1
|
Dick MF, Hobson KA, Guglielmo CG. Experimental evidence that EPA and DHA are dietary requirements in a migratory shorebird, but they do not affect muscle oxidative capacity. J Exp Biol 2024; 227:jeb246105. [PMID: 38300135 PMCID: PMC10911131 DOI: 10.1242/jeb.246105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Dietary n-3 long chain polyunsaturated fatty acids (LCPUFAs) are hypothesized to be natural doping agents in migratory shorebirds, enabling prolonged flight by increasing membrane fluidity and oxidative capacity of the flight muscles. Animals can obtain n-3 LCPUFAs from the diet or by conversion of dietary α-linolenic acid, 18:3 n-3. However, the capacity to meet n-3 LCPUFA requirements from 18:3 n-3 varies among species. Direct tests of muscle oxidative enhancement and fatty acid conversion capacity are lacking in marine shorebirds that evolved eating diets rich in n-3 LCPUFAs. We tested whether the presence and type of dietary fatty acids influence the fatty acid composition and flight muscle oxidative capacity in western sandpipers (Calidris mauri). Sandpipers were fed diets low in n-3 PUFAs, high in 18:3 n-3, or high in n-3 LCPUFAs. Dietary fatty acid composition was reflected in multiple tissues, and low intake of n-3 LCPUFAs decreased the abundance of these fatty acids in all tissues, even with a high intake of 18:3 n-3. This suggests that 18:3 n-3 cannot replace n-3 LCPUFAs, and dietary n-3 LCPUFAs are required for sandpipers. Flight muscle indicators of enzymatic oxidative capacity and regulators of lipid metabolism did not change. However, the n-3 LCPUFA diet was associated with increased FAT/CD36 mRNA expression, potentially benefitting fatty acid transport during flight. Our study suggests that flight muscle lipid oxidation is not strongly influenced by n-3 PUFA intake. The type of dietary n-3 PUFA strongly influences the abundance of n-3 LCPUFAs in the body and could still impact whole-animal performance.
Collapse
Affiliation(s)
- Morag F. Dick
- Department of Biology, Centre for Animals on the Move, Advanced Facility for Avian Research, Western University, London, ON, Canada, N6A 5B7
| | - Keith A. Hobson
- Department of Biology, Centre for Animals on the Move, Advanced Facility for Avian Research, Western University, London, ON, Canada, N6A 5B7
| | - Christopher G. Guglielmo
- Department of Biology, Centre for Animals on the Move, Advanced Facility for Avian Research, Western University, London, ON, Canada, N6A 5B7
| |
Collapse
|
2
|
Sharma A, Tripathi V, Kumar V. Control and adaptability of seasonal changes in behavior and physiology of latitudinal avian migrants: Insights from laboratory studies in Palearctic-Indian migratory buntings. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:902-918. [PMID: 35677956 DOI: 10.1002/jez.2631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Twice-a-year migrations, one in autumn and the other in spring, occur within a discrete time window with striking alterations in the behavior and physiology, as regulated by the interaction of endogenous rhythms with prevailing photoperiod. These seasonal voyages are not isolated events; rather, they are part of an overall annual itinerary and remain closely coupled to the other annual subcycles, called seasonal life history states (LHSs). The success of migration depends on appropriate timing of the initiation and termination of each LHS, for example, reproduction, molt, summer nonmigratory, preautumn migratory (fattening and weight gain), autumn migratory, winter nonmigratory (wnM), prevernal (spring) migratory (fattening and weight gain), and spring migratory LHSs. Migration-linked photoperiod-induced changes include the body fattening and weight gain, nocturnal Zugunruhe (migratory restlessness), elevated triglycerides and free fatty acids, triiodothyronine and corticosterone levels. Hypothalamic expression of the thyroid hormone-responsive dio2 and dio3, light-responsive per2, cry1, and adcyap1 and th (tyrosine hydroxylase, involved in dopamine biosynthesis) genes also show significant changes with transition from wnM to the vernal migratory LHS. Concurrent changes in the expression of genes associated with lipid metabolism and its transport also occur in the liver and flight muscles, respectively. Interestingly, there are clear differences in the behavioral and physiological phenotypes, and associated molecular changes, between the autumn and vernal migrations. In this review, we discuss seasonal changes in the behavior and physiology, and present molecular insights into the development of migratory phenotypes in latitudinal avian migrants, with special reference to Palearctic-Indian migratory buntings.
Collapse
Affiliation(s)
- Aakansha Sharma
- Department of Zoology, IndoUS Center in Chronobiology, University of Delhi, Delhi, India
| | - Vatsala Tripathi
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi, India
| | - Vinod Kumar
- Department of Zoology, IndoUS Center in Chronobiology, University of Delhi, Delhi, India
| |
Collapse
|
3
|
Blood Metabolites and Profiling Stored Adipose Tissue Reveal the Differential Migratory Strategies of Eurasian Reed and Sedge Warblers. BIRDS 2022. [DOI: 10.3390/birds3040024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The overall speed of bird migration is limited by the amount of fuel stores acquired during the initial phases of migration. The ability to mobilize fat is crucial for migratory birds that can exhibit different migratory strategies. Birds mobilize triglycerides during nocturnal flight thus increasing circulating fatty acids and glycerol to meet the metabolic demands of flight. Eurasian Reed (Acrocephalus scirpaceus) and Sedge (Acrocephalus schoenobaenus) Warblers were captured at Portuguese stopover sites during spring and autumn migration. These species were selected based on their different migration strategies and dietary preferences during migration. Blood metabolites and fat composition were analyzed to determine their nutritional states. Sedge Warblers had higher blood triglyceride and glycerol levels during post-flight fasting than in non-fasting periods. Furthermore, Sedge Warblers had higher triglyceride and glycerol levels than Eurasian Reed Warblers in both post-flight fasting and non-fasting condition. The differences found may reflect distinct approaches in re-feeding activity (e.g., feeding intensely) associated with the number of stopovers during migratory cycle. Dietary preferences affect the fat composition available for oxidation during long-term exercise in migratory flight. Nuclear magnetic resonance analysis of subcutaneous fat composition revealed that Sedge Warblers presented higher levels of polyunsaturated fatty acid levels than Eurasian Reed Warblers. The distinct lipidic profiles observed and differences in feeding ecology may explain the different migration strategies of these species. Overall and despite their ecological similarity, our study species showed pronounced differences in blood metabolites levels and subcutaneous fatty acids composition, likely attributed to the migratory strategy and foraging preferences during their migratory cycle.
Collapse
|
4
|
Peros CS, Kriz R, Proudfoot GA. Account and Utilization of Blood Lipid Profiles: Lipid Levels Predicted Hemosporidian Infection in Migrating Northern Saw-Whet Owls of Eastern North America. J Parasitol 2021; 107:147-154. [PMID: 33662113 DOI: 10.1645/20-114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Noting lipidomic changes following the parasitism of migrating birds, the metabolic needs of which are primarily fueled by lipids, can deepen our understanding of host-parasite interactions. We identified lipids of migrating Northern saw-whet owls (Aegolius acadicus) using collision-induced dissociation mass spectrometry, compared the lipidomic signatures of hemoparasite-infected and noninfected individuals, and performed cross-validation analyses to reveal associations between parasite infection and lipid levels. We found significantly lower levels of lipid classes phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylcholine (PC), and sphingomyelin (SM) in infected Northern saw-whet owls than in the noninfected individuals. Conversely, we found higher levels for certain lysoPS and lysoPE species, and variable lipid level changes for free fatty acid (FFA) species. Reporting lipidomic changes observed between hemosporidian-infected and noninfected Northern saw-whet owls can strengthen our understanding of the mechanisms governing parasite proliferation in this species. Furthermore, our analysis indicated that lipidomic signatures are better predictors of parasite infection than the log-adjusted mass/wing chord body index, a metric commonly used to assess the influence of hemosporidia infection on the health of birds. Establishing a lipidomic profile for Northern saw-whet owls that provides baseline lipid levels during fall migration may assist future studies assessing causes of reductions in breeding brought about from subtle differences in behaviors such as delayed migration.
Collapse
Affiliation(s)
- Colin Scott Peros
- Department of Biology, Vassar College, 124 Raymond Avenue, Poughkeepsie, New York 12604
| | - Reno Kriz
- Department of Biology, Vassar College, 124 Raymond Avenue, Poughkeepsie, New York 12604.,Department of Computer Science, University of Pennsylvania, 3330 Walnut Street, Philadelphia, Pennsylvania 19104
| | - Glenn A Proudfoot
- Department of Biology, Vassar College, 124 Raymond Avenue, Poughkeepsie, New York 12604
| |
Collapse
|
5
|
Ibañez AE, Pasquevich MY, Machulsky NF, Berg G, Heras H, Montalti D, Grilli MG. Dynamics of circulating lipoproteins and lipids in Brown Skua (Stercorarius antarcticus lonnbergi) during the breeding cycle. Polar Biol 2021. [DOI: 10.1007/s00300-020-02793-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Young KG, Vanderboor CM, Regnault TRH, Guglielmo CG. Species-specific metabolic responses of songbird, shorebird, and murine cultured myotubes to n-3 polyunsaturated fatty acids. Am J Physiol Regul Integr Comp Physiol 2020; 320:R362-R376. [PMID: 33356878 DOI: 10.1152/ajpregu.00249.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Migratory birds may benefit from diets rich in polyunsaturated fatty acids (PUFAs) that could improve exercise performance. Previous investigations suggest that different types of birds may respond differently to PUFA. We established muscle myocyte cell culture models from muscle satellite cells of a migratory passerine songbird (yellow-rumped warbler, Setophaga coronata coronata) and a nonpasserine shorebird (sanderling, Calidris alba). We differentiated and treated avian myotubes and immortalized murine C2C12 myotubes with n-3 PUFA docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), and with monounsaturated oleic acid (OA) to compare effects on aerobic performance, metabolic enzyme activities, key fatty acid (FA) transporters, and expression of peroxisome proliferator-activated receptors (PPARs). Sanderling and C2C12 myotubes increased expression of PPARs with n-3 PUFA treatments, whereas expression was unchanged in yellow-rumped warblers. Both sanderlings and yellow-rumped warblers increased expression of fatty acid transporters, whereas C2C12 cells decreased expression following n-3 PUFA treatments. Only yellow-rumped warbler myotubes increased expression of some metabolic enzymes, whereas the sanderling and C2C12 cells were unchanged. PUFA supplementation in C2C12 myotubes increased mitochondrial respiratory chain efficiency, whereas sanderlings increased proton leak-associated respiration and maximal respiration (measurements were not made in warblers). This research indicates that songbirds and shorebirds respond differently to n-3 PUFA and provides support for the hypothesis that n-3 PUFA increase the aerobic capacity of migrant shorebird muscle, which may improve overall endurance flight performance.
Collapse
Affiliation(s)
- Kevin G Young
- Department of Biology, Advanced Facility for Avian Research, Western University, London, Ontario, Canada
| | - Christina M Vanderboor
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Timothy R H Regnault
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Christopher G Guglielmo
- Department of Biology, Advanced Facility for Avian Research, Western University, London, Ontario, Canada
| |
Collapse
|
7
|
Jensen JK, Isaksson C, Eikenaar C, Andersson MN. Migrant blackbirds, Turdus merula, have higher plasma levels of polyunsaturated fatty acids compared to residents, but not enhanced fatty acid unsaturation index. Ecol Evol 2020; 10:10196-10206. [PMID: 33005375 PMCID: PMC7520213 DOI: 10.1002/ece3.6681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/05/2020] [Accepted: 07/24/2020] [Indexed: 01/30/2023] Open
Abstract
Birds have been observed to have dietary preferences for unsaturated fatty acids during migration. Polyunsaturated fatty acids (PUFAs) may increase the exercise performance of migrant birds; however, PUFAs are also peroxidation prone and might therefore incur increased costs in terms of enhanced oxidative damage in migratory individuals. To shed light on this potential constraint, we analyzed plasma fatty acid (FA) composition and estimated the unsaturation index as a proxy for susceptibility to lipid peroxidation of migrants and residents of the partially migratory common blackbird (Turdus merula) at a stopover site during autumn migration. As predicted, migrant birds had higher relative and absolute levels of PUFAs compared to resident birds. This included the strictly dietary ω-3 PUFA α-linolenic acid, suggesting a dietary and/or storage preference for these FAs in migrants. Interestingly, the FA unsaturation index did not differ between migrants and residents. These findings suggest a mechanism where birds alter their levels of metabolic substrate without simultaneously increasing the susceptibility of the substrate to lipid peroxidation. In summary, our results are in line with the hypothesis that increased exercise performance during migration might be constrained by oxidative stress, which is manifested in changes in the composition of key FAs to retain the unsaturation index constant despite the increased levels of peroxidizable PUFAs.
Collapse
Affiliation(s)
- Johan Kjellberg Jensen
- Department of BiologyLund UniversityLundSweden
- Centre for Environmental and Climate Research (CEC)Lund UniversityLundSweden
| | | | | | | |
Collapse
|
8
|
Sharma A, Kumar V. Metabolic plasticity mediates differential responses to spring and autumn migrations: Evidence from gene expression patterns in migratory buntings. Exp Physiol 2019; 104:1841-1857. [PMID: 31584730 DOI: 10.1113/ep087974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the molecular underpinnings of seasonal metabolic plasticity during spring and autumn migrations in songbirds? What is the main finding and its importance? We report differences in mRNA levels of genes involved in the regulation of glucose and fat metabolism between photoinduced non-migratory and migratory states and between the spring and autumn migratory states. Higher expression of genes associated with fat mobilization and energy generation in the spring than in the autumn migration suggests differential activation of the metabolic pathways or alteration in the efficiency of existing functional machinery during annual journeys between nearly fixed destinations. ABSTRACT The molecular underpinnings of metabolic plasticity underlying differential responses to spring and autumn migrations are not well understood. We investigated this by examining the differences in mRNA levels of metabolic genes in the liver, muscle and adipose tissues of night-migratory red-headed buntings between photostimulated non-migratory and migratory states and between spring and autumn migratory states. Buntings accumulated more subcutaneous fat and hepatic lipid, had higher body mass, larger adipose cells and higher circulating triglyceride and free fatty acid levels and exhibited more intense Zugunruhe in the spring migratory state than in the autumn migratory state. More importantly, we found differences in the hepatic expression of pdc and pdk genes, indicating a differential acetyl-CoA requirement, and of the mdh and ogdh genes, suggesting differential oxidative phosphorylation between the non-migratory and migratory states and between the spring and autumn migratory states. Differences in fasn, bmal1 and glut1 mRNA levels were consistent with this and suggested seasonal differences in lipogenesis and/or glucose uptake. Likewise, differences in mRNA levels of genes coding for lipases (atgl and lpl) suggested that adipose triglycerides and free fatty acids serve largely as the metabolic substrate. Furthermore, changes in mRNA levels of genes coding for the fatty acid binding protein (fabp3) and fatty acid translocases (cd36) were consistent with differential fat fuel supply (via circulating free fatty acids) to aerobically exercising flight muscles between the spring and autumn migrations. These results show seasonal adaptation of genetic pathway(s) underlying seasonal metabolic plasticity that seems to mediate differential responses to spring and autumn migrations in latitudinal migratory songbirds.
Collapse
Affiliation(s)
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
9
|
Araújo PM, Viegas I, Rocha AD, Villegas A, Jones JG, Mendonça L, Ramos JA, Masero JA, Alves JA. Understanding how birds rebuild fat stores during migration: insights from an experimental study. Sci Rep 2019; 9:10065. [PMID: 31296911 PMCID: PMC6624420 DOI: 10.1038/s41598-019-46487-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 06/10/2019] [Indexed: 12/22/2022] Open
Abstract
Mechanisms underlying fat accumulation for long-distance migration are not fully understood. This is especially relevant in the context of global change, as many migrants are dealing with changes in natural habitats and associated food sources and energy stores. The continental Black-tailed godwit Limosa limosa limosa is a long-distance migratory bird that has undergone a considerable dietary shift over the past few decades. Historically, godwits fed on an animal-based diet, but currently, during the non-breeding period godwits feed almost exclusively on rice seeds. The latter diet may allow building up of their fuel stores for migration by significantly increasing de novo lipogenesis (DNL) activity. Here, we performed an experiment to investigate lipid flux and the abundance of key enzymes involved in DNL in godwits, during fasting and refueling periods at the staging site, while feeding on rice seeds or fly larvae. Despite no significant differences found in enzymatic abundance (FASN, ME1, ACC and LPL) in stored fat, experimental godwits feeding on rice seeds presented high rates of DNL when compared to fly-larvae fed birds (~35 times more) and fasted godwits (no DNL activity). The increase of fractional DNL in godwits feeding on a carbohydrate-rich diet can potentially be enhanced by the fasting period that stimulates lipogenesis. Although requiring further testing, these recent findings provide new insights into the mechanisms of avian fat accumulation during a fasting and refueling cycle and associated responses to habitat and dietary changes in a migratory species.
Collapse
Affiliation(s)
- Pedro M Araújo
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3004-517, Coimbra, Portugal.
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661, Vairão, Portugal.
| | - Ivan Viegas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004- 517, Portugal
- CEF - Center for Functional Ecology, Department Life Sciences, University of Coimbra, Coimbra, 3000-456, Portugal
| | - Afonso D Rocha
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3180-193, Aveiro, Portugal
| | - Auxiliadora Villegas
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Avenida de Elvas s/n, 06071, Badajoz, Spain
| | - John G Jones
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004- 517, Portugal
| | - Liliana Mendonça
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004- 517, Portugal
| | - Jaime A Ramos
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3004-517, Coimbra, Portugal
| | - José A Masero
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Avenida de Elvas s/n, 06071, Badajoz, Spain
| | - José A Alves
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3180-193, Aveiro, Portugal
- University of Iceland, South Iceland Research Centre, Lindarbraut 4, IS-840, Laugarvatn, Iceland
| |
Collapse
|
10
|
Fowler MA, Paquet M, Legault V, Cohen AA, Williams TD. Physiological predictors of reproductive performance in the European Starling ( Sturnus vulgaris). Front Zool 2018; 15:45. [PMID: 30479645 PMCID: PMC6249724 DOI: 10.1186/s12983-018-0288-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/25/2018] [Indexed: 01/23/2023] Open
Abstract
Background It is widely assumed that variation in fitness components has a physiological basis that might underlie selection on trade-offs, but the mechanisms driving decreased survival and future fecundity remain elusive. Here, we assessed whether physiological variables are related to workload ability or immediate fitness consequences and if they mediate future survival or reproductive success. We used data on 13 physiological variables measured in 93 female European starlings (Sturnus vulgaris) at two breeding stages (incubation, chick-rearing), for first-and second-broods over two years (152 observations). Results There was little co-variation among the physiological variables, either in incubating or chick-rearing birds, but some systematic physiological differences between the two stages. Chick-rearing birds had lower hematocrit and plasma creatine kinase but higher hemoglobin, triglyceride and uric acid levels. Only plasma corticosterone was repeatable between incubation and chick-rearing. We assessed relationships between incubation or chick-rearing physiology and measures of workload, current productivity, future fecundity or survival in a univariate manner, and found very few significant relationships. Thus, we next explored the utility of multivariate analysis (principal components analysis, Mahalanobis distance) to account for potentially complex physiological integration, but still found no clear associations. Conclusions This implies either that a) birds maintained physiological variables within a homeostatic range that did not affect their performance, b) there are relatively few links between physiology and performance, or, more likely, c) that the complexity of these relationships exceeds our ability to measure it. Variability in ecological context may complicate the relationship between physiology and behavior. We thus urge caution regarding the over-interpretation of isolated significant findings, based on single traits in single years, in the literature. Electronic supplementary material The online version of this article (10.1186/s12983-018-0288-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melinda A Fowler
- 1Department of Biological Sciences, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6 Canada.,Present address: Springfield College Biology, 263 Alden Street, Springfield, MA 01109-3797 USA
| | - Mélissa Paquet
- 3Groupe de recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC J1H 5N4 Canada
| | - Véronique Legault
- 3Groupe de recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC J1H 5N4 Canada
| | - Alan A Cohen
- 3Groupe de recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC J1H 5N4 Canada
| | - Tony D Williams
- 1Department of Biological Sciences, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6 Canada
| |
Collapse
|
11
|
Hamilton A, Ly J, Robinson JR, Corder KR, DeMoranville KJ, Schaeffer PJ, Huss JM. Conserved transcriptional activity and ligand responsiveness of avian PPARs: Potential role in regulating lipid metabolism in mirgratory birds. Gen Comp Endocrinol 2018; 268:110-120. [PMID: 30114400 DOI: 10.1016/j.ygcen.2018.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/18/2018] [Accepted: 08/07/2018] [Indexed: 01/04/2023]
Abstract
Migratory birds undergo metabolic remodeling in tissues, including increased lipid storage in white adipose and fatty acid uptake and oxidation in skeletal muscle, to optimize energy substrate availability and utilization in preparation for long-distance flight. Different tissues undergo gene expression changes in keeping with their specialized functions and driven by tissue specific transcriptional pathways. Peroxisome proliferator-activated receptors (PPARs) are lipid-activated nuclear receptors that regulate metabolic pathways involved in lipid and glucose utilization or storage in mammals. To examine whether PPARs might mediate fatty acid activation of metabolic gene programs that would be relevant during pre-migratory fattening, we used gray catbird as the focal species. PPAR isoforms cloned from catbird share high amino acid identity with mammalian homologs (% vs human): gcPPARα (88.1%), gcPPARδ (87.3%), gcPPARγ (91.2%). We tested whether gcPPARs activated fatty acid (FA) utilization genes using Lpl and Cpt1b gene promoter-luciferase reporters in mammalian cell lines. In C2C12 mouse myocytes gcPPARα was broadly activated by the saturated and unsaturated FAs tested; while gcPPARδ showed highest activation by the mono-unsaturated FA, 18:1 oleic acid (+80%). In CV-1 monkey kidney cells gcPPARγ responded to the poly-unsaturated fatty acid, 20:5 eicosapentaenoic acid (+60%). Moreover, in agreement with their structural conservation, gcPPARs were activated by isoform selective synthetic agonists similar to the respective mammalian isoform. Adenoviral mediated over-expression of PPARα in C2C12 myocytes induced expression of genes involved in fatty acid transport, including Cd36/Fat, as well as Cpt1b, which mediates a key rate limiting step of mitochondrial β-oxidation. These gene expression changes correlated with increased lipid droplet accumulation in C2C12 myoblasts and differentiated myotubes and enhanced β-oxidation in myotubes. Collectively, the data predict that the PPARs play a conserved role in gray catbirds to regulate lipid metabolism in target tissues that undergo metabolic remodeling throughout the annual migratory cycle.
Collapse
Affiliation(s)
- Angelica Hamilton
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jennifer Ly
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jasmine R Robinson
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Keely R Corder
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | | | | | - Janice M Huss
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
12
|
Carter WA, Cooper-Mullin C, McWilliams SR. Turnover of muscle lipids and response to exercise differ between neutral and polar fractions in a model songbird, the zebra finch. ACTA ACUST UNITED AC 2018; 221:jeb.168823. [PMID: 29444847 DOI: 10.1242/jeb.168823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/01/2018] [Indexed: 01/12/2023]
Abstract
The turnover rates of tissues and their constituent molecules give us insights into animals' physiological demands and their functional flexibility over time. Thus far, most studies of this kind have focused on protein turnover, and few have considered lipid turnover despite an increasing appreciation of the functional diversity of this class of molecules. We measured the turnover rates of neutral and polar lipids from the pectoralis muscles of a model songbird, the zebra finch (Taeniopygia guttata, N=65), in a 256 day C3/C4 diet shift experiment, with tissue samples taken at 10 time points. We also manipulated the physiological state of a subset of these birds with a 10 week flight training regimen to test the effect of exercise on lipid turnover. We measured lipid δ13C values via isotope ratio mass spectrometry (IRMS) and estimated turnover in different fractions and treatment groups with non-linear mixed-effect regression. We found a significant difference between the mean retention times (τ) of neutral and polar lipids (t119=-2.22, P=0.028), with polar lipids (τ=11.80±1.28 days) having shorter retention times than neutral lipids (τ=19.47±3.22 days). When all birds were considered, we also found a significant decrease in the mean retention time of polar lipids in exercised birds relative to control birds (difference=-2.2±1.83 days, t56=-2.37, P=0.021), but not neutral lipids (difference=4.2± 7.41 days, t56=0.57, P=0.57). A larger, more variable neutral lipid pool and the exposure of polar lipids in mitochondrial membranes to oxidative damage and increased turnover provide mechanisms consistent with our results.
Collapse
Affiliation(s)
- Wales A Carter
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Clara Cooper-Mullin
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Scott R McWilliams
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
13
|
Abstract
Migratory birds are physiologically specialized to accumulate massive fat stores (up to 50-60% of body mass), and to transport and oxidize fatty acids at very high rates to sustain flight for many hours or days. Target gene, protein and enzyme analyses and recent -omic studies of bird flight muscles confirm that high capacities for fatty acid uptake, cytosolic transport, and oxidation are consistent features that make fat-fueled migration possible. Augmented circulatory transport by lipoproteins is suggested by field data but has not been experimentally verified. Migratory bats have high aerobic capacity and fatty acid oxidation potential; however, endurance flight fueled by adipose-stored fat has not been demonstrated. Patterns of fattening and expression of muscle fatty acid transporters are inconsistent, and bats may partially fuel migratory flight with ingested nutrients. Changes in energy intake, digestive capacity, liver lipid metabolism and body temperature regulation may contribute to migratory fattening. Although control of appetite is similar in birds and mammals, neuroendocrine mechanisms regulating seasonal changes in fuel store set-points in migrants remain poorly understood. Triacylglycerol of birds and bats contains mostly 16 and 18 carbon fatty acids with variable amounts of 18:2n-6 and 18:3n-3 depending on diet. Unsaturation of fat converges near 70% during migration, and unsaturated fatty acids are preferentially mobilized and oxidized, making them good fuel. Twenty and 22 carbon n-3 and n-6 polyunsaturated fatty acids (PUFA) may affect membrane function and peroxisome proliferator-activated receptor signaling. However, evidence for dietary PUFA as doping agents in migratory birds is equivocal and requires further study.
Collapse
Affiliation(s)
- Christopher G Guglielmo
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada N6A5B7
| |
Collapse
|
14
|
Ushine N, Sato T, Kato T, Hayama SI. Analysis of body mass changes in the Black-Headed Gull (Larus ridibundus) during the winter. J Vet Med Sci 2017; 79:1627-1632. [PMID: 28757507 PMCID: PMC5627339 DOI: 10.1292/jvms.17-0099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During the autumn migration of many waterfowls, body mass is lowest upon arrival at the wintering area and gradually increases during the winter. Consequently, body mass is highest before the spring migration. We studied the
pattern of body mass changes in the Black-Headed Gull (Larus ridibundus) from December 2010 to December 2016 in the Shinhama area of Chiba, Japan. Based on 327 captured animals, body mass increased during the
wintering period, but tended to decrease before migration. In 2014–2016, a muscle mass reduction in females was observed, explaining the change in body mass. However, the observed weight loss may be caused by many factors, which
may be related to the migratory ecology of the regional population.
Collapse
Affiliation(s)
- Nana Ushine
- Laboratory of Wildlife Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Tatsuo Sato
- Friends of the Gyotoku Bird Observatory NPO, 4-22-11 Hukuei, Ichikawa-shi, Chiba 272-0137, Japan
| | - Takuya Kato
- Laboratory of Wildlife Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Shin-Ichi Hayama
- Laboratory of Wildlife Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| |
Collapse
|
15
|
Swanson DL, McKechnie AE, Vézina F. How low can you go? An adaptive energetic framework for interpreting basal metabolic rate variation in endotherms. J Comp Physiol B 2017; 187:1039-1056. [PMID: 28401293 DOI: 10.1007/s00360-017-1096-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/13/2017] [Accepted: 04/06/2017] [Indexed: 11/24/2022]
Abstract
Adaptive explanations for both high and low body mass-independent basal metabolic rate (BMR) in endotherms are pervasive in evolutionary physiology, but arguments implying a direct adaptive benefit of high BMR are troublesome from an energetic standpoint. Here, we argue that conclusions about the adaptive benefit of BMR need to be interpreted, first and foremost, in terms of energetics, with particular attention to physiological traits on which natural selection is directly acting. We further argue from an energetic perspective that selection should always act to reduce BMR (i.e., maintenance costs) to the lowest level possible under prevailing environmental or ecological demands, so that high BMR per se is not directly adaptive. We emphasize the argument that high BMR arises as a correlated response to direct selection on other physiological traits associated with high ecological or environmental costs, such as daily energy expenditure (DEE) or capacities for activity or thermogenesis. High BMR thus represents elevated maintenance costs required to support energetically demanding lifestyles, including living in harsh environments. BMR is generally low under conditions of relaxed selection on energy demands for high metabolic capacities (e.g., thermoregulation, activity) or conditions promoting energy conservation. Under these conditions, we argue that selection can act directly to reduce BMR. We contend that, as a general rule, BMR should always be as low as environmental or ecological conditions permit, allowing energy to be allocated for other functions. Studies addressing relative reaction norms and response times to fluctuating environmental or ecological demands for BMR, DEE, and metabolic capacities and the fitness consequences of variation in BMR and other metabolic traits are needed to better delineate organismal metabolic responses to environmental or ecological selective forces.
Collapse
Affiliation(s)
- David L Swanson
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069, USA.
| | - Andrew E McKechnie
- Department of Zoology and Entomology, DST-NRF Centre of Excellence at the Percy FitzPatrick Institute, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - François Vézina
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, Canada.,Groupe de recherche sur les environnements nordiques BORÉAS, Centre d'Études Nordiques, Centre de la Science de la Biodiversité du Québec, Rimouski, QC, Canada
| |
Collapse
|
16
|
Bussière-Côté S, Omlin T, de Càssia Pinheiro E, Weber JM. Gemfibrozil disrupts the metabolism of circulating lipids in bobwhite quails. Comp Biochem Physiol C Toxicol Pharmacol 2016; 179:137-43. [PMID: 26432161 DOI: 10.1016/j.cbpc.2015.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 11/15/2022]
Abstract
The circulating lipids of birds play essential roles for egg production and as an energy source for flight and thermogenesis. How lipid-lowering pharmaceuticals geared to prevent heart disease in humans and that are routinely released in the environment affect their metabolism is unknown. This study assesses the impact of the popular drug gemfibrozil (GEM) on the plasma phospholipids (PL), neutral lipids (NL), and nonesterified fatty acids (NEFA) of bobwhite quails (Colinus virginianus). Results show that bird lipoproteins are rapidly altered by GEM, even at environmentally-relevant doses. After 4 days of exposure, pharmacological amounts cause an 83% increase in circulating PL levels, a major decrease in average lipoprotein size measured as a 56% drop in the NL/PL ratio, and important changes in the fatty acid composition of PL and NEFA (increases in fatty acid unsaturation). The levels of PL carrying all individual fatty acids except arachidonate are strongly stimulated. The large decrease in bird lipoprotein size may reflect the effects seen in humans: lowering of LDL that can cause atherosclerosis and stimulation of HDL that promote cholesterol disposal. Lower (environmental) doses of GEM cause a reduction of %palmitate in all the plasma lipid fractions of quails, but particularly in the core triacylglycerol of lipoproteins (NL). No changes in mRNA levels of bird peroxisome proliferator-activated receptor (PPAR) could be demonstrated. The disrupting effects of GEM on circulating lipids reported here suggest that the pervasive presence of this drug in the environment could jeopardize reproduction and migratory behaviours in wild birds.
Collapse
Affiliation(s)
- Sophie Bussière-Côté
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Teye Omlin
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | | | - Jean-Michel Weber
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
17
|
Bairlein F, Fritz J, Scope A, Schwendenwein I, Stanclova G, van Dijk G, Meijer HAJ, Verhulst S, Dittami J. Energy Expenditure and Metabolic Changes of Free-Flying Migrating Northern Bald Ibis. PLoS One 2015; 10:e0134433. [PMID: 26376193 PMCID: PMC4573986 DOI: 10.1371/journal.pone.0134433] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 07/10/2015] [Indexed: 10/26/2022] Open
Abstract
Many migrating birds undertake extraordinary long flights. How birds are able to perform such endurance flights of over 100-hour durations is still poorly understood. We examined energy expenditure and physiological changes in Northern Bald Ibis Geronticus eremite during natural flights using birds trained to follow an ultra-light aircraft. Because these birds were tame, with foster parents, we were able to bleed them immediately prior to and after each flight. Flight duration was experimentally designed ranging between one and almost four hours continuous flights. Energy expenditure during flight was estimated using doubly-labelled-water while physiological properties were assessed through blood chemistry including plasma metabolites, enzymes, electrolytes, blood gases, and reactive oxygen compounds. Instantaneous energy expenditure decreased with flight duration, and the birds appeared to balance aerobic and anaerobic metabolism, using fat, carbohydrate and protein as fuel. This made flight both economic and tolerable. The observed effects resemble classical exercise adaptations that can limit duration of exercise while reducing energetic output. There were also in-flight benefits that enable power output variation from cruising to manoeuvring. These adaptations share characteristics with physiological processes that have facilitated other athletic feats in nature and might enable the extraordinary long flights of migratory birds as well.
Collapse
Affiliation(s)
- Franz Bairlein
- Institute of Avian Research “Vogelwarte Helgoland”, An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- * E-mail:
| | - Johannes Fritz
- Center for Organismic Systems Biology, Departments of Anthropology and Behavioral Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
- Waldrappteam, Schulgasse 28, 6162 Mutters, Austria, and Konrad-Lorenz Research Station, 4645, Grünau, Austria
| | - Alexandra Scope
- Clinic for Avian, Reptile, and Fish Medicine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Wien, Austria
| | - Ilse Schwendenwein
- Central Laboratory, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Wien, Austria
| | - Gabriela Stanclova
- Clinic for Avian, Reptile, and Fish Medicine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Wien, Austria
| | - Gertjan van Dijk
- Center for Behavior and Neurosciences (CBN), Rijksuniversiteit Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
- Centrum voor Isotopen Onderzoek (CIO), Rijksuniversiteit Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Harro A. J. Meijer
- Centrum voor Isotopen Onderzoek (CIO), Rijksuniversiteit Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Simon Verhulst
- Center for Behavior and Neurosciences (CBN), Rijksuniversiteit Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - John Dittami
- Center for Organismic Systems Biology, Departments of Anthropology and Behavioral Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| |
Collapse
|
18
|
Vaillancourt E, Weber JM. Fuel metabolism in Canada geese: effects of glucagon on glucose kinetics. Am J Physiol Regul Integr Comp Physiol 2015; 309:R535-43. [PMID: 26108869 DOI: 10.1152/ajpregu.00080.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/18/2015] [Indexed: 11/22/2022]
Abstract
During prolonged fasting, birds must rely on glucose mobilization to maintain normoglycemia. Glucagon is known to modulate avian energy metabolism during prolonged fasting, but the metabolic effects of this hormone on long-distance migrant birds have never been investigated. Our goal was to determine whether glucagon regulates the mobilization of the main lipid and carbohydrate fuels in migrant birds. Using the Canada goose (Branta canadensis) as a model species, we looked for evidence of fuel mobilization via changes in metabolite concentrations. No changes could be found for any lipid fraction, but glucagon elicited a strong increase in glucose concentration. Therefore, we aimed to quantify the effects of this hormone on glucose kinetics using continuous infusion of 6-[(3)H]-d-glucose. Glucagon was found to cause a 50% increase in glucose mobilization (from 22.2 ± 2.4 μmol·kg(-1)·min(-1) to 33.5 ± 3.3 μmol·kg(-1)·min(-1)) and, together with an unchanged rate of carbohydrate oxidation, led to a 90% increase in plasma glucose concentration. This hormone also led to a twofold increase in plasma lactate concentration. No changes in plasma lipid concentration or composition were observed. This study is the first to demonstrate how glucagon modulates glucose kinetics in a long-distance migrant bird and to quantify its rates of glucose mobilization.
Collapse
Affiliation(s)
- Eric Vaillancourt
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Michel Weber
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
McGuire LP, Fenton MB, Guglielmo CG. Phenotypic flexibility in migrating bats: seasonal variation in body composition, organ sizes and fatty acid profiles. J Exp Biol 2013; 216:800-8. [DOI: 10.1242/jeb.072868] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Many species of bats migrate long distances, but the physiological challenges of migration are poorly understood. We tested the hypothesis that migration is physiologically demanding for bats by examining migration-related phenotypic flexibility. Both bats and birds are endothermic, flying vertebrates; therefore, we predicted that migration would result in similar physiological trade-offs. We compared hoary bats (Lasiurus cinereus) during spring migration and summer non-migratory periods, comparing our results with previous observations of birds. Migrating bats had reduced digestive organs, enlarged exercise organs, and fat stores had higher proportions of polyunsaturated fatty acids (PUFAs). These results are consistent with previous studies of migrating birds; however, we also found sex differences not typically associated with bird migration. Migrating female hoary bats increased the relative size of fat stores by reducing lean body components, while males maintained the same relative amount of fat in both seasons. The ratio of n-6 to n-3 PUFA in flight muscle membrane increased in migrating males and decreased in migrating females, consistent with males using torpor more frequently than females during spring migration. Enlarged exercise organs, reduced digestive organs and changes in adipose tissue composition reflect the elevated energetic demands of migration. Sex-specific patterns of fat storage and muscle membrane composition likely reflect challenges faced by females that migrate while pregnant. Our results provide some of the first insights into the physiological demands of bat migration and highlight key differences between bats and birds.
Collapse
Affiliation(s)
- Liam P. McGuire
- Department of Biology, University of Western Ontario, 1151 Richmond Street N., London, Ontario, Canada, N6A 5B7
| | - M. Brock Fenton
- Department of Biology, University of Western Ontario, 1151 Richmond Street N., London, Ontario, Canada, N6A 5B7
| | - Christopher G. Guglielmo
- Department of Biology, University of Western Ontario, 1151 Richmond Street N., London, Ontario, Canada, N6A 5B7
| |
Collapse
|
20
|
Wone BWM, Donovan ER, Cushman JC, Hayes JP. Metabolic rates associated with membrane fatty acids in mice selected for increased maximal metabolic rate. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:70-8. [PMID: 23422919 DOI: 10.1016/j.cbpa.2013.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 12/19/2022]
Abstract
Aerobic metabolism of vertebrates is linked to membrane fatty acid (FA) composition. Although the membrane pacemaker hypothesis posits that desaturation of FAs accounts for variation in resting or basal metabolic rate (BMR), little is known about the FA profiles that underpin variation in maximal metabolic rate (MMR). We examined membrane FA composition of liver and skeletal muscle in mice after seven generations of selection for increased MMR. In both liver and skeletal muscle, unsaturation index did not differ between control and high-MMR mice. We also examined membrane FA composition at the individual-level of variation. In liver, 18:0, 20:3 n-6, 20:4 n-6, and 22:6 n-3 FAs were significant predictors of MMR. In gastrocnemius muscle, 18:2 n-6, 20:4 n-6, and 22:6 n-3 FAs were significant predictors of MMR. In addition, muscle 16:1 n-7, 18:1 n-9, and 22:5 n-3 FAs were significant predictors of BMR, whereas no liver FAs were significant predictors of BMR. Our findings indicate that (i) individual variation in MMR and BMR appears to be linked to membrane FA composition in the skeletal muscle and liver, and (ii) FAs that differ between selected and control lines are involved in pathways that can affect MMR or BMR.
Collapse
Affiliation(s)
- Bernard W M Wone
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV 89557-0314, USA.
| | | | | | | |
Collapse
|
21
|
Schwartz C, Andrews MT. Circannual transitions in gene expression: lessons from seasonal adaptations. Curr Top Dev Biol 2013; 105:247-73. [PMID: 23962845 DOI: 10.1016/b978-0-12-396968-2.00009-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Circannual timing is important for the coordination of seasonal activities, particularly promoting the survival of individuals in adverse conditions through adaptive physiological and behavioral changes. This includes optimizing the survival of offspring by coordinating reproductive efforts at appropriate times. Thus, timing is very important for overall fitness. In this chapter, we provide several examples of circannually timed events, including mammalian hibernation, discussing the physiological changes that accompany these events, and some of the known genes and pathways underlying these changes. We then describe five candidate systems that are potentially involved in circannual timing. Finally, we discuss several recent advances in molecular biology and animal husbandry that have made the use of nonmodel organisms for research more feasible, which will hopefully promote and encourage further advancement in the knowledge of circannual timing.
Collapse
Affiliation(s)
- Christine Schwartz
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| | | |
Collapse
|
22
|
Williams CM, Thomas RH, MacMillan HA, Marshall KE, Sinclair BJ. Triacylglyceride measurement in small quantities of homogenised insect tissue: comparisons and caveats. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1602-1613. [PMID: 21878339 DOI: 10.1016/j.jinsphys.2011.08.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 05/31/2023]
Abstract
Triacylglycerides (TAGs) are the most important stored energy reserve in eukaryotes and are regularly measured in insects. Quantitative analysis of TAGs is complicated by their diversity of structure, and there are concerns with the quantitative accuracy of commonly used analytical methods. We used thin layer chromatography coupled to a flame ionisation detector (TLC-FID), an accurate method that is not sensitive to saturation or chain length of fatty acids, to quantify TAG content in small amounts of insect tissue, and used it to validate three high-throughput lipid assays (gravimetric, vanillin, and enzymatic). The performance of gravimetric assays depended on the solvent used. Folch reagent (chloroform: methanol 2:1 v/v) was a good index of TAG content, but overestimated lipid content due to the extraction of structural lipid and non-lipid components. Diethyl ether produced reasonable quantitative measurements but lacked precision and could not produce a repeatable rank-order of samples. The vanillin assay was accurate both as a quantitative method and as an index, preferably with a standard of mixed fatty acid composition. The enzymatic assay did not accurately or precisely quantify TAGs under our assay conditions. We conclude that the vanillin assay is suitable as a high-throughput method for quantifying TAG providing fatty acid composition does not change among treatment groups. However, if samples contain significant quantities of di- or mono-acylglycerides, or the fatty acid composition differs across treatment groups, TLC-FID is recommended.
Collapse
Affiliation(s)
- Caroline M Williams
- Department of Biology, University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | |
Collapse
|
23
|
McCue MD, Smith A, McKinney R, Rewald B, Pinshow B, McWilliams SR. A Mass Balance Approach to Identify and Compare Differential Routing of 13C-Labeled Carbohydrates, Lipids, and Proteins In Vivo. Physiol Biochem Zool 2011; 84:506-13. [DOI: 10.1086/661638] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Montgomery MK, Hulbert AJ, Buttemer WA. Metabolic rate and membrane fatty acid composition in birds: a comparison between long-living parrots and short-living fowl. J Comp Physiol B 2011; 182:127-37. [PMID: 21766191 DOI: 10.1007/s00360-011-0603-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 06/17/2011] [Accepted: 06/27/2011] [Indexed: 11/30/2022]
Abstract
Both basal metabolic rate (BMR) and maximum lifespan potential (MLSP) vary with body size in mammals and birds and it has been suggested that these are mediated through size-related variation in membrane fatty acid composition. Whereas the physical properties of membrane fatty acids affect the activity of membrane proteins and, indirectly, an animal's BMR, it is the susceptibility of those fatty acids to peroxidation which influence MLSP. Although there is a correlation between body size and MLSP, there is considerable MLSP variation independent of body size. For example, among bird families, Galliformes (fowl) are relatively short-living and Psittaciformes (parrots) are unusually long-living, with some parrot species reaching maximum lifespans of more than 100 years. We determined BMR and tissue phospholipid fatty acid composition in seven tissues from three species of parrots with an average MLSP of 27 years and from two species of quails with an average MLSP of 5.5 years. We also characterised mitochondrial phospholipids in two of these tissues. Neither BMR nor membrane susceptibility to peroxidation corresponded with differences in MLSP among the birds we measured. We did find that (1) all birds had lower n-3 polyunsaturated fatty acid content in mitochondrial membranes compared to those of the corresponding tissue, and that (2) irrespective of reliance on flight for locomotion, both pectoral and leg muscle had an almost identical membrane fatty acid composition in all birds.
Collapse
Affiliation(s)
- Magdalene K Montgomery
- Diabetes & Obesity Program, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
| | | | | |
Collapse
|
25
|
Abstract
Animals must regulate the fluxes of multiple fuels to support changing metabolic rates that result from variation in physiological circumstances. The aim of fuel selection strategies is to exploit the advantages of individual substrates while minimizing the impact of disadvantages. All exercising mammals share a general pattern of fuel selection: at the same %V(O(2,max)) they oxidize the same ratio of lipids to carbohydrates. However, highly aerobic species rely more on intramuscular fuels because energy supply from the circulation is constrained by trans-sarcolemmal transfer. Fuel selection is performed by recruiting different muscles, different fibers within the same muscles or different pathways within the same fibers. Electromyographic analyses show that shivering humans can modulate carbohydrate oxidation either through the selective recruitment of type II fibers within the same muscles or by regulating pathway recruitment within type I fibers. The selection patterns of shivering and exercise are different: at the same %V(O(2,max)), a muscle producing only heat (shivering) or significant movement (exercise) strikes a different balance between lipid and carbohydrate oxidation. Long-distance migrants provide an excellent model to characterize how to increase maximal substrate fluxes. High lipid fluxes are achieved through the coordinated upregulation of mobilization, transport and oxidation by activating enzymes, lipid-solubilizing proteins and membrane transporters. These endurance athletes support record lipolytic rates in adipocytes, use lipoprotein shuttles to accelerate transport and show increased capacity for lipid oxidation in muscle mitochondria. Some migrant birds use dietary omega-3 fatty acids as performance-enhancing agents to boost their ability to process lipids. These dietary fatty acids become incorporated in membrane phospholipids and bind to peroxisome proliferator-activated receptors to activate membrane proteins and modify gene expression.
Collapse
Affiliation(s)
- Jean-Michel Weber
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
26
|
Price ER. Dietary lipid composition and avian migratory flight performance: Development of a theoretical framework for avian fat storage. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:297-309. [DOI: 10.1016/j.cbpa.2010.05.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/31/2010] [Accepted: 05/31/2010] [Indexed: 10/19/2022]
|
27
|
Guglielmo CG. Move That Fatty Acid: Fuel Selection and Transport in Migratory Birds and Bats. Integr Comp Biol 2010; 50:336-45. [DOI: 10.1093/icb/icq097] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
28
|
Price E, McFarlan J, Guglielmo C. Preparing for Migration? The Effects of Photoperiod and Exercise on Muscle Oxidative Enzymes, Lipid Transporters, and Phospholipids in White‐Crowned Sparrows. Physiol Biochem Zool 2010; 83:252-62. [DOI: 10.1086/605394] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Klaiman JM, Price ER, Guglielmo CG. Fatty acid composition of pectoralis muscle membrane, intramuscular fat stores and adipose tissue of migrant and wintering white-throated sparrows (Zonotrichia albicollis). J Exp Biol 2009; 212:3865-72. [DOI: 10.1242/jeb.034967] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The fatty acid composition of muscle membrane phospholipids and fat stores may affect migration performance in birds. The purpose of this study was to investigate seasonal changes in the fatty acid composition of (1) pectoralis muscle phospholipids, (2) intramuscular triglyceride stores and (3) adipose tissue triglycerides in free-living white-throated sparrows (Zonotrichia albicollis). During migratory seasons there was an increase in the n-6:n-3 ratio of muscle membrane phospholipid fatty acids without a change in the proportion of unsaturated fatty acids. This change was driven mainly by an increase in the proportion of 18:2n-6 and a decrease in the proportion of 22:6n-3. An increase in the proportion of 18:2n-6 was also observed in the intramuscular and adipose tissue triglyceride stores during the migratory seasons. These increases in 18:2n-6 were offset by a decrease in 16:0; resulting in an elevated proportion of unsaturated fatty acids and elevated double bond index in both fat stores of migrants. The elevated levels of 18:2n-6 in migrant fat stores indicates a high dietary component of this fatty acid, as white-throated sparrows feed mainly on tree seeds and some insects during migration and may not have access to a diet high in n-3 fatty acids. We suspect that elevated dietary levels of 18:2n-6 also caused the observed increases in the proportion of this fatty acid in muscle phospholipids. Overall, we conclude that seasonal changes in adipose and muscle fatty acid composition are likely attributable to diet more than other factors such as migratory exercise or mitochondrial density.
Collapse
Affiliation(s)
- J. M. Klaiman
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - E. R. Price
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - C. G. Guglielmo
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
30
|
Price ER, Guglielmo CG. The effect of muscle phospholipid fatty acid composition on exercise performance: a direct test in the migratory white-throated sparrow (Zonotrichia albicollis). Am J Physiol Regul Integr Comp Physiol 2009; 297:R775-82. [PMID: 19587112 DOI: 10.1152/ajpregu.00150.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dietary polyunsaturated fatty acids (PUFA) can have various effects on animal physiology through their roles as energy, structural, regulatory, and signaling molecules. Of recent interest has been the incorporation of dietary PUFA into muscle membranes as phospholipids, thereby potentially affecting exercise performance by mechanisms such as altered mitochondrial proton leak and membrane-bound protein activity. We first studied the effects of a high-omega6 PUFA diet vs. a high-omega3 PUFA diet on peak metabolic rate (PMR) in white-throated sparrows, and additionally measured mRNA expression of fatty acid transporters and the activity of major oxidative enzymes. Our experiment, thus, allowed a test of the "natural doping" hypothesis. With a simple diet manipulation, the two groups of sparrows diverged significantly in both muscle phospholipid composition and adipose triacylglycerol composition. The high-omega6 sparrows achieved higher PMR without a change in enzyme activity or transporter expression. We then fed sparrows the 2 diets, followed by a food restriction (H omega3RI and H omega6RI treatments). When their adipose stores were exhausted, we fed both groups a common diet of intermediate fatty acid composition. This protocol resulted in the H omega6RI and H omega3RI groups diverging significantly in muscle phospholipid composition, but they had substantially similar adipose stores. PMR did not differ between the H omega6RI and H omega3RI groups. We conclude that muscle phospholipids do not play a major role in affecting exercise performance. The fatty acid composition of stored triacylglycerol may instead affect exercise via the preferential use of particular fatty acids by muscles.
Collapse
Affiliation(s)
- Edwin R Price
- Dept. of Biology, Univ. of Western Ontario, 1151 Richmond St. North, London, Ontario, N6A 5B7 Canada.
| | | |
Collapse
|
31
|
Weber JM. The physiology of long-distance migration: extending the limits of endurance metabolism. J Exp Biol 2009; 212:593-7. [DOI: 10.1242/jeb.015024] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
SUMMARY
Long-distance migrants have evolved specific adaptations that make their athletic records possible. Unique mechanisms explaining their amazing capacity for endurance exercise have now been uncovered, particularly with respect to energy storage, mobilization, transport and utilization. Birds are champions of migration because flying offers a key compromise: it allows more rapid movement than swimming, but has a lower cost of transport than running. High efficiency for muscle contraction, pointed wings, low wingloading, travelling in V-formations, storing fuel as energy-dense lipids and atrophy of non-essential organs are some of their strategies to decrease the cost of transport. The ability to process lipids rapidly also emerges as a crucial component of the migrant phenotype. High lipid fluxes are made possible by lipoprotein shuttles and fatty acid binding proteins (FABPs) that accelerate lipid transport and by upgrading the metabolic machinery for lipolysis and lipid oxidation. Preparation for long flights can include natural doping on n-3 polyunsaturated fatty acids (n-3 PUFAs) from unique invertebrate diets. Muscle performance is improved by restructuring membrane phospholipids and by activating key genes of lipid metabolism through peroxisome proliferator-activated receptors (PPARs). The physiological secret to long migrations does not depend on a single `magic' adaptation but on the integration of multiple adjustments in morphology, biomechanics, behavior,nutrition and metabolism. Research on the physiology of migrants improves the fundamental knowledge of exercise biology, but it also has important implications for wildlife conservation, treating obesity and improving the performance of human athletes.
Collapse
|
32
|
MacMillan HA, Guglielmo CG, Sinclair BJ. Membrane remodeling and glucose in Drosophila melanogaster: a test of rapid cold-hardening and chilling tolerance hypotheses. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:243-249. [PMID: 19111745 DOI: 10.1016/j.jinsphys.2008.11.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/21/2008] [Accepted: 11/24/2008] [Indexed: 05/27/2023]
Abstract
Insect cold tolerance varies at both the population and species levels. Carbohydrate cryoprotectants and membrane remodeling are two main mechanisms hypothesised to increase chilling tolerance in Drosophila melanogaster, as part of both long-term (i.e., evolutionary) change and rapid cold-hardening (RCH). We used cold-selected lines of D. melanogaster with and without a pre-exposure that induces RCH to test three hypotheses: (1) that increased cold tolerance would be associated with increased free glucose; (2) that increased cold tolerance would be associated with desaturation of membrane phospholipid fatty acids; and (3) that increased cold tolerance would be associated with a change in phospholipid head group composition. We used colourimetric assays to measure free glucose and a combination of thin layer chromatography-flame ionization detection and gas chromatography to measure membrane composition. We observed a consistent decrease in free glucose with RCH, and no relationship between free glucose and basal cold tolerance. Also, phospholipid head group ratios and fatty acid composition showed no change following an RCH treatment. Thus, we conclude that changes in free glucose and membrane composition are unlikely to be significant determinants of variation in cold tolerance of D. melanogaster.
Collapse
Affiliation(s)
- Heath A MacMillan
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N, London, ON N6A 5B7, Canada.
| | | | | |
Collapse
|
33
|
Käkelä R, Furness RW, Kahle S, Becker PH, Käkelä A. Fatty acid signatures in seabird plasma are a complex function of diet composition: a captive feeding trial with herring gulls. Funct Ecol 2009. [DOI: 10.1111/j.1365-2435.2008.01475.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Vaisman N, Kaysar N, Zaruk-Adasha Y, Pelled D, Brichon G, Zwingelstein G, Bodennec J. Correlation between changes in blood fatty acid composition and visual sustained attention performance in children with inattention: effect of dietary n-3 fatty acids containing phospholipids. Am J Clin Nutr 2008; 87:1170-80. [PMID: 18469236 DOI: 10.1093/ajcn/87.5.1170] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Increasing evidence supports n-3 fatty acid (FA) supplementation for patients with psychiatric disorders, such as attention deficit hyperactivity disorder. However, the exact metabolic fate of dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on different glyceride carriers remains unclear. OBJECTIVE We investigated whether conjugation of EPA and DHA to phospholipid (PL-n-3) or to triacylglycerol (fish oil; FO) affects their incorporation in blood compartments and influences executive functioning. DESIGN Children aged 8-13 y with impaired visual sustained attention performance received placebo, 250 mg/d EPA + DHA esterified to PL-n-3 (300 mg/d phosphatidylserine), or FO for 3 mo in a randomized double-blind manner. Main outcome measures included plasma and erythrocyte FA profile and continuous performance test results (Test of Variables of Attention; TOVA). RESULTS Sixty of the 83 children enrolled completed the interventions (n = 18-21 per group). There was an enrichment of EPA (1.5-2.2-fold), docosapentaenoic acid (DPA; 1.2-fold), and DHA (1.3-fold) in the PL fraction in the plasma of FO- and PL-n-3-fed children. In erythrocytes, only PL-n-3 resulted in a significant reduction (approximately 30%) of very-long-chain saturated FAs (C20-24) and in an increase (1.2- and 2.2-fold, respectively) in linoleic acid and DPA. Total TOVA scores increased in the PL-n-3 (mean +/- SD: 3.35 +/- 1.86) and FO (1.72 +/- 1.67) groups but not in the placebo group (-0.42 +/- 2.51) (PL-n-3 > FO > placebo; P < 0.001). A significant correlation between the alterations in FAs and increased TOVA scores mainly occurred in the PL-n-3 group. CONCLUSION Consumption of EPA+DHA esterified to different carriers had different effects on the incorporation of these FAs in blood fractions and on the visual sustained attention performance in children. This trial was registered at clinicaltrials.gov as NCT00382616.
Collapse
Affiliation(s)
- Nachum Vaisman
- Clinical Nutrition Unit, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel.
| | | | | | | | | | | | | |
Collapse
|
35
|
Price ER, Krokfors A, Guglielmo CG. Selective mobilization of fatty acids from adipose tissue in migratory birds. J Exp Biol 2008; 211:29-34. [DOI: 10.1242/jeb.009340] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
During times of high energy demand, stored fatty acids are mobilized from adipocytes. This mobilization has previously been shown to be a non-random process, with more hydrophilic fatty acids being mobilized most readily. The objectives of this study were to characterize the relative mobilization of fatty acids from adipocytes in two migratory bird species and to investigate possible changes in selective fatty acid mobilization associated with the migratory period. Captive ruffs (Philomachus pugnax) and white-crowned sparrows (Zonotrichia leucophrys) were studied. The sparrows were divided into two treatments: `winter' (photoperiod 8 h:16 h L:D)and `migrant' (in which migratory condition was induced with a photoperiodic manipulation of 8 h:16 h L:D, followed by 16 h:8 h L:D). Adipose tissue was removed from ruffs and sparrows and incubated for 90 min after stimulation with epinephrine. The proportions of individual fatty acid species released into the incubation medium were compared with their proportions in the adipocytes to determine relative mobilizations. We found that patterns of relative mobilization in ruffs and sparrows are similar to those of mammals,with shorter chain lengths and more double bonds leading to higher relative mobilization. Seasonal condition in sparrows did not alter this pattern. This pattern of relative mobilization from adipocytes seems to be a general rule amongst birds and mammals and should be considered before inferring functionality about selective retention or mobilization of certain fatty acids. The composition of adipose stores in birds may affect migratory performance; however, our results indicate that patterns of relative mobilization at the adipocytes do not vary with season in migratory birds.
Collapse
Affiliation(s)
- Edwin R. Price
- Division of Biological Sciences, University of Montana, Missoula, MT 59812,USA
| | - Anna Krokfors
- Faculty of Biosciences, University of Helsinki, Helsinki 00014, Finland
| | | |
Collapse
|
36
|
Plasma metabolites and migration physiology of semipalmated sandpipers: refueling performance at five latitudes. Oecologia 2007; 155:417-27. [PMID: 18071757 DOI: 10.1007/s00442-007-0921-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
|
37
|
Abstract
PURPOSE OF REVIEW Energy expenditure is measured under a number of conditions. These include resting metabolic rate (a minimum level of metabolism), maximal metabolic rate (attained during maximal exercise), as well as sustained (and endurance) metabolism, when extended periods of activity are fuelled by either food intake or energy reserves. The factors that determine each type of metabolic rate are not the same; however, all levels of energy expenditure are strongly linked with body size. RECENT FINDINGS Resting metabolism in different species is related to the fatty acid composition and physical properties of membranes and consequently their influence on the molecular activity of membrane proteins. Maximal metabolism (during aerobic exercise) is primarily limited by oxygen transport and delivery to the working muscles in most animals. In the most metabolically active animals it may be related to design limits of muscles and transport systems. Sustained and endurance metabolism are largely constrained by factors related to supply, storage and utilization of energy substrates. SUMMARY Animals display great diversity in physical and metabolic performance. The many factors that interact to set the upper limit of performance in different species are set by their evolutionary history and define the metabolic window in which they exist.
Collapse
Affiliation(s)
- Nigel Turner
- Diabetes and Obesity Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia.
| | | | | |
Collapse
|
38
|
Cerasale DJ, Guglielmo CG. Plasma Metabolite Profiles: Effects of Dietary Phospholipids in a Migratory Passerine (Zonotrichia leucophrys gambelii). Physiol Biochem Zool 2006; 79:754-62. [PMID: 16826501 DOI: 10.1086/505510] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2006] [Indexed: 11/03/2022]
Abstract
Plasma metabolites, including triglycerides, beta -hydroxybutyrate, and glycerol, can be used to estimate mass change in birds. Although dietary fatty acids can be ingested and absorbed as phospholipids, they have been largely overlooked as a potential indicator of mass change. The plasma ratio of triglyceride to phospholipid could also provide insight into diet quality because a high ratio in food items indicates high relative energy content. Variability in dietary phospholipid content and triglyceride : phospholipid may also affect the relationships between metabolites and mass change. We fed Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) diets differing in phospholipid content and triglyceride : phospholipid and measured metabolites during mass loss and mass gain. Plasma phospholipids were higher and triglyceride : phospholipid was lower in birds fed a diet higher in phospholipid content and lower in triglyceride : phospholipid. Contrary to our expectations, plasma phospholipids were negatively related to mass change. Plasma triglyceride levels were positively related to mass change and unaffected by diet. The relationships between mass change and both plasma beta -hydroxybutyrate and glycerol were affected by diet. Plasma triglyceride appears to be the most reliable metabolite predicting body mass changes, but inclusion of plasma phospholipids and triglyceride : phospholipid into metabolite profiles may provide additional information on diet quality.
Collapse
Affiliation(s)
- David J Cerasale
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, 59812, USA.
| | | |
Collapse
|
39
|
Pierce BJ, McWilliams SR, O'Connor TP, Place AR, Guglielmo CG. Effect of dietary fatty acid composition on depot fat and exercise performance in a migrating songbird, the red-eyed vireo. J Exp Biol 2005; 208:1277-85. [PMID: 15781888 DOI: 10.1242/jeb.01493] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYMost migrating birds accumulate lipid stores as their primary source of energy for fueling long distance flights. Lipid stores of birds during migration are composed of mostly unsaturated fatty acids; whether such a fatty acid composition enhances exercise performance of birds is unknown. We tested this hypothesis by measuring metabolic rate at rest and during intense exercise in two groups of red-eyed vireos, a long-distance migratory passerine, fed either a diet containing 82% unsaturated fat (82%U), or one containing 58% unsaturated fat (58%U). Vireos fed the 82%U diet had fat stores containing (77%) unsaturated fatty acids, whereas vireos fed the 58% U diet had fat stores containing less (66%) unsaturated fatty acids. Blood metabolites measured prior to and immediately following exercise confirmed that vireos were metabolizing endogenous fat during intense exercise. Mass-specific resting metabolic rate (RMR) was similar for vireos fed the 58%U diet (2.75±0.32 ml O2 g–1h–1) and for vireos fed the 82%U diet (2.30±0.30 ml O2 g–1 h–1). However,mass-specific peak metabolic rate (MRpeak) was 25% higher in vireos fed the 58%U diet (28.55±1.47 ml O2 g–1h–1) than in vireos fed the 82%U diet (21.50±1.76 ml O2 g–1 h–1). Such whole-animal energetic effects of fatty acid composition of birds suggest that the energetic cost of migration in birds may be affected by the fatty acid composition of the diet.
Collapse
Affiliation(s)
- Barbara J Pierce
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI, USA.
| | | | | | | | | |
Collapse
|
40
|
Guglielmo CG, Cerasale DJ, Eldermire C. A Field Validation of Plasma Metabolite Profiling to Assess Refueling Performance of Migratory Birds. Physiol Biochem Zool 2005; 78:116-25. [PMID: 15702470 DOI: 10.1086/425198] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2004] [Indexed: 11/03/2022]
Abstract
Plasma metabolite profiling offers a potential means to assess stopover refueling performance of migratory birds from a single capture. However, this method has not previously been validated where site quality has been determined independently using analysis of capture data. We captured and blood sampled six passerine bird species refueling at known high-quality (BASE) and low-quality (TIP) sites at Long Point, Ontario, Canada. Plasma triglyceride, an indicator of fat deposition, was higher at the BASE in three early-season species: the hermit thrush, the American robin, and the white-throated sparrow. Plasma B-OH-butyrate, an indicator of fasting and lipid utilization, was lower at the BASE in the same three species. Plasma glycerol was lower at the BASE in American robins, and plasma phospholipid did not differ between sites. No metabolite suggested better conditions at the TIP in any species. Regression of size-corrected mass on time of day also indicated better refueling performance at the BASE in some species, but metabolite profiling was generally more sensitive to site differences. The relationship between plasma glycerol and triglyceride was U-shaped, indicating high glycerol production during both lipolysis (as was previously known) and rapid fat deposition. Our results confirm the validity of metabolite profiling to assess stopover habitat quality and individual performance in refueling migrants.
Collapse
|