1
|
Sevilmiş E, Atalag O, Baytaş E, Henselmans M, Balyan M, Binboğa E. The Disconnect Between Soccer Players' Perceived and Actual Electromyographic-Measured Muscle Activation. Percept Mot Skills 2024; 131:1834-1860. [PMID: 39214526 DOI: 10.1177/00315125241279086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Understanding muscle activation during exercises is crucial for devising effective training programs. We examined correlations between self-reported and electromyographic (EMG) muscle activity during upper-body exercises performed at loads corresponding to 4-6 repetition maximums (RMs). Thirteen male sub-elite soccer players who had previously engaged in resistance training participated in two testing sessions. In the initial session, the loads corresponding to 4-6 repetitions were determined for six exercises: Lat Pull Down (LPD), Barbell Bent Over Row (BBOR), Dumbbell Row (DR), Barbell Pull Over (BPO), Dumbbell Reverse Fly (DRF), and Dumbbell Concentration Curl (DCC). At post-exercise, participants rated their perceived muscle activation for three targeted muscles in each exercise on a 1-10 point Likert scale (LS). In the subsequent session, we used EMG to measure the activity of eight agonist and synergist muscles during these exercises. We found that one of two synergist muscles consistently demonstrated higher activity levels. Interestingly, we observed no difference in activity between primary and secondary (or synergist) muscles across all exercises. Most importantly, we found no significant correlation between the perceived muscle activation rate and the EMG measured activation level for any exercise. In conclusion, our findings suggest that, despite differential muscle activity during specific exercises, self-reported muscle activation may not accurately correspond to actual muscle activation, as measured via EMG, due to the participants' poor interoceptive awareness of muscles. These data highlight the potential limitations of relying on perceived muscle activation as a sole gauge of training intensity.
Collapse
Affiliation(s)
- Ezgi Sevilmiş
- Department of Coaching Education, Faculty of Sport Science, Girne American University, Girne, Cyprus
| | - Ozan Atalag
- Department of Coaching Education, University of Hawaii at Hilo, Hilo, HI, USA
| | - Eda Baytaş
- Department of Exercise and Sport Sciences, School of Physical Education and Sports, Istanbul Nişantaşı University, İstanbul, Turkey
| | - Menno Henselmans
- The International Scientific Research Foundation for Fitness and Nutrition, Amstelveen, Netherlands
| | - Melih Balyan
- Department of Physical Education and Sports, Faculty of Sport Science, Ege University, Izmir, Turkey
| | - Erdal Binboğa
- Faculty of Medicine, Department of Biophysics, Ege University, Izmir, Turkey
| |
Collapse
|
2
|
Locatelli G, Stangel M, Rooks D, Boesch J, Pierrel E, Summermatter S. The therapeutic potential of exercise for improving mobility in multiple sclerosis. Front Physiol 2024; 15:1477431. [PMID: 39345788 PMCID: PMC11427913 DOI: 10.3389/fphys.2024.1477431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by inflammation and demyelination in the central nervous system (CNS) with subsequent axonal and neuronal degeneration. These changes are associated with a broad range of symptoms including skeletal muscle dysfunction. Importantly, musculoskeletal impairments manifest in various ways, compromise the quality of life and often precede the later development of mobility disability. As current standard disease modifying therapies for MS predominantly act on neuroinflammation, practitioners and patients face an unmet medical need for adjunct therapies specifically targeting skeletal muscle function. This review is intended to detail the nature of the skeletal muscle dysfunctions common in people with MS (pwMS), describe underlying intramuscular alterations and outline evidence-based therapeutic approaches. Particularly, we discuss the emerging role of aerobic and resistance exercise for reducing the perception of fatigue and increasing muscle strength in pwMS. By integrating the most recent literature, we conclude that both exercise interventions should ideally be implemented as early as possible as they can address MS-specific muscle impairments. Aerobic exercise is particularly beneficial for pwMS suffering from fatigue and metabolic impairments, while resistance training efficiently counters muscle weakness and improves the perception of fatigue. Thus, these lifestyle interventions or possible pharmacological mimetics have the potential for improving the general well-being and delaying the functional declines that are relevant to mobility.
Collapse
Affiliation(s)
- Giuseppe Locatelli
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Martin Stangel
- Translational Medicine, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Daniel Rooks
- Translational Medicine, Biomedical Research, Novartis Pharma AG, Cambridge, MA, United States
| | - Julian Boesch
- Diseases of Aging and Regenerative Medicine, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Eliane Pierrel
- Diseases of Aging and Regenerative Medicine, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Serge Summermatter
- Diseases of Aging and Regenerative Medicine, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
3
|
Laswick Z, Wu X, Surendran A, Zhou Z, Ji X, Matrone GM, Leong WL, Rivnay J. Tunable anti-ambipolar vertical bilayer organic electrochemical transistor enable neuromorphic retinal pathway. Nat Commun 2024; 15:6309. [PMID: 39060249 PMCID: PMC11282299 DOI: 10.1038/s41467-024-50496-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Increasing demand for bio-interfaced human-machine interfaces propels the development of organic neuromorphic electronics with small form factors leveraging both ionic and electronic processes. Ion-based organic electrochemical transistors (OECTs) showing anti-ambipolarity (OFF-ON-OFF states) reduce the complexity and size of bio-realistic Hodgkin-Huxley(HH) spiking circuits and logic circuits. However, limited stable anti-ambipolar organic materials prevent the design of integrated, tunable, and multifunctional neuromorphic and logic-based systems. In this work, a general approach for tuning anti-ambipolar characteristics is presented through assembly of a p-n bilayer in a vertical OECT (vOECT) architecture. The vertical OECT design reduces device footprint, while the bilayer material tuning controls the anti-ambipolarity characteristics, allowing control of the device's on and off threshold voltages, and peak position, while reducing size thereby enabling tunable threshold spiking neurons and logic gates. Combining these components, a mimic of the retinal pathway reproducing the wavelength and light intensity encoding of horizontal cells to spiking retinal ganglion cells is demonstrated. This work enables further incorporation of conformable and adaptive OECT electronics into biointegrated devices featuring sensory coding through parallel processing for diverse artificial intelligence and computing applications.
Collapse
Affiliation(s)
- Zachary Laswick
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Xihu Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Abhijith Surendran
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Zhongliang Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | | | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
4
|
Lesser E, Azevedo AW, Phelps JS, Elabbady L, Cook A, Syed DS, Mark B, Kuroda S, Sustar A, Moussa A, Dallmann CJ, Agrawal S, Lee SYJ, Pratt B, Skutt-Kakaria K, Gerhard S, Lu R, Kemnitz N, Lee K, Halageri A, Castro M, Ih D, Gager J, Tammam M, Dorkenwald S, Collman F, Schneider-Mizell C, Brittain D, Jordan CS, Macrina T, Dickinson M, Lee WCA, Tuthill JC. Synaptic architecture of leg and wing premotor control networks in Drosophila. Nature 2024; 631:369-377. [PMID: 38926579 PMCID: PMC11356479 DOI: 10.1038/s41586-024-07600-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles1. MN activity is coordinated by complex premotor networks that facilitate the contribution of individual muscles to many different behaviours2-6. Here we use connectomics7 to analyse the wiring logic of premotor circuits controlling the Drosophila leg and wing. We find that both premotor networks cluster into modules that link MNs innervating muscles with related functions. Within most leg motor modules, the synaptic weights of each premotor neuron are proportional to the size of their target MNs, establishing a circuit basis for hierarchical MN recruitment. By contrast, wing premotor networks lack proportional synaptic connectivity, which may enable more flexible recruitment of wing steering muscles. Through comparison of the architecture of distinct motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.
Collapse
Affiliation(s)
- Ellen Lesser
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Anthony W Azevedo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Neuroengineering Laboratory, Brain Mind Institute and Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Leila Elabbady
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Andrew Cook
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | - Brandon Mark
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sumiya Kuroda
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Anthony Moussa
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Chris J Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Su-Yee J Lee
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Brandon Pratt
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | - Stephan Gerhard
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- UniDesign Solutions LLC, Zurich, Switzerland
| | - Ran Lu
- Zetta AI, LLC, Sherrill, NY, USA
| | | | - Kisuk Lee
- Zetta AI, LLC, Sherrill, NY, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | - Dodam Ih
- Zetta AI, LLC, Sherrill, NY, USA
| | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | | | | | | | - Chris S Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Lesser E, Azevedo AW, Phelps JS, Elabbady L, Cook A, Sakeena Syed D, Mark B, Kuroda S, Sustar A, Moussa A, Dallmann CJ, Agrawal S, Lee SYJ, Pratt B, Skutt-Kakaria K, Gerhard S, Lu R, Kemnitz N, Lee K, Halageri A, Castro M, Ih D, Gager J, Tammam M, Dorkenwald S, Collman F, Schneider-Mizell C, Brittain D, Jordan CS, Macrina T, Dickinson M, Lee WCA, Tuthill JC. Synaptic architecture of leg and wing premotor control networks in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.30.542725. [PMID: 37398440 PMCID: PMC10312524 DOI: 10.1101/2023.05.30.542725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles. MN activity is coordinated by complex premotor networks that allow individual muscles to contribute to many different behaviors. Here, we use connectomics to analyze the wiring logic of premotor circuits controlling the Drosophila leg and wing. We find that both premotor networks cluster into modules that link MNs innervating muscles with related functions. Within most leg motor modules, the synaptic weights of each premotor neuron are proportional to the size of their target MNs, establishing a circuit basis for hierarchical MN recruitment. In contrast, wing premotor networks lack proportional synaptic connectivity, which may allow wing steering muscles to be recruited with different relative timing. By comparing the architecture of distinct limb motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.
Collapse
Affiliation(s)
- Ellen Lesser
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Anthony W. Azevedo
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Jasper S. Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Leila Elabbady
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Andrew Cook
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | | | - Brandon Mark
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Sumiya Kuroda
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Anthony Moussa
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Chris J. Dallmann
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Su-Yee J. Lee
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Brandon Pratt
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | | | - Stephan Gerhard
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- UniDesign Solutions LLC, Switzerland
| | | | | | - Kisuk Lee
- Zetta AI, LLC, USA
- Princeton Neuroscience Institute, Princeton University, NJ, USA
| | | | | | | | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, NJ, USA
- Computer Science Department, Princeton University, NJ, USA
| | | | | | | | - Chris S. Jordan
- Princeton Neuroscience Institute, Princeton University, NJ, USA
| | | | | | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, MA, USA
| | - John C. Tuthill
- Department of Physiology and Biophysics, University of Washington, WA, USA
| |
Collapse
|
6
|
Morton-Jones ME, Gladden LB, Kavazis AN, Sandage MJ. A Tutorial on Skeletal Muscle Metabolism and the Role of Blood Lactate: Implications for Speech Production. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:369-383. [PMID: 38157288 DOI: 10.1044/2023_jslhr-23-00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE The purpose of this tutorial is threefold: (a) present relevant exercise science literature on skeletal muscle metabolism and synthesize the limited available research on metabolism of the adult human speech musculature in an effort to elucidate the role of metabolism in speech production; (b) introduce a well-studied metabolic serum biomarker in exercise science, lactate, and the potential usefulness of investigating this metabolite, through a well-established exercise science methodology, to better understand metabolism of the musculature involved in voice production; and (c) discuss exercise physiology considerations for future voice science research that seeks to investigate blood lactate and metabolism in voice physiology in an ecologically valid manner. METHOD This tutorial begins with relevant exercise science literature on the basic cellular processes of muscle contraction that require energy and the metabolic mechanisms that regenerate the energy required for task execution. The tutorial next synthesizes the available research investigating metabolism of the adult human speech musculature. This is followed by the authors proposing a hypothesis of speech metabolism based on the voice science literature and the application of well-studied exercise science principles of muscle physiology. The tutorial concludes with a discussion and the potential usefulness of lactate in investigations to better understand the metabolism of the musculature involved in vocal demand tasks. CONCLUSION The role of metabolism during speech (respiratory, laryngeal, and articulatory) is an understudied yet critical aspect of speech physiology that warrants further study to better understand the metabolic systems that are used to meet vocal demands.
Collapse
Affiliation(s)
| | | | | | - Mary J Sandage
- Department of Speech, Language, and Hearing Sciences, Auburn University, AL
| |
Collapse
|
7
|
Murphy J, Hodson-Tole E, Vigotsky AD, Potvin JR, Fisher JP, Steele J. Surface electromyographic frequency characteristics of the quadriceps differ between continuous high- and low-torque isometric knee extension to momentary failure. J Electromyogr Kinesiol 2023; 72:102810. [PMID: 37549475 DOI: 10.1016/j.jelekin.2023.102810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023] Open
Abstract
Surface EMG (sEMG) has been used to compare loading conditions during exercise. Studies often explore mean/median frequencies. This potentially misses more nuanced electrophysiological differences between exercise tasks. Therefore, wavelet-based analysis was used to evaluate electrophysiological characteristics in the sEMG signal of the quadriceps under both higher- and lower-torque (70 % and 30 % of MVC, respectively) isometric knee extension performed to momentary failure. Ten recreationally active adult males with previous resistance training experience were recruited. Using a within-session, repeated-measures, randomised crossover design, participants performed isometric knee extension whilst sEMG was collected from the vastus medialis (VM), rectus femoris (RF) and vastus lateralis (VL). Mean signal frequency showed similar characteristics in each condition at momentary failure. However, individual wavelets revealed different frequency component changes between the conditions. All frequency components increased during the low-torque condition. But low-frequency components increased, and high-frequency components decreased, in intensity throughout the high-torque condition. This resulted in convergence of the low-torque and high-torque trial wavelet characteristics towards the end of the low-torque trial. Our results demonstrate a convergence of myoelectric signal properties between low- and high-torque efforts with fatigue via divergent signal adaptations. Further work should disentangle factors influencing frequency characteristics during exercise tasks.
Collapse
Affiliation(s)
- Jonathan Murphy
- Solent University, Department of Sport and Health, Southampton, UK
| | - Emma Hodson-Tole
- Manchester Metropolitan University, Musculoskeletal Sciences and Sports Medicine Research Centre, Manchester Institute of Sport, Manchester, UK
| | | | | | - James P Fisher
- Solent University, Department of Sport and Health, Southampton, UK
| | - James Steele
- Solent University, Department of Sport and Health, Southampton, UK.
| |
Collapse
|
8
|
Ouergui I, Delleli S, Messaoudi H, Bridge CA, Chtourou H, Franchini E, Ardigò LP. Effects of conditioning activity mode, rest interval and effort to pause ratio on post-activation performance enhancement in taekwondo: a randomized study. Front Physiol 2023; 14:1179309. [PMID: 37501925 PMCID: PMC10369352 DOI: 10.3389/fphys.2023.1179309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction: The present study assessed the effects of conditioning activities, using different effort-to-pause ratios and rest intervals, on taekwondo physical performance. Methods: Twenty-one athletes (13 males and 8 females) (Mean ± SD; age = 20.4 ± 1.4 years) performed a control (CC) and twelve experimental conditions. Each condition contained a standard warm-up (i.e., CC: running at 9 km/h for 10 min) and conditioning activities comprising plyometrics P) or repeated high-intensity techniques (RT) using 1:6, 1:9 and self-selected rest (SSR) ratios, and two rest intervals (3 and 7 min). Athletes then performed a battery of fitness tests: countermovement jump (CMJ), taekwondo specific agility (TSAT), 10s and multiple frequency speed kick test (FSKT-10s and FSKT-mult, respectively). Results: All of the preloads provided higher performance outputs compared to the control trial (all p < 0.05). For CMJ, 1:6 ratio with 3 min induced lower values with RT compared to P (p = 0.037) and 1:9 ratio using 3 min induced higher values with RT compared to P (p = 0.027). Additionally, 1:6 ratio using 7 min induced higher values with RT compared to P (p = 0.016). For FSKT-10, 3 min using 1:6 induced higher values with P compared to RT, while RT induced higher values with 7 min using 1:6 ratio compared to P (both p < 0.001). Moreover, 3 min using 1:9 ratio induced higher values with P compared to RT (p = 0.034), while RT induced higher values with 1:9 ratio using 7 min compared to P (p < 0.001). Finally, 3 min using SSR ratio induced higher values with RT compared to P (p = 0.034). Conclusion: Plyometrics and RT activities improved performance with plyometrics requiring shorter rest interval to induce potentiation effects compared to RT, which required longer interval.
Collapse
Affiliation(s)
- Ibrahim Ouergui
- High Institute of Sport and Physical Education of Kef, University of Jendouba, Jendouba, Tunisia
- Research Unit: Sport Sciences, Health and Movement, UR22JS01, University of Jendouba, El Kef, Tunisia
| | - Slaheddine Delleli
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
- Research Unit Physical Activity, Sport and Health, National Observatory of Sport, Tunis, Tunisia
| | - Hamdi Messaoudi
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
- Research Unit Physical Activity, Sport and Health, National Observatory of Sport, Tunis, Tunisia
| | - Craig Alan Bridge
- Sports Performance Research Group, Wilson Centre, Edge Hill University, Ormskirk, United Kingdom
| | - Hamdi Chtourou
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
- Research Unit Physical Activity, Sport and Health, National Observatory of Sport, Tunis, Tunisia
| | - Emerson Franchini
- Martial Arts and Combat Sports Research Group, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Luca Paolo Ardigò
- Department of Teacher Education, NLA University College, Oslo, Norway
| |
Collapse
|
9
|
Wakeling JM, Febrer-Nafría M, De Groote F. A review of the efforts to develop muscle and musculoskeletal models for biomechanics in the last 50 years. J Biomech 2023; 155:111657. [PMID: 37285780 DOI: 10.1016/j.jbiomech.2023.111657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
Both the Hill and the Huxley muscle models had already been described by the time the International Society of Biomechanics was founded 50 years ago, but had seen little use before the 1970s due to the lack of computing. As computers and computational methods became available in the 1970s, the field of musculoskeletal modeling developed and Hill type muscle models were adopted by biomechanists due to their relative computational simplicity as compared to Huxley type muscle models. Muscle forces computed by Hill type muscle models provide good agreement in conditions similar to the initial studies, i.e. for small muscles contracting under steady and controlled conditions. However, more recent validation studies have identified that Hill type muscle models are least accurate for natural in vivo locomotor behaviours at submaximal activations, fast speeds and for larger muscles, and thus need to be improved for their use in understanding human movements. Developments in muscle modelling have tackled these shortcomings. However, over the last 50 years musculoskeletal simulations have been largely based on traditional Hill type muscle models or even simplifications of this model that neglected the interaction of the muscle with a compliant tendon. The introduction of direct collocation in musculoskeletal simulations about 15 years ago along with further improvements in computational power and numerical methods enabled the use of more complex muscle models in simulations of whole-body movement. Whereas Hill type models are still the norm, we may finally be ready to adopt more complex muscle models into musculoskeletal simulations of human movement.
Collapse
Affiliation(s)
- James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada.
| | - Míriam Febrer-Nafría
- Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain; Health Technologies and Innovation, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | | |
Collapse
|
10
|
Swinnen W, Hoogkamer W, De Groote F, Vanwanseele B. Faster triceps surae muscle cyclic contractions alter muscle activity and whole body metabolic rate. J Appl Physiol (1985) 2023; 134:395-404. [PMID: 36603047 DOI: 10.1152/japplphysiol.00575.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hundred years ago, Fenn demonstrated that when a muscle shortens faster, its energy liberation increases. Fenn's results were the first of many that led to the general understanding that isometric muscle contractions are energetically cheaper than concentric contractions. However, this evidence is still primarily based on single fiber or isolated (ex vivo) muscle studies and it remains unknown whether this translates to whole body metabolic rate. In this study, we specifically changed the contraction velocity of the ankle plantar flexors and quantified the effects on triceps surae muscle activity and whole body metabolic rate during cyclic plantar flexion (PF) contractions. Fifteen participants performed submaximal ankle plantar flexions (∼1/3 s activation and ∼2/3 s relaxation) on a dynamometer at three different ankle angular velocities: isometric (10° PF), isokinetic at 30°/s (5-15° PF), and isokinetic at 60°/s (0-20° PF) while target torque (25% MVC) and cycle frequency were kept constant. In addition, to directly determine the effect of ankle angular velocity on muscle kinematics we collected gastrocnemius medialis muscle fascicle ultrasound data. As expected, increasing ankle angular velocity increased gastrocnemius medialis muscle fascicle contraction velocity and positive mechanical work (P < 0.01), increased mean and peak triceps surae muscle activity (P < 0.01), and considerably increased net whole body metabolic rate (P < 0.01). Interestingly, the increase in triceps surae muscle activity with fast ankle angular velocities was most pronounced in the gastrocnemius lateralis (P < 0.05). Overall, our results support the original findings from Fenn in 1923 and we demonstrated that greater triceps surae muscle contraction velocities translate to increased whole body metabolic rate.NEW & NOTEWORTHY Single muscle fiber studies or research on isolated (ex vivo) muscles demonstrated that faster concentric muscle contractions yield increased energy consumption. Here we translated this knowledge to muscle activation and whole body metabolic rate. Increasing ankle angular velocity increased triceps surae contraction velocity and mechanical work, increasing triceps surae muscle activity and substantially elevating whole body metabolic rate. Additionally, we demonstrated that triceps surae muscle activation strategy depends on the mechanical demands of the task.
Collapse
Affiliation(s)
- Wannes Swinnen
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Wouter Hoogkamer
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | | | | |
Collapse
|
11
|
Saini H, Klotz T, Röhrle O. Modelling motor units in 3D: influence on muscle contraction and joint force via a proof of concept simulation. Biomech Model Mechanobiol 2022; 22:593-610. [PMID: 36572787 PMCID: PMC10097764 DOI: 10.1007/s10237-022-01666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022]
Abstract
AbstractFunctional heterogeneity is a skeletal muscle’s ability to generate diverse force vectors through localised motor unit (MU) recruitment. Existing 3D macroscopic continuum-mechanical finite element (FE) muscle models neglect MU anatomy and recruit muscle volume simultaneously, making them unsuitable for studying functional heterogeneity. Here, we develop a method to incorporate MU anatomy and information in 3D models. Virtual fibres in the muscle are grouped into MUs via a novel “virtual innervation” technique, which can control the units’ size, shape, position, and overlap. The discrete MU anatomy is then mapped to the FE mesh via statistical averaging, resulting in a volumetric MU distribution. Mesh dependency is investigated using a 2D idealised model and revealed that the amount of MU overlap is inversely proportional to mesh dependency. Simultaneous recruitment of a MU’s volume implies that action potentials (AP) propagate instantaneously. A 3D idealised model is used to verify this assumption, revealing that neglecting AP propagation results in a slightly less-steady force, advanced in time by approximately 20 ms, at the tendons. Lastly, the method is applied to a 3D, anatomically realistic model of the masticatory system to demonstrate the functional heterogeneity of masseter muscles in producing bite force. We found that the MU anatomy significantly affected bite force direction compared to bite force magnitude. MU position was much more efficacious in bringing about bite force changes than MU overlap. These results highlight the relevance of MU anatomy to muscle function and joint force, particularly for muscles with complex neuromuscular architecture.
Collapse
Affiliation(s)
- Harnoor Saini
- Institute of Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Pfaffenwaldring 5a, 70569 Stuttgart, BW Germany
| | - Thomas Klotz
- Institute of Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Pfaffenwaldring 5a, 70569 Stuttgart, BW Germany
| | - Oliver Röhrle
- Institute of Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Pfaffenwaldring 5a, 70569 Stuttgart, BW Germany
- Stuttgart Center for Simulation Technology (SC SimTech), University of Stuttgart, Pfaffenwaldring 5a, 70569 Stuttgart, BW Germany
| |
Collapse
|
12
|
Marshall NJ, Glaser JI, Trautmann EM, Amematsro EA, Perkins SM, Shadlen MN, Abbott LF, Cunningham JP, Churchland MM. Flexible neural control of motor units. Nat Neurosci 2022; 25:1492-1504. [PMID: 36216998 PMCID: PMC9633430 DOI: 10.1038/s41593-022-01165-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/12/2022] [Indexed: 01/13/2023]
Abstract
Voluntary movement requires communication from cortex to the spinal cord, where a dedicated pool of motor units (MUs) activates each muscle. The canonical description of MU function rests upon two foundational tenets. First, cortex cannot control MUs independently but supplies each pool with a common drive. Second, MUs are recruited in a rigid fashion that largely accords with Henneman's size principle. Although this paradigm has considerable empirical support, a direct test requires simultaneous observations of many MUs across diverse force profiles. In this study, we developed an isometric task that allowed stable MU recordings, in a rhesus macaque, even during rapidly changing forces. Patterns of MU activity were surprisingly behavior-dependent and could be accurately described only by assuming multiple drives. Consistent with flexible descending control, microstimulation of neighboring cortical sites recruited different MUs. Furthermore, the cortical population response displayed sufficient degrees of freedom to potentially exert fine-grained control. Thus, MU activity is flexibly controlled to meet task demands, and cortex may contribute to this ability.
Collapse
Affiliation(s)
- Najja J Marshall
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Joshua I Glaser
- Zuckerman Institute, Columbia University, New York, NY, USA
- Department of Statistics, Columbia University, New York, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University Medical Center, New York, NY, USA
| | - Eric M Trautmann
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA
| | - Elom A Amematsro
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Sean M Perkins
- Zuckerman Institute, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Michael N Shadlen
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University Medical Center, New York, NY, USA
- Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - L F Abbott
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University Medical Center, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
| | - John P Cunningham
- Zuckerman Institute, Columbia University, New York, NY, USA
- Department of Statistics, Columbia University, New York, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University Medical Center, New York, NY, USA
| | - Mark M Churchland
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA.
- Zuckerman Institute, Columbia University, New York, NY, USA.
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
13
|
Aoyama T, Kohno Y. Differences in motor unit firing properties of the vastus lateralis muscle during postural and voluntary tasks. Front Physiol 2022; 13:955912. [PMID: 36246135 PMCID: PMC9561828 DOI: 10.3389/fphys.2022.955912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
The firing properties of the motor units are usually affected by the motor task. However, it has not been clarified whether the firing properties of the motor units of a specific muscle are different between postural and voluntary tasks. Therefore, this study investigated whether the recruitment and rate coding of the motor units differ between these two motor tasks. Thirteen healthy volunteers performed trapezoidal muscle contraction with a target value of 15% maximum electromyography (EMG) activity by voluntary left knee extension in the sitting position (voluntary task) and postural maintenance in the semi-squatting position (postural task) with a knee flexion angle of 30°. We obtained four channels of surface EMG activity during each task from left vastus lateralis muscle. We extracted the firing properties of individual motor units using the EMG decomposition algorithm. The recruitment threshold and motor unit action potential amplitude were significantly lower in the postural task than in the voluntary task, and conversely, the mean firing rate was significantly higher. These results were explained by the preferential recruitment of motor units with higher recruitment threshold and amplitude in the voluntary task, while motor units with lower recruitment threshold and higher firing rate were preferentially recruited in the postural task. Preferential activation of fatigue-resistant motor units in the postural task is a reasonable strategy as it allows for sustained postural maintenance. We provide the first evidence that motor unit firing properties are clearly different between postural and voluntary tasks, even at the same muscle activity level.
Collapse
Affiliation(s)
- Toshiyuki Aoyama
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
- *Correspondence: Toshiyuki Aoyama,
| | - Yutaka Kohno
- Centre for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| |
Collapse
|
14
|
Gorzi A, Rezapour N, Jabbari S, Youzbashi L, Salehi J, Gahreman D, Krause Neto W. Deceptive intensities: An exploratory strategy for overcoming early central fatigue in resistance training. Physiol Behav 2022; 255:113921. [PMID: 35872038 DOI: 10.1016/j.physbeh.2022.113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Abstract
Neuropsychological stress induced by misleading information can limit human performance, possibly by early central fatigue mechanisms. In this study, we investigated the impact caused by prescribing misleading intensities of resistance exercise on acute electroencephalogram (EEG) and electromyogram (EMG) responses and the total number of repetitions to exhaustion. Collegiate female students performed three sets of biceps curls to exhaustion. The actual intensity for all sets was set at 65% 1-Repetition Maximum (1-RM). However, participants were deceptively informed that the intensities were 60%, 65%, or 70% 1-RM. The number of repetitions to fatigue and the magnitude of EEG and EMG signals were analyzed. The number of repetitions to exhaustion was significantly lower in greater announced intensities (18.11 ± 8.44) compared to lower (29.76 ± 16.28; p = 0.017) and correctly (27.82 ± 11.01; p = 0.001) announced intensity. The correlation between frontal and motor-cortex signals was significant in lower (r = 0.72, p = 0.001) and higher (r = 0.64, p = 0.005) announced intensities. The median and mean frequencies of EMG signal and Root Mean Square (RMS) did not show any significant difference between sets, but the peak-to-peak range (PPR) of biceps EMG signals was significantly higher in lower intensity (0.145 ± 0.042) when compared with higher (0.104 ± 0.044; p = 0.028) or correctly (0.126 ± 0.048; p = 0.037) announced intensity. It seems that deceptive information regarding the mass of an object could affect the number of repetitions to exhaustion and PPR to cover muscle capacity in endurance-type strength training.
Collapse
Affiliation(s)
- Ali Gorzi
- Department of Sport Sciences, University of Zanjan, Zanjan, Iran.
| | - Neda Rezapour
- Department of Electrical and Computer Engineering, University of Zanjan, Zanjan. Iran
| | - Sepideh Jabbari
- Department of Electrical and Computer Engineering, University of Zanjan, Zanjan. Iran
| | - Leila Youzbashi
- Department of Sport Sciences, University of Zanjan, Zanjan, Iran
| | - Javad Salehi
- Department of Psychology, University of Zanjan. Zanjan. Iran
| | - Daniel Gahreman
- Exercise and Sport Science, College of Health and Human Sciences, Charles Darwin University, Darwin. Australia
| | - Walter Krause Neto
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu University, São Paulo-SP, Brazil.
| |
Collapse
|
15
|
Differences in motor unit recruitment patterns and low frequency oscillation of discharge rates between unilateral and bilateral isometric muscle contractions. Hum Mov Sci 2022; 83:102952. [DOI: 10.1016/j.humov.2022.102952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/20/2022]
|
16
|
Increasing Oxygen Uptake in Cross-Country Skiers by Speed Variation in Work Intervals. Int J Sports Physiol Perform 2021; 17:384-390. [PMID: 34814113 DOI: 10.1123/ijspp.2021-0226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/21/2021] [Accepted: 07/04/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Accumulated time at a high percentage of peak oxygen consumption (VO2peak) is important for improving performance in endurance athletes. The present study compared the acute physiological and perceived effects of performing high-intensity intervals with roller ski double poling containing work intervals with (1) fast start followed by decreasing speed (DEC), (2) systematic variation in exercise intensity (VAR), and (3) constant speed (CON). METHODS Ten well-trained cross-country skiers (double-poling VO2peak 69.6 [3.5] mL·min-1·kg-1) performed speed- and duration-matched DEC, VAR, and CON on 3 separate days in a randomized order (5 × 5-min work intervals and 3-min recovery). RESULTS DEC and VAR led to longer time ≥90% VO2peak (P = .016 and P = .033, respectively) and higher mean %VO2peak (P = .036, and P = .009) compared with CON, with no differences between DEC and VAR (P = .930 and P = .759, respectively). VAR, DEC, and CON led to similar time ≥90% of peak heart rate (HRpeak), mean HR, mean breathing frequency, mean ventilation, and mean blood lactate concentration ([La-]). Furthermore, no differences between sessions were observed for perceptual responses, such as mean rate of perceived exertion, session rate of perceived exertion or pain score (all Ps > .147). CONCLUSIONS In well-trained XC skiers, DEC and VAR led to longer time ≥90% of VO2peak compared with CON, without excessive perceptual effort, indicating that these intervals can be a good alternative for accumulating more time at a high percentage of VO2peak and at the same time mimicking the pronounced variation in exercise intensities experienced during XC-skiing competitions.
Collapse
|
17
|
Ross SA, Wakeling JM. The energy of muscle contraction. IV. Greater mass of larger muscles decreases contraction efficiency. J R Soc Interface 2021; 18:20210484. [PMID: 34583567 PMCID: PMC8479364 DOI: 10.1098/rsif.2021.0484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/31/2021] [Indexed: 11/12/2022] Open
Abstract
While skeletal muscle mass has been shown to decrease mass-specific mechanical work per cycle, it is not yet known how muscle mass alters contraction efficiency. In this study, we examined the effect of muscle mass on mass-specific metabolic cost and efficiency during cyclic contractions in simulated muscles of different sizes. We additionally explored how tendon and its stiffness alters the effects of muscle mass on mass-specific work, mass-specific metabolic cost and efficiency across different muscle sizes. To examine contraction efficiency, we estimated the metabolic cost of the cycles using established cost models. We found that for motor contractions in which the muscle was primarily active during shortening, greater muscle mass resulted in lower contraction efficiency, primarily due to lower mass-specific mechanical work per cycle. The addition of a tendon in series with the mass-enhanced muscle model improved the mass-specific work and efficiency per cycle with greater mass for motor contractions, particularly with a shorter excitation duty cycle, despite higher predicted metabolic cost. The results of this study indicate that muscle mass is an important determinant of whole muscle contraction efficiency.
Collapse
Affiliation(s)
- Stephanie A. Ross
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - James M. Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
18
|
Maintenance of standing posture during multi-directional leaning demands the recruitment of task-specific motor units in the ankle plantarflexors. Exp Brain Res 2021; 239:2569-2581. [PMID: 34191118 DOI: 10.1007/s00221-021-06154-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/12/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study is to investigate whether regional modulation of the ankle plantarflexors during standing was related to the recruitment of motor units associated with force direction. Fourteen participants performed a multi-directional leaning task in standing. Participants stood on a force platform and maintained their center of pressure in five different target directions. Motor unit firings were extracted by decomposition of high-density surface electromyograms recorded from the ankle plantarflexor muscles. The motor unit barycentre, defined as the weighted mean of the maximal average rectified values across columns and rows, was used to evaluate the medio-lateral and proximo-distal changes in the surface representation of single motor units across different leaning target directions. Using a motor unit tracking analysis, groups of motor units were identified as being common or unique across the target directions. The leaning directions had an effect on the spatial representations of motor units in the medial gastrocnemius and soleus (p < 0.05), but not in the lateral gastrocnemius (p > 0.05). Motor unit action potentials were represented in the medial and proximal aspects of the muscles during forward vs. lateral leans. Further analysis determined that the common motor units were found in similar spatial locations across the target directions, whereas newly recruited unique motor units were found in different spatial locations according to target direction (p < 0.05). The central nervous system may possess the ability to activate different groups of motor units according to task demands to meet the force-direction requirements of the leaning task.
Collapse
|
19
|
Guo Y, Gao F, Li J, Yang M, Li J, Yang D, Du L. Effect of electromyographic biofeedback training on motor function of quadriceps femoris in patients with incomplete spinal cord injury: A randomized controlled trial. NeuroRehabilitation 2021; 48:345-351. [PMID: 33814474 DOI: 10.3233/nre-201647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Electromyographic biofeedback (EMG BF) training is an effective method of promoting motor learning and control in neurorehabilitation, but its effect on quadriceps femoris muscle in individuals with spinal cord injury (SCI) is unknown. OBJECTIVE The aim of the study was to investigate the therapeutic effect of EMG BF training on motor function of quadriceps femoris in patients with incomplete SCI. METHODS Thirty-three incomplete paraplegic patients with quadriceps femoris strength ranging grade 1 to grade 3 less than 6 months post-injury were enrolled. Control group (n = 16) received conventional physical therapy to enhance quadriceps femoris strength, while intervention group (n = 17) was treated with conventional physical therapy and EMG BF training. All received treatment once a day for 30 days. Surface electromyograph (sEMG), muscle strength and thigh circumference size were assessed to evaluate motor function of quadriceps femoris. Activities of daily living (ADL) was evaluated by Modified Barthel Index (MBI). All the measures evaluated three times in total. RESULTS Compared to the control group, intervention group significantly improved on sEMG values and strength of quadriceps femoris (PsEMG < 0.001, Pstrength < 0.05). sEMG values of quadriceps femoris increased earlier than strength of quadriceps femoris in intervention group (Prest = 0.07, Pactive = 0.031). There were no statistical differences in thigh circumference size and ADL scores between groups (Pthigh > 0.05, PADL = 0.423). CONCLUSIONS EMG BF training appeared to be a useful tool to enhance motor function of quadriceps femoris in patients with incomplete SCI. sEMG could quantify the changes of single muscle myodynamia precisely before visible or touchable changes occur.
Collapse
Affiliation(s)
- Yun Guo
- School of Rehabilitation, Capital Medical University, Beijing, P.R. China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, P.R. China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, P.R. China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, P.R. China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, P.R. China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, P.R. China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, P.R. China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, P.R. China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, P.R. China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, P.R. China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, P.R. China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, P.R. China
| | - Mingliang Yang
- School of Rehabilitation, Capital Medical University, Beijing, P.R. China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, P.R. China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, P.R. China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, P.R. China
| | - Jun Li
- School of Rehabilitation, Capital Medical University, Beijing, P.R. China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, P.R. China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, P.R. China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, P.R. China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, P.R. China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, P.R. China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, P.R. China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, P.R. China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, P.R. China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, P.R. China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, P.R. China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, P.R. China
| |
Collapse
|
20
|
Bartolomé I, Siquier-Coll J, Pérez-Quintero M, Robles-Gil MC, Muñoz D, Maynar-Mariño M. Effect of Handgrip Training in Extreme Heat on the Development of Handgrip Maximal Isometric Strength among Young Males. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105240. [PMID: 34069110 PMCID: PMC8156655 DOI: 10.3390/ijerph18105240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/04/2022]
Abstract
The aim of this study was to evaluate the acute and adaptive effects of passive extreme heat (100 ± 3 °C) exposition in combination with a strength training protocol on maximal isometric handgrip strength. Fifty-four untrained male university students participated in this investigation. Twenty-nine formed the control group (NG) and 25 the heat-exposed group (HG). All the participants performed a 3-week isotonic handgrip strength training program twice a week with a training volume of 10 series of 10 repetitions with 45-s rest between series, per session. All the subjects only trained their right hand, leaving their left hand untrained. HG performed the same training protocol in hot (100 ± 3 °C) conditions in a dry sauna. Maximal isometric handgrip strength was evaluated each training day before and after the session. NG participants did not experience any modifications in either hand by the end of the study while HG increased maximal strength values in both hands (p < 0.05), decreased the difference between hands (p < 0.05), and recorded higher values than the controls in the trained (p < 0.05) and untrained (p < 0.01) hands after the intervention period. These changes were not accompanied by any modification in body composition in either group. The performance of a unilateral isotonic handgrip strength program in hot conditions during the three weeks induced an increase in maximal isometric handgrip strength in both hands without modifications to bodyweight or absolute body composition.
Collapse
Affiliation(s)
- Ignacio Bartolomé
- Department of Physiology, School of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain; (I.B.); (M.P.-Q.); (M.M.-M.)
| | - Jesús Siquier-Coll
- Movement, Brain and Health Research Group (MOBhE), Center of Higher Education Alberta Giménez, Comillas Pontifical University, 07013 Palma de Mallorca, Spain
- Correspondence:
| | - Mario Pérez-Quintero
- Department of Physiology, School of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain; (I.B.); (M.P.-Q.); (M.M.-M.)
| | - María Concepción Robles-Gil
- Department of Didactics of Musical, Plastic and Corporal Expression, School of Teacher Training, University of Extremadura, 10003 Cáceres, Spain; (M.C.R.-G.); (D.M.)
| | - Diego Muñoz
- Department of Didactics of Musical, Plastic and Corporal Expression, School of Teacher Training, University of Extremadura, 10003 Cáceres, Spain; (M.C.R.-G.); (D.M.)
| | - Marcos Maynar-Mariño
- Department of Physiology, School of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain; (I.B.); (M.P.-Q.); (M.M.-M.)
| |
Collapse
|
21
|
Tumkur Anil Kumar N, Oliver JL, Lloyd RS, Pedley JS, Radnor JM. The Influence of Growth, Maturation and Resistance Training on Muscle-Tendon and Neuromuscular Adaptations: A Narrative Review. Sports (Basel) 2021; 9:59. [PMID: 34066778 PMCID: PMC8150311 DOI: 10.3390/sports9050059] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this article is to provide an overview of the growth, maturation and resistance training-related changes in muscle-tendon and neuromuscular mechanisms in youth, and the subsequent effect on performance. Sprinting, jumping, kicking, and throwing are common movements in sport that have been shown to develop naturally with age, with improvements in performance being attributed to growth and maturity-related changes in neuromuscular mechanisms. These changes include moderate to very large increases in muscle physiological cross-sectional area (CSA), muscle volume and thickness, tendon CSA and stiffness, fascicle length, muscle activation, pre-activation, stretch reflex control accompanied by large reductions in electro-mechanical delay and co-contraction. Furthermore, a limited number of training studies examining neuromuscular changes following four to 20 weeks of resistance training have reported trivial to moderate differences in tendon stiffness, muscle CSA, muscle thickness, and motor unit activation accompanied by reductions in electromechanical delay (EMD) in pre-pubertal children. However, the interaction of maturity- and training-related neuromuscular adaptions remains unclear. An understanding of how different neuromuscular mechanisms adapt in response to growth, maturation and training is important in order to optimise training responsiveness in youth populations. Additionally, the impact that these muscle-tendon and neuromuscular changes have on force producing capabilities underpinning performance is unclear.
Collapse
Affiliation(s)
- Nakul Tumkur Anil Kumar
- Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF23 6XD, UK; (J.L.O.); (R.S.L.); (J.S.P.); (J.M.R.)
| | - Jon L. Oliver
- Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF23 6XD, UK; (J.L.O.); (R.S.L.); (J.S.P.); (J.M.R.)
- Sport Performance Research Institute New Zealand, Auckland University of Technology, 1010 Auckland, New Zealand
| | - Rhodri S. Lloyd
- Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF23 6XD, UK; (J.L.O.); (R.S.L.); (J.S.P.); (J.M.R.)
- Sport Performance Research Institute New Zealand, Auckland University of Technology, 1010 Auckland, New Zealand
- Centre for Sport Science and Human Performance, Waikato Institute of Technology, 3200 Hamilton, New Zealand
| | - Jason S. Pedley
- Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF23 6XD, UK; (J.L.O.); (R.S.L.); (J.S.P.); (J.M.R.)
| | - John M. Radnor
- Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF23 6XD, UK; (J.L.O.); (R.S.L.); (J.S.P.); (J.M.R.)
| |
Collapse
|
22
|
Cheung VCK, Seki K. Approaches to revealing the neural basis of muscle synergies: a review and a critique. J Neurophysiol 2021; 125:1580-1597. [PMID: 33729869 DOI: 10.1152/jn.00625.2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The central nervous system (CNS) may produce coordinated motor outputs via the combination of motor modules representable as muscle synergies. Identification of muscle synergies has hitherto relied on applying factorization algorithms to multimuscle electromyographic data (EMGs) recorded during motor behaviors. Recent studies have attempted to validate the neural basis of the muscle synergies identified by independently retrieving the muscle synergies through CNS manipulations and analytic techniques such as spike-triggered averaging of EMGs. Experimental data have demonstrated the pivotal role of the spinal premotor interneurons in the synergies' organization and the presence of motor cortical loci whose stimulations offer access to the synergies, but whether the motor cortex is also involved in organizing the synergies has remained unsettled. We argue that one difficulty inherent in current approaches to probing the synergies' neural basis is that the EMG generative model based on linear combination of synergies and the decomposition algorithms used for synergy identification are not grounded on enough prior knowledge from neurophysiology. Progress may be facilitated by constraining or updating the model and algorithms with knowledge derived directly from CNS manipulations or recordings. An investigative framework based on evaluating the relevance of neurophysiologically constrained models of muscle synergies to natural motor behaviors will allow a more sophisticated understanding of motor modularity, which will help the community move forward from the current debate on the neural versus nonneural origin of muscle synergies.
Collapse
Affiliation(s)
- Vincent C K Cheung
- School of Biomedical Sciences and The Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, Kodaira, Tokyo, Japan
| |
Collapse
|
23
|
de Carvalho AR, Coimbra RDS, Thomas EM, Paz MCR, Pellegrini B, Peyré-Tartaruga LA. The Entrainment Frequency of Cardiolocomotor Synchronization in Long-Distance Race Emerges Spontaneously at the Step Frequency. Front Physiol 2021; 11:583030. [PMID: 33613299 PMCID: PMC7890119 DOI: 10.3389/fphys.2020.583030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022] Open
Abstract
In forced conditions, where the heart rate and step frequency have been matched, cardiolocomotor synchronization (CLS) has been recognized. However, knowledge about the occurrence of CLS and its triggers in sports gesture in real contexts is little known. To address this gap, the current study tested the hypothesis that CLS in running spontaneous conditions would emerge at entrainment bands of muscle activation frequencies associated with a freely chosen step frequency. Sixteen male long-distance runners undertook treadmill assessments running ten three-minute bouts at different speeds (7, 7.5, 8, 9, 10, 11, 12, 13, 14, and 15 km⋅h–1). Electrocardiography and surface electromyography were recorded simultaneously. The center frequency was the mean of the frequency spectrum obtained by wavelet decomposition, while CLS magnitude was determined by the wavelet coherence coefficient (WCC) between the electrocardiography and center frequency signals. The strength of CLS affected the entrainment frequencies between cardiac and muscle systems, and for WCC values greater than 0.8, the point from which we consider the emerging CLS, the entrainment frequency was between 2.7 and 2.8 Hz. The CLS emerged at faster speeds (13–15 km⋅h–1) most prevalently but did not affect the muscle activation bands. Spontaneous CLS occurred at faster speeds predominantly, and the entrainment frequencies matched the locomotor task, with the entrainment bands of frequencies emerging around the step frequencies (2.7–2.8 Hz). These findings are compatible with the concept that interventions that determine optima conditions of CLS may potentiate the benefits of the cardiac and muscle systems synchronized in distance runners.
Collapse
Affiliation(s)
- Alberito R de Carvalho
- Exercise Research Laboratory, Rio Grande do Sul Federal University, Porto Alegre, Brazil.,Integrative Biodynamics Evaluation Laboratory, Western Parana State University, Cascavel, Brazil
| | - Renan Dos S Coimbra
- Exercise Research Laboratory, Rio Grande do Sul Federal University, Porto Alegre, Brazil
| | - Eric M Thomas
- Exercise Research Laboratory, Rio Grande do Sul Federal University, Porto Alegre, Brazil
| | | | - Barbara Pellegrini
- Department of Neurosciences, Biomedicine and Movement Sciences, Università Degli Studi di Verona, Rovereto, Italy
| | | |
Collapse
|
24
|
Do skeletal muscle motor units and microvascular units align to help match blood flow to metabolic demand? Eur J Appl Physiol 2021; 121:1241-1254. [PMID: 33538852 DOI: 10.1007/s00421-021-04598-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE We explore the motor unit recruitment and control of perfusion of microvascular units in skeletal muscle to determine whether they coordinate to match blood flow to metabolic demand. METHODS The PubMed database was searched for historical, current and relevant literature. RESULTS A microvascular, or capillary unit consists of 2-20 individual capillaries. Individual capillaries within a capillary unit cannot increase perfusion independently of other capillaries within the unit. Capillary units perfuse a short segment of approx. 12 muscle fibres located beside each other. Motor units consist of muscle fibres that can be dispersed widely within the muscle volume. During a contraction, where not all motor units are recruited, muscle fibre contraction will result in increased perfusion of associated capillaries as well as all capillaries within that capillary unit. Perfusion of the entire capillary unit will result in an increased blood flow delivery to muscle fibres associated with active motor unit plus approximately 11 other inactive muscle fibres within the same region. This will result in an overperfusion of the muscle resulting in blood flow in excess of the muscle fibre needs. CONCLUSIONS Given the architecture of the capillary units and the dispersed nature of muscle fibres within a motor unit, during submaximal contractions, where not all motor units are recruited, there will be a greater perfusion to the muscle than that predicted by the number of active muscle fibres. Such overperfusion brings into question if blood flow and metabolic demand are as tightly matched as previously assumed.
Collapse
|
25
|
Effect of a Novel Perturbation-Based Pinch Task Training on Sensorimotor Performance of Upper Extremity for Patients With Chronic Stroke: A Pilot Randomized Controlled Trial. Arch Phys Med Rehabil 2020; 102:811-818. [PMID: 33278364 DOI: 10.1016/j.apmr.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To investigate the effects of perturbation-based pinch task training on the sensorimotor performance of the upper extremities of patients with chronic stroke via a novel vibrotactile therapy system. DESIGN A single-blinded randomized controlled trial. SETTING A university hospital. PARTICIPANTS Patients with chronic stroke (N=19) randomly assigned into either an experimental group or a control group completed the study. INTERVENTIONS In addition to 10 minutes of traditional sensorimotor facilitation, each participant in the experimental group received 20 minutes of perturbation-based pinch task training in each treatment session, and the controls received 20 minutes of task-specific motor training twice a week for 6 weeks. MAIN OUTCOME MEASURES The scores for the primary outcome, Semmes-Weinstein monofilament (SWM), and those for the secondary outcomes, Fugl-Meyer Assessment (FMA), amount of use, quality of movement (QOM) on the Motor Activity Log (MAL) scale, and box and block test (BBT), were recorded. All outcome measures were recorded at pretreatment, post treatment, and 12-week follow-up. RESULTS There were statistically significant between-group differences in the training-induced improvements revealed in the SWM results (P=.04) immediately after training and in the BBT results (P=.05) at the 12-week follow-up. The changes in muscle tone and in the QOM, SWM, and BBT scores indicated statistically significant improvements after 12 sessions of treatment for the experimental group. For the control group, a significant statistical improvement was found in the wrist (P<.001) and coordination (P=.01) component of the FMA score. CONCLUSIONS This study indicated that the perturbation-based pinch task training has beneficial effects on sensory restoration of the affected thumb in patients with chronic stroke.
Collapse
|
26
|
Chen CH, Yang WW, Chen YP, Chen VCF, Liu C, Shiang TY. High vibration frequency of soft tissue occurs during gait in power-trained athletes. J Sports Sci 2020; 39:439-445. [PMID: 33016229 DOI: 10.1080/02640414.2020.1824366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Muscles serve as a critical regulator of locomotion and damping, resulting in changes of soft tissue vibration. However, whether muscle fibre compositions of different individuals will cause different extents of soft tissue vibration during gait is unclear. Therefore, this study investigated the differences in lower extremity vibration frequencies among power-trained and non-power-trained athletes during walking and running. Twelve weightlifting athletes were assigned to the power-trained group and twelve recreational runners were assigned to the non-power-trained group. Accelerometers were used to detect soft tissue compartment vibration frequencies of the rectus femoris (RF) and gastrocnemius medialis (GMS) during walking and running. Results indicated that power-trained athletes, as compared to the non-power-trained, induced significantly (p < 0.05) higher vibration frequencies in their soft tissue compartments during walking and running. This suggests that power-trained athletes, who have higher ratios of fatigable fast-twitch muscle fibres, may have induced higher soft tissue compartment vibration frequencies. As a result, there is a likelihood that power-trained athletes may recruit more fatigable fast-twitch muscle fibres during muscle tuning, causing dysfunctions during prolonged exercises.
Collapse
Affiliation(s)
- Chia-Hsiang Chen
- Office of Physical Education, National Pingtung University of Science and Technology , Pingtung, Taiwan
| | - Wen-Wen Yang
- Department of Sports Medicine, China Medical University , Taichung, Taiwan
| | - Yi-Ping Chen
- Department of Athletic Performance, National Taiwan Normal University , Taipei, Taiwan
| | | | - Chiang Liu
- Graduate Institute of Sports Equipment Technology, University of Taipei , Taipei, Taiwan
| | - Tzyy-Yuang Shiang
- Department of Athletic Performance, National Taiwan Normal University , Taipei, Taiwan
| |
Collapse
|
27
|
Beltran-Valls MR, Adelantado-Renau M, Moliner-Urdiales D. Reallocating time spent in physical activity intensities: Longitudinal associations with physical fitness (DADOS study). J Sci Med Sport 2020; 23:968-972. [DOI: 10.1016/j.jsams.2020.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 03/11/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
|
28
|
Jahanandish MH, Rabe KG, Fey NP, Hoyt K. Ultrasound Features of Skeletal Muscle Can Predict Kinematics of Upcoming Lower-Limb Motion. Ann Biomed Eng 2020; 49:822-833. [PMID: 32959134 DOI: 10.1007/s10439-020-02617-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
Seamless integration of lower-limb assistive devices with the human body requires an intuitive human-machine interface, which would benefit from predicting the intent of individuals in advance of the upcoming motion. Ultrasound imaging was recently introduced as an intuitive sensing interface. The objective of the present study was to investigate the predictability of joint kinematics using ultrasound features of the rectus femoris muscle during a non-weight-bearing knee extension/flexion. Motion prediction accuracy was evaluated in 67 ms increments, up to 600 ms in time. Statistical analysis was used to evaluate the feasibility of motion prediction, and the linear mixed-effects model was used to determine a prediction time window where the joint angle prediction error is barely perceivable by the sample population, hence clinically reliable. Surprisingly, statistical tests revealed that the prediction accuracy of the joint angle was more sensitive to temporal shifts than the accuracy of the joint angular velocity prediction. Overall, predictability of the upcoming joint kinematics using ultrasound features of skeletal muscle was confirmed, and a time window for a statistically and clinically reliable prediction was found between 133 and 142 ms. A reliable prediction of user intent may provide the time needed for processing, control planning, and actuation of the assistive devices at critical points during ambulation, contributing to the intuitive behavior of lower-limb assistive devices.
Collapse
Affiliation(s)
- M Hassan Jahanandish
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Kaitlin G Rabe
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Nicholas P Fey
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA. .,Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, USA. .,Department of Physical Medicine and Rehabilitation, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Kenneth Hoyt
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA. .,Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
29
|
Bossi AH, Mesquida C, Passfield L, Rønnestad BR, Hopker JG. Optimizing Interval Training Through Power-Output Variation Within the Work Intervals. Int J Sports Physiol Perform 2020; 15:982-989. [PMID: 32244222 DOI: 10.1123/ijspp.2019-0260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/02/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE Maximal oxygen uptake (V˙O2max) is a key determinant of endurance performance. Therefore, devising high-intensity interval training (HIIT) that maximizes stress of the oxygen-transport and -utilization systems may be important to stimulate further adaptation in athletes. The authors compared physiological and perceptual responses elicited by work intervals matched for duration and mean power output but differing in power-output distribution. METHODS Fourteen cyclists (V˙O2max 69.2 [6.6] mL·kg-1·min-1) completed 3 laboratory visits for a performance assessment and 2 HIIT sessions using either varied-intensity or constant-intensity work intervals. RESULTS Cyclists spent more time at >90%V˙O2max during HIIT with varied-intensity work intervals (410 [207] vs 286 [162] s, P = .02), but there were no differences between sessions in heart-rate- or perceptual-based training-load metrics (all P ≥ .1). When considering individual work intervals, minute ventilation (V˙E) was higher in the varied-intensity mode (F = 8.42, P = .01), but not respiratory frequency, tidal volume, blood lactate concentration [La], ratings of perceived exertion, or cadence (all F ≤ 3.50, ≥ .08). Absolute changes (Δ) between HIIT sessions were calculated per work interval, and Δ total oxygen uptake was moderately associated with ΔV˙E (r = .36, P = .002). CONCLUSIONS In comparison with an HIIT session with constant-intensity work intervals, well-trained cyclists sustain higher fractions of V˙O2max when work intervals involved power-output variations. This effect is partially mediated by an increased oxygen cost of hyperpnea and not associated with a higher [La], perceived exertion, or training-load metrics.
Collapse
|
30
|
Richards CT, Eberhard EA. In vitro virtual reality: an anatomically explicit musculoskeletal simulation powered by in vitro muscle using closed-loop tissue-software interaction. J Exp Biol 2020; 223:jeb210054. [PMID: 32253284 DOI: 10.1242/jeb.210054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/20/2020] [Indexed: 11/20/2022]
Abstract
Muscle force-length dynamics are governed by intrinsic contractile properties, motor stimulation and mechanical load. Although intrinsic properties are well characterised, physiologists lack in vitro instrumentation to account for combined effects of limb inertia, musculoskeletal architecture and contractile dynamics. We introduce in vitro virtual reality (in vitro-VR) which enables in vitro muscle tissue to drive a musculoskeletal jumping simulation. In hardware, muscle force from a frog plantaris was transmitted to a software model where joint torques, inertia and ground reaction forces were computed to advance the simulation at 1 kHz. To close the loop, simulated muscle strain was returned to update in vitro length. We manipulated (1) stimulation timing and (2) the virtual muscle's anatomical origin. This influenced interactions among muscular, inertial, gravitational and contact forces dictating limb kinematics and jump performance. We propose that in vitro-VR can be used to illustrate how neuromuscular control and musculoskeletal anatomy influence muscle dynamics and biomechanical performance.
Collapse
|
31
|
Dobbs WC, Tolusso DV, Fedewa MV, Esco MR. Effect of Postactivation Potentiation on Explosive Vertical Jump: A Systematic Review and Meta-Analysis. J Strength Cond Res 2019; 33:2009-2018. [PMID: 30138241 DOI: 10.1519/jsc.0000000000002750] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dobbs, WC, Tolusso, DV, Fedewa, MV, and Esco, MR. Effect of postactivation potentiation on explosive vertical jump: a systematic review and meta-analysis. J Strength Cond Res 33(7): 2009-2018, 2019-The primary aim of this systematic review and meta-analysis was to quantify the magnitude of the effect of postactivation potentiation (PAP) on explosive vertical power while accounting for the nesting of multiple effects within each study. This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Statement (PRISMA). Original research articles published by January 18, 2018, were located using an electronic search of 4 databases and yielded 759 original publications. Data were extracted and independently coded by 2 authors (W.C.D. and D.V.T.). The standardized mean effect size (ES) was calculated by subtracting the pre-treatment mean from the post-treatment mean and dividing by the pooled SD, adjusting for small sample bias. Multilevel random-effects model was used to aggregate a mean ES and 95% confidence interval (CI) for PAP on vertical jump performance. The cumulative results of 179 effects gathered from 36 studies indicate that PAP does not improve vertical jump performance (ES = 0.08, 95% CI -0.04 to 0.21, p = 0.197), with moderate heterogeneity. Moderator analysis indicated that rest intervals between 3 and 7 minutes provided favorable performance outcomes (ES = 0.18, 95% CI 0.05 to 0.31, p = 0.007). Conversely, rest intervals less than 3 minutes (ES = -0.15, 95% CI -0.31 to 0.01, p = 0.052) or performing isometric contractions (ES = -0.52, 95% CI -0.89 to -0.14, p = 0.007) may be detrimental to performance. Meta-regression indicated that rest interval was the only moderator significantly associated with ES (β = -0.04, 95% CI -0.57 to -0.02, R = 14.31%, p < 0.001). When appropriate PAP guidelines are followed, an increase in vertical jump performance may be achieved.
Collapse
Affiliation(s)
- Ward C Dobbs
- Department of Kinesiology, The University of Alabama, Tuscaloosa, Alabama
| | | | | | | |
Collapse
|
32
|
Gjorgjieva J, Meister M, Sompolinsky H. Functional diversity among sensory neurons from efficient coding principles. PLoS Comput Biol 2019; 15:e1007476. [PMID: 31725714 PMCID: PMC6890262 DOI: 10.1371/journal.pcbi.1007476] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/03/2019] [Accepted: 10/10/2019] [Indexed: 01/10/2023] Open
Abstract
In many sensory systems the neural signal is coded by the coordinated response of heterogeneous populations of neurons. What computational benefit does this diversity confer on information processing? We derive an efficient coding framework assuming that neurons have evolved to communicate signals optimally given natural stimulus statistics and metabolic constraints. Incorporating nonlinearities and realistic noise, we study optimal population coding of the same sensory variable using two measures: maximizing the mutual information between stimuli and responses, and minimizing the error incurred by the optimal linear decoder of responses. Our theory is applied to a commonly observed splitting of sensory neurons into ON and OFF that signal stimulus increases or decreases, and to populations of monotonically increasing responses of the same type, ON. Depending on the optimality measure, we make different predictions about how to optimally split a population into ON and OFF, and how to allocate the firing thresholds of individual neurons given realistic stimulus distributions and noise, which accord with certain biases observed experimentally.
Collapse
Affiliation(s)
| | - Markus Meister
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Haim Sompolinsky
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
- The Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel
| |
Collapse
|
33
|
Alcazar J, Csapo R, Ara I, Alegre LM. On the Shape of the Force-Velocity Relationship in Skeletal Muscles: The Linear, the Hyperbolic, and the Double-Hyperbolic. Front Physiol 2019; 10:769. [PMID: 31275173 PMCID: PMC6593051 DOI: 10.3389/fphys.2019.00769] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/03/2019] [Indexed: 11/13/2022] Open
Abstract
The shape of the force-velocity (F-V) relationship has important implications for different aspects of muscle physiology, such as muscle efficiency and fatigue, the understanding of the pathophysiology of several myopathies or the mechanisms of muscle contraction per se, and may be of relevance for other fields, such as the development of robotics and prosthetic applications featuring natural muscle-like properties. However, different opinions regarding the shape of the F-V relationship and the underlying mechanisms exist in the literature. In this review, we summarize relevant evidence on the shape of the F-V relationship obtained over the last century. Studies performed at multiple scales ranging from the sarcomere to the organism level have described the concentric F-V relationship as linear, hyperbolic or double-hyperbolic. While the F-V relationship has most frequently been described as a rectangular hyperbola, a large number of studies have found deviations from the hyperbolic function at both ends of the F-V relation. Indeed, current evidence suggests that the F-V relation in skeletal muscles follows a double-hyperbolic pattern, with a breakpoint located at very high forces/low velocities, which may be a direct consequence of the kinetic properties of myofilament cross-bridge formation. Deviations at low forces/high velocities, by contrast, may be related to a recently discovered, calcium-independent regulatory mechanism of muscle contraction, which may also explain the low metabolic cost of very fast muscle shortening contractions. Controversial results have also been reported regarding the eccentric F-V relationship, with studies in prepared muscle specimens suggesting that maximum eccentric force is substantially greater than isometric force, whereas in vivo studies in humans show only a modest increase, no change, or even a decrease in force in lengthening contractions. This review discusses possible reasons reported in the literature for these discrepant findings, including the testing procedures (familiarization, pre-load condition, and temperature) and a potential neural inhibition at higher lengthening velocities. Finally, some unresolved questions and recommendations for F-V testing in humans are reported at the end of this document.
Collapse
Affiliation(s)
- Julian Alcazar
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Robert Csapo
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, ISAG, University for Health Sciences, Medical Informatics and Technology, Hall, Austria
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Luis M Alegre
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
34
|
Regulation of locomotor speed and selection of active sets of neurons by V1 neurons. Nat Commun 2019; 10:2268. [PMID: 31118414 PMCID: PMC6531463 DOI: 10.1038/s41467-019-09871-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/04/2019] [Indexed: 11/08/2022] Open
Abstract
During fast movements in vertebrates, slow motor units are thought to be deactivated due to the mechanical demands of muscle contraction, but the associated neuronal mechanisms for this are unknown. Here, we perform functional analyses of spinal V1 neurons by selectively killing them in larval zebrafish, revealing two functions of V1 neurons. The first is the long-proposed role of V1 neurons: they play an important role in shortening the cycle period during swimming by providing in-phase inhibition. The second is that V1 neurons play an important role in the selection of active sets of neurons. We show that strong inhibitory inputs coming from V1 neurons play a crucial role in suppressing the activities of slow-type V2a and motor neurons, and, consequently, of slow muscles during fast swimming. Our results thus highlight the critical role of spinal inhibitory neurons for silencing slow-component neurons during fast movements.
Collapse
|
35
|
Laubacher M, Aksoez EA, Brust AK, Baumberger M, Riener R, Binder-Macleod S, Hunt KJ. Stimulation of paralysed quadriceps muscles with sequentially and spatially distributed electrodes during dynamic knee extension. J Neuroeng Rehabil 2019; 16:5. [PMID: 30616683 PMCID: PMC6322281 DOI: 10.1186/s12984-018-0471-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During functional electrical stimulation (FES) tasks with able-bodied (AB) participants, spatially distributed sequential stimulation (SDSS) has demonstrated substantial improvements in power output and fatigue properties compared to conventional single electrode stimulation (SES). The aim of this study was to compare the properties of SDSS and SES in participants with spinal cord injury (SCI) in a dynamic isokinetic knee extension task simulating knee movement during recumbent cycling. METHOD Using a case-series design, m. vastus lateralis and medialis of four participants with motor and sensory complete SCI (AIS A) were stimulated for 6 min on both legs with both electrode setups. With SES, target muscles were stimulated by a pair of electrodes. In SDSS, the distal electrodes were replaced by four small electrodes giving the same overall stimulation frequency and having the same total surface area. Torque was measured during knee extension by a dynamometer at an angular velocity of 110 deg/s. Mean power of the left and right sides (PmeanL,R) was calculated from all stimulated extensions for initial, final and all extensions. Fatigue is presented as an index value with respect to initial power from 1 to 0, whereby 1 means no fatigue. RESULTS SDSS showed higher PmeanL,R values for all four participants for all extensions (increases of 132% in participant P1, 100% in P2, 36% in P3 and 18% in P4 compared to SES) and for the initial phase (increases of 84%, 59%, 66%, and 16%, respectively). Fatigue resistance was better with SDSS for P1, P2 and P4 but worse for P3 (0.47 vs 0.35, 0.63 vs 0.49, 0.90 vs 0.82 and 0.59 vs 0.77, respectively). CONCLUSION Consistently higher PmeanL,R was observed for all four participants for initial and overall contractions using SDSS. This supports findings from previous studies with AB participants. Fatigue properties were better in three of the four participants. The lower fatigue resistance with SDSS in one participant may be explained by a very low muscle activation level in this case. Further investigation in a larger cohort is warranted.
Collapse
Affiliation(s)
- Marco Laubacher
- Department of Physical Therapy, University of Delaware, Newark, United States of America.
| | - Efe A Aksoez
- Department of Physical Therapy, University of Delaware, Newark, United States of America
| | - Anne K Brust
- Department of Physical Therapy, University of Delaware, Newark, United States of America
| | - Michael Baumberger
- Institute for Rehabilitation and Performance Technology, Division of Mechanical Engineering, Department of Engineering and Information Technology, Bern University of Applied Sciences, Pestalozzistrasse 20, Burgdorf, 3400, Switzerland.,Sensory Motor Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8000, Switzerland
| | - Robert Riener
- Institute for Rehabilitation and Performance Technology, Division of Mechanical Engineering, Department of Engineering and Information Technology, Bern University of Applied Sciences, Pestalozzistrasse 20, Burgdorf, 3400, Switzerland.,Sensory Motor Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8000, Switzerland
| | | | | |
Collapse
|
36
|
Lai AKM, Biewener AA, Wakeling JM. Metabolic cost underlies task-dependent variations in motor unit recruitment. J R Soc Interface 2018; 15:rsif.2018.0541. [PMID: 30464057 DOI: 10.1098/rsif.2018.0541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/23/2018] [Indexed: 11/12/2022] Open
Abstract
Mammalian skeletal muscles are comprised of many motor units, each containing a group of muscle fibres that have common contractile properties: these can be broadly categorized as slow and fast twitch muscle fibres. Motor units are typically recruited in an orderly fashion following the 'size principle', in which slower motor units would be recruited for low intensity contraction; a metabolically cheap and fatigue-resistant strategy. However, this recruitment strategy poses a mechanical paradox for fast, low intensity contractions, in which the recruitment of slower fibres, as predicted by the size principle, would be metabolically more costly than the recruitment of faster fibres that are more efficient at higher contraction speeds. Hence, it would be mechanically and metabolically more effective for recruitment strategies to vary in response to contraction speed so that the intrinsic efficiencies and contraction speeds of the recruited muscle fibres are matched to the mechanical demands of the task. In this study, we evaluated the effectiveness of a novel, mixed cost function within a musculoskeletal simulation, which includes the metabolic cost of contraction, to predict the recruitment of different muscle fibre types across a range of loads and speeds. Our results show that a metabolically informed cost function predicts favoured recruitment of slower muscle fibres for slower and isometric tasks versus recruitment that favours faster muscles fibres for higher velocity contractions. This cost function predicts a change in recruitment patterns consistent with experimental observations, and also predicts a less expensive metabolic cost for these muscle contractions regardless of speed of the movement. Hence, our findings support the premise that varying motor recruitment strategies to match the mechanical demands of a movement task results in a mechanically and metabolically sensible way to deploy the different types of motor unit.
Collapse
Affiliation(s)
- Adrian K M Lai
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
37
|
Ben Hmed A, Bakir T, Garnier YM, Sakly A, Lepers R, Binczak S. An approach to a muscle force model with force-pulse amplitude relationship of human quadriceps muscles. Comput Biol Med 2018; 101:218-228. [PMID: 30199798 DOI: 10.1016/j.compbiomed.2018.08.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/25/2018] [Accepted: 08/26/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Recent advanced applications of the functional electrical stimulation (FES) mostly used closed-loop control strategies based on mathematical models to improve the performance of the FES systems. In most of them, the pulse amplitude was used as an input control. However, in controlling the muscle force, the most popular force model developed by Ding et al. does not take into account the pulse amplitude effect. The purpose of this study was to include the pulse amplitude in the existing Ding et al. model based on the recruitment curve function. METHODS Quadriceps femoris muscles of eight healthy subjects were tested. Forces responses to stimulation trains with different pulse amplitudes (30-100 mA) and frequencies (20-80 Hz) were recorded and analyzed. Then, specific model parameter values were identified by fitting the measured forces for one train (50 Hz, 100 mA). The obtained model parameters were then used to identify the recruitment curve parameter values by fitting the force responses for different pulse amplitudes at the same frequency train. Finally, the extended model was used to predict force responses for a range of stimulation pulse amplitudes and frequencies. RESULTS The experimental results indicated that our adapted model accurately predicts the force-pulse amplitude relationship with an excellent agreement between measured and predicted forces (R2=0.998, RMSE = 6.6 N). CONCLUSIONS This model could be used to predict the pulse amplitude effect and to design control strategies for controlling the muscle force in order to obtain precise movements during FES sessions using intensity modulation.
Collapse
Affiliation(s)
- Abdennacer Ben Hmed
- Laboratory Le2i, FRE CNRS 2005, Univ. de Bourgogne Franche-Comte, Dijon, France; Research Unit ESIER, National Engineering School of Monastir (ENIM), University of Monastir, Tunisia.
| | - Toufik Bakir
- Laboratory Le2i, FRE CNRS 2005, Univ. de Bourgogne Franche-Comte, Dijon, France
| | - Yoann M Garnier
- INSERM UMR1093-CAPS, Univ. Bourgogne Franche-Comte, UFR des Sciences du Sport, Dijon, France
| | - Anis Sakly
- Research Unit ESIER, National Engineering School of Monastir (ENIM), University of Monastir, Tunisia
| | - Romuald Lepers
- INSERM UMR1093-CAPS, Univ. Bourgogne Franche-Comte, UFR des Sciences du Sport, Dijon, France
| | - Stephane Binczak
- Laboratory Le2i, FRE CNRS 2005, Univ. de Bourgogne Franche-Comte, Dijon, France
| |
Collapse
|
38
|
Foster KL, Dhuper M, Standen EM. Fin and body neuromuscular coordination changes during walking and swimming in Polypterus senegalus. ACTA ACUST UNITED AC 2018; 221:jeb.168716. [PMID: 29967218 DOI: 10.1242/jeb.168716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 06/27/2018] [Indexed: 11/20/2022]
Abstract
The ability to modulate the function of muscle is integral to an animal's ability to function effectively in the face of widely disparate challenges. This modulation of function can manifest through short-term changes in neuromuscular control, but also through long-term changes in force profiles, fatiguability and architecture. However, the relative extent to which shorter-term modulation and longer-term plasticity govern locomotor flexibility remains unclear. Here, we obtain simultaneously recorded kinematic and muscle activity data of fin and body musculature of an amphibious fish, Polypterus senegalus After examining swimming and walking behaviour in aquatically raised individuals, we show that walking behaviour is characterized by greater absolute duration of muscle activity in most muscles when compared with swimming, but that the magnitude of recruitment during walking is only increased in the secondary bursts of fin muscle and in the primary burst of the mid-body point. This localized increase in intensity suggests that walking in P. senegalus is powered in a few key locations on the fish, contrasting with the more distributed, low intensity muscle force that characterizes the stroke cycle during swimming. Finally, the increased intensity in secondary, but not primary, bursts of the fin muscles when walking probably underscores the importance of antagonistic muscle activity to prevent fin collapse, add stabilization and increase body support. Understanding the principles that underlie the flexibility of muscle function can provide key insights into the sources of animal functional and behavioural diversity.
Collapse
Affiliation(s)
- Kathleen L Foster
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Misha Dhuper
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Emily M Standen
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
39
|
Ross SA, Ryan DS, Dominguez S, Nigam N, Wakeling JM. Size, History-Dependent, Activation and Three-Dimensional Effects on the Work and Power Produced During Cyclic Muscle Contractions. Integr Comp Biol 2018; 58:232-250. [PMID: 29726964 PMCID: PMC6104705 DOI: 10.1093/icb/icy021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Muscles undergo cycles of length change and force development during locomotion, and these contribute to their work and power production to drive body motion. Muscle fibers are typically considered to be linear actuators whose stress depends on their length, velocity, and activation state, and whose properties can be scaled up to explain the function of whole muscles. However, experimental and modeling studies have shown that a muscle's stress additionally depends on inactive and passive tissues within the muscle, the muscle's size, and its previous contraction history. These effects have not been tested under common sets of contraction conditions, especially the cyclic contractions that are typical of locomotion. Here we evaluate the relative effects of size, history-dependent, activation and three-dimensional effects on the work and power produced during cyclic contractions of muscle models. Simulations of muscle contraction were optimized to generate high power outputs: this resulted in the muscle models being largely active during shortening, and inactive during lengthening. As such, the history-dependent effects were dominated by force depression during simulated active shortening rather than force enhancement during active stretch. Internal work must be done to deform the muscle tissue, and to accelerate the internal muscle mass, resulting in reduced power and work that can be done on an external load. The effect of the muscle mass affects the scaling of muscle properties, with the inertial costs of contraction being relatively greater at larger sizes and lower activation levels.
Collapse
Affiliation(s)
- Stephanie A Ross
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - David S Ryan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Sebastian Dominguez
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Nilima Nigam
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
40
|
Mohr M, Schön T, von Tscharner V, Nigg BM. Intermuscular Coherence Between Surface EMG Signals Is Higher for Monopolar Compared to Bipolar Electrode Configurations. Front Physiol 2018; 9:566. [PMID: 29867587 PMCID: PMC5966566 DOI: 10.3389/fphys.2018.00566] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/30/2018] [Indexed: 11/24/2022] Open
Abstract
Introduction: The vasti muscles have to work in concert to control knee joint motion during movements like walking, running, or squatting. Coherence analysis between surface electromyography (EMG) signals is a common technique to study muscle synchronization during such movements and gain insight into strategies of the central nervous system to optimize neuromuscular performance. However, different assessment methods related to EMG data acquisition, e.g., different electrode configurations or amplifier technologies, have produced inconsistent observations. Therefore, the aim of this study was to elucidate the effect of different EMG acquisition techniques (monopolar vs. bipolar electrode configuration, potential vs. current amplifier) on the magnitude, reliability, and sensitivity of intermuscular coherence between two vasti muscles during stable and unstable squatting exercises. Methods: Surface EMG signals from vastus lateralis (VL) and medialis (VM) were obtained from eighteen adults while performing series of stable und unstable bipedal squats. The EMG signals were acquired using three different recording techniques: (1) Bipolar with a potential amplifier, (2) monopolar with a potential amplifier, and (3) monopolar electrodes with a current amplifier. VL-VM coherence between the respective raw EMG signals was determined during two trials of stable squatting and one trial of unstable squatting to compare the coherence magnitude, reliability, and sensitivity between EMG recording techniques. Results: VL-VM coherence was about twice as high for monopolar recordings compared to bipolar recordings for all squatting exercises while coherence was similar between monopolar potential and current recordings. Reliability measures were comparable between recording systems while the sensitivity to an increase in intermuscular coherence during unstable vs. stable squatting was lowest for the monopolar potential system. Discussion and Conclusion: The choice of electrode configuration can have a significant effect on the magnitude of EMG-EMG coherence, which may explain previous inconsistencies in the literature. A simple simulation of cross-talk could not explain the large differences in intermuscular coherence. It is speculated that inevitable errors in the alignment of the bipolar electrodes with the muscle fiber direction leads to a reduction of information content in the differential EMG signals and subsequently to a lower resolution for the detection of intermuscular coherence.
Collapse
Affiliation(s)
- Maurice Mohr
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Tanja Schön
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Vinzenz von Tscharner
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Benno M Nigg
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
41
|
Batistaki C, Angelopoulou A, Smyrnioti ME, Kitsou MC, Kostopanagiotou G. Electromyographic Findings After Epidural Steroid Injections in Patients with Radicular Low Back Pain: A Prospective Open-Label Study. Anesth Pain Med 2018; 7:e62556. [PMID: 29696128 PMCID: PMC5903381 DOI: 10.5812/aapm.62556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/21/2017] [Accepted: 12/15/2017] [Indexed: 12/14/2022] Open
Abstract
Epidural steroid injections (ESIs) are commonly used in the management of chronic lower back and leg pain. The aim of this study was to investigate the short- and long-term electromyographic and clinical outcome of patients with chronic radicular pain after ESIs. This prospective, open-label study, included patients with chronic radicular pain due to disc herniation or spinal stenosis, who underwent interlaminar, fluoroscopy-guided ESIs. Patients were assessed before ESIs, as well as after 6 and 12 months, clinically (VAS 0-10, BPI, DN4, Rolland Morris, DASS, STAI) and electromyographically for the improvement of spontaneous activity (SA) and of motor unit recruitment/interference pattern (IP/MUR). A total of 39 patients were studied, 20 (51.3%) who had a significant improvement in VAS, RM, DN4 and BPI were revealed, mainly during the first 6 months (P < 0.05). Statistically significant improvement was revealed in MUR/SA for almost all nerve roots studied. Patients with disc herniation showed a greater improvement in mean difference of MUR/SA (P < 0.05) (with a prognostic value of radicular LBP versus spinal stenosis in short- [VAS P = 0.042] and long-term improvement of pain [VAS P = 0.009]. The independent variables “MUR” and “SA” had a significant prognostic value for improvement of pain (VAS: R2 = 0.287, P = 0.032 and VAS: R2 = 0.277, P = 0.036 respectively). Electromyographic and clinical findings indicated a benefit from epidural steroid injections. Patients with disc herniation exhibited a better outcome, especially during the first 6 months post-treatment.
Collapse
Affiliation(s)
- Chrysanthi Batistaki
- 2nd Department of Anesthesiology, School of Medicine, National and Kapodistrian University of Athens, “Attikon” Hospital, Athens, Greece
- Corresponding author: Chrysanthi Batistaki, Assistant Professor of Anesthesiology, 2nd Department of Anesthesiology, School of Medicine, National and Kapodistrian University of Athens, “Attikon” Hospital, 1 Rimini str, 12462, Athens, Greece. Tel: +30-2105832371, E-mail:
| | - Athina Angelopoulou
- 2nd Department of Anesthesiology, School of Medicine, National and Kapodistrian University of Athens, “Attikon” Hospital, Athens, Greece
| | - Maria-Eleni Smyrnioti
- 2nd Department of Anesthesiology, School of Medicine, National and Kapodistrian University of Athens, “Attikon” Hospital, Athens, Greece
| | - Maria-Chrysanthi Kitsou
- 2nd Department of Anesthesiology, School of Medicine, National and Kapodistrian University of Athens, “Attikon” Hospital, Athens, Greece
| | - Georgia Kostopanagiotou
- 2nd Department of Anesthesiology, School of Medicine, National and Kapodistrian University of Athens, “Attikon” Hospital, Athens, Greece
| |
Collapse
|
42
|
Lai AKM, Arnold AS, Biewener AA, Dick TJM, Wakeling JM. Does a two-element muscle model offer advantages when estimating ankle plantar flexor forces during human cycling? J Biomech 2018; 68:6-13. [PMID: 29287843 DOI: 10.1016/j.jbiomech.2017.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
Traditional Hill-type muscle models, parameterized using high-quality experimental data, are often "too weak" to reproduce the joint torques generated by healthy adults during rapid, high force tasks. This study investigated whether the failure of these models to account for different types of motor units contributes to this apparent weakness; if so, muscle-driven simulations may rely on excessively high muscle excitations to generate a given force. We ran a series of forward simulations that reproduced measured ankle mechanics during cycling at five cadences ranging from 60 to 140 RPM. We generated both "nominal" simulations, in which an abstract ankle model was actuated by a 1-element Hill-type plantar flexor with a single contractile element (CE), and "test" simulations, in which the same model was actuated by a 2-element plantar flexor with two CEs that accounted for the force-generating properties of slower and faster motor units. We varied the total excitation applied to the 2-element plantar flexor between 60 and 105% of the excitation from each nominal simulation, and we varied the amount distributed to each CE between 0 and 100% of the total. Within this test space, we identified the excitation level and distribution, at each cadence, that best reproduced the plantar flexor forces generated in the nominal simulations. Our comparisons revealed that the 2-element model required substantially less total excitation than the 1-element model to generate comparable forces, especially at higher cadences. For instance, at 140 RPM, the required excitation was reduced by 23%. These results suggest that a 2-element model, in which contractile properties are "tuned" to represent slower and faster motor units, can increase the apparent strength and perhaps improve the fidelity of simulations of tasks with varying mechanical demands.
Collapse
Affiliation(s)
- Adrian K M Lai
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| | | | | | - Taylor J M Dick
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
43
|
Kapelner T, Negro F, Aszmann OC, Farina D. Decoding Motor Unit Activity From Forearm Muscles: Perspectives for Myoelectric Control. IEEE Trans Neural Syst Rehabil Eng 2018; 26:244-251. [DOI: 10.1109/tnsre.2017.2766360] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
McMaster DT, Beaven CM, Mayo B, Gill N, Hébert-Losier K. The Efficacy of Wrestling-Style Compression Suits to Improve Maximum Isometric Force and Movement Velocity in Well-Trained Male Rugby Athletes. Front Physiol 2017; 8:874. [PMID: 29234284 PMCID: PMC5712369 DOI: 10.3389/fphys.2017.00874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/17/2017] [Indexed: 11/13/2022] Open
Abstract
Purpose: The prevalence of compression garment (CG) use is increasing with athletes striving to take advantage of the purported benefits to recovery and performance. Here, we investigated the effect of CG on muscle force and movement velocity performance in athletes. Methods: Ten well-trained male rugby athletes wore a wrestling-style CG suit applying 13-31 mmHg of compressive pressure during a training circuit in a repeated-measures crossover design. Force and velocity data were collected during a 5-s isometric mid-thigh pull (IMTP) and repeated countermovement jump (CMJ), respectively; and time to complete a 5-m horizontal loaded sled push was also measured. Results: IMTP peak force was enhanced in the CG condition by 139 ± 142 N (effect size [ES] = 0.36). Differences in CMJ peak velocity (ES = 0.08) and loaded sled-push sprint time between the conditions were trivial (ES = -0.01). A qualitative assessment of the effects of CG wear suggested that the likelihood of harm was unlikely in the CMJ and sled push, while a beneficial effect in the CMJ was possible, but not likely. Half of the athletes perceived a functional benefit in the IMTP and CMJ exercises. Conclusion: Consistent with other literature, there was no substantial effect of wearing a CG suit on CMJ and sprint performance. The improvement in peak force generation capability in an IMTP may be of benefit to rugby athletes involved in scrummaging or lineout lifting. The mechanism behind the improved force transmission is unclear, but may involve alterations in neuromuscular recruitment and proprioceptive feedback.
Collapse
Affiliation(s)
- Daniel T. McMaster
- Health, Sport and Human Performance, University of Waikato, Hamilton, New Zealand
| | | | - Brad Mayo
- Health, Sport and Human Performance, University of Waikato, Hamilton, New Zealand
- Bay of Plenty Rugby, Bay of Plenty, New Zealand
| | - Nicholas Gill
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Kim Hébert-Losier
- Health, Sport and Human Performance, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
45
|
Hodson-Tole EF, Wakeling JM. Movement Complexity and Neuromechanical Factors Affect the Entropic Half-Life of Myoelectric Signals. Front Physiol 2017; 8:679. [PMID: 28974932 PMCID: PMC5610701 DOI: 10.3389/fphys.2017.00679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/24/2017] [Indexed: 11/13/2022] Open
Abstract
Appropriate neuromuscular functioning is essential for survival and features underpinning motor control are present in myoelectric signals recorded from skeletal muscles. One approach to quantify control processes related to function is to assess signal variability using measures such as Sample Entropy. Here we developed a theoretical framework to simulate the effect of variability in burst duration, activation duty cycle, and intensity on the Entropic Half-Life (EnHL) in myoelectric signals. EnHLs were predicted to be <40 ms, and to vary with fluctuations in myoelectric signal amplitude and activation duty cycle. Comparison with myoelectic data from rats walking and running at a range of speeds and inclines confirmed the range of EnHLs, however, the direction of EnHL change in response to altered locomotor demand was not correctly predicted. The discrepancy reflected different associations between the ratio of the standard deviation and mean signal intensity (Ist:It¯) and duty factor in simulated and physiological data, likely reflecting additional information in the signals from the physiological data (e.g., quiescent phase content; variation in action potential shapes). EnHL could have significant value as a novel marker of neuromuscular responses to alterations in perceived locomotor task complexity and intensity.
Collapse
Affiliation(s)
- Emma F Hodson-Tole
- School of Healthcare Science, Manchester Metropolitan UniversityManchester, United Kingdom
| | - James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser UniversityBurnaby, BC, Canada
| |
Collapse
|
46
|
Laubacher M, Aksöz AE, Riener R, Binder-Macleod S, Hunt KJ. Power output and fatigue properties using spatially distributed sequential stimulation in a dynamic knee extension task. Eur J Appl Physiol 2017; 117:1787-1798. [PMID: 28674921 PMCID: PMC5556133 DOI: 10.1007/s00421-017-3675-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/28/2017] [Indexed: 11/06/2022]
Abstract
PURPOSE The low power output and fatigue resistance during functional electrical stimulation (FES) limits its use for functional applications. The aim of this study was to compare the power output and fatigue properties of spatially distributed sequential stimulation (SDSS) against conventional single electrode stimulation (SES) in an isokinetic knee extension task simulating knee movement during recumbent cycling. METHODS M. vastus lateralis and m. vastus medialis of eight able-bodied subjects were stimulated for 6 min on both legs with both setups. In the SES setup, target muscles were each stimulated by a pair of electrodes. In SDSS, four small electrodes replaced the SES active electrodes, but reference electrodes were the same. Torque was measured during knee extension movement by a dynamometer at an angular velocity of 110°/s. Mean power (P mean) was calculated from stimulated extensions for the first 10 extensions, the final 20 extensions and overall. Fatigue is presented as an index, calculated as the decrease with respect to initial power. RESULTS P mean was significantly higher for SDSS than for SES in the final phase (9.9 ± 4.0 vs. 7.4 ± 4.3 W, p = 0.035) and overall (11.5 ± 4.0 vs. 9.2 ± 4.5 W, p = 0.037). With SDSS, the reduction in P mean was significantly smaller compared to SES (from 14.9 to 9.9 vs. 14.6 to 7.4 W, p = 0.024). The absolute mean pulse width was substantially lower with SDSS (62.5 vs. 90.0 µs). CONCLUSION Although less stimulation was applied, SDSS showed a significantly higher mean power output than SES. SDSS also had improved fatigue resistance when compared to conventional stimulation. The SDSS approach may provide substantial performance benefits for cyclical FES applications.
Collapse
Affiliation(s)
- Marco Laubacher
- Division of Mechanical Engineering, Department of Engineering and Information Technology, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, 3400, Burgdorf, Switzerland.
- Sensory Motor Systems Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Anil Efe Aksöz
- Division of Mechanical Engineering, Department of Engineering and Information Technology, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, 3400, Burgdorf, Switzerland
- Sensory Motor Systems Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Robert Riener
- Sensory Motor Systems Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Kenneth J Hunt
- Division of Mechanical Engineering, Department of Engineering and Information Technology, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, 3400, Burgdorf, Switzerland
| |
Collapse
|
47
|
Carmona-Duarte C, de Torres-Peralta R, Diaz M, Ferrer MA, Martin-Rincon M. Myoelectronic signal-based methodology for the analysis of handwritten signatures. Hum Mov Sci 2017; 55:18-30. [PMID: 28750258 DOI: 10.1016/j.humov.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 05/10/2017] [Accepted: 07/16/2017] [Indexed: 12/23/2022]
Abstract
With the overall aim of improving the synthesis of handwritten signatures, we have studied how muscle activation depends on handwriting style for both text and flourish. Surface electromyographic (EMG) signals from a set of twelve arm and trunk muscles were recorded in synchronization with handwriting produced on a digital Tablet. Correlations between these EMG signals and handwritten trajectory signals were analyzed so as to define the sequence of muscles activated during the different parts of the signature. Our results establish a correlation between the speed of the movement, stroke size, handwriting style and muscle activation. Muscle activity appeared to be clustered as a function of movement speed and handwriting style, a finding which may be used for filter design in a signature synthesizer.
Collapse
Affiliation(s)
- Cristina Carmona-Duarte
- Instituto Universitario para el Desarrollo Tecnológico y la Innovación en Comunicaciones, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| | - Rafael de Torres-Peralta
- Department of Physical Education, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| | - Moises Diaz
- Instituto Universitario para el Desarrollo Tecnológico y la Innovación en Comunicaciones, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| | - Miguel A Ferrer
- Instituto Universitario para el Desarrollo Tecnológico y la Innovación en Comunicaciones, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| | - Marcos Martin-Rincon
- Department of Physical Education, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
48
|
Intermittent Hypoxia Enhances Functional Connectivity of Midcervical Spinal Interneurons. J Neurosci 2017; 37:8349-8362. [PMID: 28751456 DOI: 10.1523/jneurosci.0992-17.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/20/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022] Open
Abstract
Brief, intermittent oxygen reductions [acute intermittent hypoxia (AIH)] evokes spinal plasticity. Models of AIH-induced neuroplasticity have focused on motoneurons; however, most midcervical interneurons (C-INs) also respond to hypoxia. We hypothesized that AIH would alter the functional connectivity between C-INs and induce persistent changes in discharge. Bilateral phrenic nerve activity was recorded in anesthetized and ventilated adult male rats and a multielectrode array was used to record C4/5 spinal discharge before [baseline (BL)], during, and 15 min after three 5 min hypoxic episodes (11% O2, H1-H3). Most C-INs (94%) responded to hypoxia by either increasing or decreasing firing rate. Functional connectivity was examined by cross-correlating C-IN discharge. Correlograms with a peak or trough were taken as evidence for excitatory or inhibitory connectivity between C-IN pairs. A subset of C-IN pairs had increased excitatory cross-correlations during hypoxic episodes (34%) compared with BL (19%; p < 0.0001). Another subset had a similar response following each episode (40%) compared with BL (19%; p < 0.0001). In the latter group, connectivity remained elevated 15 min post-AIH (30%; p = 0.0002). Inhibitory C-IN connectivity increased during H1-H3 (4.5%; p = 0.0160), but was reduced 15 min post-AIH (0.5%; p = 0.0439). Spike-triggered averaging indicated that a subset of C-INs is synaptically coupled to phrenic motoneurons and excitatory inputs to these "pre-phrenic" cells increased during AIH. We conclude that AIH alters connectivity of the midcervical spinal network. To our knowledge, this is the first demonstration that AIH induces plasticity within the propriospinal network.SIGNIFICANCE STATEMENT Acute intermittent hypoxia (AIH) can trigger spinal plasticity associated with sustained increases in respiratory, somatic, and/or autonomic motor output. The impact of AIH on cervical spinal interneuron (C-IN) discharge and connectivity is unknown. Our results demonstrate that AIH recruits excitatory C-INs into the spinal respiratory (phrenic) network. AIH also enhances excitatory and reduces inhibitory connections among the C-IN network. We conclude that C-INs are part of the respiratory, somatic, and/or autonomic response to AIH, and that propriospinal plasticity may contribute to sustained increases in motor output after AIH.
Collapse
|
49
|
Piucco T, Bini R, Sakaguchi M, Diefenthaeler F, Stefanyshyn D. Motor unit firing frequency of lower limb muscles during an incremental slide board skating test. Sports Biomech 2017. [PMID: 28632052 DOI: 10.1080/14763141.2016.1246600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study investigated how the combination of workload and fatigue affected the frequency components of muscle activation and possible recruitment priority of motor units during skating to exhaustion. Ten male competitive speed skaters performed an incremental maximal test on a slide board. Activation of six muscles from the right leg was recorded throughout the test. A time-frequency analysis was performed to compute overall, high, and low frequency bands from the whole signal at 10, 40, 70, and 90% of total test time. Overall activation increased for all muscles throughout the test (p < 0.05 and ES > 0.80). There was an increase in low frequency (90 vs. 10%, p = 0.035, ES = 1.06) and a decrease in high frequency (90 vs. 10%, p = 0.009, ES = 1.38, and 90 vs. 40%, p = 0.025, ES = 1.12) components of gluteus maximus. Strong correlations were found between the maximal cadence and vastus lateralis, gluteus maximus and gluteus medius activation at the end of the test. In conclusion, the incremental skating test lead to an increase in activation of lower limb muscles, but only gluteus maximus was sensitive to changes in frequency components, probably caused by a pronounced fatigue.
Collapse
Affiliation(s)
- Tatiane Piucco
- a Faculty of Kinesiology, Roger Jackson Centre for Health and Wellness Research , University of Calgary , Calgary , Canada.,b Physical Education Department, Sports Centre , Federal University of Santa Catarina , Florianópolis , Brazil
| | - Rodrigo Bini
- c Centre of Physical Training of the Army , School of Physical Education of the Army , Rio de Janeiro , Brazil
| | - Masanori Sakaguchi
- a Faculty of Kinesiology, Roger Jackson Centre for Health and Wellness Research , University of Calgary , Calgary , Canada
| | - Fernando Diefenthaeler
- a Faculty of Kinesiology, Roger Jackson Centre for Health and Wellness Research , University of Calgary , Calgary , Canada.,b Physical Education Department, Sports Centre , Federal University of Santa Catarina , Florianópolis , Brazil
| | - Darren Stefanyshyn
- a Faculty of Kinesiology, Roger Jackson Centre for Health and Wellness Research , University of Calgary , Calgary , Canada
| |
Collapse
|
50
|
The Advantages of Normalizing Electromyography to Ballistic Rather than Isometric or Isokinetic Tasks. J Appl Biomech 2017; 33:189-196. [DOI: 10.1123/jab.2016-0146] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Isometric tasks have been a standard for electromyography (EMG) normalization stemming from anatomic and physiologic stability observed during contraction. Ballistic dynamic tasks have the benefit of eliciting maximum EMG signals for normalization, despite having the potential for greater signal variability. It is the purpose of this study to compare maximum voluntary isometric contraction (MVIC) to nonisometric tasks with increasing degrees of extrinsic variability, ie, joint range of motion, velocity, rate of contraction, etc., to determine if the ballistic tasks, which elicit larger peak EMG signals, are more reliable than the constrained MVIC. Fifteen subjects performed MVIC, isokinetic, maximum countermovement jump, and sprint tasks while EMG was collected from 9 muscles in the quadriceps, hamstrings, and lower leg. The results revealed the unconstrained ballistic tasks were more reliable compared to the constrained MVIC and isokinetic tasks for all triceps surae muscles. The EMG from sprinting was more reliable than the constrained cases for both the hamstrings and vasti. The most reliable EMG signals occurred when the body was permitted its natural, unconstrained motion. These results suggest that EMG is best normalized using ballistic tasks to provide the greatest within-subject reliability, which beneficially yield maximum EMG values.
Collapse
|