1
|
Srivastava P, Kane A, Harrison C, Levin M. A Meta-Analysis of Bioelectric Data in Cancer, Embryogenesis, and Regeneration. Bioelectricity 2021; 3:42-67. [PMID: 34476377 DOI: 10.1089/bioe.2019.0034] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developmental bioelectricity is the study of the endogenous role of bioelectrical signaling in all cell types. Resting potentials and other aspects of ionic cell physiology are known to be important regulatory parameters in embryogenesis, regeneration, and cancer. However, relevant quantitative measurement and genetic phenotyping data are distributed throughout wide-ranging literature, hampering experimental design and hypothesis generation. Here, we analyze published studies on bioelectrics and transcriptomic and genomic/phenotypic databases to provide a novel synthesis of what is known in three important aspects of bioelectrics research. First, we provide a comprehensive list of channelopathies-ion channel and pump gene mutations-in a range of important model systems with developmental patterning phenotypes, illustrating the breadth of channel types, tissues, and phyla (including man) in which bioelectric signaling is a critical endogenous aspect of embryogenesis. Second, we perform a novel bioinformatic analysis of transcriptomic data during regeneration in diverse taxa that reveals an electrogenic protein to be the one common factor specifically expressed in regeneration blastemas across Kingdoms. Finally, we analyze data on distinct Vmem signatures in normal and cancer cells, revealing a specific bioelectrical signature corresponding to some types of malignancies. These analyses shed light on fundamental questions in developmental bioelectricity and suggest new avenues for research in this exciting field.
Collapse
Affiliation(s)
- Pranjal Srivastava
- Rye High School, Rye, New York, USA; Current Affiliation: College of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Anna Kane
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| | - Christina Harrison
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
2
|
Masuya H, Usuda D, Nakata H, Yuhara N, Kurihara K, Namiki Y, Iwase S, Takada T, Tanaka N, Suzuki K, Yamagata Y, Kobayashi N, Yoshiki A, Kushida T. Establishment and application of information resource of mutant mice in RIKEN BioResource Research Center. Lab Anim Res 2021; 37:6. [PMID: 33455583 PMCID: PMC7811887 DOI: 10.1186/s42826-020-00068-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Online databases are crucial infrastructures to facilitate the wide effective and efficient use of mouse mutant resources in life sciences. The number and types of mouse resources have been rapidly growing due to the development of genetic modification technology with associated information of genomic sequence and phenotypes. Therefore, data integration technologies to improve the findability, accessibility, interoperability, and reusability of mouse strain data becomes essential for mouse strain repositories. In 2020, the RIKEN BioResource Research Center released an integrated database of bioresources including, experimental mouse strains, Arabidopsis thaliana as a laboratory plant, cell lines, microorganisms, and genetic materials using Resource Description Framework-related technologies. The integrated database shows multiple advanced features for the dissemination of bioresource information. The current version of our online catalog of mouse strains which functions as a part of the integrated database of bioresources is available from search bars on the page of the Center (https://brc.riken.jp) and the Experimental Animal Division (https://mus.brc.riken.jp/) websites. The BioResource Research Center also released a genomic variation database of mouse strains established in Japan and Western Europe, MoG+ (https://molossinus.brc.riken.jp/mogplus/), and a database for phenotype-phenotype associations across the mouse phenome using data from the International Mouse Phenotyping Platform. In this review, we describe features of current version of databases related to mouse strain resources in RIKEN BioResource Research Center and discuss future views.
Collapse
Affiliation(s)
- Hiroshi Masuya
- Integrated Bioresource Information Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba-shi, Ibaraki, 305-0074, Japan.
| | - Daiki Usuda
- Integrated Bioresource Information Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba-shi, Ibaraki, 305-0074, Japan
| | - Hatsumi Nakata
- Experimental Animal Division, BioResource Research Center, RIKEN, Tsukuba, Japan
| | - Naomi Yuhara
- Integrated Bioresource Information Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba-shi, Ibaraki, 305-0074, Japan
| | - Keiko Kurihara
- Integrated Bioresource Information Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba-shi, Ibaraki, 305-0074, Japan
| | - Yuri Namiki
- Integrated Bioresource Information Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba-shi, Ibaraki, 305-0074, Japan
| | - Shigeru Iwase
- Integrated Bioresource Information Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba-shi, Ibaraki, 305-0074, Japan
| | - Toyoyuki Takada
- Integrated Bioresource Information Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba-shi, Ibaraki, 305-0074, Japan
| | - Nobuhiko Tanaka
- Integrated Bioresource Information Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba-shi, Ibaraki, 305-0074, Japan
| | - Kenta Suzuki
- Integrated Bioresource Information Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba-shi, Ibaraki, 305-0074, Japan
| | - Yuki Yamagata
- Laboratory for Developmental Dynamics, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan
| | - Norio Kobayashi
- Integrated Bioresource Information Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba-shi, Ibaraki, 305-0074, Japan.,Data Knowledge Organization Unit, Head Office for Information Systems and Cybersecurity, RIKEN, Wako, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, BioResource Research Center, RIKEN, Tsukuba, Japan
| | - Tatsuya Kushida
- Integrated Bioresource Information Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba-shi, Ibaraki, 305-0074, Japan
| |
Collapse
|
3
|
Elmore SA, Cardiff R, Cesta MF, Gkoutos GV, Hoehndorf R, Keenan CM, McKerlie C, Schofield PN, Sundberg JP, Ward JM. A Review of Current Standards and the Evolution of Histopathology Nomenclature for Laboratory Animals. ILAR J 2019; 59:29-39. [PMID: 30476141 DOI: 10.1093/ilar/ily005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
The need for international collaboration in rodent pathology has evolved since the 1970s and was initially driven by the new field of toxicologic pathology. First initiated by the World Health Organization's International Agency for Research on Cancer for rodents, it has evolved to include pathology of the major species (rats, mice, guinea pigs, nonhuman primates, pigs, dogs, fish, rabbits) used in medical research, safety assessment, and mouse pathology. The collaborative effort today is driven by the needs of the regulatory agencies in multiple countries, and by needs of research involving genetically engineered animals, for "basic" research and for more translational preclinical models of human disease. These efforts led to the establishment of an international rodent pathology nomenclature program. Since that time, multiple collaborations for standardization of laboratory animal pathology nomenclature and diagnostic criteria have been developed, and just a few are described herein. Recently, approaches to a nomenclature that is amenable to sophisticated computation have been made available and implemented for large-scale programs in functional genomics and aging. Most terminologies continue to evolve as the science of human and veterinary pathology continues to develop, but standardization and successful implementation remain critical for scientific communication now as ever in the history of veterinary nosology.
Collapse
Affiliation(s)
- Susan A Elmore
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Robert Cardiff
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Mark F Cesta
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Georgios V Gkoutos
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Robert Hoehndorf
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Charlotte M Keenan
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Colin McKerlie
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Paul N Schofield
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - John P Sundberg
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Jerrold M Ward
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| |
Collapse
|
4
|
Gkoutos GV, Schofield PN, Hoehndorf R. The anatomy of phenotype ontologies: principles, properties and applications. Brief Bioinform 2018; 19:1008-1021. [PMID: 28387809 PMCID: PMC6169674 DOI: 10.1093/bib/bbx035] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/05/2017] [Indexed: 12/14/2022] Open
Abstract
The past decade has seen an explosion in the collection of genotype data in domains as diverse as medicine, ecology, livestock and plant breeding. Along with this comes the challenge of dealing with the related phenotype data, which is not only large but also highly multidimensional. Computational analysis of phenotypes has therefore become critical for our ability to understand the biological meaning of genomic data in the biological sciences. At the heart of computational phenotype analysis are the phenotype ontologies. A large number of these ontologies have been developed across many domains, and we are now at a point where the knowledge captured in the structure of these ontologies can be used for the integration and analysis of large interrelated data sets. The Phenotype And Trait Ontology framework provides a method for formal definitions of phenotypes and associated data sets and has proved to be key to our ability to develop methods for the integration and analysis of phenotype data. Here, we describe the development and products of the ontological approach to phenotype capture, the formal content of phenotype ontologies and how their content can be used computationally.
Collapse
Affiliation(s)
| | | | - Robert Hoehndorf
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, King Abdullah University of Science and Technology, Thuwal
| |
Collapse
|
5
|
Fisher CL, Marks H, Cho LTY, Andrews R, Wormald S, Carroll T, Iyer V, Tate P, Rosen B, Stunnenberg HG, Fisher AG, Skarnes WC. An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers. Nucleic Acids Res 2017; 45:e174. [PMID: 28981838 PMCID: PMC5716182 DOI: 10.1093/nar/gkx811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/25/2017] [Accepted: 09/04/2017] [Indexed: 11/18/2022] Open
Abstract
Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors.
Collapse
Affiliation(s)
- Cynthia L. Fisher
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- MRC London Institute of Medical Sciences and Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - Lily Ting-yin Cho
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Robert Andrews
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Sam Wormald
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Thomas Carroll
- MRC London Institute of Medical Sciences and Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Vivek Iyer
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Peri Tate
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Barry Rosen
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - Amanda G. Fisher
- MRC London Institute of Medical Sciences and Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - William C. Skarnes
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
6
|
An siRNA-based screen in C2C12 myoblasts identifies novel genes involved in myogenic differentiation. Exp Cell Res 2017; 359:145-153. [DOI: 10.1016/j.yexcr.2017.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/16/2017] [Accepted: 07/31/2017] [Indexed: 11/19/2022]
|
7
|
Donahoe PK, Longoni M, High FA. Polygenic Causes of Congenital Diaphragmatic Hernia Produce Common Lung Pathologies. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2532-43. [PMID: 27565037 DOI: 10.1016/j.ajpath.2016.07.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is one of the most common and lethal congenital anomalies, and significant evidence is available in support of a genetic contribution to its etiology, including single-gene knockout mice associated with diaphragmatic defects, rare monogenetic disorders in humans, familial aggregation, and association of CDH with chromosomal abnormalities. Structural lung defects in the form of lung hypoplasia are almost invariably seen in patients with CDH and frequently in animal models of this condition. Better understanding of the mechanisms of pulmonary defects in CDH has the potential for creating targeted therapies, particularly in postnatal stages, when therapeutics can have maximum clinical impact on the surviving cohorts. Successful treatment of CDH is dependent on the integration of human genomic and genetic data with developmental expression profiling, mouse knockouts, and gene network and pathway modeling, which have generated a large number of candidate genes and pathways for follow-up studies. In particular, defective alveolarization appears to be a common and potentially actionable phenotype in both patients and animal models.
Collapse
Affiliation(s)
- Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts; Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.
| | - Mauro Longoni
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Frances A High
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts; Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts; Department of Surgery, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
8
|
Bailoo JD, Reichlin TS, Würbel H. Refinement of experimental design and conduct in laboratory animal research. ILAR J 2015; 55:383-91. [PMID: 25541540 DOI: 10.1093/ilar/ilu037] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The scientific literature of laboratory animal research is replete with papers reporting poor reproducibility of results as well as failure to translate results to clinical trials in humans. This may stem in part from poor experimental design and conduct of animal experiments. Despite widespread recognition of these problems and implementation of guidelines to attenuate them, a review of the literature suggests that experimental design and conduct of laboratory animal research are still in need of refinement. This paper will review and discuss possible sources of biases, highlight advantages and limitations of strategies proposed to alleviate them, and provide a conceptual framework for improving the reproducibility of laboratory animal research.
Collapse
|
9
|
Eppig JT, Motenko H, Richardson JE, Richards-Smith B, Smith CL. The International Mouse Strain Resource (IMSR): cataloging worldwide mouse and ES cell line resources. Mamm Genome 2015; 26:448-55. [PMID: 26373861 PMCID: PMC4602064 DOI: 10.1007/s00335-015-9600-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/10/2015] [Indexed: 11/04/2022]
Abstract
The availability of and access to quality genetically defined, health-status known mouse resources is critical for biomedical research. By ensuring that mice used in research experiments are biologically, genetically, and health-status equivalent, we enable knowledge transfer, hypothesis building based on multiple data streams, and experimental reproducibility based on common mouse resources (reagents). Major repositories for mouse resources have developed over time and each has significant unique resources to offer. Here we (a) describe The International Mouse Strain Resource that offers users a combined catalog of worldwide mouse resources (live, cryopreserved, embryonic stem cells), with direct access to repository sites holding resources of interest and (b) discuss the commitment to nomenclature standards among resources that remain a challenge in unifying mouse resource catalogs.
Collapse
Affiliation(s)
- Janan T Eppig
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
| | - Howie Motenko
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
| | - Joel E Richardson
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
| | | | - Cynthia L Smith
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
| |
Collapse
|
10
|
A mouse informatics platform for phenotypic and translational discovery. Mamm Genome 2015; 26:413-21. [PMID: 26314589 PMCID: PMC4602054 DOI: 10.1007/s00335-015-9599-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/17/2015] [Indexed: 01/05/2023]
Abstract
The International Mouse Phenotyping Consortium (IMPC) is providing the world's first functional catalogue of a mammalian genome by characterising a knockout mouse strain for every gene. A robust and highly structured informatics platform has been developed to systematically collate, analyse and disseminate the data produced by the IMPC. As the first phase of the project, in which 5000 new knockout strains are being broadly phenotyped, nears completion, the informatics platform is extending and adapting to support the increasing volume and complexity of the data produced as well as addressing a large volume of users and emerging user groups. An intuitive interface helps researchers explore IMPC data by giving overviews and the ability to find and visualise data that support a phenotype assertion. Dedicated disease pages allow researchers to find new mouse models of human diseases, and novel viewers provide high-resolution images of embryonic and adult dysmorphologies. With each monthly release, the informatics platform will continue to evolve to support the increased data volume and to maintain its position as the primary route of access to IMPC data and as an invaluable resource for clinical and non-clinical researchers.
Collapse
|
11
|
Goto T, Okayama T, Toyoda A. Strain differences in temporal changes of nesting behaviors in C57BL/6N, DBA/2N, and their F1 hybrid mice assessed by a three-dimensional monitoring system. Behav Processes 2015. [PMID: 26220275 DOI: 10.1016/j.beproc.2015.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nest building is one of the innate behaviors that are widely observed throughout the animal kingdom. Previous studies have reported specific brain regions and genetic loci associated with nest building in mice. These studies mainly evaluated the nest structure, without observing the nesting process. In this study, we evaluated the effects of strain and learning on the nesting process of mice using a 3D depth camera. To determine the quality of the nest structure, a conventional scoring method, Deacon scores 1-5, was applied to the recorded depth images. The final score of the nest, latency to start nesting behavior, and latencies to reach Deacon scores 3-5, were determined using three genetically different mouse strains-C57BL/6NCrl (B6), DBA/2NCrlCrlj (DBA), and B6D2F1/Crl (B6D2F1). The final score of the DBA nest was significantly lower than that of the B6D2F1 nest, and DBA mice showed significantly longer latency to start nest building than the other two strains in the first trial. By observing the time course of nest building, we confirmed that DBA mice took significantly longer to build their nests than B6 and B6D2F1 mice. Although we did not find any significant differences between DBA and B6 mice in the final assessment of the nest based on the Deacon method, overnight monitoring of the nesting behavior using a 3D depth camera could elucidate the clear differences in the amount of time spent nesting between DBA and B6 mice. In addition, the learning effect was more evident in DBA mice than it was in B6 in terms of latencies to reach Deacon score 3-5 in five repeated trials. DBA mice showed a gradual decrease in latency to build, whereas nesting behaviors of B6 mice were relatively consistent throughout the five trials. Therefore, our 3D depth image method gives higher resolution and structural information regarding the nesting process in mice. Future genetic analyses using the 3D assessment system will provide novel insights into the complex genetic basis for nesting and other behaviors in animals.
Collapse
Affiliation(s)
- Tatsuhiko Goto
- College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan; Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami, Ibaraki 300-0393, Japan
| | - Tsuyoshi Okayama
- College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan; Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami, Ibaraki 300-0393, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-city, Tokyo 183-8509, Japan
| | - Atsushi Toyoda
- College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan; Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami, Ibaraki 300-0393, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-city, Tokyo 183-8509, Japan.
| |
Collapse
|
12
|
Smedley D, Haider S, Durinck S, Pandini L, Provero P, Allen J, Arnaiz O, Awedh MH, Baldock R, Barbiera G, Bardou P, Beck T, Blake A, Bonierbale M, Brookes AJ, Bucci G, Buetti I, Burge S, Cabau C, Carlson JW, Chelala C, Chrysostomou C, Cittaro D, Collin O, Cordova R, Cutts RJ, Dassi E, Di Genova A, Djari A, Esposito A, Estrella H, Eyras E, Fernandez-Banet J, Forbes S, Free RC, Fujisawa T, Gadaleta E, Garcia-Manteiga JM, Goodstein D, Gray K, Guerra-Assunção JA, Haggarty B, Han DJ, Han BW, Harris T, Harshbarger J, Hastings RK, Hayes RD, Hoede C, Hu S, Hu ZL, Hutchins L, Kan Z, Kawaji H, Keliet A, Kerhornou A, Kim S, Kinsella R, Klopp C, Kong L, Lawson D, Lazarevic D, Lee JH, Letellier T, Li CY, Lio P, Liu CJ, Luo J, Maass A, Mariette J, Maurel T, Merella S, Mohamed AM, Moreews F, Nabihoudine I, Ndegwa N, Noirot C, Perez-Llamas C, Primig M, Quattrone A, Quesneville H, Rambaldi D, Reecy J, Riba M, Rosanoff S, Saddiq AA, Salas E, Sallou O, Shepherd R, Simon R, Sperling L, Spooner W, Staines DM, Steinbach D, Stone K, Stupka E, Teague JW, Dayem Ullah AZ, Wang J, Ware D, Wong-Erasmus M, Youens-Clark K, Zadissa A, Zhang SJ, Kasprzyk A. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res 2015; 43:W589-98. [PMID: 25897122 PMCID: PMC4489294 DOI: 10.1093/nar/gkv350] [Citation(s) in RCA: 510] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/02/2015] [Indexed: 01/17/2023] Open
Abstract
The BioMart Community Portal (www.biomart.org) is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biological datasets spanning genomics, proteomics, model organisms, cancer data, ontology information and more. All resources available through the portal are independently administered and funded by their host organizations. The BioMart data federation technology provides a unified interface to all the available data. The latest version of the portal comes with many new databases that have been created by our ever-growing community. It also comes with better support and extensibility for data analysis and visualization tools. A new addition to our toolbox, the enrichment analysis tool is now accessible through graphical and web service interface. The BioMart community portal averages over one million requests per day. Building on this level of service and the wealth of information that has become available, the BioMart Community Portal has introduced a new, more scalable and cheaper alternative to the large data stores maintained by specialized organizations.
Collapse
Affiliation(s)
- Damian Smedley
- Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, CB10 1SD, UK
| | - Syed Haider
- The Weatherall Institute Of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Steffen Durinck
- Genentech, Inc. 1 DNA Way South San Francisco, CA 94080, USA
| | - Luca Pandini
- Center for Translational Genomics and Bioinformatics San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Paolo Provero
- Center for Translational Genomics and Bioinformatics San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy Dept of Molecular Biotechnology and Health Sciences University of Turin, Italy
| | - James Allen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, 1 avenue de la terrasse, 91198 Gif sur Yvette, France
| | - Mohammad Hamza Awedh
- Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Richard Baldock
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Giulia Barbiera
- Center for Translational Genomics and Bioinformatics San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | | | - Tim Beck
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Andrew Blake
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, UK
| | | | - Anthony J Brookes
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Gabriele Bucci
- Center for Translational Genomics and Bioinformatics San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Iwan Buetti
- Center for Translational Genomics and Bioinformatics San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Sarah Burge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | | | | | - Claude Chelala
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | - Davide Cittaro
- Center for Translational Genomics and Bioinformatics San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | | | - Raul Cordova
- International Potato Center (CIP), Lima, 1558, Peru
| | - Rosalind J Cutts
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Erik Dassi
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Alex Di Genova
- Center for Mathematical Modeling and Center for Genome Regulation, University of Chile, Beauchef 851, 7th floor, Chile
| | - Anis Djari
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRA, Castanet-Tolosan, France
| | | | | | - Eduardo Eyras
- Catalan Institute for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, E-08010 Barcelona, Spain Universitat Pompeu Fabra, Dr Aiguader 88 E-08003 Barcelona, Spain
| | | | - Simon Forbes
- Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, CB10 1SD, UK
| | - Robert C Free
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | - Emanuela Gadaleta
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jose M Garcia-Manteiga
- Center for Translational Genomics and Bioinformatics San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - David Goodstein
- Department of Energy, Joint Genome Institute, Walnut Creek, USA
| | - Kristian Gray
- HUGO Gene Nomenclature Committee (HGNC), European Bioinformatics Institute (EMBL-EBI) Wellcome Trust Genome Campus, Hinxton, CB10 1SD, UK
| | - José Afonso Guerra-Assunção
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Bernard Haggarty
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Dong-Jin Han
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea Information Center for Bio-pharmacological Network, Seoul National University, Suwon 443-270, Republic of Korea
| | - Todd Harris
- Ontario Institute for Cancer Research, Toronto, M5G 0A3, Canada
| | - Jayson Harshbarger
- RIKEN Center for Life Science Technologies (CLST), Division of Genomic Technologies (DGT), Kanagawa, 230-0045, Japan
| | - Robert K Hastings
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Richard D Hayes
- Department of Energy, Joint Genome Institute, Walnut Creek, USA
| | - Claire Hoede
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRA, Castanet-Tolosan, France
| | - Shen Hu
- School of Dentistry and Dental Research Institute, University of California Los Angeles (UCLA), Los Angeles, CA 90095-1668, USA
| | | | - Lucie Hutchins
- Mouse Genomic Informatics Group, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Zhengyan Kan
- Oncology Computational Biology, Pfizer, La Jolla, USA
| | - Hideya Kawaji
- RIKEN Center for Life Science Technologies (CLST), Division of Genomic Technologies (DGT), Kanagawa, 230-0045, Japan RIKEN Preventive Medicine and Diagnosis Innovation Program, Saitama 351-0198, Japan
| | - Aminah Keliet
- INRA URGI Centre de Versailles, bâtiment 18 Route de Saint Cyr 78026 Versailles, France
| | - Arnaud Kerhornou
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Rhoda Kinsella
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Christophe Klopp
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRA, Castanet-Tolosan, France
| | - Lei Kong
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, P.R. China
| | - Daniel Lawson
- VectorBase, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SD, UK
| | - Dejan Lazarevic
- Center for Translational Genomics and Bioinformatics San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Ji-Hyun Lee
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea Information Center for Bio-pharmacological Network, Seoul National University, Suwon 443-270, Republic of Korea
| | - Thomas Letellier
- INRA URGI Centre de Versailles, bâtiment 18 Route de Saint Cyr 78026 Versailles, France
| | - Chuan-Yun Li
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Pietro Lio
- Computer Laboratory, University of Cambridge, Cambridge, CB3 0FD, UK
| | - Chu-Jun Liu
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jie Luo
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Alejandro Maass
- Center for Mathematical Modeling and Center for Genome Regulation, University of Chile, Beauchef 851, 7th floor, Chile Department of Mathematical Engineering, University of Chile, Av. Beauchef 851, 5th floor, Santiago, Chile
| | - Jerome Mariette
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRA, Castanet-Tolosan, France
| | - Thomas Maurel
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stefania Merella
- Center for Translational Genomics and Bioinformatics San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Azza Mostafa Mohamed
- Departament of Biochemistry, Faculty of Science for Girls, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Ibounyamine Nabihoudine
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRA, Castanet-Tolosan, France
| | - Nelson Ndegwa
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, 17177 Stockholm, Sweden
| | - Céline Noirot
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRA, Castanet-Tolosan, France
| | | | - Michael Primig
- Inserm U1085 IRSET, University of Rennes 1, 35042 Rennes, France
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Hadi Quesneville
- INRA URGI Centre de Versailles, bâtiment 18 Route de Saint Cyr 78026 Versailles, France
| | - Davide Rambaldi
- Center for Translational Genomics and Bioinformatics San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | | | - Michela Riba
- Center for Translational Genomics and Bioinformatics San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Steven Rosanoff
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Amna Ali Saddiq
- Department of Biological Sciences, Faculty of Science for Girls, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elisa Salas
- International Potato Center (CIP), Lima, 1558, Peru
| | | | - Rebecca Shepherd
- Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, CB10 1SD, UK
| | | | - Linda Sperling
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, 1 avenue de la terrasse, 91198 Gif sur Yvette, France
| | - William Spooner
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA Eagle Genomics Ltd., Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Daniel M Staines
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Delphine Steinbach
- INRA URGI Centre de Versailles, bâtiment 18 Route de Saint Cyr 78026 Versailles, France
| | - Kevin Stone
- Mouse Genomic Informatics Group, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Elia Stupka
- Center for Translational Genomics and Bioinformatics San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Jon W Teague
- Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, CB10 1SD, UK
| | - Abu Z Dayem Ullah
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jun Wang
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, P.R. China
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Marie Wong-Erasmus
- Human Longevity, Inc. 10835 Road to the Cure 140 San Diego, CA 92121, USA
| | - Ken Youens-Clark
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Amonida Zadissa
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Shi-Jian Zhang
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Arek Kasprzyk
- Center for Translational Genomics and Bioinformatics San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Towards a better understanding of mouse and human diseases-International Mouse Phenotyping Consortium. SCIENCE CHINA-LIFE SCIENCES 2015; 58:392-5. [PMID: 25862663 DOI: 10.1007/s11427-015-4841-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/15/2014] [Indexed: 10/23/2022]
|
14
|
Cotton LM, Meilak ML, Templeton T, Gonzales JG, Nenci A, Cooney M, Truman D, Rodda F, Lynas A, Viney E, Rosenthal N, Bianco DM, O'Bryan MK, Smyth IM. Utilising the resources of the International Knockout Mouse Consortium: the Australian experience. Mamm Genome 2015; 26:142-53. [PMID: 25645994 DOI: 10.1007/s00335-015-9555-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/12/2015] [Indexed: 11/28/2022]
Abstract
Mouse models play a key role in the understanding gene function, human development and disease. In 2007, the Australian Government provided funding to establish the Monash University embryonic stem cell-to-mouse (ES2M) facility. This was part of the broader Australian Phenomics Network, a national infrastructure initiative aimed at maximising access to global resources for understanding gene function in the mouse. The remit of the ES2M facility is to provide subsidised access for Australian biomedical researchers to the ES cell resources available from the International Knockout Mouse Consortium (IKMC). The stated aim of the IKMC is to generate a genetically modified mouse ES cell line for all of the ~23,000 genes in the mouse genome. The principal function of the Monash University ES2M service is to import genetically modified ES cells into Australia and to convert them into live mice with the potential to study human disease. Through advantages of economy of scale and established relationships with ES cell repositories worldwide, we have created over 110 germline mouse strains sourced from all of the major ES providers worldwide. We comment on our experience in generating these mouse lines; providing a snapshot of a "clients" perspective of using the IKMC resource and one which we hope will serve as a guide to other institutions or organisations contemplating establishing a similar centralised service.
Collapse
Affiliation(s)
- Leanne M Cotton
- Australian Phenomics Network (APN), Embryonic Stem Cell (ES Cell)-to-Mouse Service, Monash University, Clayton, VIC, 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
New Transgenic Technologies. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
16
|
Oellrich A, Jacobsen J, Papatheodorou I, Smedley D. Using association rule mining to determine promising secondary phenotyping hypotheses. ACTA ACUST UNITED AC 2014; 30:i52-59. [PMID: 24932005 PMCID: PMC4059059 DOI: 10.1093/bioinformatics/btu260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MOTIVATION Large-scale phenotyping projects such as the Sanger Mouse Genetics project are ongoing efforts to help identify the influences of genes and their modification on phenotypes. Gene-phenotype relations are crucial to the improvement of our understanding of human heritable diseases as well as the development of drugs. However, given that there are ∼: 20 000 genes in higher vertebrate genomes and the experimental verification of gene-phenotype relations requires a lot of resources, methods are needed that determine good candidates for testing. RESULTS In this study, we applied an association rule mining approach to the identification of promising secondary phenotype candidates. The predictions rely on a large gene-phenotype annotation set that is used to find occurrence patterns of phenotypes. Applying an association rule mining approach, we could identify 1967 secondary phenotype hypotheses that cover 244 genes and 136 phenotypes. Using two automated and one manual evaluation strategies, we demonstrate that the secondary phenotype candidates possess biological relevance to the genes they are predicted for. From the results we conclude that the predicted secondary phenotypes constitute good candidates to be experimentally tested and confirmed. AVAILABILITY The secondary phenotype candidates can be browsed through at http://www.sanger.ac.uk/resources/databases/phenodigm/gene/secondaryphenotype/list. CONTACT ao5@sanger.ac.uk or ds5@sanger.ac.uk SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Anika Oellrich
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB1 10SA, UK
| | - Julius Jacobsen
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB1 10SA, UK
| | - Irene Papatheodorou
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB1 10SA, UK
| | | | - Damian Smedley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB1 10SA, UK
| |
Collapse
|
17
|
Abstract
The use of model organisms as tools for the investigation of human genetic variation has significantly and rapidly advanced our understanding of the aetiologies underlying hereditary traits. However, while equivalences in the DNA sequence of two species may be readily inferred through evolutionary models, the identification of equivalence in the phenotypic consequences resulting from comparable genetic variation is far from straightforward, limiting the value of the modelling paradigm. In this review, we provide an overview of the emerging statistical and computational approaches to objectively identify phenotypic equivalence between human and model organisms with examples from the vertebrate models, mouse and zebrafish. Firstly, we discuss enrichment approaches, which deem the most frequent phenotype among the orthologues of a set of genes associated with a common human phenotype as the orthologous phenotype, or phenolog, in the model species. Secondly, we introduce and discuss computational reasoning approaches to identify phenotypic equivalences made possible through the development of intra- and interspecies ontologies. Finally, we consider the particular challenges involved in modelling neuropsychiatric disorders, which illustrate many of the remaining difficulties in developing comprehensive and unequivocal interspecies phenotype mappings.
Collapse
Affiliation(s)
- Peter N. Robinson
- Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Bioinformatics, Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
- * E-mail: (PNR); (CW)
| | - Caleb Webber
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail: (PNR); (CW)
| |
Collapse
|
18
|
Mishra A, Bubela T. Legal agreements and the governance of research commons: lessons from materials sharing in mouse genomics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:254-73. [PMID: 24552652 PMCID: PMC3976585 DOI: 10.1089/omi.2013.0158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Omics research infrastructure such as databases and bio-repositories requires effective governance to support pre-competitive research. Governance includes the use of legal agreements, such as Material Transfer Agreements (MTAs). We analyze the use of such agreements in the mouse research commons, including by two large-scale resource development projects: the International Knockout Mouse Consortium (IKMC) and International Mouse Phenotyping Consortium (IMPC). We combine an analysis of legal agreements and semi-structured interviews with 87 members of the mouse model research community to examine legal agreements in four contexts: (1) between researchers; (2) deposit into repositories; (3) distribution by repositories; and (4) exchanges between repositories, especially those that are consortium members of the IKMC and IMPC. We conclude that legal agreements for the deposit and distribution of research reagents should be kept as simple and standard as possible, especially when minimal enforcement capacity and resources exist. Simple and standardized legal agreements reduce transactional bottlenecks and facilitate the creation of a vibrant and sustainable research commons, supported by repositories and databases.
Collapse
Affiliation(s)
- Amrita Mishra
- School of Public Health, University of Alberta , Edmonton, Alberta, Canada
| | | |
Collapse
|
19
|
Adissu HA, Estabel J, Sunter D, Tuck E, Hooks Y, Carragher DM, Clarke K, Karp NA, Newbigging S, Jones N, Morikawa L, White JK, McKerlie C. Histopathology reveals correlative and unique phenotypes in a high-throughput mouse phenotyping screen. Dis Model Mech 2014; 7:515-24. [PMID: 24652767 PMCID: PMC4007403 DOI: 10.1242/dmm.015263] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Mouse Genetics Project (MGP) at the Wellcome Trust Sanger Institute aims to generate and phenotype over 800 genetically modified mouse lines over the next 5 years to gain a better understanding of mammalian gene function and provide an invaluable resource to the scientific community for follow-up studies. Phenotyping includes the generation of a standardized biobank of paraffin-embedded tissues for each mouse line, but histopathology is not routinely performed. In collaboration with the Pathology Core of the Centre for Modeling Human Disease (CMHD) we report the utility of histopathology in a high-throughput primary phenotyping screen. Histopathology was assessed in an unbiased selection of 50 mouse lines with (n=30) or without (n=20) clinical phenotypes detected by the standard MGP primary phenotyping screen. Our findings revealed that histopathology added correlating morphological data in 19 of 30 lines (63.3%) in which the primary screen detected a phenotype. In addition, seven of the 50 lines (14%) presented significant histopathology findings that were not associated with or predicted by the standard primary screen. Three of these seven lines had no clinical phenotype detected by the standard primary screen. Incidental and strain-associated background lesions were present in all mutant lines with good concordance to wild-type controls. These findings demonstrate the complementary and unique contribution of histopathology to high-throughput primary phenotyping of mutant mice.
Collapse
Affiliation(s)
- Hibret A Adissu
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, 25 Orde Street, Toronto, ON M5T 3H7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Koscielny G, Yaikhom G, Iyer V, Meehan TF, Morgan H, Atienza-Herrero J, Blake A, Chen CK, Easty R, Di Fenza A, Fiegel T, Grifiths M, Horne A, Karp NA, Kurbatova N, Mason JC, Matthews P, Oakley DJ, Qazi A, Regnart J, Retha A, Santos LA, Sneddon DJ, Warren J, Westerberg H, Wilson RJ, Melvin DG, Smedley D, Brown SDM, Flicek P, Skarnes WC, Mallon AM, Parkinson H. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res 2014; 42:D802-9. [PMID: 24194600 PMCID: PMC3964955 DOI: 10.1093/nar/gkt977] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/20/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022] Open
Abstract
The International Mouse Phenotyping Consortium (IMPC) web portal (http://www.mousephenotype.org) provides the biomedical community with a unified point of access to mutant mice and rich collection of related emerging and existing mouse phenotype data. IMPC mouse clinics worldwide follow rigorous highly structured and standardized protocols for the experimentation, collection and dissemination of data. Dedicated 'data wranglers' work with each phenotyping center to collate data and perform quality control of data. An automated statistical analysis pipeline has been developed to identify knockout strains with a significant change in the phenotype parameters. Annotation with biomedical ontologies allows biologists and clinicians to easily find mouse strains with phenotypic traits relevant to their research. Data integration with other resources will provide insights into mammalian gene function and human disease. As phenotype data become available for every gene in the mouse, the IMPC web portal will become an invaluable tool for researchers studying the genetic contributions of genes to human diseases.
Collapse
Affiliation(s)
- Gautier Koscielny
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Gagarine Yaikhom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Vivek Iyer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Terrence F. Meehan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Hugh Morgan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Julian Atienza-Herrero
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Andrew Blake
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Chao-Kung Chen
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Richard Easty
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Armida Di Fenza
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Tanja Fiegel
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Mark Grifiths
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Alan Horne
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Natasha A. Karp
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Natalja Kurbatova
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jeremy C. Mason
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Peter Matthews
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Darren J. Oakley
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Asfand Qazi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jack Regnart
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ahmad Retha
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Luis A. Santos
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Duncan J. Sneddon
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jonathan Warren
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Henrik Westerberg
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Robert J. Wilson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David G. Melvin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Damian Smedley
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Steve D. M. Brown
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - William C. Skarnes
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ann-Marie Mallon
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
21
|
Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fitzgerald S, Gil L, Girón CG, Gordon L, Hourlier T, Hunt S, Johnson N, Juettemann T, Kähäri AK, Keenan S, Kulesha E, Martin FJ, Maurel T, McLaren WM, Murphy DN, Nag R, Overduin B, Pignatelli M, Pritchard B, Pritchard E, Riat HS, Ruffier M, Sheppard D, Taylor K, Thormann A, Trevanion SJ, Vullo A, Wilder SP, Wilson M, Zadissa A, Aken BL, Birney E, Cunningham F, Harrow J, Herrero J, Hubbard TJ, Kinsella R, Muffato M, Parker A, Spudich G, Yates A, Zerbino DR, Searle SM. Ensembl 2014. Nucleic Acids Res 2013; 42:D749-55. [PMID: 24316576 PMCID: PMC3964975 DOI: 10.1093/nar/gkt1196] [Citation(s) in RCA: 1059] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ensembl (http://www.ensembl.org) creates tools and data resources to facilitate genomic analysis in chordate species with an emphasis on human, major vertebrate model organisms and farm animals. Over the past year we have increased the number of species that we support to 77 and expanded our genome browser with a new scrollable overview and improved variation and phenotype views. We also report updates to our core datasets and improvements to our gene homology relationships from the addition of new species. Our REST service has been extended with additional support for comparative genomics and ontology information. Finally, we provide updated information about our methods for data access and resources for user training.
Collapse
Affiliation(s)
- Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- *To whom correspondence should be addressed. Tel: +44 1223 492 581; Fax: +44 1223 494 494;
| | - M. Ridwan Amode
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Daniel Barrell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Kathryn Beal
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Simon Brent
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Denise Carvalho-Silva
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Peter Clapham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Guy Coates
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Stephen Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Laurent Gil
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Carlos García Girón
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Leo Gordon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Sarah Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Nathan Johnson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Thomas Juettemann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Andreas K. Kähäri
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Stephen Keenan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Eugene Kulesha
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Fergal J. Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Thomas Maurel
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - William M. McLaren
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Daniel N. Murphy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Rishi Nag
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Bert Overduin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Miguel Pignatelli
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Bethan Pritchard
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Emily Pritchard
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Harpreet S. Riat
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Magali Ruffier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Daniel Sheppard
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Kieron Taylor
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Anja Thormann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Stephen J. Trevanion
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Alessandro Vullo
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Steven P. Wilder
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Mark Wilson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Amonida Zadissa
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Bronwen L. Aken
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Jennifer Harrow
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Javier Herrero
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Tim J.P. Hubbard
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Rhoda Kinsella
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Anne Parker
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Giulietta Spudich
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Andy Yates
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Daniel R. Zerbino
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Stephen M.J. Searle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
22
|
Blake JA, Bult CJ, Eppig JT, Kadin JA, Richardson JE. The Mouse Genome Database: integration of and access to knowledge about the laboratory mouse. Nucleic Acids Res 2013; 42:D810-7. [PMID: 24285300 PMCID: PMC3964950 DOI: 10.1093/nar/gkt1225] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Mouse Genome Database (MGD) (http://www.informatics.jax.org) is the community model organism database resource for the laboratory mouse, a premier animal model for the study of genetic and genomic systems relevant to human biology and disease. MGD maintains a comprehensive catalog of genes, functional RNAs and other genome features as well as heritable phenotypes and quantitative trait loci. The genome feature catalog is generated by the integration of computational and manual genome annotations generated by NCBI, Ensembl and Vega/HAVANA. MGD curates and maintains the comprehensive listing of functional annotations for mouse genes using the Gene Ontology, and MGD curates and integrates comprehensive phenotype annotations including associations of mouse models with human diseases. Recent improvements include integration of the latest mouse genome build (GRCm38), improved access to comparative and functional annotations for mouse genes with expanded representation of comparative vertebrate genomes and new loads of phenotype data from high-throughput phenotyping projects. All MGD resources are freely available to the research community.
Collapse
Affiliation(s)
- Judith A Blake
- Bioinformatics and Computational Biology, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | | | | | | | |
Collapse
|
23
|
Delivering and phenotyping mouse models for the respiratory community: a report on the Biochemical Society Workshop. Clin Sci (Lond) 2013; 125:495-500. [PMID: 23855728 DOI: 10.1042/cs20130274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The IMPC (International Mouse Phenotyping Consortium) was launched recently, and its aim is to develop and phenotype mouse knockouts of 4000 genes over the next 5 years and, ultimately, of all 20000 or so genes in the mouse genome. As part of the IMPC, the MRC (Medical Research Council) also launched a call for MRC mouse networks, where groups of U.K.-based researchers could form a consortium based around a particular area of research. Members of the respiratory research community formed the RDDRC (Respiratory Development and Disease Research Consortium) to consolidate and develop respiratory phenotyping methods suitable for high-throughput screening. This paper, arising from a Biochemical Society workshop held in London in 2012, highlights the purposes of the RDDRC and the needs of the respiratory research community.
Collapse
|
24
|
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancer is the third leading cause of cancer-related cell death in human and the fifth in women worldwide. The incidence of HCC is increasing despite progress in identifying risk factors, understanding disease etiology and developing anti-viral strategies. Therapeutic options are limited and survival after diagnosis is poor. Therefore, better preventive, diagnostic and therapeutic tools are urgently needed, in particular given the increased contribution from systemic metabolic disease to HCC incidence worldwide. In the last three decades, technological advances have facilitated the generation of genetically engineered mouse models (GEMMs) to mimic the alterations frequently observed in human cancers or to conduct intervention studies and assess the relevance of candidate gene networks in tumor establishment, progression and maintenance. Because these studies allow molecular and cellular manipulations impossible to perform in patients, GEMMs have improved our understanding of this complex disease and represent a source of great potential for mechanism-based therapy development. In this review, we provide an overview of the current state of HCC modeling in the mouse, highlighting successes, current challenges and future opportunities.
Collapse
|
25
|
Nadeau JH, Forejt J, Takada T, Shiroishi T. Chromosome substitution strains: gene discovery, functional analysis, and systems studies. Mamm Genome 2012; 23:693-705. [PMID: 22961226 DOI: 10.1007/s00335-012-9426-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 08/02/2012] [Indexed: 12/31/2022]
Abstract
Laboratory mice are valuable in biomedical research in part because of the extraordinary diversity of genetic resources that are available for studies of complex genetic traits and as models for human biology and disease. Chromosome substitution strains (CSSs) are important in this resource portfolio because of their demonstrated use for gene discovery, genetic and epigenetic studies, functional characterizations, and systems analysis. CSSs are made by replacing a single chromosome in a host strain with the corresponding chromosome from a donor strain. A complete CSS panel involves a total of 22 engineered inbred strains, one for each of the 19 autosomes, one each for the X and Y chromosomes, and one for mitochondria. A genome survey simply involves comparing each phenotype for each of the CSSs with the phenotypes of the host strain. The CSS panels that are available for laboratory mice have been used to dissect a remarkable variety of phenotypes and to characterize an impressive array of disease models. These surveys have revealed considerable phenotypic diversity even among closely related progenitor strains, evidence for strong epistasis and for heritable epigenetic changes. Perhaps most importantly, and presumably because of their unique genetic constitution, CSSs, and congenic strains derived from them, the genetic variants underlying quantitative trait loci (QTLs) are readily identified and functionally characterized. Together these studies show that CSSs are important resource for laboratory mice.
Collapse
Affiliation(s)
- Joseph H Nadeau
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, USA.
| | | | | | | |
Collapse
|
26
|
Brown SDM, Moore MW. The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping. Mamm Genome 2012; 23:632-40. [PMID: 22940749 DOI: 10.1007/s00335-012-9427-x] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/05/2012] [Indexed: 11/24/2022]
Abstract
Determining the function of all mammalian genes remains a major challenge for the biomedical science community in the 21st century. The goal of the International Mouse Phenotyping Consortium (IMPC) over the next 10 years is to undertake broad-based phenotyping of 20,000 mouse genes, providing an unprecedented insight into mammalian gene function. This short article explores the drivers for large-scale mouse phenotyping and provides an overview of the aims and processes involved in IMPC mouse production and phenotyping.
Collapse
Affiliation(s)
- Steve D M Brown
- MRC Mammalian Genetics Unit, MRC Harwell, Oxfordshire OX11 0RD, UK.
| | | |
Collapse
|
27
|
Morgan H, Simon M, Mallon AM. Accessing and Mining Data from Large-Scale Mouse Phenotyping Projects. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [DOI: 10.1016/b978-0-12-398323-7.00003-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|