1
|
Keleş MF, Sapci AOB, Brody C, Palmer I, Le C, Taştan Ö, Keleş S, Wu MN. FlyVISTA, an Integrated Machine Learning Platform for Deep Phenotyping of Sleep in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564733. [PMID: 37961473 PMCID: PMC10635029 DOI: 10.1101/2023.10.30.564733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Animal behavior depends on internal state. While subtle movements can signify significant changes in internal state, computational methods for analyzing these "microbehaviors" are lacking. Here, we present FlyVISTA, a machine-learning platform to characterize microbehaviors in freely-moving flies, which we use to perform deep phenotyping of sleep. This platform comprises a high-resolution closed-loop video imaging system, coupled with a deep-learning network to annotate 35 body parts, and a computational pipeline to extract behaviors from high-dimensional data. FlyVISTA reveals the distinct spatiotemporal dynamics of sleep-associated microbehaviors in flies. We further show that stimulation of dorsal fan-shaped body neurons induces micromovements, not sleep, whereas activating R5 ring neurons triggers rhythmic proboscis extension followed by persistent sleep. Importantly, we identify a novel microbehavior ("haltere switch") exclusively seen during quiescence that indicates a deeper sleep stage. These findings enable the rigorous analysis of sleep in Drosophila and set the stage for computational analyses of microbehaviors.
Collapse
Affiliation(s)
- Mehmet F. Keleş
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ali Osman Berk Sapci
- Department of Computer Science, Sabanci University, Tuzla, Istanbul, 34956, Turkey
| | - Casey Brody
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Isabelle Palmer
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Christin Le
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Öznur Taştan
- Department of Computer Science, Sabanci University, Tuzla, Istanbul, 34956, Turkey
| | - Sündüz Keleş
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark N. Wu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
2
|
Justino AR, Hartfelder K. A versatile recording device for the analysis of continuous daily external activity in colonies of highly eusocial bees. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024:10.1007/s00359-024-01709-2. [PMID: 38898188 DOI: 10.1007/s00359-024-01709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
As pollinators, bees are key to maintaining the biodiversity of angiosperm plants, and for agriculture they provide a billion-dollar ecosystem service. But they also compete for resources (primarily nectar and pollen), especially the highly social bees that live in perennial colonies. So, how do they organize their daily temporal activities? Here, we present a versatile, low-cost device for the continuous, automatic recording and data analysis of the locomotor activity in the colony-entrance tube of highly eusocial bees. Consisting of an in-house built block containing an infrared detector, the passage of bees in the colony entrance tunnel is registered and automatically recorded in an Arduino environment, together with concomitant recordings of temperature and relative humidity. With a focus on the highly diverse Neotropical stingless bees (Meliponini), we obtained 10-day consecutive recordings for two colonies each of the species Melipona quadrifasciata and Frieseomelitta varia, and also for the honey bee. The Lomb-Scargle periodogram analysis identified a predominant circadian rhythmicity for all three species, but also indications of ultradian rhythms. For M. quadrifasciata, which is comparable in size to the honey bee, we found evidence for a possibly anticipatory activity already before sunrise. As all three species also presented activity at night in the colony entrance tube, this also raises questions about sleep organization in social insects. The cost and versatility of the device and the open-source options for data analysis make this an attractive system for conducting studies on circadian rhythms in social bees under natural conditions, complementing studies on flower visits by these important pollinators.
Collapse
Affiliation(s)
- Arthur Roque Justino
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto - USP, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14049-900, SP, Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto - USP, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14049-900, SP, Brazil.
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Jagannathan SR, Jeans T, Van De Poll MN, van Swinderen B. Multivariate classification of multichannel long-term electrophysiology data identifies different sleep stages in fruit flies. SCIENCE ADVANCES 2024; 10:eadj4399. [PMID: 38381836 PMCID: PMC10881036 DOI: 10.1126/sciadv.adj4399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Identifying different sleep stages in humans and other mammals has traditionally relied on electroencephalograms. Such an approach is not feasible in certain animals such as invertebrates, although these animals could also be sleeping in stages. Here, we perform long-term multichannel local field potential recordings in the brains of behaving flies undergoing spontaneous sleep bouts. We acquired consistent spatial recordings of local field potentials across multiple flies, allowing us to compare brain activity across awake and sleep periods. Using machine learning, we uncover distinct temporal stages of sleep and explore the associated spatial and spectral features across the fly brain. Further, we analyze the electrophysiological correlates of microbehaviors associated with certain sleep stages. We confirm the existence of a distinct sleep stage associated with rhythmic proboscis extensions and show that spectral features of this sleep-related behavior differ significantly from those associated with the same behavior during wakefulness, indicating a dissociation between behavior and the brain states wherein these behaviors reside.
Collapse
Affiliation(s)
- Sridhar R. Jagannathan
- Department of Psychology, University of Cambridge, Cambridge, UK
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Travis Jeans
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD Australia
| | | | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD Australia
| |
Collapse
|
4
|
Anthoney N, Tainton-Heap L, Luong H, Notaras E, Kewin AB, Zhao Q, Perry T, Batterham P, Shaw PJ, van Swinderen B. Experimentally induced active and quiet sleep engage non-overlapping transcriptional programs in Drosophila. eLife 2023; 12:RP88198. [PMID: 37910019 PMCID: PMC10619980 DOI: 10.7554/elife.88198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Sleep in mammals can be broadly classified into two different physiological categories: rapid eye movement (REM) sleep and slow-wave sleep (SWS), and accordingly REM and SWS are thought to achieve a different set of functions. The fruit fly Drosophila melanogaster is increasingly being used as a model to understand sleep functions, although it remains unclear if the fly brain also engages in different kinds of sleep as well. Here, we compare two commonly used approaches for studying sleep experimentally in Drosophila: optogenetic activation of sleep-promoting neurons and provision of a sleep-promoting drug, gaboxadol. We find that these different sleep-induction methods have similar effects on increasing sleep duration, but divergent effects on brain activity. Transcriptomic analysis reveals that drug-induced deep sleep ('quiet' sleep) mostly downregulates metabolism genes, whereas optogenetic 'active' sleep upregulates a wide range of genes relevant to normal waking functions. This suggests that optogenetics and pharmacological induction of sleep in Drosophila promote different features of sleep, which engage different sets of genes to achieve their respective functions.
Collapse
Affiliation(s)
- Niki Anthoney
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Lucy Tainton-Heap
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Hang Luong
- School of BioSciences, The University of MelbourneMelbourneAustralia
| | - Eleni Notaras
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Amber B Kewin
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Qiongyi Zhao
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Trent Perry
- School of BioSciences, The University of MelbourneMelbourneAustralia
| | - Philip Batterham
- School of BioSciences, The University of MelbourneMelbourneAustralia
| | - Paul J Shaw
- Department of Neuroscience, School of Medicine, Washington University in St. LouisSt LouisUnited States
| | | |
Collapse
|
5
|
Anthoney N, Tainton-Heap LA, Luong H, Notaras E, Kewin AB, Zhao Q, Perry T, Batterham P, Shaw PJ, van Swinderen B. Experimentally induced active and quiet sleep engage non-overlapping transcriptional programs in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535331. [PMID: 37066182 PMCID: PMC10103959 DOI: 10.1101/2023.04.03.535331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Sleep in mammals can be broadly classified into two different physiological categories: rapid eye movement (REM) sleep and slow wave sleep (SWS), and accordingly REM and SWS are thought to achieve a different set of functions. The fruit fly Drosophila melanogaster is increasingly being used as a model to understand sleep functions, although it remains unclear if the fly brain also engages in different kinds of sleep as well. Here, we compare two commonly used approaches for studying sleep experimentally in Drosophila: optogenetic activation of sleep-promoting neurons and provision of a sleep-promoting drug, Gaboxadol. We find that these different sleep-induction methods have similar effects on increasing sleep duration, but divergent effects on brain activity. Transcriptomic analysis reveals that drug-induced deep sleep ('quiet' sleep) mostly downregulates metabolism genes, whereas optogenetic 'active' sleep upregulates a wide range of genes relevant to normal waking functions. This suggests that optogenetics and pharmacological induction of sleep in Drosophila promote different features of sleep, which engage different sets of genes to achieve their respective functions.
Collapse
Affiliation(s)
- Niki Anthoney
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | | | - Hang Luong
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3052 Australia
| | - Eleni Notaras
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Amber B. Kewin
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Qiongyi Zhao
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Trent Perry
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3052 Australia
| | - Philip Batterham
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3052 Australia
| | - Paul J. Shaw
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO USA
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
6
|
Ajayi OM, Wynne NE, Chen SC, Vinauger C, Benoit JB. Sleep: An Essential and Understudied Process in the Biology of Blood-Feeding Arthropods. Integr Comp Biol 2023; 63:530-547. [PMID: 37429615 PMCID: PMC10503478 DOI: 10.1093/icb/icad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Understanding the biology of blood-feeding arthropods is critical to managing them as vectors of etiological agents. Circadian rhythms act in the regulation of behavioral and physiological aspects such as blood feeding, immunity, and reproduction. However, the impact of sleep on these processes has been largely ignored in blood-feeding arthropods, but recent studies in mosquitoes show that sleep-like states directly impact host landing and blood feeding. Our focus in this review is on discussing the relationship between sleep and circadian rhythms in blood-feeding arthropods along with how unique aspects such as blood gluttony and dormancy can impact sleep-like states. We highlight that sleep-like states are likely to have profound impacts on vector-host interactions but will vary between lineages even though few direct studies have been conducted. A myriad of factors, such as artificial light, could directly impact the time and levels of sleep in blood-feeding arthropods and their roles as vectors. Lastly, we discuss underlying factors that make sleep studies in blood-feeding arthropods difficult and how these can be bypassed. As sleep is a critical factor in the fitness of animal systems, a lack of focus on sleep in blood-feeding arthropods represents a significant oversight in understanding their behavior and its role in pathogen transmission.
Collapse
Affiliation(s)
- Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Nicole E Wynne
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Shyh-Chi Chen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
7
|
Jagannathan SR, Jeans R, Van De Poll MN, van Swinderen B. Multivariate classification of multichannel long-term electrophysiology data identifies different sleep stages in fruit flies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544704. [PMID: 37398087 PMCID: PMC10312633 DOI: 10.1101/2023.06.12.544704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Sleep is observed in most animals, which suggests it subserves a fundamental process associated with adaptive biological functions. However, the evidence to directly associate sleep with a specific function is lacking, in part because sleep is not a single process in many animals. In humans and other mammals, different sleep stages have traditionally been identified using electroencephalograms (EEGs), but such an approach is not feasible in different animals such as insects. Here, we perform long-term multichannel local field potential (LFP) recordings in the brains of behaving flies undergoing spontaneous sleep bouts. We developed protocols to allow for consistent spatial recordings of LFPs across multiple flies, allowing us to compare the LFP activity across awake and sleep periods and further compare the same to induced sleep. Using machine learning, we uncover the existence of distinct temporal stages of sleep and explore the associated spatial and spectral features across the fly brain. Further, we analyze the electrophysiological correlates of micro-behaviours associated with certain sleep stages. We confirm the existence of a distinct sleep stage associated with rhythmic proboscis extensions and show that spectral features of this sleep-related behavior differ significantly from those associated with the same behavior during wakefulness, indicating a dissociation between behavior and the brain states wherein these behaviors reside.
Collapse
Affiliation(s)
- Sridhar R. Jagannathan
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rhiannon Jeans
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| | | | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| |
Collapse
|
8
|
Rattenborg NC, Ungurean G. The evolution and diversification of sleep. Trends Ecol Evol 2023; 38:156-170. [PMID: 36411158 DOI: 10.1016/j.tree.2022.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022]
Abstract
The evolutionary origins of sleep and its sub-states, rapid eye movement (REM) and non-REM (NREM) sleep, found in mammals and birds, remain a mystery. Although the discovery of a single type of sleep in jellyfish suggests that sleep evolved much earlier than previously thought, it is unclear when and why sleep diversified into multiple types of sleep. Intriguingly, multiple types of sleep have recently been found in animals ranging from non-avian reptiles to arthropods to cephalopods. Although there are similarities between these states and those found in mammals and birds, notable differences also exist. The diversity in the way sleep is expressed confounds attempts to trace the evolution of sleep states, but also serves as a rich resource for exploring the functions of sleep.
Collapse
Affiliation(s)
- Niels C Rattenborg
- Max Planck Institute for Biological Intelligence (in foundation), Seewiesen, Germany.
| | - Gianina Ungurean
- Max Planck Institute for Biological Intelligence (in foundation), Seewiesen, Germany
| |
Collapse
|
9
|
Guo R, Vaughan DT, Rojo ALA, Huang YH. Sleep-mediated regulation of reward circuits: implications in substance use disorders. Neuropsychopharmacology 2023; 48:61-78. [PMID: 35710601 PMCID: PMC9700806 DOI: 10.1038/s41386-022-01356-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022]
Abstract
Our modern society suffers from both pervasive sleep loss and substance abuse-what may be the indications for sleep on substance use disorders (SUDs), and could sleep contribute to the individual variations in SUDs? Decades of research in sleep as well as in motivated behaviors have laid the foundation for us to begin to answer these questions. This review is intended to critically summarize the circuit, cellular, and molecular mechanisms by which sleep influences reward function, and to reveal critical challenges for future studies. The review also suggests that improving sleep quality may serve as complementary therapeutics for treating SUDs, and that formulating sleep metrics may be useful for predicting individual susceptibility to SUDs and other reward-associated psychiatric diseases.
Collapse
Affiliation(s)
- Rong Guo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Allen Institute, Seattle, WA, 98109, USA
| | - Dylan Thomas Vaughan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana Lourdes Almeida Rojo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint synaptic weight representation. PLoS Comput Biol 2022; 18:e1010628. [PMID: 36399437 PMCID: PMC9674146 DOI: 10.1371/journal.pcbi.1010628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Artificial neural networks overwrite previously learned tasks when trained sequentially, a phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously, and typically learns best when new training is interleaved with periods of sleep for memory consolidation. Here we used spiking network to study mechanisms behind catastrophic forgetting and the role of sleep in preventing it. The network could be trained to learn a complex foraging task but exhibited catastrophic forgetting when trained sequentially on different tasks. In synaptic weight space, new task training moved the synaptic weight configuration away from the manifold representing old task leading to forgetting. Interleaving new task training with periods of off-line reactivation, mimicking biological sleep, mitigated catastrophic forgetting by constraining the network synaptic weight state to the previously learned manifold, while allowing the weight configuration to converge towards the intersection of the manifolds representing old and new tasks. The study reveals a possible strategy of synaptic weights dynamics the brain applies during sleep to prevent forgetting and optimize learning.
Collapse
|
11
|
Van De Poll MN, van Swinderen B. Balancing Prediction and Surprise: A Role for Active Sleep at the Dawn of Consciousness? Front Syst Neurosci 2021; 15:768762. [PMID: 34803618 PMCID: PMC8602873 DOI: 10.3389/fnsys.2021.768762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/08/2021] [Indexed: 11/14/2022] Open
Abstract
The brain is a prediction machine. Yet the world is never entirely predictable, for any animal. Unexpected events are surprising, and this typically evokes prediction error signatures in mammalian brains. In humans such mismatched expectations are often associated with an emotional response as well, and emotional dysregulation can lead to cognitive disorders such as depression or schizophrenia. Emotional responses are understood to be important for memory consolidation, suggesting that positive or negative 'valence' cues more generally constitute an ancient mechanism designed to potently refine and generalize internal models of the world and thereby minimize prediction errors. On the other hand, abolishing error detection and surprise entirely (as could happen by generalization or habituation) is probably maladaptive, as this might undermine the very mechanism that brains use to become better prediction machines. This paradoxical view of brain function as an ongoing balance between prediction and surprise suggests a compelling approach to study and understand the evolution of consciousness in animals. In particular, this view may provide insight into the function and evolution of 'active' sleep. Here, we propose that active sleep - when animals are behaviorally asleep but their brain seems awake - is widespread beyond mammals and birds, and may have evolved as a mechanism for optimizing predictive processing in motile creatures confronted with constantly changing environments. To explore our hypothesis, we progress from humans to invertebrates, investigating how a potential role for rapid eye movement (REM) sleep in emotional regulation in humans could be re-examined as a conserved sleep function that co-evolved alongside selective attention to maintain an adaptive balance between prediction and surprise. This view of active sleep has some interesting implications for the evolution of subjective awareness and consciousness in animals.
Collapse
Affiliation(s)
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Tasman K, Rands SA, Hodge JJL. Using radio frequency identification and locomotor activity monitoring to assess sleep, locomotor, and foraging rhythmicity in bumblebees. STAR Protoc 2021; 2:100598. [PMID: 34169292 PMCID: PMC8209741 DOI: 10.1016/j.xpro.2021.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bumblebees are a key pollinator. Understanding the factors that influence the timing of sleep and foraging trips is important for efficient foraging and pollination. Here, we illustrate how individual locomotor activity monitoring and colony-wide radio frequency identification tracking can be combined to analyze the effects of agrochemicals like neonicotinoids on locomotor and foraging rhythmicity and sleep quantity/quality in bumblebees. We also highlight aspects of the design that can be adapted for other invertebrates or agrochemicals, allowing broader application of these techniques. For complete details on the use and execution of this protocol, please refer to Tasman et al. (2020). Easy and reliable way of testing circadian rhythmicity and sleep in invertebrates Covers colony care, equipment adaptation, and setup and experimental protocol This protocol can be used to study the effects of any water soluble/liquid insecticide The multiple ways to adapt the protocol for other organisms are highlighted
Collapse
Affiliation(s)
- Kiah Tasman
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Sean A Rands
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
13
|
Miler K, Opalek M, Ostap‐Chec M, Stec D. Diel rhythmicity of alcohol‐induced intoxication in the honeybee workers. J Zool (1987) 2021. [DOI: 10.1111/jzo.12872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- K. Miler
- Institute of Systematics and Evolution of Animals Polish Academy of Sciences Kraków Poland
| | - M. Opalek
- Institute of Environmental Sciences Faculty of Biology Jagiellonian University Kraków Poland
| | - M. Ostap‐Chec
- Institute of Environmental Sciences Faculty of Biology Jagiellonian University Kraków Poland
| | - D. Stec
- Institute of Zoology and Biomedical Research Faculty of Biology Jagiellonian University Kraków Poland
| |
Collapse
|
14
|
Beer K, Helfrich-Förster C. Model and Non-model Insects in Chronobiology. Front Behav Neurosci 2020; 14:601676. [PMID: 33328925 PMCID: PMC7732648 DOI: 10.3389/fnbeh.2020.601676] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an established model organism in chronobiology, because genetic manipulation and breeding in the laboratory are easy. The circadian clock neuroanatomy in D. melanogaster is one of the best-known clock networks in insects and basic circadian behavior has been characterized in detail in this insect. Another model in chronobiology is the honey bee Apis mellifera, of which diurnal foraging behavior has been described already in the early twentieth century. A. mellifera hallmarks the research on the interplay between the clock and sociality and complex behaviors like sun compass navigation and time-place-learning. Nevertheless, there are aspects of clock structure and function, like for example the role of the clock in photoperiodism and diapause, which can be only insufficiently investigated in these two models. Unlike high-latitude flies such as Chymomyza costata or D. ezoana, cosmopolitan D. melanogaster flies do not display a photoperiodic diapause. Similarly, A. mellifera bees do not go into "real" diapause, but most solitary bee species exhibit an obligatory diapause. Furthermore, sociality evolved in different Hymenoptera independently, wherefore it might be misleading to study the social clock only in one social insect. Consequently, additional research on non-model insects is required to understand the circadian clock in Diptera and Hymenoptera. In this review, we introduce the two chronobiology model insects D. melanogaster and A. mellifera, compare them with other insects and show their advantages and limitations as general models for insect circadian clocks.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, Am Hubland, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
15
|
Klein BA, Busby MK. Slumber in a cell: honeycomb used by honey bees for food, brood, heating… and sleeping. PeerJ 2020; 8:e9583. [PMID: 32844058 PMCID: PMC7414769 DOI: 10.7717/peerj.9583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/30/2020] [Indexed: 11/30/2022] Open
Abstract
Sleep appears to play an important role in the lives of honey bees, but to understand how and why, it is essential to accurately identify sleep, and to know when and where it occurs. Viewing normally obscured honey bees in their nests would be necessary to calculate the total quantity and quality of sleep and sleep’s relevance to the health and dynamics of a honey bee and its colony. Western honey bees (Apis mellifera) spend much of their time inside cells, and are visible only by the tips of their abdomens when viewed through the walls of an observation hive, or on frames pulled from a typical beehive. Prior studies have suggested that honey bees spend some of their time inside cells resting or sleeping, with ventilatory movements of the abdomen serving as a telltale sign distinguishing sleep from other behaviors. Bouts of abdominal pulses broken by extended pauses (discontinuous ventilation) in an otherwise relatively immobile bee appears to indicate sleep. Can viewing the tips of abdomens consistently and predictably indicate what is happening with the rest of a bee’s body when inserted deep inside a honeycomb cell? To distinguish a sleeping bee from a bee maintaining cells, eating, or heating developing brood, we used a miniature observation hive with slices of honeycomb turned in cross-section, and filmed the exposed cells with an infrared-sensitive video camera and a thermal camera. Thermal imaging helped us identify heating bees, but simply observing ventilatory movements, as well as larger motions of the posterior tip of a bee’s abdomen was sufficient to noninvasively and predictably distinguish heating and sleeping inside comb cells. Neither behavior is associated with large motions of the abdomen, but heating demands continuous (vs. discontinuous) ventilatory pulsing. Among the four behaviors observed inside cells, sleeping constituted 16.9% of observations. Accuracy of identifying sleep when restricted to viewing only the tip of an abdomen was 86.6%, and heating was 73.0%. Monitoring abdominal movements of honey bees offers anyone with a view of honeycomb the ability to more fully monitor when and where behaviors of interest are exhibited in a bustling nest.
Collapse
Affiliation(s)
- Barrett A Klein
- Biology Department, University of Wisconsin-La Crosse, La Crosse, WI, USA
| | - M Kathryn Busby
- Graduate Interdisciplinary Program in Entomology and Insect Science, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
16
|
Vázquez DE, Balbuena MS, Chaves F, Gora J, Menzel R, Farina WM. Sleep in honey bees is affected by the herbicide glyphosate. Sci Rep 2020; 10:10516. [PMID: 32601296 PMCID: PMC7324403 DOI: 10.1038/s41598-020-67477-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/05/2020] [Indexed: 02/02/2023] Open
Abstract
Sleep plays an essential role in both neural and energetic homeostasis of animals. Honey bees (Apis mellifera) manifest the sleep state as a reduction in muscle tone and antennal movements, which is susceptible to physical or chemical disturbances. This social insect is one of the most important pollinators in agricultural ecosystems, being exposed to a great variety of agrochemicals, which might affect its sleep behaviour. The intake of glyphosate (GLY), the herbicide most widely used worldwide, impairs learning, gustatory responsiveness and navigation in honey bees. In general, these cognitive abilities are linked with the amount and quality of sleep. Furthermore, it has been reported that animals exposed to sleep disturbances show impairments in both metabolism and memory consolidation. Consequently, we assessed the sleep pattern of bees fed with a sugar solution containing GLY (0, 25, 50 and 100 ng) by quantifying their antennal activity during the scotophase. We found that the ingestion of 50 ng of GLY decreased both antennal activity and sleep bout frequency. This sleep deepening after GLY intake could be explained as a consequence of the regenerative function of sleep and the metabolic stress induced by the herbicide.
Collapse
Affiliation(s)
- Diego E Vázquez
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Sol Balbuena
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fidel Chaves
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jacob Gora
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Randolf Menzel
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Walter M Farina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Abstract
AbstractIn many parts of South and Southeast Asia, rural farmers living at the borders of protected areas frequently encounter Asian elephants (Elephas maximus) raiding their crops and threatening farmers lives and livelihoods. Traditional deterrent methods often have limited success as elephants become habituated or alternate their movement and behavior. While African bees (Apis mellifera scutellate) have been shown to effectively and sustainably deter African elephants (Loxodonta africana) little is known about their Asian counterparts. We conducted two experiments to estimate the effectiveness of bees as an Asian elephant deterrent method. We analyzed the behavioral reaction of seven captive Asian elephants when confronted with a fence of A. mellifera hives blocking their way to a desired source of food. In addition, we explored the defensive reaction of five A. cerana hives and six A. mellifera hives to an artificial disturbance during both day and night time. The elephants crossed the beehive fence in 51% of the cases, the probability of crossing increased over time and the number of exposures had a significant effect on an elephant’s crossing probability, indicating that elephants became habituated to the presence of the beehive fence. In the bee experiment, only one out of five A. cerana hives and one out of six A. mellifera hives reacted to the disturbance during the daytime, while during nighttime, none of them reacted defensively after being disturbed. We, therefore, conclude that neither A. mellifera nor A. cerana bees are likely to be effective in deterring wild Asian elephants from entering crop fields.
Collapse
|
18
|
Dilley LC, Vigderman A, Williams CE, Kayser MS. Behavioral and genetic features of sleep ontogeny in Drosophila. Sleep 2019; 41:4994190. [PMID: 29746663 DOI: 10.1093/sleep/zsy086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Indexed: 11/12/2022] Open
Abstract
The fruit fly Drosophila melanogaster, like most organisms, exhibits increased sleep amount and depth in young compared to mature animals. While the fly has emerged as a powerful model for studying sleep during development, qualitative behavioral features of sleep ontogeny and its genetic control are poorly understood. Here we find that, in addition to increased sleep time and intensity, young flies sleep with less place preference than mature adults, and, like mammals, exhibit more motor twitches during sleep. In addition, we show that ontogenetic changes in sleep amount, twitch, and place preference are preserved across sleep mutants with lesions in distinct molecular pathways. Our results demonstrate that sleep ontogeny is characterized by multifaceted behavioral changes, including quantitative and qualitative alterations to sleep as animals mature. Further, the preservation of sleep ontogenetic changes despite mutations that alter sleep time suggests independent genetic control mechanisms for sleep maturation.
Collapse
Affiliation(s)
- Leela C Dilley
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Abigail Vigderman
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Charlette E Williams
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.,Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.,Chronobiology Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.,Center for Sleep and Circadian Neurobiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
19
|
Makinson JC, Woodgate JL, Reynolds A, Capaldi EA, Perry CJ, Chittka L. Harmonic radar tracking reveals random dispersal pattern of bumblebee (Bombus terrestris) queens after hibernation. Sci Rep 2019; 9:4651. [PMID: 30894590 PMCID: PMC6427042 DOI: 10.1038/s41598-019-40355-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/12/2019] [Indexed: 11/16/2022] Open
Abstract
The dispersal of animals from their birth place has profound effects on the immediate survival and longer-term persistence of populations. Molecular studies have estimated that bumblebee colonies can be established many kilometers from their queens’ natal nest site. However, little is known about when and how queens disperse during their lifespan. One possible life stage when dispersal may occur, is directly after emerging from hibernation. Here, harmonic radar tracking of artificially over-wintered Bombus terrestris queens shows that they spend most of their time resting on the ground with intermittent very short flights (duration and distance). We corroborate these behaviors with observations of wild queen bees, which show similar prolonged resting periods between short flights, indicating that the behavior of our radar-monitored bees was not due to the attachment of transponders nor an artifact of the bees being commercially reared. Radar-monitored flights were not continuously directed away from the origin, suggesting that bees were not intentionally trying to disperse from their artificial emergence site. Flights did not loop back to the origin suggesting bees were not trying to remember or get back to the original release site. Most individuals dispersed from the range of the harmonic radar within less than two days and did not return. Flight directions were not different from a uniform distribution and flight lengths followed an exponential distribution, both suggesting random dispersal. A random walk model based on our observed data estimates a positive net dispersal from the origin over many flights, indicating a biased random dispersal, and estimates the net displacement of queens to be within the range of those estimated in genetic studies. We suggest that a distinct post-hibernation life history stage consisting mostly of rest with intermittent short flights and infrequent foraging fulfils the dual purpose of ovary development and dispersal prior to nest searching.
Collapse
Affiliation(s)
- James C Makinson
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Joseph L Woodgate
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | | | | | - Clint J Perry
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.,Wissenschaftskolleg, Institute for Advanced Study, D19413, Berlin, Germany
| |
Collapse
|
20
|
Klein BA, Vogt M, Unrein K, Reineke DM. Followers of honey bee waggle dancers change their behaviour when dancers are sleep-restricted or perform imprecise dances. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Abstract
Sleep is nearly ubiquitous throughout the animal kingdom, yet little is known about how ecological factors or perturbations to the environment shape the duration and timing of sleep. In diverse animal taxa, poor sleep negatively impacts development, cognitive abilities and longevity. In addition to mammals, sleep has been characterized in genetic model organisms, ranging from the nematode worm to zebrafish, and, more recently, in emergent models with simplified nervous systems such as Aplysia and jellyfish. In addition, evolutionary models ranging from fruit flies to cavefish have leveraged natural genetic variation to investigate the relationship between ecology and sleep. Here, we describe the contributions of classical and emergent genetic model systems to investigate mechanisms underlying sleep regulation. These studies highlight fundamental interactions between sleep and sensory processing, as well as a remarkable plasticity of sleep in response to environmental changes. Understanding how sleep varies throughout the animal kingdom will provide critical insight into fundamental functions and conserved genetic mechanisms underlying sleep regulation. Furthermore, identification of naturally occurring genetic variation regulating sleep may provide novel drug targets and approaches to treat sleep-related diseases.
Collapse
Affiliation(s)
- Alex C Keene
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Erik R Duboue
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
22
|
Pleasure: The missing link in the regulation of sleep. Neurosci Biobehav Rev 2018; 88:141-154. [PMID: 29548930 DOI: 10.1016/j.neubiorev.2018.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 01/22/2023]
Abstract
Although largely unrecognized by sleep scholars, sleeping is a pleasure. This report aims first, to fill the gap: sleep, like food, water and sex, is a primary reinforcer. The levels of extracellular mesolimbic dopamine show circadian oscillations and mark the "wanting" for pro-homeostatic stimuli. Further, the dopamine levels decrease during waking and are replenished during sleep, in opposition to sleep propensity. The wanting of sleep, therefore, may explain the homeostatic and circadian regulation of sleep. Accordingly, sleep onset occurs when the displeasure of excessive waking is maximal, coinciding with the minimal levels of mesolimbic dopamine. Reciprocally, sleep ends after having replenished the limbic dopamine levels. Given the direct relation between waking and mesolimbic dopamine, sleep must serve primarily to gain an efficient waking. Pleasant sleep (i.e. emotional sleep), can only exist in animals capable of feeling emotions. Therefore, although sleep-like states have been described in invertebrates and primitive vertebrates, the association sleep-pleasure clearly marks a difference between the sleep of homeothermic vertebrates and cool blooded animals.
Collapse
|
23
|
Donlea JM. Neuronal and molecular mechanisms of sleep homeostasis. CURRENT OPINION IN INSECT SCIENCE 2017; 24:51-57. [PMID: 29208223 DOI: 10.1016/j.cois.2017.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
Sleep is necessary for survival, and prolonged waking causes a homeostatic increase in the need for recovery sleep. Homeostasis is a core component of sleep regulation and has been tightly conserved across evolution from invertebrates to man. Homeostatic sleep regulation was first identified among insects in cockroaches several decades ago, but the characterization of sleep rebound in Drosophila melanogaster opened the use of insect model species to understand homeostatic functions and regulation of sleep. This review describes circuits in two neuropil structures, the central complex and mushroom bodies, that influence sleep homeostasis and neuromodulatory systems that influence the accrual of homeostatic sleep need.
Collapse
Affiliation(s)
- Jeffrey M Donlea
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095-1763, USA.
| |
Collapse
|
24
|
Ramsey M, Bencsik M, Newton MI. Long-term trends in the honeybee 'whooping signal' revealed by automated detection. PLoS One 2017; 12:e0171162. [PMID: 28178291 PMCID: PMC5298260 DOI: 10.1371/journal.pone.0171162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/16/2017] [Indexed: 11/19/2022] Open
Abstract
It is known that honeybees use vibrational communication pathways to transfer information. One honeybee signal that has been previously investigated is the short vibrational pulse named the 'stop signal', because its inhibitory effect is generally the most accepted interpretation. The present study demonstrates long term (over 9 months) automated in-situ non-invasive monitoring of a honeybee vibrational pulse with the same characteristics of what has previously been described as a stop signal using ultra-sensitive accelerometers embedded in the honeycomb located at the heart of honeybee colonies. We show that the signal is very common and highly repeatable, occurring mainly at night with a distinct decrease in instances towards midday, and that it can be elicited en masse from bees following the gentle shaking or knocking of their hive with distinct evidence of habituation. The results of our study suggest that this vibrational pulse is generated under many different circumstances, thereby unifying previous publication's conflicting definitions, and we demonstrate that this pulse can be generated in response to a surprise stimulus. This work suggests that, using an artificial stimulus and monitoring the changes in the features of this signal could provide a sensitive tool to assess colony status.
Collapse
Affiliation(s)
- Michael Ramsey
- Department of Physics and Mathematics, Nottingham Trent University, School of Science and Technology, Clifton Lane, Nottingham, United Kingdom
| | - Martin Bencsik
- Department of Physics and Mathematics, Nottingham Trent University, School of Science and Technology, Clifton Lane, Nottingham, United Kingdom
- * E-mail:
| | - Michael I. Newton
- Department of Physics and Mathematics, Nottingham Trent University, School of Science and Technology, Clifton Lane, Nottingham, United Kingdom
| |
Collapse
|
25
|
Søvik E, Plath JA, Devaud JM, Barron AB. Neuropharmacological Manipulation of Restrained and Free-flying Honey Bees, Apis mellifera. J Vis Exp 2016. [PMID: 27929455 DOI: 10.3791/54695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Honey bees demonstrate astonishing learning abilities and advanced social behavior and communication. In addition, their brain is small, easy to visualize and to study. Therefore, bees have long been a favored model amongst neurobiologists and neuroethologists for studying the neural basis of social and natural behavior. It is important, however, that the experimental techniques used to study bees do not interfere with the behaviors being studied. Because of this, it has been necessary to develop a range of techniques for pharmacological manipulation of honey bees. In this paper we demonstrate methods for treating restrained or free-flying honey bees with a wide range of pharmacological agents. These include both noninvasive methods such as oral and topical treatments, as well as more invasive methods that allow for precise drug delivery in either systemic or localized fashion. Finally, we discuss the advantages and disadvantages of each method and describe common hurdles and how to best overcome them. We conclude with a discussion on the importance of adapting the experimental method to the biological questions rather than the other way around.
Collapse
Affiliation(s)
- Eirik Søvik
- Department of Science and Mathematics, Volda University College; Department of Biology, Washington University in St. Louis;
| | - Jenny A Plath
- Department of Biological Sciences, Macquarie University; Department of Biology, University of Konstanz
| | - Jean-Marc Devaud
- Research Center on Animal Cognition, CNRS, Universite de Toulouse
| | | |
Collapse
|
26
|
Beer K, Steffan-Dewenter I, Härtel S, Helfrich-Förster C. A new device for monitoring individual activity rhythms of honey bees reveals critical effects of the social environment on behavior. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:555-65. [PMID: 27380473 PMCID: PMC4956715 DOI: 10.1007/s00359-016-1103-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/10/2016] [Accepted: 06/12/2016] [Indexed: 01/03/2023]
Abstract
Chronobiological studies of individual activity rhythms in social insects can be constrained by the artificial isolation of individuals from their social context. We present a new experimental set-up that simultaneously measures the temperature rhythm in a queen-less but brood raising mini colony and the walking activity rhythms of singly kept honey bees that have indirect social contact with it. Our approach enables monitoring of individual bees in the social context of a mini colony under controlled laboratory conditions. In a pilot experiment, we show that social contact with the mini colony improves the survival of monitored young individuals and affects locomotor activity patterns of young and old bees. When exposed to conflicting Zeitgebers consisting of a light–dark (LD) cycle that is phase-delayed with respect to the mini colony rhythm, rhythms of young and old bees are socially synchronized with the mini colony rhythm, whereas isolated bees synchronize to the LD cycle. We conclude that the social environment is a stronger Zeitgeber than the LD cycle and that our new experimental set-up is well suited for studying the mechanisms of social entrainment in honey bees.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Stephan Härtel
- Department of Animal Ecology and Tropical Biology, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
27
|
Meshi A, Bloch G. Monitoring Circadian Rhythms of Individual Honey Bees in a Social Environment Reveals Social Influences on Postembryonic Ontogeny of Activity Rhythms. J Biol Rhythms 2016; 22:343-55. [PMID: 17660451 DOI: 10.1177/0748730407301989] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Social factors constitute an important component of the environment of many animals and have a profound influence on their physiology and behavior. Studies of social influences on circadian rhythms have been hampered by a methodological trade-off: automatic data acquisition systems obtain high-quality data but are effective only for individually isolated animals and therefore compromise by requiring a context that may not be sociobiologically relevant. Human observers can monitor animal activity in complex social environments but are limited in the resolution and quality of data that can be gathered. The authors developed and validated a method for prolonged, automatic, high-quality monitoring of focal honey bees in a relatively complex social environment and with minimal illumination. The method can be adapted for studies on other animals. The authors show that the system provides a reliable estimation of the actual path of a focal bee, only rarely misses its location for > 1 min, and removes most nonspecific signals from the background. Using this system, the authors provide the first evidence of social influence on the ontogeny of activity rhythms. Young bees that were housed with old foragers show ~24-h rhythms in locomotor activity at a younger age and with stronger rhythms than bees housed with a similar number of young bees. By contrast, the maturation of the hypopharyngeal glands was slower in bees housed with foragers, similar to findings in previous studies. The morphology and function of the hypopharyngeal glands vary along with age-based division of labor. Therefore, these findings indicate that social inhibition of task-related maturation was effective in the experimental setup. This study suggests that although the ontogeny of circadian rhythms is typically correlated with the age-based division of labor, their social regulation is different.
Collapse
Affiliation(s)
- A Meshi
- Department of Evolution, Systematics and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
28
|
Pavan MG, Corrêa-Antônio J, Peixoto AA, Monteiro FA, Rivas GBS. Rhodnius prolixus and R. robustus (Hemiptera: Reduviidae) nymphs show different locomotor patterns on an automated recording system. Parasit Vectors 2016; 9:239. [PMID: 27121502 PMCID: PMC4848847 DOI: 10.1186/s13071-016-1482-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/30/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Circadian rhythms of triatomines, vectors of the etiological agent Trypanosoma cruzi responsible for Chagas disease, have been extensively studied in adults of the two most epidemiologically relevant vector species, Rhodnius prolixus and Triatoma infestans. However, little attention has been dedicated to the activity patterns in earlier developmental stages, even though triatomine nymphs are equally capable of transmitting T. cruzi to humans. Because circadian rhythms may differ even between closely related species, studies that focus on this behavioral trait can also be used to shed light on the taxonomy of controversial taxa, which becomes especially relevant regarding vector species. METHODS We compared the daily locomotor activity patterns of second- and third-instar nymphs of Rhodnius prolixus and Rhodnius robustus in order to unveil possible behavioral differences between these cryptic species. Mitochondrial and nuclear markers were sequenced to confirm species identification. RESULTS Nymphs of both species had a bimodal pattern of locomotion and similar daily activity patterns, but R. prolixus is more active under light/dark cycles and depicts a more pronounced activity rhythm under constant darkness conditions. CONCLUSIONS We describe the implementation of an often-used automated method for the recording of individual locomotor activity to differentiate sibling species of Rhodnius with distinct epidemiological relevance. The higher levels of activity observed in the nymphs of R. prolixus could potentially contribute to increased vector capacity.
Collapse
Affiliation(s)
- Márcio G. Pavan
- />Laboratório de Epidemiologia e Sistemática Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- />Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Jessica Corrêa-Antônio
- />Laboratório de Epidemiologia e Sistemática Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Alexandre A. Peixoto
- />Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- />Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM)/CNPq, Rio de Janeiro, Brazil
| | - Fernando A. Monteiro
- />Laboratório de Epidemiologia e Sistemática Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- />Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM)/CNPq, Rio de Janeiro, Brazil
| | - Gustavo B. S. Rivas
- />Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- />Present address: Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Cholé H, Junca P, Sandoz JC. Appetitive but not aversive olfactory conditioning modifies antennal movements in honeybees. Learn Mem 2015; 22:604-16. [PMID: 26572651 PMCID: PMC4749730 DOI: 10.1101/lm.038448.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/22/2015] [Indexed: 11/24/2022]
Abstract
In honeybees, two olfactory conditioning protocols allow the study of appetitive and aversive Pavlovian associations. Appetitive conditioning of the proboscis extension response (PER) involves associating an odor, the conditioned stimulus (CS) with a sucrose solution, the unconditioned stimulus (US). Conversely, aversive conditioning of the sting extension response (SER) involves associating the odor CS with an electric or thermal shock US. Each protocol is based on the measure of a different behavioral response (proboscis versus sting) and both only provide binary responses (extension or not of the proboscis or sting). These limitations render the measure of the acquired valence of an odor CS difficult without testing the animals in a freely moving situation. Here, we studied the effects of both olfactory conditioning protocols on the movements of the antennae, which are crucial sensory organs for bees. As bees' antennae are highly mobile, we asked whether their movements in response to an odorant change following appetitive or aversive conditioning and if so, do odor-evoked antennal movements contain information about the acquired valence of the CS? We implemented a tracking system for harnessed bees' antennal movements based on a motion capture principle at a high frequency rate. We observed that differential appetitive conditioning had a strong effect on antennal movements. Bees responded to the reinforced odorant with a marked forward motion of the antennae and a strong velocity increase. Conversely, differential aversive conditioning had no associative effect on antennal movements. Rather than revealing the acquired valence of an odorant, antennal movements may represent a novel conditioned response taking place during appetitive conditioning and may provide a possible advantage to bees when foraging in natural situations.
Collapse
Affiliation(s)
- Hanna Cholé
- Evolution, Genomes, Behavior and Ecology, CNRS, Univ Paris-Sud, IRD (UMR 9191), Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Pierre Junca
- Evolution, Genomes, Behavior and Ecology, CNRS, Univ Paris-Sud, IRD (UMR 9191), Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, Univ Paris-Sud, IRD (UMR 9191), Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
30
|
Vorster AP, Born J. Sleep and memory in mammals, birds and invertebrates. Neurosci Biobehav Rev 2015; 50:103-19. [DOI: 10.1016/j.neubiorev.2014.09.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 09/24/2014] [Accepted: 09/27/2014] [Indexed: 01/04/2023]
|
31
|
How deeply does your mutant sleep? Probing arousal to better understand sleep defects in Drosophila. Sci Rep 2015; 5:8454. [PMID: 25677943 PMCID: PMC4326961 DOI: 10.1038/srep08454] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/15/2015] [Indexed: 11/08/2022] Open
Abstract
The fruitfly, Drosophila melanogaster, has become a critical model system for investigating sleep functions. Most studies use duration of inactivity to measure sleep. However, a defining criterion for sleep is decreased behavioral responsiveness to stimuli. Here we introduce the Drosophila ARousal Tracking system (DART), an integrated platform for efficiently tracking and probing arousal levels in animals. This video-based platform delivers positional and locomotion data, behavioral responsiveness to stimuli, sleep intensity measures, and homeostatic regulation effects – all in one combined system. We show how insight into dynamically changing arousal thresholds is crucial for any sleep study in flies. We first find that arousal probing uncovers different sleep intensity profiles among related genetic background strains previously assumed to have equivalent sleep patterns. We then show how sleep duration and sleep intensity can be uncoupled, with distinct manipulations of dopamine function producing opposite effects on sleep duration but similar sleep intensity defects. We conclude by providing a multi-dimensional assessment of combined arousal and locomotion metrics in the mutant and background strains. Our approach opens the door for deeper insights into mechanisms of sleep regulation and provides a new method for investigating the role of different genetic manipulations in controlling sleep and arousal.
Collapse
|
32
|
Shen M, Szyszka P, Deussen O, Galizia CG, Merhof D. Automated tracking and analysis of behavior in restrained insects. J Neurosci Methods 2015; 239:194-205. [PMID: 25445245 DOI: 10.1016/j.jneumeth.2014.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Insect behavior is often monitored by human observers and measured in the form of binary responses. This procedure is time costly and does not allow a fine graded measurement of behavioral performance in individual animals. To overcome this limitation, we have developed a computer vision system which allows the automated tracking of body parts of restrained insects. NEW METHOD Our system crops a continuous video into separate shots with a static background. It then segments out the insect's head and preprocesses the detected moving objects to exclude detection errors. A Bayesian-based algorithm is proposed to identify the trajectory of each body part. RESULTS We demonstrate the application of this novel tracking algorithm by monitoring movements of the mouthparts and antennae of honey bees and ants, and demonstrate its suitability for analyzing the behavioral performance of individual bees using a common associative learning paradigm. COMPARISON WITH EXISTING METHODS Our tracking system differs from existing systems in that it does not require each video to be labeled manually and is capable of tracking insects' body parts even when working with low frame-rate videos. Our system can be generalized for other insect tracking applications. CONCLUSIONS Our system paves the ground for fully automated monitoring of the behavior of restrained insects and accounts for individual variations in graded behavior.
Collapse
Affiliation(s)
- Minmin Shen
- INCIDE Center (Interdisciplinary Center for Interactive Data Analysis, Modelling and Visual Exploration), University of Konstanz, Germany; School of Software Engineering, South China University of Technology, PR China.
| | - Paul Szyszka
- Institute of Neurobiology, University of Konstanz, Germany.
| | - Oliver Deussen
- INCIDE Center (Interdisciplinary Center for Interactive Data Analysis, Modelling and Visual Exploration), University of Konstanz, Germany.
| | | | - Dorit Merhof
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
33
|
Eban-Rothschild A, Bloch G. The colony environment modulates sleep in honey bee workers. ACTA ACUST UNITED AC 2014; 218:404-11. [PMID: 25524987 DOI: 10.1242/jeb.110619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of the most important and evolutionarily conserved roles of sleep is the processing and consolidation of information acquired during wakefulness. In both insects and mammals, environmental and social stimuli can modify sleep physiology and behavior, yet relatively little is known about the specifics of the wake experiences and their relative contribution to experience-dependent modulation of sleep. Honey bees provide an excellent model system in this regard because their behavioral repertoire is well characterized and the environment they experience during the day can be manipulated while keeping an ecologically and sociobiologically relevant context. We examined whether social experience modulates sleep in honey bees, and evaluated the relative contribution of different social signals. We exposed newly emerged bees to different components of their natural social environment and then monitored their sleep behavior in individual cages in a constant lab environment. We found that rich waking experience modulates subsequent sleep. Bees that experienced the colony environment for 1 or 2 days slept more than same-age sister bees that were caged individually or in small groups in the lab. Furthermore, bees placed in mesh-enclosures in the colony, that prevented direct contact with nestmates, slept similarly to bees freely moving in the colony. These results suggest that social signals that do not require direct or close distance interactions between bees are sufficiently rich to encompass almost the entire effect of the colony on sleep. Our findings provide a remarkable example of social experience-dependent modulation of an essential biological process.
Collapse
Affiliation(s)
- Ada Eban-Rothschild
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
34
|
Michel M, Lyons LC. Unraveling the complexities of circadian and sleep interactions with memory formation through invertebrate research. Front Syst Neurosci 2014; 8:133. [PMID: 25136297 PMCID: PMC4120776 DOI: 10.3389/fnsys.2014.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/07/2014] [Indexed: 12/14/2022] Open
Abstract
Across phylogeny, the endogenous biological clock has been recognized as providing adaptive advantages to organisms through coordination of physiological and behavioral processes. Recent research has emphasized the role of circadian modulation of memory in generating peaks and troughs in cognitive performance. The circadian clock along with homeostatic processes also regulates sleep, which itself impacts the formation and consolidation of memory. Thus, the circadian clock, sleep and memory form a triad with ongoing dynamic interactions. With technological advances and the development of a global 24/7 society, understanding the mechanisms underlying these connections becomes pivotal for development of therapeutic treatments for memory disorders and to address issues in cognitive performance arising from non-traditional work schedules. Invertebrate models, such as Drosophila melanogaster and the mollusks Aplysia and Lymnaea, have proven invaluable tools for identification of highly conserved molecular processes in memory. Recent research from invertebrate systems has outlined the influence of sleep and the circadian clock upon synaptic plasticity. In this review, we discuss the effects of the circadian clock and sleep on memory formation in invertebrates drawing attention to the potential of in vivo and in vitro approaches that harness the power of simple invertebrate systems to correlate individual cellular processes with complex behaviors. In conclusion, this review highlights how studies in invertebrates with relatively simple nervous systems can provide mechanistic insights into corresponding behaviors in higher organisms and can be used to outline possible therapeutic options to guide further targeted inquiry.
Collapse
Affiliation(s)
- Maximilian Michel
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine Nashville, TN, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University Tallahassee, FL, USA
| |
Collapse
|
35
|
Klein BA, Stiegler M, Klein A, Tautz J. Mapping sleeping bees within their nest: spatial and temporal analysis of worker honey bee sleep. PLoS One 2014; 9:e102316. [PMID: 25029445 PMCID: PMC4100802 DOI: 10.1371/journal.pone.0102316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/17/2014] [Indexed: 11/18/2022] Open
Abstract
Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.). Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns.
Collapse
Affiliation(s)
- Barrett Anthony Klein
- The University of Wisconsin – La Crosse, Department of Biology, La Crosse, Wisconsin, United States of America
| | - Martin Stiegler
- University of Würzburg, BEEgroup, Biozentrum, Würzburg, Germany
| | - Arno Klein
- Sage Bionetworks, Seattle, Washington, United States of America
| | - Jürgen Tautz
- University of Würzburg, BEEgroup, Biozentrum, Würzburg, Germany
| |
Collapse
|
36
|
Abstract
How might one determine whether simple animals such as flies sleep in stages? Sleep in mammals is a dynamic process involving different stages of sleep intensity, and these are typically associated with measurable changes in brain activity (Blake and Gerard, 1937; Rechtschaffen and Kales, 1968; Webb and Agnew, 1971). Evidence for different sleep stages in invertebrates remains elusive, even though it has been well established that many invertebrate species require sleep (Campbell and Tobler, 1984; Hendricks et al., 2000; Shaw et al., 2000; Sauer et al., 2003). Here we used electrophysiology and arousal-testing paradigms to show that the fruit fly, Drosophila melanogaster, transitions between deeper and lighter sleep within extended bouts of inactivity, with deeper sleep intensities after ∼15 and ∼30 min of inactivity. As in mammals, the timing and intensity of these dynamic sleep processes in flies is homeostatically regulated and modulated by behavioral experience. Two molecules linked to synaptic plasticity regulate the intensity of the first deep sleep stage. Optogenetic upregulation of cyclic adenosine monophosphate during the day increases sleep intensity at night, whereas loss of function of a molecule involved in synaptic pruning, the fragile-X mental retardation protein, increases sleep intensity during the day. Our results show that sleep is not homogenous in insects, and suggest that waking behavior and the associated synaptic plasticity mechanisms determine the timing and intensity of deep sleep stages in Drosophila.
Collapse
|
37
|
Photoperiod influences endogenous rhythm of ambient temperature selection by the honeybee Apis mellifera. J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2012.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Beyaert L, Greggers U, Menzel R. Honeybees consolidate navigation memory during sleep. J Exp Biol 2012; 215:3981-8. [DOI: 10.1242/jeb.075499] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SUMMARY
Sleep is known to support memory consolidation in animals, including humans. Here we ask whether consolidation of novel navigation memory in honeybees depends on sleep. Foragers were exposed to a forced navigation task in which they learned to home more efficiently from an unexpected release site by acquiring navigational memory during the successful homing flight. This task was quantified using harmonic radar tracking and applied to bees that were equipped with a radio frequency identification device (RFID). The RFID was used to record their outbound and inbound flights and continuously monitor their behavior inside the colony, including their rest during the day and sleep at night. Bees marked with the RFID behaved normally inside and outside the hive. Bees slept longer during the night following forced navigation tasks, but foraging flights of different lengths did not lead to different rest times during the day or total sleep time during the night. Sleep deprivation before the forced navigation task did not alter learning and memory acquired during the task. However, sleep deprivation during the night after forced navigation learning reduced the probability of returning successfully to the hive from the same release site. It is concluded that consolidation of novel navigation memory is facilitated by night sleep in bees.
Collapse
Affiliation(s)
- Lisa Beyaert
- Institut für Biologie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Uwe Greggers
- Institut für Biologie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Randolf Menzel
- Institut für Biologie, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
39
|
Corner M, van der Togt C. No phylogeny without ontogeny: a comparative and developmental search for the sources of sleep-like neural and behavioral rhythms. Neurosci Bull 2012; 28:25-38. [PMID: 22233887 DOI: 10.1007/s12264-012-1062-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A comprehensive review is presented of reported aspects and putative mechanisms of sleep-like motility rhythms throughout the animal kingdom. It is proposed that 'rapid eye movement (REM) sleep' be regarded as a special case of a distinct but much broader category of behavior, 'rapid body movement (RBM) sleep', defined by intrinsically-generated and apparently non-purposive movements. Such a classification completes a 2 × 2 matrix defined by the axes sleep versus waking and active versus quiet. Although 'paradoxical' arousal of forebrain electrical activity is restricted to warm-blooded vertebrates, we urge that juvenile or even infantile stages of development be investigated in cold-blooded animals, in view of the many reports of REM-like spontaneous motility (RBMs) in a wide range of species during sleep. The neurophysiological bases for motorically active sleep at the brainstem level and for slow-wave sleep in the forebrain appear to be remarkably similar, and to be subserved in both cases by a primitive diffuse mode of neuronal organization. Thus, the spontaneous synchronous burst discharges which are characteristics of the sleeping brain can be readily simulated even by highly unstructured neural network models. Neuromotor discharges during active sleep appear to reflect a hierarchy of simple relaxation oscillation mechanisms, spanning a wide range of spike-dependent relaxation times, whereas the periodic alternation of active and quiet sleep states more likely results from the entrainment of intrinsic cellular rhythms and/or from activity-dependent homeostatic changes in network excitability.
Collapse
Affiliation(s)
- Michael Corner
- The Netherlands Institute for Brain Research, Amsterdam.
| | | |
Collapse
|
40
|
Eban-Rothschild A, Bloch G. Social influences on circadian rhythms and sleep in insects. ADVANCES IN GENETICS 2012; 77:1-32. [PMID: 22902124 DOI: 10.1016/b978-0-12-387687-4.00001-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diverse social lifestyle and the small and accessible nervous system of insects make them valuable for research on the adaptive value and the organization principles of circadian rhythms and sleep. We focus on two complementary model insects, the fruit fly Drosophila melanogaster, which is amenable to extensive transgenic manipulations, and the honey bee Apis mellifera, which has rich and well-studied social behaviors. Social entrainment of activity rhythms (social synchronization) has been studied in many animals. Social time givers appear to be specifically important in dark cavity-dwelling social animals, but here there are no other clear relationships between the degree of sociality and the effectiveness of social entrainment. The olfactory system is important for social entrainment in insects. Little is known, however, about the molecular and neuronal pathways linking olfactory neurons to the central clock. In the honey bee, the expression, phase, and development of circadian rhythms are socially regulated, apparently by different signals. Peripheral clocks regulating pheromone synthesis and the olfactory system have been implicated in social influences on circadian rhythms in the fruit fly. An enriched social environment increases the total amount of sleep in both fruit flies and honey bees. In fruit flies, these changes have been linked to molecular and neuronal processes involved in learning, memory, and synaptic plasticity. The studies on insects suggest that social influences on the clock are richer than previously appreciated and have led to important breakthroughs in our understanding of the mechanisms underlying social influences on sleep and circadian rhythms.
Collapse
Affiliation(s)
- Ada Eban-Rothschild
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
41
|
Klein BA. The Curious Connection Between Insects and Dreams. INSECTS 2011; 3:1-17. [PMID: 26467945 PMCID: PMC4553613 DOI: 10.3390/insects3010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 11/17/2011] [Accepted: 12/02/2011] [Indexed: 11/29/2022]
Abstract
A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans’ dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream’s significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives.
Collapse
Affiliation(s)
- Barrett A Klein
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
42
|
Klein BA, Seeley TD. Work or sleep? Honeybee foragers opportunistically nap during the day when forage is not available. Anim Behav 2011. [DOI: 10.1016/j.anbehav.2011.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Stephenson R, Lewis V. Behavioural evidence for a sleep-like quiescent state in a pulmonate mollusc, Lymnaea stagnalis (Linnaeus). ACTA ACUST UNITED AC 2011; 214:747-56. [PMID: 21307060 DOI: 10.1242/jeb.050591] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The objective of this study was to determine whether the great pond snail, Lymnaea stagnalis, expresses a sleep-like behavioural state. We found that snails spontaneously enter a relatively brief (22±1 min) quiescent state characterized by postural relaxation of the foot, mantle and tentacles, and cessation of radula rasping. Quiescence was reversed ('aroused') by appetitive (sucrose solution) and aversive (tactile) stimuli. Responsiveness to both stimuli was significantly lower in quiescent snails than in active snails. However, tactile stimuli evoked a more sustained defensive response in quiescent snails. Quiescence bouts were consolidated into 'clusters' over an infradian timescale and were only weakly affected by time of day. Clusters contained 7±0.5 bouts, lasted 13±1 h and were separated by long (37±4 h) intervals of almost continuous activity. Analysis of Kaplan-Meier survival curves revealed that the quiescent bout duration was described by an exponential probability distribution (time constant 15±1 min). Active bout duration was described by a bi-exponential probability distribution (time constants 62±4 and 592±48 min). We found no evidence for a 'sleep rebound' mechanism and quiescence expression appeared to be regulated through stochastic processes causing state transitions to resemble a Markovian random walk. We conclude that Lymnaea is a potentially valuable model system for studies of cellular function in sleep.
Collapse
Affiliation(s)
- Richard Stephenson
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
44
|
Sleep deprivation impairs precision of waggle dance signaling in honey bees. Proc Natl Acad Sci U S A 2010; 107:22705-9. [PMID: 21156830 DOI: 10.1073/pnas.1009439108] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sleep is essential for basic survival, and insufficient sleep leads to a variety of dysfunctions. In humans, one of the most profound consequences of sleep deprivation is imprecise or irrational communication, demonstrated by degradation in signaling as well as in receiving information. Communication in nonhuman animals may suffer analogous degradation of precision, perhaps with especially damaging consequences for social animals. However, society-specific consequences of sleep loss have rarely been explored, and no function of sleep has been ascribed to a truly social (eusocial) organism in the context of its society. Here we show that sleep-deprived honey bees (Apis mellifera) exhibit reduced precision when signaling direction information to food sources in their waggle dances. The deterioration of the honey bee's ability to communicate is expected to reduce the foraging efficiency of nestmates. This study demonstrates the impact of sleep deprivation on signaling in a eusocial animal. If the deterioration of signals made by sleep-deprived honey bees and humans is generalizable, then imprecise communication may be one detrimental effect of sleep loss shared by social organisms.
Collapse
|
45
|
Johnson JN, Hardgrave E, Gill C, Moore D. Absence of consistent diel rhythmicity in mated honey bee queen behavior. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:761-773. [PMID: 20116381 DOI: 10.1016/j.jinsphys.2010.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/17/2010] [Accepted: 01/19/2010] [Indexed: 05/28/2023]
Abstract
Relatively little is known about the temporal control of behavior of honey bee queens under natural conditions. To determine if mated honey bee queens possess diel rhythmicity in behavior, we observed them in glass-sided observation hives, employing two focal studies involving continuous observations of individual queens as well as a scan-sampling study of multiple queens. In all cases, all behaviors were observed at all times of the day and night. In four of the five queens examined in focal studies, there were no consistent occurrences of diel periodicity for any of the individual behaviors. A more encompassing measure for periodicity, in which the behaviors were characterized as active (walking, inspecting, egg-laying, begging for food, feeding, and grooming self) or inactive (standing), also failed to reveal consistent diel rhythmicity. Furthermore, there were no consistent diel differences in the number of workers in the queen's retinue. Behavioral arrhythmicity persisted across seasons and despite daily changes in both light and temperature levels. Both day and night levels of behavioral activity were correlated with daytime, but not with nighttime, ambient temperatures. The behavior of the one exceptional queen was not consistent: diurnal activity patterns were present during two 24-h observation sessions but arrhythmicity during another. Based on the behavior observed by all but one of the queens examined in this work, the arrhythmic behavior by the mated honey bee queen inside the colony appears to be similar to that exhibited by worker bees before they approach the age of onset of foraging behavior.
Collapse
Affiliation(s)
- Jennifer N Johnson
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN 37604, USA
| | | | | | | |
Collapse
|
46
|
Roth TC, Rattenborg NC, Pravosudov VV. The ecological relevance of sleep: the trade-off between sleep, memory and energy conservation. Philos Trans R Soc Lond B Biol Sci 2010; 365:945-59. [PMID: 20156818 PMCID: PMC2830243 DOI: 10.1098/rstb.2009.0209] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
All animals in which sleep has been studied express signs of sleep-like behaviour, suggesting that sleep must have some fundamental functions that are sustained by natural selection. Those functions, however, are still not clear. Here, we examine the ecological relevance of sleep from the perspective of behavioural trade-offs that might affect fitness. Specifically, we highlight the advantage of using food-caching animals as a system in which a conflict might occur between engaging in sleep for memory/learning and hypothermia/torpor to conserve energy. We briefly review the evidence for the importance of sleep for memory, the importance of memory for food-caching animals and the conflicts that might occur between sleep and energy conservation in these animals. We suggest that the food-caching paradigm represents a naturalistic and experimentally practical system that provides the opportunity for a new direction in sleep research that will expand our understanding of sleep, especially within the context of ecological and evolutionary processes.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Biology, University of Nevada, Reno, NV 89557, USA.
| | | | | |
Collapse
|
47
|
Abstract
Sleep-like behavior has been studied in honeybees before, but the relationship between sleep and memory formation has not been explored. Here we describe a new approach to address the question if sleep in bees, like in other animals, improves memory consolidation. Restrained bees were observed by a web camera, and their antennal activities were used as indicators of sleep. We found that the bees sleep more during the dark phase of the day compared with the light phase. Sleep phases were characterized by two distinct patterns of antennal activities: symmetrical activity, more prominent during the dark phase; and asymmetrical activity, more common during the light phase. Sleep-deprived bees showed rebound the following day, confirming effective deprivation of sleep. After appetitive conditioning of the bees to various olfactory stimuli, we observed their sleep. Bees conditioned to odor with sugar reward showed lesser sleep compared with bees that were exposed to either reward alone or air alone. Next, we asked whether sleep deprivation affects memory consolidation. While sleep deprivation had no effect on retention scores after odor acquisition, retention for extinction learning was significantly reduced, indicating that consolidation of extinction memory but not acquisition memory was affected by sleep deprivation.
Collapse
|
48
|
Weiss R, Dov A, Fahrbach SE, Bloch G. Body size-related variation in Pigment Dispersing Factor-immunoreactivity in the brain of the bumblebee Bombus terrestris (Hymenoptera, Apidae). JOURNAL OF INSECT PHYSIOLOGY 2009; 55:479-487. [PMID: 19232530 DOI: 10.1016/j.jinsphys.2009.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 01/12/2009] [Accepted: 01/23/2009] [Indexed: 05/27/2023]
Abstract
Large bumblebee (Bombus terrestris) workers typically visit flowers to collect pollen and nectar during the day and rest in the nest at night. Small workers are less likely to forage, but instead stay in the nest and tend brood around the clock. Because Pigment Dispersing Factor (PDF) has been identified as a neuromodulator in the circadian network of insects, we used an antiserum that recognizes this peptide to compare patterns of PDF-immunoreactivity (PDF-ir) in the brains of large and small workers. Our study provides the first description of PDF distribution in the bumblebee brain, and shows a pattern that is overall similar to that of the honey bee, Apis mellifera. The brains of large bumblebee workers contained a slightly but significantly higher number of PDF-ir neurons than did the brains of small sister bees. Body size was positively correlated with area of the PDF-ir somata and negatively correlated with the maximal staining intensity. These results provide a neuronal correlate to the previously reported body size-associated variation in behavioral circadian rhythmicity. These differences in PDF-ir are consistent with the hypothesis that body size-based division of labor in bumblebees is associated with adaptations of the morphology and function of the brain circadian system.
Collapse
Affiliation(s)
- Ron Weiss
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
49
|
Ho KS, Sehgal A. Drosophila melanogaster: an insect model for fundamental studies of sleep. Methods Enzymol 2008; 393:772-93. [PMID: 15817324 DOI: 10.1016/s0076-6879(05)93041-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In 2000, Drosophila melanogaster joined the ranks of vertebrates and invertebrates with a defined behavioral sleep state. The characterization of this sleep state revealed striking similarities to sleep in humans: sleep in flies has both circadian and homeostatic components, it is influenced by sex and age, and it is affected by pharmacological agents such as caffeine and antihistamines. As in mammals, arousal thresholds in flies increase with sleep deprivation. Furthermore, changes in brain electrical activity accompany the change from wake to sleep states. Not only do flies and vertebrates share these behavioral and physiological traits of sleep, but they are likely to share at least some genetic mechanisms underlying the regulation of sleep as well. This article reviews the methods currently used to identify and characterize the Drosophila sleep state. As these methods become more refined and our understanding of Drosophila sleep more detailed, the powerful techniques afforded by this organism are likely to unveil deep insights into the function(s) and regulatory mechanisms of sleep.
Collapse
Affiliation(s)
- Karen S Ho
- Department of Neuroscience, Howard Hughes Medical Institute, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
50
|
Abstract
No current hypothesis can explain why animals need to sleep. Yet, sleep is universal, tightly regulated, and cannot be deprived without deleterious consequences. This suggests that searching for a core function of sleep, particularly at the cellular level, is still a worthwhile exercise.
Collapse
Affiliation(s)
- Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America.
| | | |
Collapse
|