1
|
Hjort L, Novakovic B, Cvitic S, Saffery R, Damm P, Desoye G. Placental DNA Methylation in pregnancies complicated by maternal diabetes and/or obesity: State of the Art and research gaps. Epigenetics 2022; 17:2188-2208. [PMID: 35950598 DOI: 10.1080/15592294.2022.2111755] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
SUMMARYMaternal diabetes and/or obesity in pregnancy are undoubtedly associated with later disease-risk in the offspring. The placenta, interposed between the mother and the fetus, is a potential mediator of this risk through epigenetic mechanisms, including DNA methylation. In recent years, multiple studies have identified differentially methylated CpG sites in the placental tissue DNA in pregnancies complicated by diabetes and obesity. We reviewed all published original research relevant to this topic and analyzed our findings with the focus of identifying overlaps, contradictions and gaps. Most studies focused on the association of gestational diabetes and/or hyperglycemia in pregnancy and DNA methylation in placental tissue at term. We identified overlaps in results related to specific candidate genes, but also observed a large research gap of pregnancies affected by type 1 diabetes. Other unanswered questions relate to analysis of specific placental cell types and the timing of DNA methylation change in response to diabetes and obesity during pregnancy. Maternal metabolism is altered already in the first trimester involving structural and functional changes in the placenta, but studies into its effects on placental DNA methylation during this period are lacking and urgently needed. Fetal sex is also an important determinant of pregnancy outcome, but only few studies have taken this into account. Collectively, we provide a reference work for researchers working in this large and evolving field. Based on the results of the literature review, we formulate suggestions for future focus of placental DNA methylation studies in pregnancies complicated by diabetes and obesity.
Collapse
Affiliation(s)
- Line Hjort
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Environmental Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Boris Novakovic
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Silvija Cvitic
- Department of Pediatrics and Adolescent Medicine, Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Medical University of Graz, Austria
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Peter Damm
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gernot Desoye
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept. of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Dent CL, Rienecker KDA, Ward A, Wilkins JF, Humby T, Isles AR. Mice lacking paternal expression of imprinted Grb10 are risk-takers. GENES BRAIN AND BEHAVIOR 2020; 19:e12679. [PMID: 32488937 PMCID: PMC9393934 DOI: 10.1111/gbb.12679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
The imprinted genes Grb10 and Nesp influence impulsive behavior on a delay discounting task in an opposite manner. A recently developed theory suggests that this pattern of behavior may be representative of predicted effects of imprinted genes on tolerance to risk. Here we examine whether mice lacking paternal expression of Grb10 show abnormal behavior across a number of measures indicative of risk‐taking. Although Grb10+/p mice show no difference from wild type (WT) littermates in their willingness to explore a novel environment, their behavior on an explicit test of risk‐taking, namely the Predator Odor Risk‐Taking task, is indicative of an increased willingness to take risks. Follow‐up tests suggest that this risk‐taking is not simply because of a general decrease in fear, or a general increase in motivation for a food reward, but reflects a change in the trade‐off between cost and reward. These data, coupled with previous work on the impulsive behavior of Grb10+/p mice in the delayed reinforcement task, and taken together with our work on mice lacking maternal Nesp, suggest that maternally and paternally expressed imprinted genes oppositely influence risk‐taking behavior as predicted.
Collapse
Affiliation(s)
- Claire L Dent
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Kira D A Rienecker
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Andrew Ward
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | | - Trevor Humby
- Behavioural Genetics Group, School of Psychology, Cardiff University, Cardiff, UK
| | - Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
3
|
Crespi BJ. Autism, psychosis, and genomic imprinting: recent discoveries and conundrums. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2018.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Reciprocal F1 Hybrids of Two Inbred Mouse Strains Reveal Parent-of-Origin and Perinatal Diet Effects on Behavior and Expression. G3-GENES GENOMES GENETICS 2018; 8:3447-3468. [PMID: 30171036 PMCID: PMC6222572 DOI: 10.1534/g3.118.200135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Parent-of-origin effects (POE) in mammals typically arise from maternal effects or imprinting. In some instances, such POE have been associated with psychiatric disorders, as well as with changes in a handful of animal behaviors. However, POE on complex traits such as behavior remain largely uncharacterized. Moreover, although both behavior and epigenetic effects are known to be modified by perinatal environmental exposures such as nutrient deficiency, the architecture of such environment-by-POE is mostly unexplored. To study POE and environment-by-POE, we employ a relatively neglected but especially powerful experimental system for POE-detection: reciprocal F1 hybrids (RF1s). We exposed female NOD/ShiLtJ×C57Bl/6J and C57Bl/6J×NOD/ShiLtJ mice, perinatally, to one of four different diets, then after weaning recorded a set of behaviors that model psychiatric disease. Whole-brain microarray expression data revealed an imprinting-enriched set of 15 genes subject to POE. The most-significant expression POE, on the non-imprinted gene Carmil1 (a.k.a. Lrrc16a), was validated using qPCR in the same and in a new set of mice. Several behaviors, especially locomotor behaviors, also showed POE. Bayesian mediation analysis suggested Carmil1 expression suppresses behavioral POE, and that the imprinted gene Airn suppresses POE on Carmil1 expression. A suggestive diet-by-POE was observed on percent center time in the open field test, and a significant diet-by-POE was observed on one imprinted gene, Mir341, and on 16 non-imprinted genes. The relatively small, tractable set of POE and diet-by-POE detected on behavior and expression here motivates further studies examining such effects across RF1s on multiple genetic backgrounds.
Collapse
|
5
|
Dent CL, Humby T, Lewis K, Ward A, Fischer-Colbrie R, Wilkinson LS, Wilkins JF, Isles AR. Impulsive Choice in Mice Lacking Paternal Expression of Grb10 Suggests Intragenomic Conflict in Behavior. Genetics 2018; 209:233-239. [PMID: 29563147 PMCID: PMC5937175 DOI: 10.1534/genetics.118.300898] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
Imprinted genes are expressed from one parental allele only as a consequence of epigenetic events that take place in the mammalian germ line and are thought to have evolved through intragenomic conflict between parental alleles. We demonstrate, for the first time, oppositional effects of imprinted genes on brain and behavior. Specifically, we show that mice lacking paternal Grb10 make fewer impulsive choices, with no dissociable effects on a separate measure of impulsive action. Taken together with previous work showing that mice lacking maternal Nesp55 make more impulsive choices, this suggests that impulsive choice behavior is a substrate for the action of genomic imprinting. Moreover, the contrasting effect of these two genes suggests that impulsive choices are subject to intragenomic conflict and that maternal and paternal interests pull this behavior in opposite directions. Finally, these data may also indicate that an imbalance in expression of imprinted genes contributes to pathological conditions such as gambling and drug addiction, where impulsive behavior becomes maladaptive.
Collapse
Affiliation(s)
- Claire L Dent
- Behavioural Genetics Group, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, CF24 4HQ United Kingdom
| | - Trevor Humby
- Behavioural Genetics Group, School of Psychology, Cardiff University, CF10 3AT United Kingdom
| | - Katie Lewis
- Behavioural Genetics Group, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, CF24 4HQ United Kingdom
| | - Andrew Ward
- Department of Biology and Biochemistry, University of Bath, BA2 7AX United Kingdom
| | | | - Lawrence S Wilkinson
- Behavioural Genetics Group, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, CF24 4HQ United Kingdom
- Behavioural Genetics Group, School of Psychology, Cardiff University, CF10 3AT United Kingdom
| | | | - Anthony R Isles
- Behavioural Genetics Group, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, CF24 4HQ United Kingdom
| |
Collapse
|
6
|
Wasson JA, Birol O, Katz DJ. A Resource for the Allele-Specific Analysis of DNA Methylation at Multiple Genomically Imprinted Loci in Mice. G3 (BETHESDA, MD.) 2018; 8:91-103. [PMID: 29138238 PMCID: PMC5765370 DOI: 10.1534/g3.117.300417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/30/2017] [Indexed: 01/15/2023]
Abstract
Genomically imprinted loci are expressed mono-allelically, dependent upon the parent of origin. Their regulation not only illuminates how chromatin regulates gene expression but also how chromatin can be reprogrammed every generation. Because of their distinct parent-of-origin regulation, analysis of imprinted loci can be difficult. Single nucleotide polymorphisms (SNPs) are required to accurately assess these elements allele specifically. However, publicly available SNP databases lack robust verification, making analysis of imprinting difficult. In addition, the allele-specific imprinting assays that have been developed employ different mouse strains, making it difficult to systemically analyze these loci. Here, we have generated a resource that will allow the allele-specific analysis of many significant imprinted loci in a single hybrid strain of Mus musculus This resource includes verification of SNPs present within 10 of the most widely used imprinting control regions and allele-specific DNA methylation assays for each gene in a C57BL/6J and CAST/EiJ hybrid strain background.
Collapse
Affiliation(s)
- Jadiel A Wasson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Onur Birol
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - David J Katz
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
7
|
Godamudunage MP, Foster A, Warren D, Lyons BA. Grb7 protein RA domain oligomerization. J Mol Recognit 2017; 30. [PMID: 28295715 DOI: 10.1002/jmr.2620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/26/2017] [Accepted: 01/28/2017] [Indexed: 11/05/2022]
Abstract
The growth factor receptor bound protein 7 (Grb7) is an adaptor protein that is often coamplified with the erythroblastosis oncogene B 2 receptor in 20% to 30% of breast cancer patients. Grb7 overexpression has been linked to increased cell migration and cancer metastasis. The ras associating and pleckstrin homology domain region of Grb7 has been reported to interact with various other downstream signaling proteins such as four and half Lin11, Isl-1, Mec-3 (LIM) domains isoform 2 and filamin α. These interactions are believed to play a role in regulating Grb7-mediated cell migration function. The full-length Grb7 protein has been shown to dimerize, and the oligomeric state of the Grb7SH2 domain has been extensively studied; however, the oligomerization state of the ras associating and pleckstrin homology domains, and the importance of this oligomerization in Grb7 function, is yet to be fully known. In this study, we characterize the oligomeric state of the Grb7RA domain using size exclusion chromatography, nuclear magnetic resonance, nuclear relaxation studies, glutaraldehyde cross linking, and dynamic light scattering. We report the Grb7RA domain can exist in transient multimeric forms and, based upon modeling results, postulate the potential role of Grb7RA domain oligomerization in Grb7 function.
Collapse
Affiliation(s)
- Malika P Godamudunage
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.,Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | | | - Barbara A Lyons
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| |
Collapse
|
8
|
Dent CL, Humby T, Lewis K, Plagge A, Fischer-Colbrie R, Wilkins JF, Wilkinson LS, Isles AR. Impulsive choices in mice lacking imprinted Nesp55. GENES BRAIN AND BEHAVIOR 2016; 15:693-701. [PMID: 27509352 DOI: 10.1111/gbb.12316] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/03/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022]
Abstract
Genomic imprinting is the process whereby germline epigenetic events lead to parent-of-origin specific monallelic expression of a number of key mammalian genes. The imprinted gene Nesp is expressed from the maternal allele only and encodes for Nesp55 protein. In the brain, Nesp55 is found predominately in discrete areas of the hypothalamus and midbrain. Previously, we have shown that loss of Nesp55 gives rise to alterations in novelty-related behaviour. Here, we extend these findings and demonstrate, using the Nespm/+ mouse model, that loss of Nesp55 leads to impulsive choices as measured by a delayed-reinforcement task, whereby Nespm/+ mice were less willing to wait for a delayed, larger reward, preferring instead to choose an immediate, smaller reward. These effects were highly specific as performance in another component of impulsive behaviour, the ability to stop a response once started as assayed in the stop-signal reaction time task, was equivalent to controls. We also showed changes in the serotonin system, a key neurotransmitter pathway mediating impulsive behaviour. First, we demonstrated that Nesp55 is co-localized with serotonin and then went on to show that in midbrain regions there were reductions in mRNA expression of the serotonin-specific genes Tph2 and Slc6a4, but not the dopamine-specific gene Th in Nespm/+ mice; suggesting an altered serotonergic system could contribute, in part, to the changes in impulsive behaviour. These data provide a novel mode of action for genomic imprinting in the brain and may have implications for pathological conditions characterized by maladaptive response control.
Collapse
Affiliation(s)
- C L Dent
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute
| | - T Humby
- Behavioural Genetics Group, School of Psychology, Cardiff University, Cardiff, UK
| | - K Lewis
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute
| | - A Plagge
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - R Fischer-Colbrie
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | - L S Wilkinson
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute.,Behavioural Genetics Group, School of Psychology, Cardiff University, Cardiff, UK
| | - A R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute
| |
Collapse
|
9
|
Rienecker KDA, Hill MJ, Isles AR. Methods of epigenome editing for probing the function of genomic imprinting. Epigenomics 2016; 8:1389-1398. [PMID: 27625199 DOI: 10.2217/epi-2016-0073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The curious patterns of imprinted gene expression draw interest from several scientific disciplines to the functional consequences of genomic imprinting. Methods of probing the function of imprinting itself have largely been indirect and correlational, relying heavily on conventional transgenics. Recently, the burgeoning field of epigenome editing has provided new tools and suggested strategies for asking causal questions with site specificity. This perspective article aims to outline how these new methods may be applied to questions of functional imprinting and, with this aim in mind, to suggest new dimensions for the expansion of these epigenome-editing tools.
Collapse
Affiliation(s)
- Kira DA Rienecker
- MRC Centre for Neuropsychiatric Genetics & Genomics, Department of Psychological Medicine & Clinical Neuroscience, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Matthew J Hill
- MRC Centre for Neuropsychiatric Genetics & Genomics, Department of Psychological Medicine & Clinical Neuroscience, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Anthony R Isles
- MRC Centre for Neuropsychiatric Genetics & Genomics, Department of Psychological Medicine & Clinical Neuroscience, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
10
|
Marty V, Labialle S, Bortolin-Cavaillé ML, Ferreira De Medeiros G, Moisan MP, Florian C, Cavaillé J. Deletion of the miR-379/miR-410 gene cluster at the imprintedDlk1-Dio3locus enhances anxiety-related behaviour. Hum Mol Genet 2016; 25:728-39. [DOI: 10.1093/hmg/ddv510] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/08/2015] [Indexed: 12/31/2022] Open
|
11
|
Baran Y, Subramaniam M, Biton A, Tukiainen T, Tsang EK, Rivas MA, Pirinen M, Gutierrez-Arcelus M, Smith KS, Kukurba KR, Zhang R, Eng C, Torgerson DG, Urbanek C, Li JB, Rodriguez-Santana JR, Burchard EG, Seibold MA, MacArthur DG, Montgomery SB, Zaitlen NA, Lappalainen T. The landscape of genomic imprinting across diverse adult human tissues. Genome Res 2015; 25:927-36. [PMID: 25953952 PMCID: PMC4484390 DOI: 10.1101/gr.192278.115] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/07/2015] [Indexed: 12/24/2022]
Abstract
Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues.
Collapse
Affiliation(s)
- Yael Baran
- The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Meena Subramaniam
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Anne Biton
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Taru Tukiainen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Emily K Tsang
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Biomedical Informatics Program, Stanford University, Stanford, California 94305, USA
| | - Manuel A Rivas
- Wellcome Trust Center for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Matti Pirinen
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Maria Gutierrez-Arcelus
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | - Kevin S Smith
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Kim R Kukurba
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Rui Zhang
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Dara G Torgerson
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Cydney Urbanek
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado 80206, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | | | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, USA
| | - Max A Seibold
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado 80206, USA; Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado-Denver, Denver, Colorado 80045, USA
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stephen B Montgomery
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Noah A Zaitlen
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, New York 10013, USA; Department of Systems Biology, Columbia University, New York, New York 10032, USA
| |
Collapse
|
12
|
Monk D. Germline-derived DNA methylation and early embryo epigenetic reprogramming: The selected survival of imprints. Int J Biochem Cell Biol 2015; 67:128-38. [PMID: 25966912 DOI: 10.1016/j.biocel.2015.04.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/27/2015] [Indexed: 12/27/2022]
Abstract
DNA methylation is an essential epigenetic mechanism involved in many essential cellular processes. During development epigenetic reprograming takes place during gametogenesis and then again in the pre-implantation embryo. These two reprograming windows ensure genome-wide removal of methylation in the primordial germ cells so that sex-specific signatures can be acquired in the sperm and oocyte. Following fertilization the majority of this epigenetic information is erased to give the developing embryo an epigenetic profile coherent with pluripotency. It is estimated that ∼65% of the genome is differentially methylated between the gametes, however following embryonic reprogramming only parent-of-origin methylation at known imprinted loci remains. This suggests that trans-acting factors such as Zfp57 can discriminate imprinted differentially methylated regions (DMRs) from the thousands of CpG rich regions that are differentially marked in the gametes. Recently transient imprinted DMRs have been identified suggesting that these loci are also protected from pre-implantation reprograming but succumb to de novo remethylation at the implantation stage. This highlights that "ubiquitous" imprinted loci are also resilient to gaining methylation by protecting their unmethylated alleles. In this review I examine the processes involved in epigenetic reprograming and the mechanisms that ensure allelic methylation at imprinted loci is retained throughout the life of the organism, discussing the critical differences between mouse and humans. This article is part of a Directed Issue entitled: Epigenetics Dynamics in development and disease.
Collapse
Affiliation(s)
- David Monk
- Imprinting and Cancer group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona 08908, Spain.
| |
Collapse
|
13
|
Brown WM. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. Br J Sports Med 2015; 49:1567-78. [PMID: 25824446 DOI: 10.1136/bjsports-2014-094073] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Epigenetics is the study of processes--beyond DNA sequence alteration--producing heritable characteristics. For example, DNA methylation modifies gene expression without altering the nucleotide sequence. A well-studied DNA methylation-based phenomenon is genomic imprinting (ie, genotype-independent parent-of-origin effects). OBJECTIVE We aimed to elucidate: (1) the effect of exercise on DNA methylation and (2) the role of imprinted genes in skeletal muscle gene networks (ie, gene group functional profiling analyses). DESIGN Gene ontology (ie, gene product elucidation)/meta-analysis. DATA SOURCES 26 skeletal muscle and 86 imprinted genes were subjected to g:Profiler ontology analysis. Meta-analysis assessed exercise-associated DNA methylation change. DATA EXTRACTION g:Profiler found four muscle gene networks with imprinted loci. Meta-analysis identified 16 articles (387 genes/1580 individuals) associated with exercise. Age, method, sample size, sex and tissue variation could elevate effect size bias. DATA SYNTHESIS Only skeletal muscle gene networks including imprinted genes were reported. Exercise-associated effect sizes were calculated by gene. Age, method, sample size, sex and tissue variation were moderators. RESULTS Six imprinted loci (RB1, MEG3, UBE3A, PLAGL1, SGCE, INS) were important for muscle gene networks, while meta-analysis uncovered five exercise-associated imprinted loci (KCNQ1, MEG3, GRB10, L3MBTL1, PLAGL1). DNA methylation decreased with exercise (60% of loci). Exercise-associated DNA methylation change was stronger among older people (ie, age accounted for 30% of the variation). Among older people, genes exhibiting DNA methylation decreases were part of a microRNA-regulated gene network functioning to suppress cancer. CONCLUSIONS Imprinted genes were identified in skeletal muscle gene networks and exercise-associated DNA methylation change. Exercise-associated DNA methylation modification could rewind the 'epigenetic clock' as we age. TRIAL REGISTRATION NUMBER CRD42014009800.
Collapse
|
14
|
Tissue-specific regulation and function of Grb10 during growth and neuronal commitment. Proc Natl Acad Sci U S A 2014; 112:6841-7. [PMID: 25368187 DOI: 10.1073/pnas.1411254111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth-factor receptor bound protein 10 (Grb10) is a signal adapter protein encoded by an imprinted gene that has roles in growth control, cellular proliferation, and insulin signaling. Additionally, Grb10 is critical for the normal behavior of the adult mouse. These functions are paralleled by Grb10's unique tissue-specific imprinted expression; the paternal copy of Grb10 is expressed in a subset of neurons whereas the maternal copy is expressed in most other adult tissues in the mouse. The mechanism that underlies this switch between maternal and paternal expression is still unclear, as is the role for paternally expressed Grb10 in neurons. Here, we review recent work and present complementary data that contribute to the understanding of Grb10 gene regulation and function, with specific emphasis on growth and neuronal development. Additionally, we show that in vitro differentiation of mouse embryonic stem cells into alpha motor neurons recapitulates the switch from maternal to paternal expression observed during neuronal development in vivo. We postulate that this switch in allele-specific expression is related to the functional role of Grb10 in motor neurons and other neuronal tissues.
Collapse
|
15
|
Peters J. The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet 2014; 15:517-30. [PMID: 24958438 DOI: 10.1038/nrg3766] [Citation(s) in RCA: 298] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon that results in monoallelic gene expression according to parental origin. It has long been established that imprinted genes have major effects on development and placental biology before birth. More recently, it has become evident that imprinted genes also have important roles after birth. In this Review, I bring together studies of the effects of imprinted genes from the prenatal period onwards. Recent work on postnatal stages shows that imprinted genes influence an extraordinarily wide-ranging array of biological processes, the effects of which extend into adulthood, and play important parts in common diseases that range from obesity to psychiatric disorders.
Collapse
Affiliation(s)
- Jo Peters
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| |
Collapse
|
16
|
Abstract
Genes that are subject to genomic imprinting in mammals are preferentially expressed from a single parental allele. This imprinted expression of a small number of genes is crucial for normal development, as these genes often directly regulate fetal growth. Recent work has also demonstrated intricate roles for imprinted genes in the brain, with important consequences on behavior and neuronal function. Finally, new studies have revealed the importance of proper expression of specific imprinted genes in induced pluripotent stem cells and in adult stem cells. As we review here, these findings highlight the complex nature and developmental importance of imprinted genes.
Collapse
|
17
|
Tarantino LM, Schalkwyk LC. Introduction to mammalian genome special issue: genetics of behavior. Mamm Genome 2014. [DOI: 10.1007/s00335-013-9496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|