’Connor
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Marcus A. Lawson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Robert H. McCusker
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Tania Borras
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Debbie Machuca
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Alvaro G. Hernandez
- High-Throughput Sequencing and Genotyping Unit, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
| | - Robert Dantzer
- Department of Symptom Research, University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Keith W. Kelley
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
- Integrative Immunology and Behavior Program and Department of Pathology, College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
- Department of Statistics and Carle Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail:
| |
Collapse
|
14
|
Hassan MA, Butty V, Jensen KDC, Saeij JPJ. The genetic basis for individual differences in mRNA splicing and APOBEC1 editing activity in murine macrophages. Genome Res 2013; 24:377-89. [PMID: 24249727 PMCID: PMC3941103 DOI: 10.1101/gr.166033.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Alternative splicing and mRNA editing are known to contribute to transcriptome diversity. Although alternative splicing is pervasive and contributes to a variety of pathologies, including cancer, the genetic context for individual differences in isoform usage is still evolving. Similarly, although mRNA editing is ubiquitous and associated with important biological processes such as intracellular viral replication and cancer development, individual variations in mRNA editing and the genetic transmissibility of mRNA editing are equivocal. Here, we have used linkage analysis to show that both mRNA editing and alternative splicing are regulated by the macrophage genetic background and environmental cues. We show that distinct loci, potentially harboring variable splice factors, regulate the splicing of multiple transcripts. Additionally, we show that individual genetic variability at the Apobec1 locus results in differential rates of C-to-U(T) editing in murine macrophages; with mouse strains expressing mostly a truncated alternative transcript isoform of Apobec1 exhibiting lower rates of editing. As a proof of concept, we have used linkage analysis to identify 36 high-confidence novel edited sites. These results provide a novel and complementary method that can be used to identify C-to-U editing sites in individuals segregating at specific loci and show that, beyond DNA sequence and structural changes, differential isoform usage and mRNA editing can contribute to intra-species genomic and phenotypic diversity.
Collapse
Affiliation(s)
- Musa A Hassan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|