1
|
Gard JE, Brock KE, Elliott ER, Taul AC, Nadolski J, Kim J, McCubbin S, Hecht J, Ronen R, Bierbower SM, Alcorn JP, Dharanipragada N, Hall TF, Hamlet AB, Iqbal Z, Johnson SR, Joshi JK, McComis SJ, Neeley RE, Racheneur AW, Satish D, Simpson TR, Walp JL, Murray C, Wright JE, Cooper RL. Investigation regarding the physiological effects of cobalt on physiological functions in Drosophila, crayfish, and crab: Behavioral, cardiac, neural, and synaptic properties. Comp Biochem Physiol C Toxicol Pharmacol 2025; 292:110165. [PMID: 40020956 DOI: 10.1016/j.cbpc.2025.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Cobalt, a metallic element found naturally in the earth's crust, is essential to survival. It is the active center of cobalamins such as vitamin B12 and is also a micronutrient for bacteria, algae, and fungi. The effects of cobalt (II) chloride (CoCl2), the inorganic form of cobalt, are dependent on the dosage. High dosage or chronic exposure to CoCl2 can have negative effects, such as carcinogenic properties, intoxication, and "beer drinker's cardiomyopathy." This investigation was designed to test the effects of acute, high-concentration in cobalt exposure on physiological functions in Drosophila, crayfish, and crab, particularly in terms of behavioral, cardiac, neural, and synaptic properties. When exposed to 1 mM of CoCl2, decreased neural transmission was observed at the neuromuscular junction (NMJ) of both crayfish and Drosophila larvae. Within the crayfish proprioceptive organ, no conclusive changes in activity were observed due to the high variability among individuals, but activity was observed to increase in the crab proprioceptive organ after 10 min immersion the CoCl2. In larval Drosophila, heart rate decreased to near-cessation, though the in-situ preparations were able to recover regular heart rates after sufficient saline rinsing. Systemic injections of CoCl2 into crayfish hemolymph produced no significant effects on heart rate or tail flip response. In larval Drosophila that consumed food tainted with CoCl2, no effects were observed on behavior, mouth hook movements, or body wall movements; however, this led to adults bearing a slightly decreased lifespan, which indicates that 1 mM CoCl2 has differing effects by tissue and organism.
Collapse
Affiliation(s)
- Jaycie E Gard
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Kaitlyn E Brock
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | | | - Alaina C Taul
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Jeremy Nadolski
- Department of Mathematical and Computational Sciences, Benedictine University, Lisle, IL 60532, USA.
| | - Jiwoo Kim
- Model Laboratory School, 521 Lancaster Avenue, Richmond, KY 40475, USA
| | - Shelby McCubbin
- University of Kentucky College of Medicine, Lexington, KY 40536-0298, USA.
| | - Jordon Hecht
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.
| | - Remy Ronen
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.
| | - Sonya M Bierbower
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.
| | - Jayden P Alcorn
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | | | - Tessa F Hall
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Ashley B Hamlet
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Zohaib Iqbal
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Sarah R Johnson
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Jai Kumar Joshi
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Stephen J McComis
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Ryson E Neeley
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Alex W Racheneur
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Diksha Satish
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Tori R Simpson
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Jacob L Walp
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Courtney Murray
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Joni E Wright
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
2
|
Elliott ER, Cooper RL. Fluoxetine antagonizes the acute response of LPS: Blocks K2P channels. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110045. [PMID: 39307514 DOI: 10.1016/j.cbpc.2024.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
The channels responsible for maintaining resting membrane potential are known as K2P (two-P-domain K+ subunit) channels, a subset of which are known to be blocked by Fluoxetine. In this experiment, the compound's effects on the membrane potential were examined on muscles in larval Drosophila overexpressing a subtype of K2P channel (known in Drosophila as dORKA1 or ORKA1) and compared to larvae without overexpression. The compound was also observed in sequence and/or combination with a form of lipopolysaccharide (LPS) that transiently activates K2P channels. Different concentrations of Fluoxetine were tested, and it was also examined in cocktail with the LPS. At 25 μM Fluoxetine exposure, muscle in control larvae underwent depolarization, while muscles overexpressing K2P channels hyperpolarized; at 50 μM, however, much more variable responses were observed. The LPS caused hyperpolarization in both larval strains, but the effect was more transient in the Canton-S line than in the K2P overexpressors. Finally, LPS continued to cause hyperpolarization even in the presence of Fluoxetine, while Fluoxetine quickly depolarized the muscle during exposure to LPS. The cocktail showed a smaller effect on muscles overexpressing ORKA1 as compared to the controls, indicating that Fluoxetine does not block the ORKA1 subtype. This study is significant because it demonstrates how overexpression of K2P channels alters membrane response to LPS and Fluoxetine exposure.
Collapse
Affiliation(s)
| | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington 40506, KY, USA.
| |
Collapse
|
3
|
Bidros J, Brock K, Gard J, Cooper R. The Effect of Magnesium Concentration on Myogenic Cardiac Function: Larval Drosophila. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001400. [PMID: 39758583 PMCID: PMC11699522 DOI: 10.17912/micropub.biology.001400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
The heart of larval Drosophila serves as a model preparation in addressing cardiac function, as known genetic mutations can be mimicked to examine therapies. Pharmacological agents and function of proteins, like TRPA1, which affect ionic transport and ion concentrations can be investigated for their action on cardiac function in this model. To maintain in-situ function, the larval heart tube needs to remain viable; thus, a physiological saline is required. It was found that a reduced Mg 2+ level from the standard saline provides a more stable heartbeat, even in stressful conditions such as heat and increased expression levels of TRPA1 proteins.
Collapse
Affiliation(s)
- Joy Bidros
- Biology, University of Kentucky, Lexington, Kentucky, United States
| | - Kaitlyn Brock
- Biology, University of Kentucky, Lexington, Kentucky, United States
| | - Jaycie Gard
- Biology, University of Kentucky, Lexington, Kentucky, United States
| | - Robin Cooper
- Biology, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
4
|
McCubbin S, Meade A, Harrison DA, Cooper RL. Acute lipopolysaccharide (LPS)-induced cell membrane hyperpolarization is independent of voltage gated and calcium activated potassium channels. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:110004. [PMID: 39154976 DOI: 10.1016/j.cbpc.2024.110004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
The gram-negative toxin lipopolysaccharides (LPS) are known to trigger inflammatory cytokines in mammals, which can result in pathological responses. Upon treatment of bacterial sepsis with antibiotics, the lysing bacteria can present a surge in LPS, inducing a cytokine storm. However, LPS can also have direct cellular effects, including transient rapid hyperpolarizing of the membrane potential, blocking glutamate receptors and even promoting release of glutamate. The detailed mechanism of action for these immediate responses is still unresolved. In addressing the membrane hyperpolarization, voltage gated K+ channel blockers 4-aminopyridine (4-AP, 3 mM), quinidine hydrochloride monohydrate (0.1 mM) and tetraethylammonium (TEA, 20 mM) were examined along with RNAi knockdowns of potential calcium activated K+ channels. The immediate responses of LPS were not blocked. Even in the presence of glutamate, the membrane still hyperpolarizes with LPS. When the driving gradient for the ionotropic glutamate receptors is enhanced during hyperpolarization, spontaneous quantal responses are dampened in amplitude. Thus, glutamate receptors are blocked, and the mechanism of hyperpolarization remains unresolved. The larval Drosophila glutamatergic neuromuscular junction is used as a model synaptic preparation to address the direct rapid actions by LPS.
Collapse
Affiliation(s)
- Shelby McCubbin
- Department of Biology, University of Kentucky, Lexington, KY 40506-0025, USA.
| | - Alexis Meade
- Department of Biology, University of Kentucky, Lexington, KY 40506-0025, USA.
| | - Douglas A Harrison
- Department of Biology, University of Kentucky, Lexington, KY 40506-0025, USA.
| | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0025, USA.
| |
Collapse
|
5
|
Elliott ER, Brock KE, Vacassenno RM, Harrison DA, Cooper RL. The effects of doxapram and its potential interactions with K2P channels in experimental model preparations. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:869-884. [PMID: 38802613 DOI: 10.1007/s00359-024-01705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
The channels commonly responsible for maintaining cell resting membrane potentials are referred to as K2P (two-P-domain K+ subunit) channels. These K+ ion channels generally remain open but can be modulated by their local environment. These channels are classified based on pharmacology, pH sensitivity, mechanical stretch, and ionic permeability. Little is known about the physiological nature of these K2P channels in invertebrates. Acidic conditions depolarize neurons and muscle fibers, which may be caused by K2P channels given that one subtype can be blocked by acidic conditions. Doxapram is used clinically as a respiratory aid known to block acid-sensitive K2P channels; thus, the effects of doxapram on the muscle fibers and synaptic transmission in larval Drosophila and crawfish were monitored. A dose-dependent response was observed via depolarization of the larval Drosophila muscle and an increase in evoked synaptic transmission, but doxapram blocked the production of action potentials in the crawfish motor neuron and had a minor effect on the resting membrane potential of the crawfish muscle. This indicates that the nerve and muscle tissues in larval Drosophila and crawfish likely express different K2P channel subtypes. Since these organisms serve as physiological models for neurobiology and physiology, it would be of interest to further investigate what types of K2P channel are expressed in these tissues. (212 words).
Collapse
Affiliation(s)
- Elizabeth R Elliott
- Department of Biology, University of Kentucky, Lexington, KY, 40506-0225, USA
| | - Kaitlyn E Brock
- Department of Biology, University of Kentucky, Lexington, KY, 40506-0225, USA
| | | | - Douglas A Harrison
- Department of Biology, University of Kentucky, Lexington, KY, 40506-0225, USA
| | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY, 40506-0225, USA.
| |
Collapse
|
6
|
Elliott ER, Cooper RL. The Effect of Calcium Ions on Resting Membrane Potential. BIOLOGY 2024; 13:750. [PMID: 39336177 PMCID: PMC11428845 DOI: 10.3390/biology13090750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Regulating membrane potential is key to cellular function. For many animal cells, resting membrane potential is predominantly driven by a family of K2P (two-pore domain) potassium channels. These channels are commonly referred to as leak channels, as their presence results in the membrane being permeable to K+ ions. These channels, along with various pumps and exchangers, keep the cell resting membrane potential (Rp) relatively close to potassium's equilibrium potential (EK); however, in many cells, the resting membrane potential is more depolarized than the EK due to a small Na+ ion leak. Raising [Ca2+]O (extracellular Ca2+ concentration) can result in hyperpolarization of the membrane potential from the resting state. The mechanism for this hyperpolarization likely lies in the blockage of a Na+ leak channel (NALCN) and/or voltage-gated Na+ channels. The effects may also be connected to calcium-activated potassium channels. Using Drosophila melanogaster, we here illustrate that changing [Ca2+]O from 0.5 to 3 mM hyperpolarizes the muscle. Replacing NaCl with LiCl or choline chloride still led to hyperpolarization when increasing [Ca2+]O. Replacing CaCl2 with BaCl2 results in depolarization. K2P channel overexpression in the larval muscle greatly reduces the effects of [Ca2+]O on cell membrane potential, likely because potential is heavily driven by the EK in these muscles. These experiments provide an understanding of the mechanisms behind neuronal hypo-excitability during hypercalcemia, as well as the effects of altered expression of K2P channels on membrane potential.
Collapse
Affiliation(s)
| | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
7
|
Wagers ML, Starks A, Nadolski J, Bierbower SM, Altenburg S, Schryer B, Cooper RL. Examining the effect of iron (ferric) on physiological processes: Invertebrate models. Comp Biochem Physiol C Toxicol Pharmacol 2024; 278:109856. [PMID: 38354992 DOI: 10.1016/j.cbpc.2024.109856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
Iron is a common and essential element for maintaining life in bacteria, plants and animals and is found in soil, fresh waters and marine waters; however, over exposure is toxic to organisms. Iron is used in electron transport complexes within mitochondria as well as a co-factor in many essential proteins. It is also established that iron accumulation in the central nervous system in mammals is associated with various neurological disorders. Ample studies have investigated the long-term effects of iron overload in the nervous system. However, its acute effects in nervous tissue and additional organ systems warrant further studies. This study investigates the effects of iron overload on development, behavior, survival, cardiac function, and glutamatergic synaptic transmission in the Drosophila melanogaster. Additionally, physiological responses in crayfish were examined following Fe3+ exposure. Fe3+ reduced neuronal excitability in proprioceptive neurons in a crayfish model. Thus, Fe3+ may block stretch activated channels (SACs) as well as voltage-gated Na+ channels. Exposure also rapidly reduces synaptic transmission but does not block ionotropic glutamatergic receptors, suggesting a blockage of pre-synaptic voltage-gated Ca2+ channels in both crustacean and Drosophila models. The effects are partly reversible with acute exposure, indicating the cells are not rapidly damaged. This study is relevant in demonstrating the effects of Fe3+ on various physiological functions in different organisms in order to further understand the acute and long-term consequences of overload.
Collapse
Affiliation(s)
- Mikaela L Wagers
- Department of Biology, University of Kentucky, Lexington 40506, KY, USA
| | - Ashley Starks
- Department of Biology, University of Kentucky, Lexington 40506, KY, USA
| | - Jeremy Nadolski
- Department of Mathematical and Computational Sciences, Benedictine University, Lisle, IL 60532, USA
| | - Sonya M Bierbower
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Sean Altenburg
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Blake Schryer
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington 40506, KY, USA.
| |
Collapse
|
8
|
Brock KE, Elliott ER, Abul-Khoudoud MO, Cooper RL. The effects of Gram-positive and Gram-negative bacterial toxins (LTA & LPS) on cardiac function in Drosophila melanogaster larvae. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104518. [PMID: 37119936 DOI: 10.1016/j.jinsphys.2023.104518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
The effects of Gram negative and positive bacterial sepsis depend on the type of toxins released, such as lipopolysaccharides (LPS) or lipoteichoic acid (LTA). Previous studies show LPS to rapidly hyperpolarize larval Drosophila skeletal muscle, followed by desensitization and return to baseline. In larvae, heart rate increased then decreased with exposure to LPS. However, responses to LTA, as well as the combination of LTA and LPS, on the larval Drosophila heart have not been previously examined. This study examined the effects of LTA and a cocktail of LTA and LPS on heart rate. The combined effects were examined by first treating with either LTA or LPS only, and then with the cocktail. The results showed a rapid increase in heart rate upon LTA application, followed by a gradual decline over time. When applying LTA followed by the cocktail, an increase in the rate occurred. However, if LPS was applied before the cocktail, the rate continued declining. These responses indicate the receptors or cellular cascades responsible for controlling heart rate within seconds and the rapid desensitization are affected by LTA or LPS and a combination of the two. The mechanisms for rapid changes which are not regulated by gene expression by exposure to LTA or LPS or associated bacterial peptidoglycans have yet to be identified in cardiac tissues of any organism.
Collapse
Affiliation(s)
- Kaitlyn E Brock
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | - Elizabeth R Elliott
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | | | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
9
|
Vacassenno RM, Haddad CN, Cooper RL. Bacterial lipopolysaccharide hyperpolarizes the membrane potential and is antagonized by the K2p channel blocker doxapram. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109571. [PMID: 36740004 DOI: 10.1016/j.cbpc.2023.109571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Exposure of Drosophila skeletal muscle to bacterial lipopolysaccharides (LPS) rapidly and transiently hyperpolarizes membrane potential. However, the mechanism responsible for hyperpolarization remains unclear. The resting membrane potential of the cells is maintained through multiple mechanisms. This study investigated the possibility of LPS activating calcium-activated potassium channels (KCa) and/or K2p channels. 2-Aminoethyl diphenylborinate (2-APB), blocks uptake of Ca2+ into the endoplasmic reticulum (ER); thus, limiting release from ryanodine-sensitive internal stores to reduce the function of KCa channels. Exposure to 2-APB produces waves of hyperpolarization even during desensitization of the response to LPS and in the presence of doxapram. This finding in this study suggests that doxapram blocked the acid-sensitive K2p tandem-pore channel subtype known in mammals. Doxapram blocked LPS-induced hyperpolarization and depolarized the muscles as well as induced motor neurons to produce evoked excitatory junction potentials (EJPs). This was induced by depolarizing motor neurons, similar to the increase in extracellular K+ concentration. The hyperpolarizing effect of LPS was not blocked by decreased extracellular Ca2+or the presence of Cd2+. LPS appears to transiently activate doxapram sensitive K2p channels independently of KCa channels in hyperpolarizing the muscle. Septicemia induced by gram-negative bacteria results in an increase in inflammatory cytokines, primarily induced by bacterial LPS. Currently, blockers of LPS receptors in mammals are unknown; further research on doxapram and other K2p channels is warranted. (220 words).
Collapse
Affiliation(s)
- Rachael M Vacassenno
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA; Department of Biology, Eastern Kentucky University, Richmond, KY 40475, USA.
| | - Christine N Haddad
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
10
|
Vacassenno RM, Haddad CN, Cooper RL. The effects of doxapram (blocker of K2p channels) on resting membrane potential and synaptic transmission at the Drosophila neuromuscular junction. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109497. [PMID: 36306997 DOI: 10.1016/j.cbpc.2022.109497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 11/03/2022]
Abstract
The resting membrane potential of most cells is maintained by potassium K2p channels. The pharmacological profile and distribution of various K2p channel subtypes in organisms are still being investigated. The Drosophila genome contains 11 subtypes; however, their function and expression profiles have not yet been determined. Doxapram is clinically used to enhance respiration in humans and blocks the acid-sensitive K2p TASK subtype in mammals. The resting membrane potential of larval Drosophila muscle and synaptic transmission at the neuromuscular junction are pH sensitive. The present study investigated the effects of doxapram on membrane potential and synaptic transmission using intracellular recordings of larval Drosophila muscles. Doxapram (1 mM and 10 mM) depolarizes the muscle and appears to depolarize motor neurons, causing an increase in the frequency of spontaneous quantal events and evoked excitatory junction potentials. Verapamil (1 and 10 mM) paralleled the action of doxapram. These changes were matched by an extracellular increase in KCl (50 mM) and blocked by Cd2+. It is assumed that the motor nerve depolarizes to open voltage-gated Ca2+ channels in presynaptic nerve terminals because of exposure to doxapram. These findings are significant for building models to better understand the function of pharmacological agents that affect K2p channels and how K2p channels contribute to the physiology of tissues. Drosophila offers a genetically amenable model that can alter the tissue-specific expression of K2p channel subtypes to simulate known human diseases related to this family of channels.
Collapse
Affiliation(s)
- Rachael M Vacassenno
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA; Department of Biology, Eastern Kentucky University, Richmond, KY 40475, USA.
| | - Christine N Haddad
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
11
|
Cooper RL, Krall RM. Hyperpolarization Induced by Lipopolysaccharides but Not by Chloroform Is Inhibited by Doxapram, an Inhibitor of Two-P-Domain K + Channel (K2P). Int J Mol Sci 2022; 23:ijms232415787. [PMID: 36555429 PMCID: PMC9779748 DOI: 10.3390/ijms232415787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Bacterial septicemia is commonly induced by Gram-negative bacteria. The immune response is triggered in part by the secretion of bacterial endotoxin lipopolysaccharide (LPS). LPS induces the subsequent release of inflammatory cytokines which can result in pathological conditions. There is no known blocker to the receptors of LPS. The Drosophila larval muscle is an amendable model to rapidly screen various compounds that affect membrane potential and synaptic transmission such as LPS. LPS induces a rapid hyperpolarization in the body wall muscles and depolarization of motor neurons. These actions are blocked by the compound doxapram (10 mM), which is known to inhibit a subtype of the two-P-domain K+ channel (K2P channels). However, the K2P channel blocker PK-THPP had no effect on the Drosophila larval muscle at 1 and 10 mM. These channels are activated by chloroform, which also induces a rapid hyperpolarization of these muscles, but the channels are not blocked by doxapram. Likewise, chloroform does not block the depolarization induced by doxapram. LPS blocks the postsynaptic glutamate receptors on Drosophila muscle. Pre-exposure to doxapram reduces the LPS block of these ionotropic glutamate receptors. Given that the larval Drosophila body wall muscles are depolarized by doxapram and hyperpolarized by chloroform, they offer a model to begin pharmacological profiling of the K2P subtype channels with the potential of identifying blockers for the receptors to mitigate the actions of the Gram-negative endotoxin LPS.
Collapse
Affiliation(s)
- Robin L. Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA
- Correspondence:
| | - Rebecca M. Krall
- Department of STEM Education, University of Kentucky, Lexington, KY 40506-0001, USA
| |
Collapse
|
12
|
Pankau C, Nadolski J, Tanner H, Cryer C, Di Girolamo J, Haddad C, Lanning M, Miller M, Neely D, Wilson R, Whittinghill B, Cooper RL. Examining the effect of manganese on physiological processes: Invertebrate models. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109209. [PMID: 34628058 PMCID: PMC8922992 DOI: 10.1016/j.cbpc.2021.109209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/24/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023]
Abstract
Manganese (Mn2+ as MnSO4 &/or MnCl2) is a common and essential element for maintaining life in plants and animals and is found in soil, fresh waters and marine waters; however, over exposure is toxic to organisms. MnSO4 is added to soil for agricultural purposes and people are exposed to Mn2+ in the mining industry. Hypermanganesemia in mammals is associated with neurological issues mimicking Parkinson's disease (PD) and appears to target dopaminergic neural circuits. However, it also seems that hypermanganesemia can affect many aspects of health besides dopaminergic synapses. We examined the effect on development, behavior, survival, cardiac function, and glutamatergic synaptic transmission in the Drosophila melanogaster. In addition, we examined the effect of Mn2+ on a sensory proprioceptive organ and nerve conduction in a marine crustacean and synaptic transmission at glutamatergic neuromuscular junctions of freshwater crayfish. A dose-response effect of higher Mn2+ retards development, survival and cardiac function in larval Drosophila and survival in larvae and adults. MnSO4 as well as MnCl2 blocks stretch activated responses in primary proprioceptive neurons in a dose-response manner. Mn2+ blocks glutamatergic synaptic transmission in Drosophila as well as crayfish via presynaptic action. This study is relevant in demonstrating the effects of Mn2+ on various physiological functions in order to learn more about acute and long-term consequences Mn2+ exposure.
Collapse
Affiliation(s)
- Cecilia Pankau
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Jeremy Nadolski
- Department of Mathematical and Computational Sciences, Benedictine University, Lisle, IL 60532, USA
| | - Hannah Tanner
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; Department of Biology, Eastern Kentucky University, Richmond, KY 40475, USA
| | - Carlie Cryer
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - John Di Girolamo
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Christine Haddad
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Matthew Lanning
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Mason Miller
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Devan Neely
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Reece Wilson
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | | | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
13
|
Potter R, Meade A, Potter S, Cooper RL. Rapid and Direct Action of Lipopolysaccharide (LPS) on Skeletal Muscle of Larval Drosophila. BIOLOGY 2021; 10:1235. [PMID: 34943150 PMCID: PMC8698716 DOI: 10.3390/biology10121235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 02/02/2023]
Abstract
The endotoxin lipopolysaccharide (LPS) from Gram-negative bacteria exerts a direct and rapid effect on tissues. While most attention is given to the downstream actions of the immune system in response to LPS, this study focuses on the direct actions of LPS on skeletal muscle in Drosophila melanogaster. It was noted in earlier studies that the membrane potential rapidly hyperpolarizes in a dose-dependent manner with exposure to LPS from Pseudomonas aeruginosa and Serratia marcescens. The response is transitory while exposed to LPS, and the effect does not appear to be due to calcium-activated potassium channels, activated nitric oxide synthase (NOS), or the opening of Cl- channels. The purpose of this study was to further investigate the mechanism of the hyperpolarization of the larval Drosophila muscle due to exposure of LPS using several different experimental paradigms. It appears this response is unlikely related to activation of the Na-K pump or Ca2+ influx. The unknown activation of a K+ efflux could be responsible. This will be an important factor to consider in treatments of bacterial septicemia and cellular energy demands.
Collapse
Affiliation(s)
- Rachel Potter
- College of Medicine, University of Kentucky, 800 Rose Street MN 150, Lexington, KY 40506, USA; (R.P.); (S.P.)
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA;
| | - Alexis Meade
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA;
| | - Samuel Potter
- College of Medicine, University of Kentucky, 800 Rose Street MN 150, Lexington, KY 40506, USA; (R.P.); (S.P.)
| | - Robin L. Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA;
| |
Collapse
|
14
|
Santalla M, Pagola L, Gómez I, Balcazar D, Valverde CA, Ferrero P. Smoking flies: testing the effect of tobacco cigarettes on heart function of Drosophila melanogaster. Biol Open 2021; 10:bio.055004. [PMID: 33431431 PMCID: PMC7903996 DOI: 10.1242/bio.055004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies about the relationship between substances consumed by humans and their impact on health, in animal models, have been a challenge due to differences between species in the animal kingdom. However, the homology of certain genes has allowed extrapolation of certain knowledge obtained in animals. Drosophila melanogaster, studied for decades, has been widely used as model for human diseases as well as to study responses associated with the consumption of several substances. In the present work we explore the impact of tobacco consumption on a model of 'smoking flies'. Throughout these experiments, we aim to provide information about the effects of tobacco consumption on cardiac physiology. We assessed intracellular calcium handling, a phenomenon underlying cardiac contraction and relaxation. Flies chronically exposed to tobacco smoke exhibited an increased heart rate and alterations in the dynamics of the transient increase of intracellular calcium in myocardial cells. These effects were also evident under acute exposure to nicotine of the heart, in a semi-intact preparation. Moreover, the alpha 1 and 7 subunits of the nicotinic receptors are involved in the heart response to tobacco and nicotine under chronic (in the intact fly) as well as acute exposure (in the semi-intact preparation). The present data elucidate the implication of the intracellular cardiac pathways affected by nicotine on the heart tissue. Based on the probed genetic and physiological similarity between the fly and human heart, cardiac effects exerted by tobacco smoke in Drosophila advances our understanding of the impact of it in the human heart. Additionally, it may also provide information on how nicotine-like substances, e.g. neonicotinoids used as insecticides, affect cardiac function.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Manuela Santalla
- Departamento de Ciencias Básicas y Experimentales, UNNOBA, Monteagudo 2772, Pergamino B2700, Argentina.,Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CONICET, Facultad de Ciencias Médicas, Av 60 & 120. UNLP, La Plata B1900, Argentina
| | - Lucía Pagola
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CONICET, Facultad de Ciencias Médicas, Av 60 & 120. UNLP, La Plata B1900, Argentina
| | - Ivana Gómez
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CONICET, Facultad de Ciencias Médicas, Av 60 & 120. UNLP, La Plata B1900, Argentina
| | - Darío Balcazar
- Centro de Estudios Parasitológicos y de Vectores, UNLP-CONICET, Bv 120s/n, La Plata B1900, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CONICET, Facultad de Ciencias Médicas, Av 60 & 120. UNLP, La Plata B1900, Argentina
| | - Paola Ferrero
- Departamento de Ciencias Básicas y Experimentales, UNNOBA, Monteagudo 2772, Pergamino B2700, Argentina .,Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CONICET, Facultad de Ciencias Médicas, Av 60 & 120. UNLP, La Plata B1900, Argentina
| |
Collapse
|
15
|
Marguerite NT, Bernard J, Harrison DA, Harris D, Cooper RL. Effect of Temperature on Heart Rate for Phaenicia sericata and Drosophila melanogaster with Altered Expression of the TrpA1 Receptors. INSECTS 2021; 12:38. [PMID: 33418937 PMCID: PMC7825143 DOI: 10.3390/insects12010038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/24/2020] [Accepted: 01/02/2021] [Indexed: 11/29/2022]
Abstract
The transient receptor potential (TrpA-ankyrin) receptor has been linked to pathological conditions in cardiac function in mammals. To better understand the function of the TrpA1 in regulation of the heart, a Drosophila melanogaster model was used to express TrpA1 in heart and body wall muscles. Heartbeat of in intact larvae as well as hearts in situ, devoid of hormonal and neural input, indicate that strong over-expression of TrpA1 in larvae at 30 or 37 °C stopped the heart from beating, but in a diastolic state. Cardiac function recovered upon cooling after short exposure to high temperature. Parental control larvae (UAS-TrpA1) increased heart rate transiently at 30 and 37 °C but slowed at 37 °C within 3 min for in-situ preparations, while in-vivo larvae maintained a constant heart rate. The in-situ preparations maintained an elevated rate at 30 °C. The heartbeat in the TrpA1-expressing strains could not be revived at 37 °C with serotonin. Thus, TrpA1 activation may have allowed enough Ca2+ influx to activate K(Ca) channels into a form of diastolic stasis. TrpA1 activation in body wall muscle confirmed a depolarization of membrane. In contrast, blowfly Phaenicia sericata larvae increased heartbeat at 30 and 37 °C, demonstrating greater cardiac thermotolerance.
Collapse
Affiliation(s)
- Nicole T. Marguerite
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| | - Jate Bernard
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| | - Douglas A. Harrison
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| | | | - Robin L. Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| |
Collapse
|
16
|
Istas O, Greenhalgh A, L. Cooper R. Repetitive Exposure to Bacterial Endotoxin LPS Alters Synaptic Transmission. ACTA ACUST UNITED AC 2020. [DOI: 10.3923/jpt.2020.65.72] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
The effects of tricaine mesylate on arthropods: crayfish, crab and Drosophila. INVERTEBRATE NEUROSCIENCE 2020; 20:10. [PMID: 32474706 DOI: 10.1007/s10158-020-00243-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/20/2020] [Indexed: 12/27/2022]
Abstract
Tricaine mesylate, also known as MS-222, was investigated to characterize its effects on sensory neurons, synaptic transmission at the neuromuscular junction, and heart rate in invertebrates. Three species were examined: Drosophila melanogaster, blue crab (Callinectes sapidus), and red swamp crayfish (Procambarus clarkii). Intracellular measures of action potentials in motor neurons of the crayfish demonstrated that MS-222 dampened the amplitude, suggesting that voltage-gated Na + channels are blocked by MS-222. This is likely the mechanism behind the reduced activity measured in sensory neurons and depressed synaptic transmission in all three species as well as reduced cardiac function in the larval Drosophila. To address public access to data, a group effort was used for analysis of given data sets, blind to the experimental design, to gauge analytical accuracy. The determination of a threshold in analysis for measuring extracellular recorded sensory events is critical and is not easily performed with commercial software.
Collapse
|
18
|
Impedance Measures and a Mounting Technique for Drosophila: Larval Movements, Heart Rate, Imaging, and Electrophysiology. Methods Protoc 2020; 3:mps3010012. [PMID: 31991683 PMCID: PMC7189670 DOI: 10.3390/mps3010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Monitoring movements of larval Drosophila with electrical detection allows one to record the behaviors without the use of lights and cameras. This is a suitable technique when studying the use of light-sensitive proteins in optogenetic studies. Electrical measures are feasible to use in determining when a larva starts to move or continues to move after a light induced activation of channelrhodopsin. We have developed a technique using an electrical measure of the media as an index of larval movement. As a proof of concept, recordings with an infrared camera of the larval movement were simultaneous made with electrical measures. The two techniques parallel each other in their ability to index larval movements. Bright light-emitting diode (LED) lights used in optogenetic experiments tend to saturate the detectors of the camera unless filters are used and different filters maybe necessary depending on the LED spectrum and sensitivity of the camera. Impedance measures are independent of the type of LED or brightness. We also assessed the use of a non-solvent based glue (3M Vetbond) to hold larvae in place while measuring synaptic function of neuromuscular junctions, cardiac function and influence of modulators, or activation of light-sensitive channels.
Collapse
|
19
|
Zarin AA, Mark B, Cardona A, Litwin-Kumar A, Doe CQ. A multilayer circuit architecture for the generation of distinct locomotor behaviors in Drosophila. eLife 2019; 8:e51781. [PMID: 31868582 PMCID: PMC6994239 DOI: 10.7554/elife.51781] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/22/2019] [Indexed: 12/22/2022] Open
Abstract
Animals generate diverse motor behaviors, yet how the same motor neurons (MNs) generate two distinct or antagonistic behaviors remains an open question. Here, we characterize Drosophila larval muscle activity patterns and premotor/motor circuits to understand how they generate forward and backward locomotion. We show that all body wall MNs are activated during both behaviors, but a subset of MNs change recruitment timing for each behavior. We used TEM to reconstruct a full segment of all 60 MNs and 236 premotor neurons (PMNs), including differentially-recruited MNs. Analysis of this comprehensive connectome identified PMN-MN 'labeled line' connectivity; PMN-MN combinatorial connectivity; asymmetric neuronal morphology; and PMN-MN circuit motifs that could all contribute to generating distinct behaviors. We generated a recurrent network model that reproduced the observed behaviors, and used functional optogenetics to validate selected model predictions. This PMN-MN connectome will provide a foundation for analyzing the full suite of larval behaviors.
Collapse
Affiliation(s)
- Aref Arzan Zarin
- Institute of NeuroscienceHoward Hughes Medical Institute, University of OregonEugeneUnited States
| | - Brandon Mark
- Institute of NeuroscienceHoward Hughes Medical Institute, University of OregonEugeneUnited States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ashok Litwin-Kumar
- Mortimer B Zuckerman Mind Brain Behavior Institute, Department of NeuroscienceColumbia UniversityNew YorkUnited States
| | - Chris Q Doe
- Institute of NeuroscienceHoward Hughes Medical Institute, University of OregonEugeneUnited States
| |
Collapse
|
20
|
Bernard J, Marguerite N, Inks M, L. Cooper R. Assessment of Bacterial Endotoxin Lipopolysaccharide (LPS) Potential Interaction and TRPA1 Thermal Receptors on Synaptic Transmission. ACTA ACUST UNITED AC 2019. [DOI: 10.3923/crb.2020.10.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Ballinger- C, Anyagaligb O, Bernard J, Bierbower SM, Dupont-Ver EE, Ghoweri A, Greenhalgh A, Harrison D, Istas O, McNabb M, Saelinger C, Stanback A, Stanback M, Thibault O, Cooper RL. Effects of Bacterial Endotoxin (LPS) on Cardiac and Synaptic Function in Various Animal Models: Larval Drosophila, Crayfish, Crab and Rodent. ACTA ACUST UNITED AC 2019. [DOI: 10.3923/ijzr.2020.33.62] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Potter S, Sifers J, Yocom E, Blümich SLE, Potter R, Nadolski J, Harrison DA, Cooper RL. Effects of inhibiting mTOR with rapamycin on behavior, development, neuromuscular physiology and cardiac function in larval Drosophila. Biol Open 2019; 8:bio.046508. [PMID: 31704693 PMCID: PMC6899040 DOI: 10.1242/bio.046508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rapamycin and other mTOR inhibitors are being heralded as possible treatments for many human ailments. It is currently being utilized clinically as an immunomodulator after transplantation procedures and as a treatment for certain forms of cancer, but it has numerous potential clinical indications. Some studies have shown profound effects on life cycle and muscle physiology, but these issues have not been addressed in an organism undergoing developmental processes. This paper fills this void by examining the effect of mTOR inhibition by rapamycin on several different qualities of larval Drosophila. Various dosages of the compound were fed to second instar larvae. These larvae were monitored for pupae formation to elucidate possible life cycle effects, and a delay to pupation was quantified. Behavioral deficits were documented in rapamycin-treated larvae. Electrophysiological measurements were taken to discern changes in muscle physiology and synaptic signaling (i.e. resting membrane potential, amplitude of excitatory post-synaptic potentials, synaptic facilitation). Pupation delay and effects on behavior that are likely due to synaptic alterations within the central nervous system were discovered in rapamycin-fed larvae. These results allow for several conclusions as to how mTOR inhibition by rapamycin affects a developing organism. This could eventually allow for a more informed decision when using rapamycin and other mTOR inhibitors to treat human diseases, especially in children and adolescents, to account for known side effects. Summary: Inhibiting mTOR by rapamycin delays pupation, reduced body wall contractions and mouth-hook movements while synaptic transmission appeared normal in larval Drosophila.
Collapse
Affiliation(s)
- Samuel Potter
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Jacob Sifers
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA.,Alice Lloyd College, 100 Purpose Road, Pippa Passes, KY, 41844, USA
| | - Emily Yocom
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA.,Kentucky Wesleyan College, Owensboro, KY, 42301, USA
| | - Sandra L E Blümich
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA.,Veterinärmedizinische Fakultät, Universität Leipzig, Leipzig, Germany
| | - Rachel Potter
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Jeremy Nadolski
- Department of Mathematical and Computational Sciences, Benedictine University, Lisle, IL, 60532 , USA
| | - Douglas A Harrison
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Robin L Cooper
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
23
|
Stanley CE, Mauss AS, Borst A, Cooper RL. The Effects of Chloride Flux on Drosophila Heart Rate. Methods Protoc 2019; 2:mps2030073. [PMID: 31443492 PMCID: PMC6789470 DOI: 10.3390/mps2030073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022] Open
Abstract
Approaches are sought after to regulate ionotropic and chronotropic properties of the mammalian heart. Electrodes are commonly used for rapidly exciting cardiac tissue and resetting abnormal pacing. With the advent of optogenetics and the use of tissue-specific expression of light-activated channels, cardiac cells cannot only be excited but also inhibited with ion-selective conductance. As a proof of concept for the ability to slow down cardiac pacing, anion-conducting channelrhodopsins (GtACR1/2) and the anion pump halorhodopsin (eNpHR) were expressed in hearts of larval Drosophila and activated by light. Unlike body wall muscles in most animals, the equilibrium potential for Cl− is more positive as compared to the resting membrane potential in larval Drosophila. As a consequence, upon activating the two forms of GtACR1 and 2 with low light intensity the heart rate increased, likely due to depolarization and opening of voltage-gated Ca2+ channels. However, with very intense light activation the heart rate ceases, which may be due to Cl– shunting to the reversal potential for chloride. Activating eNpHR hyperpolarizes body wall and cardiac muscle in larval Drosophila and rapidly decreases heart rate. The decrease in heart rate is related to light intensity. Intense light activation of eNpHR stops the heart from beating, whereas lower intensities slowed the rate. Even with upregulation of the heart rate with serotonin, the pacing of the heart was slowed with light. Thus, regulation of the heart rate in Drosophila can be accomplished by activating anion-conducting channelrhodopsins using light. These approaches are demonstrated in a genetically amenable insect model.
Collapse
Affiliation(s)
- Catherine E Stanley
- Department of Biology, Center for Muscle Biology. University of Kentucky, Lexington, KY 40506-0225, USA
| | - Alex S Mauss
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Alexander Borst
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Robin L Cooper
- Department of Biology, Center for Muscle Biology. University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
24
|
Malloy CA, Somasundaram E, Omar A, Bhutto U, Medley M, Dzubuk N, Cooper RL. Pharmacological identification of cholinergic receptor subtypes: modulation of locomotion and neural circuit excitability in Drosophila larvae. Neuroscience 2019; 411:47-64. [DOI: 10.1016/j.neuroscience.2019.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/16/2019] [Accepted: 05/07/2019] [Indexed: 01/28/2023]
|
25
|
Istas O, Greenhalgh A, Cooper R. The Effects of a Bacterial Endotoxin on Behavior and Sensory-CNS-Motor Circuits in Drosophila melanogaster. INSECTS 2019; 10:insects10040115. [PMID: 31013568 PMCID: PMC6523965 DOI: 10.3390/insects10040115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
The effect of bacterial sepsis on animal behavior and physiology is complex due to direct and indirect actions. The most common form of bacterial sepsis in humans is from gram-negative bacterial strains. The endotoxin (lipopolysaccharide, LPS) and/or associated peptidoglycans from the bacteria are the key agents to induce an immune response, which then produces a cascade of immunological consequences. However, there are direct actions of LPS and associated peptidoglycans on cells which are commonly overlooked. This study showed behavioral and neural changes in larval Drosophila fed commercially obtained LPS from Serratia marcescens. Locomotor behavior was not altered, but feeding behavior increased and responses to sensory tactile stimuli were decreased. In driving a sensory-central nervous system (CNS)-motor neural circuit in in-situ preparations, direct application of commercially obtained LPS initially increased evoked activity and then decreased and even stopped evoked responses in a dose-dependent manner. With acute LPS and associated peptidoglycans exposure (10 min), the depressed neural responses recovered within a few minutes after removal of LPS. Commercially obtained LPS induces a transitory hyperpolarization of the body wall muscles within seconds of exposure and alters activity within the CNS circuit. Thus, LPS and/or associated peptidoglycans have direct effects on body wall muscle without a secondary immune response.
Collapse
Affiliation(s)
- Oscar Istas
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | - Abigail Greenhalgh
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | - Robin Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
26
|
Cooper RL, McNabb M, Nadolski J. The effects of bacterial endotoxin LPS on synaptic transmission at the neuromuscular junction. Heliyon 2019; 5:e01430. [PMID: 30976700 PMCID: PMC6441827 DOI: 10.1016/j.heliyon.2019.e01430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/23/2019] [Accepted: 03/22/2019] [Indexed: 01/20/2023] Open
Abstract
The direct action of bacterial lipopolysaccharides (LPS) endotoxin was shown to enhance synaptic transmission and hyperpolarize the membrane potential at low doses, but block glutamatergic receptors and decrease observable spontaneous events at a high dosage. The dosage effects are LPS type specific. The hyperpolarization is not due to voltage-gated potassium channels or to activation of nitric oxide synthase (NOS). The effects are induced directly by LPS, independent of an immune response.
Collapse
Affiliation(s)
- Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY, 40506-0225, USA
| | - Micaiah McNabb
- Department of Biology, University of Kentucky, Lexington, KY, 40506-0225, USA
| | - Jeremy Nadolski
- Department of Mathematical and Computational Sciences, Benedictine University, Lisle, IL, 60532, USA
| |
Collapse
|
27
|
Anyagaligbo O, Bernard J, Greenhalgh A, Cooper RL. The effects of bacterial endotoxin (LPS) on cardiac function in a medicinal blow fly (Phaenicia sericata) and a fruit fly (Drosophila melanogaster). Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:15-24. [PMID: 30448591 DOI: 10.1016/j.cbpc.2018.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
The bacterial endotoxins, lipopolysaccharides (LPS), are known to have direct effects on mammalian heart cells; thus, LPS is likely to have some effects in other cardiac models. Drosophila melanogaster was used since it serves as a model for cardiac physiology. Larvae of blow flies (Phaenicia sericata) commonly used as therapy for debriding dead tissue, are exposed to high levels of bacterial endotoxins, but their mechanisms of LPS resistance are not entirely understood. Comparative effects of LPS on heart rate (HR) were examined for both Drosophila and blowfly larvae. Acute 10-min direct exposure of in situ heart tubes with saline containing 1, 100, and 500 μg/ml LPS from two common bacterial stains (Pseudomonas aeruginosa and Serratia marcescens) revealed a dose-dependent effect. The effects differed between the two fly models. Larval hearts of Drosophila stopped rapidly in low Ca2+ containing saline, but the hearts of blow flies appear unaffected for >30 min. S. marcescens increased HR initially in Drosophila followed by a reduction for low and high doses, but no change was observed in larvae of blow flies. Whereas P. aeruginosa at a high dose decreased HR in larvae of Drosophila but increased HR in larvae of blow flies. The goal of this study is to better the understanding in the direct action of LPS on HR. Knowing the acute and direct actions of LPS exposure on HR in different species of larvae may aid in understanding the underlying mechanisms in other animals during septicemia.
Collapse
Affiliation(s)
- Ogechi Anyagaligbo
- Department of Biology, Center for Muscle Biology, University of Kentucky, Lexington, KY 40506-0225, USA
| | - Jate Bernard
- Department of Biology, Center for Muscle Biology, University of Kentucky, Lexington, KY 40506-0225, USA
| | - Abigail Greenhalgh
- Department of Biology, Center for Muscle Biology, University of Kentucky, Lexington, KY 40506-0225, USA
| | - Robin L Cooper
- Department of Biology, Center for Muscle Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
28
|
Mattingly M, Weineck K, Costa J, Cooper RL. Hyperpolarization by activation of halorhodopsin results in enhanced synaptic transmission: Neuromuscular junction and CNS circuit. PLoS One 2018; 13:e0200107. [PMID: 29969493 PMCID: PMC6029800 DOI: 10.1371/journal.pone.0200107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022] Open
Abstract
Optogenetics offers a unique method to regulate the activity of select neural circuits. However, the electrophysiological consequences of targeted optogenetic manipulation upon the entire circuit remain poorly understood. Analysis of the sensory-CNS-motor circuit in Drosophila larvae expressing eHpHR and ChR2-XXL revealed unexpected patterns of excitability. Optical stimulation of motor neurons targeted to express eNpHR resulted in inhibition followed by excitation of body wall contraction with repetitive stimulation in intact larvae. In situ preparations with direct electrophysiological measures showed an increased responsiveness to excitatory synaptic activity induced by sensory stimulation within a functional neural circuit. To ensure proper function of eNpHR and ChR2-XXL they were expressed in body wall muscle and direct electrophysiological measurements were obtained. Under eNpHR induced hyperpolarization the muscle remained excitable with increased amplitude of excitatory postsynaptic synaptic potentials. Theoretical models to explain the observations are presented. This study aids in increasing the understanding of the varied possible influences with light activated proteins within intact neural circuits.
Collapse
Affiliation(s)
- Matthew Mattingly
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kristin Weineck
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
- Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Jennifer Costa
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Robin L. Cooper
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
29
|
Higgins J, Hermanns C, Malloy C, Cooper RL. Considerations in repetitive activation of light sensitive ion channels for long-term studies: Channel rhodopsin in the Drosophila model. Neurosci Res 2017; 125:1-10. [PMID: 28728913 DOI: 10.1016/j.neures.2017.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/17/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022]
Abstract
Optogenetics is a technique used in various animal models and holds a potential for therapeutic possibilities in mammals. There are technical issues with the use of light sensitive ion channels: reproducible effects over time, controlling where the non-native proteins are targeted within the cell and changes in the biophysical properties of the cells they are expressed in. We used a variant of channel rhodopsin (ChR2-XXL) and targeted expression in neurons of larval Drosophila to investigate the acute and chronic activation, with light pulses, of the channels on synaptic function. The rhodopsin channel modifier all trans retinal (ATR) also plays a role in the sensitivity of the channel to light. Periods of acute, repetitive, and pulsatile blue light exposure over larval development produced attenuated responses. These blue light sensitive ion channels, with ATR, show accommodation and produce an electrical refractory period in inducing synaptic responses. The biological significance and aim of this study is to demonstrate that in controlling particular neurons or neuronal circuits with optogenetics, over time and throughout development, one will have to understand the dynamic nature of activating and silencing the light sensitive channels as well as the biophysical effects on neuronal activity.
Collapse
Affiliation(s)
- Jake Higgins
- University of Kentucky College of Nursing, University of Kentucky, Lexington, KY 40536, USA; Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Christina Hermanns
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Cole Malloy
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Robin L Cooper
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
30
|
Using optogenetics to assess neuroendocrine modulation of heart rate in Drosophila melanogaster larvae. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:791-806. [PMID: 28612236 DOI: 10.1007/s00359-017-1191-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/26/2017] [Accepted: 05/30/2017] [Indexed: 12/21/2022]
Abstract
The Drosophila melanogaster heart has become a principal model in which to study cardiac physiology and development. While the morphology of the heart in Drosophila and mammals is different, many of the molecular mechanisms that underlie heart development and function are similar and function can be assessed by similar physiological measurements, such as cardiac output, rate, and time in systole or diastole. Here, we have utilized an intact, optogenetic approach to assess the neural influence on heart rate in the third instar larvae. To simulate the release of modulators from the nervous system in response to environmental influences, we have directed expression of channel-rhodopsin variants to targeted neuronal populations to assess the role of these neural ensembles in directing release of modulators that may affect heart rate in vivo. Our observations show that the activation of targeted neurons, including cholinergic, dopaminergic, and serotonergic neurons, stimulate the release of cardioactive substances that increase heart rate after the initial activation at both room temperature and in a cold environment. This parallels previous studies suggesting these modulators play a crucial role in altering heart rate when applied to exposed hearts and adds to our understanding of chemical modulation of heart rate in intact Drosophila larvae.
Collapse
|
31
|
Zhu YC, Uradu H, Majeed ZR, Cooper RL. Optogenetic stimulation of Drosophila heart rate at different temperatures and Ca2+ concentrations. Physiol Rep 2016; 4:4/3/e12695. [PMID: 26834237 PMCID: PMC4758921 DOI: 10.14814/phy2.12695] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Optogenetics is a revolutionary technique that enables noninvasive activation of electrically excitable cells. In mammals, heart rate has traditionally been modulated with pharmacological agents or direct stimulation of cardiac tissue with electrodes. However, implanted wires have been known to cause physical damage and damage from electrical currents. Here, we describe a proof of concept to optically drive cardiac function in a model organism, Drosophila melanogaster. We expressed the light sensitive channelrhodopsin protein ChR2.XXL in larval Drosophila hearts and examined light-induced activation of cardiac tissue. After demonstrating optical stimulation of larval heart rate, the approach was tested at low temperature and low calcium levels to simulate mammalian heart transplant conditions. Optical activation of ChR2.XXL substantially increased heart rate in all conditions. We have developed a system that can be instrumental in characterizing the physiology of optogenetically controlled cardiac function with an intact heart.
Collapse
Affiliation(s)
- Yue C Zhu
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Henry Uradu
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Zana R Majeed
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky Department of Biology, College of Science University of Salahaddin, Erbil, Iraq
| | - Robin L Cooper
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
32
|
Zhu YC, Yocom E, Sifers J, Uradu H, Cooper RL. Modulatory effects on Drosophila larva hearts: room temperature, acute and chronic cold stress. J Comp Physiol B 2016; 186:829-41. [DOI: 10.1007/s00360-016-0997-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022]
|
33
|
Modulatory Action by the Serotonergic System: Behavior and Neurophysiology in Drosophila melanogaster. Neural Plast 2016; 2016:7291438. [PMID: 26989517 PMCID: PMC4773565 DOI: 10.1155/2016/7291438] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/09/2015] [Accepted: 12/13/2015] [Indexed: 01/13/2023] Open
Abstract
Serotonin modulates various physiological processes and behaviors. This study investigates the role of 5-HT in locomotion and feeding behaviors as well as in modulation of sensory-motor circuits. The 5-HT biosynthesis was dysregulated by feeding Drosophila larvae 5-HT, a 5-HT precursor, or an inhibitor of tryptophan hydroxylase during early stages of development. The effects of feeding fluoxetine, a selective serotonin reuptake inhibitor, during early second instars were also examined. 5-HT receptor subtypes were manipulated using RNA interference mediated knockdown and 5-HT receptor insertional mutations. Moreover, synaptic transmission at 5-HT neurons was blocked or enhanced in both larvae and adult flies. The results demonstrate that disruption of components within the 5-HT system significantly impairs locomotion and feeding behaviors in larvae. Acute activation of 5-HT neurons disrupts normal locomotion activity in adult flies. To determine which 5-HT receptor subtype modulates the evoked sensory-motor activity, pharmacological agents were used. In addition, the activity of 5-HT neurons was enhanced by expressing and activating TrpA1 channels or channelrhodopsin-2 while recording the evoked excitatory postsynaptic potentials (EPSPs) in muscle fibers. 5-HT2 receptor activation mediates a modulatory role in a sensory-motor circuit, and the activation of 5-HT neurons can suppress the neural circuit activity, while fluoxetine can significantly decrease the sensory-motor activity.
Collapse
|
34
|
Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart. J Comp Physiol B 2015; 186:45-57. [DOI: 10.1007/s00360-015-0934-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 12/27/2022]
|
35
|
Majeed ZR, Ritter K, Robinson J, Blümich SLE, Brailoiu E, Cooper RL. New insights into the acute actions from a high dosage of fluoxetine on neuronal and cardiac function: Drosophila, crayfish and rodent models. Comp Biochem Physiol C Toxicol Pharmacol 2015; 176-177:52-61. [PMID: 26232582 DOI: 10.1016/j.cbpc.2015.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022]
Abstract
The commonly used mood altering drug fluoxetine (Prozac) in humans has a low occurrence in reports of harmful effects from overdose; however, individuals with altered metabolism of the drug and accidental overdose have led to critical conditions and even death. We addressed direct actions of high concentrations on synaptic transmission at neuromuscular junctions (NMJs), neural properties, and cardiac function unrelated to fluoxetine's action as a selective 5-HT reuptake inhibitor. There appears to be action in blocking action potentials in crayfish axons, enhanced occurrences of spontaneous synaptic vesicle fusion events in the presynaptic terminals at NMJs of both Drosophila and crayfish. In rodent neurons, cytoplasmic Ca(2+) rises by fluoxetine and is thapsigargin dependent. The Drosophila larval heart showed a dose dependent effect in cardiac arrest. Acute paralytic behavior in crayfish occurred at a systemic concentration of 2mM. A high percentage of death as well as slowed development occurred in Drosophila larvae consuming food containing 100μM fluoxetine. The release of Ca(2+) from the endoplasmic reticulum in neurons and the cardiac tissue as well as blockage of voltage-gated Na(+) channels in neurons could explain the effects on the whole animal as well as the isolated tissues. The use of various animal models in demonstrating the potential mechanisms for the toxic effects with high doses of fluoxetine maybe beneficial for acute treatments in humans. Future studies in determining how fluoxetine is internalized in cells and if there are subtle effects of these mentioned mechanisms presented with chronic therapeutic doses are of general interest.
Collapse
Affiliation(s)
- Zana R Majeed
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA; Department of Biology, University of Salahaddin, Erbil, Iraq
| | - Kyle Ritter
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA; Centre College, Danville, KY, USA
| | - Jonathan Robinson
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA; Morehead State University, Morehead, KY, USA
| | - Sandra L E Blümich
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA; V.M.F., University of Leipzig, Leipzig, Germany
| | | | - Robin L Cooper
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA.
| |
Collapse
|
36
|
Majeed ZR, Stacy A, Cooper RL. Pharmacological and genetic identification of serotonin receptor subtypes on Drosophila larval heart and aorta. J Comp Physiol B 2013; 184:205-19. [PMID: 24370737 DOI: 10.1007/s00360-013-0795-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/11/2013] [Accepted: 12/11/2013] [Indexed: 12/27/2022]
Abstract
Serotonin, 5-hydroxytryptamine (5-HT), plays various roles in the fruit fly, Drosophila melanogaster. Previous studies have shown that 5-HT modulates the heart rate in third instar larvae. However, the receptor subtypes that mediate 5-HT action in larval cardiac tissue had yet to be determined. In this study, various 5-HT agonists and antagonists were employed to determine which 5-HT receptor subtypes are responsible for the positive chronotropic effect by 5-HT. The pharmacological results demonstrate that a 5-HT2B agonist significantly increases the heart rate; however, 5-HT1A, 5-HT1B, and 5-HT7 agonists do not have a significant effect on the heart rate. Furthermore, 5-HT2 antagonist, ketanserin, markedly reduces the positive chronotropic effect of 5-HT in a dose-response manner. Furthermore, we employed genetic approaches to confirm the pharmacological results. For this purpose, we used RNA interference line to knock down 5-HT2ADro and also used 5-HT2ADro and 5-HT2BDro insertional mutation lines. The results show that 5-HT2ADro or 5-HT2BDro receptor mutations reduce the response of the heart to 5-HT. Given these results, we conclude that these 5-HT2 receptor subtypes are involved in the action of 5-HT on the heart rate in the larval stage.
Collapse
Affiliation(s)
- Zana R Majeed
- Department of Biology and Center for Muscle Biology, University of Kentucky, 675 Rose Street, Lexington, KY, 40506-0225, USA,
| | | | | |
Collapse
|
37
|
Majeed ZR, Nichols CD, Cooper RL. 5-HT stimulation of heart rate in Drosophila does not act through cAMP as revealed by pharmacogenetics. J Appl Physiol (1985) 2013; 115:1656-65. [PMID: 24092690 DOI: 10.1152/japplphysiol.00849.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The fruit fly, Drosophila melanogaster, is a good experimental organism to study the underlying mechanism of heart rate (HR) regulation. It is already known that many neuromodulators (serotonin, dopamine, octopamine, acetylcholine) change the HR in Drosophila melanogaster larvae. In this study, we investigated the role of cAMP-PKA signaling pathway in HR regulation and 5-HT positive chronotropic action. In order to obtain insight into the 5-HT mechanism of action in larvae cardiomyocytes, genetic and pharmacological approaches were used. We used transgenic flies that expressed the hM4Di receptor [designer receptors exclusively activated by designer drugs (DREADDs)] as one tool. Our previous results showed that activation of hM4Di receptors (modified muscarinic acetylcholine receptors) decreases or arrests the heart from beating. In this study, it was hypothesized that the positive chronotropic effect of serotonin [5-hydroxytryptamine (5-HT)] are mediated by serotonin receptors coupled to the adenylyl cyclase pathway and downstream cAMP and PKA activity. Activation of hM4Di by clozapine-N-oxide (CNO) was predicted to block the effects of serotonin by inhibiting adenylyl cyclase activity through Gαi pathway activation. Interestingly, we found here that manipulation of adenylyl cyclase activity and cAMP levels had no significant effect on HR. The ability of hM4Di receptor activation to slow or stop the heart is therefore likely mediated by activation of GIRK channels to produce hyperpolarization of cardiomyocytes, and not through inhibition of adenylyl cyclase.
Collapse
Affiliation(s)
- Zana R Majeed
- Department of Biology, University of Kentucky, Lexington, Kentucky
| | | | | |
Collapse
|