1
|
Bury MI, Fuller NJ, Wang X, Chan YY, Sturm RM, Oh SS, Sofer LA, Arora HC, Sharma TT, Nolan BG, Feng W, Rabizadeh RR, Barac M, Edassery SS, Goedegebuure MM, Wang LW, Ganesh B, Halliday LC, Seniw ME, Edassery SL, Mahmud NB, Hofer MD, McKenna KE, Cheng EY, Ameer GA, Sharma AK. Multipotent bone marrow cell-seeded polymeric composites drive long-term, definitive urinary bladder tissue regeneration. PNAS NEXUS 2024; 3:pgae038. [PMID: 38344009 PMCID: PMC10855019 DOI: 10.1093/pnasnexus/pgae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
To date, there are no efficacious translational solutions for end-stage urinary bladder dysfunction. Current surgical strategies, including urinary diversion and bladder augmentation enterocystoplasty (BAE), utilize autologous intestinal segments (e.g. ileum) to increase bladder capacity to protect renal function. Considered the standard of care, BAE is fraught with numerous short- and long-term clinical complications. Previous clinical trials employing tissue engineering approaches for bladder tissue regeneration have also been unable to translate bench-top findings into clinical practice. Major obstacles still persist that need to be overcome in order to advance tissue-engineered products into the clinical arena. These include scaffold/bladder incongruencies, the acquisition and utility of appropriate cells for anatomic and physiologic tissue recapitulation, and the choice of an appropriate animal model for testing. In this study, we demonstrate that the elastomeric, bladder biomechanocompatible poly(1,8-octamethylene-citrate-co-octanol) (PRS; synthetic) scaffold coseeded with autologous bone marrow-derived mesenchymal stem cells and CD34+ hematopoietic stem/progenitor cells support robust long-term, functional bladder tissue regeneration within the context of a clinically relevant baboon bladder augmentation model simulating bladder trauma. Partially cystectomized baboons were independently augmented with either autologous ileum or stem-cell-seeded small-intestinal submucosa (SIS; a commercially available biological scaffold) or PRS grafts. Stem-cell synergism promoted functional trilayer bladder tissue regeneration, including whole-graft neurovascularization, in both cell-seeded grafts. However, PRS-augmented animals demonstrated fewer clinical complications and more advantageous tissue characterization metrics compared to ileum and SIS-augmented animals. Two-year study data demonstrate that PRS/stem-cell-seeded grafts drive bladder tissue regeneration and are a suitable alternative to BAE.
Collapse
Affiliation(s)
- Matthew I Bury
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Natalie J Fuller
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Xinlong Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yvonne Y Chan
- Department of Urologic Surgery, University of California at Davis, Davis, CA 95817, USA
| | - Renea M Sturm
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Sang Su Oh
- Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Laurel A Sofer
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hans C Arora
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Tiffany T Sharma
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Bonnie G Nolan
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Wei Feng
- Flow Cytometry Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rebecca R Rabizadeh
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Milica Barac
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Sonia S Edassery
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Madeleine M Goedegebuure
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Larry W Wang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Balaji Ganesh
- Flow Cytometry Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lisa C Halliday
- Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark E Seniw
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Seby L Edassery
- Center for Translational Research and Education, Loyola University Chicago, Chicago, IL 60153, USA
| | - Nadim B Mahmud
- Division of Hematology/Oncology, Department of Medicine, University of Illinois Cancer Center, Chicago, IL 60612, USA
| | | | - Kevin E McKenna
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60612, USA
| | - Earl Y Cheng
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Stanley Manne Children's Research Institute, Louis A. Simpson and Kimberly K. Querrey Biomedical Research Center, Chicago, IL 60611, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Guillermo A Ameer
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
- Vascular Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60612, USA
| | - Arun K Sharma
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Stanley Manne Children's Research Institute, Louis A. Simpson and Kimberly K. Querrey Biomedical Research Center, Chicago, IL 60611, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
2
|
The application of 3D bioprinting in urological diseases. Mater Today Bio 2022; 16:100388. [PMID: 35967737 PMCID: PMC9364106 DOI: 10.1016/j.mtbio.2022.100388] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Urologic diseases are commonly diagnosed health problems affecting people around the world. More than 26 million people suffer from urologic diseases and the annual expenditure was more than 11 billion US dollars. The urologic cancers, like bladder cancer, prostate cancer and kidney cancer are always the leading causes of death worldwide, which account for approximately 22% and 10% of the new cancer cases and death, respectively. Organ transplantation is one of the major clinical treatments for urological diseases like end-stage renal disease and urethral stricture, albeit strongly limited by the availability of matching donor organs. Tissue engineering has been recognized as a highly promising strategy to solve the problems of organ donor shortage by the fabrication of artificial organs/tissue. This includes the prospective technology of three-dimensional (3D) bioprinting, which has been adapted to various cell types and biomaterials to replicate the heterogeneity of urological organs for the investigation of organ transplantation and disease progression. This review discusses various types of 3D bioprinting methodologies and commonly used biomaterials for urological diseases. The literature shows that advances in this field toward the development of functional urological organs or disease models have progressively increased. Although numerous challenges still need to be tackled, like the technical difficulties of replicating the heterogeneity of urologic organs and the limited biomaterial choices to recapitulate the complicated extracellular matrix components, it has been proved by numerous studies that 3D bioprinting has the potential to fabricate functional urological organs for clinical transplantation and in vitro disease models. Outline the advantages and characteristics of 3D printing compared with traditional methods for urological diseases. Guide the selection of 3D bioprinting technology and material in urological tissue engineering. Discuss the challenges and future perspectives of 3D bioprinting in urological diseases and clinical translation.
Collapse
|
3
|
Porcine Small Intestinal Submucosa (SIS) as a Suitable Scaffold for the Creation of a Tissue-Engineered Urinary Conduit: Decellularization, Biomechanical and Biocompatibility Characterization Using New Approaches. Int J Mol Sci 2022; 23:ijms23052826. [PMID: 35269969 PMCID: PMC8910833 DOI: 10.3390/ijms23052826] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer (BC) is among the most common malignancies in the world and a relevant cause of cancer mortality. BC is one of the most frequent causes for bladder removal through radical cystectomy, the gold-standard treatment for localized muscle-invasive and some cases of high-risk, non-muscle-invasive bladder cancer. In order to restore urinary functionality, an autologous intestinal segment has to be used to create a urinary diversion. However, several complications are associated with bowel-tract removal, affecting patients' quality of life. The present study project aims to develop a bio-engineered material to simplify this surgical procedure, avoiding related surgical complications and improving patients' quality of life. The main novelty of such a therapeutic approach is the decellularization of a porcine small intestinal submucosa (SIS) conduit to replace the autologous intestinal segment currently used as urinary diversion after radical cystectomy, while avoiding an immune rejection. Here, we performed a preliminary evaluation of this acellular product by developing a novel decellularization process based on an environmentally friendly, mild detergent, i.e., Tergitol, to replace the recently declared toxic Triton X-100. Treatment efficacy was evaluated through histology, DNA, hydroxyproline and elastin quantification, mechanical and insufflation tests, two-photon microscopy, FTIR analysis, and cytocompatibility tests. The optimized decellularization protocol is effective in removing cells, including DNA content, from the porcine SIS, while preserving the integrity of the extracellular matrix despite an increase in stiffness. An effective sterilization protocol was found, and cytocompatibility of treated SIS was demonstrated from day 1 to day 7, during which human fibroblasts were able to increase in number and strongly organize along tissue fibres. Taken together, this in vitro study suggests that SIS is a suitable candidate for use in urinary diversions in place of autologous intestinal segments, considering the optimal results of decellularization and cell proliferation. Further efforts should be undertaken in order to improve SIS conduit patency and impermeability to realize a future viable substitute.
Collapse
|
4
|
Wang X, Shi C, Hou X, Song S, Li C, Cao W, Chen W, Li L. Application of biomaterials and tissue engineering in bladder regeneration. J Biomater Appl 2022; 36:1484-1502. [DOI: 10.1177/08853282211048574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The primary functions of the bladder are storing urine under low and stable pressure and micturition. Various forms of trauma, tumors, and iatrogenic injuries can cause the loss of or reduce bladder function or capacity. If such damage is not treated in time, it will eventually lead to kidney damage and can even be life-threatening in severe cases. The emergence of tissue engineering technology has led to the development of more possibilities for bladder repair and reconstruction, in which the selection of scaffolds is crucial. In recent years, a growing number of tissue-engineered bladder scaffolds have been constructed. Therefore, this paper will discuss the development of tissue-engineered bladder scaffolds and will further analyze the limitations of and challenges encountered in bladder reconstruction.
Collapse
Affiliation(s)
- Xiaoya Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xianglin Hou
- Institute of genetics and developmental biology, Chinese Academy of Sciences, Beijing, China
| | - Siqi Song
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chenglin Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wenxuan Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wei Chen
- Department of Urology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ling Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Hanczar M, Moazen M, Day R. The Significance of Biomechanics and Scaffold Structure for Bladder Tissue Engineering. Int J Mol Sci 2021; 22:ijms222312657. [PMID: 34884464 PMCID: PMC8657955 DOI: 10.3390/ijms222312657] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022] Open
Abstract
Current approaches for bladder reconstruction surgery are associated with many morbidities. Tissue engineering is considered an ideal approach to create constructs capable of restoring the function of the bladder wall. However, many constructs to date have failed to create a sufficient improvement in bladder capacity due to insufficient neobladder compliance. This review evaluates the biomechanical properties of the bladder wall and how the current reconstructive materials aim to meet this need. To date, limited data from mechanical testing and tissue anisotropy make it challenging to reach a consensus on the native properties of the bladder wall. Many of the materials whose mechanical properties have been quantified do not fall within the range of mechanical properties measured for native bladder wall tissue. Many promising new materials have yet to be mechanically quantified, which makes it difficult to ascertain their likely effectiveness. The impact of scaffold structures and the long-term effect of implanting these materials on their inherent mechanical properties are areas yet to be widely investigated that could provide important insight into the likely longevity of the neobladder construct. In conclusion, there are many opportunities for further investigation into novel materials for bladder reconstruction. Currently, the field would benefit from a consensus on the target values of key mechanical parameters for bladder wall scaffolds.
Collapse
Affiliation(s)
- Marta Hanczar
- Applied Biomedical Engineering Group, Centre for Precision Healthcare, UCL Division of Medicine, University College London, London WC1E 6JF, UK;
| | - Mehran Moazen
- UCL Department of Mechanical Engineering, University College London, London WC1E 7JE, UK;
| | - Richard Day
- Applied Biomedical Engineering Group, Centre for Precision Healthcare, UCL Division of Medicine, University College London, London WC1E 6JF, UK;
- Correspondence: ; Tel.: +44-203-108-2183
| |
Collapse
|
6
|
Zhang XZ, Jiang YL, Hu JG, Zhao LM, Chen QZ, Liang Y, Zhang Y, Lei XX, Wang R, Lei Y, Zhang QY, Li-Ling J, Xie HQ. Procyanidins-crosslinked small intestine submucosa: A bladder patch promotes smooth muscle regeneration and bladder function restoration in a rabbit model. Bioact Mater 2021; 6:1827-1838. [PMID: 33336114 PMCID: PMC7721664 DOI: 10.1016/j.bioactmat.2020.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 02/05/2023] Open
Abstract
Currently the standard surgical treatment for bladder defects is augmentation cystoplasty with autologous tissues, which has many side effects. Biomaterials such as small intestine submucosa (SIS) can provide an alternative scaffold for the repair as bladder patches. Previous studies have shown that SIS could enhance the capacity and compliance of the bladder, but its application is hindered by issues like limited smooth muscle regeneration and stone formation since the fast degradation and poor mechanical properties of the SIS. Procyanidins (PC), a natural bio-crosslinking agent, has shown anti-calcification, anti-inflammatory and anti-oxidation properties. More importantly, PC and SIS can crosslink through hydrogen bonds, which may endow the material with enhanced mechanical property and stabilized functionalities. In this study, various concentrations of PC-crosslinked SIS (PC-SIS) were prepared to repair the full-thickness bladder defects, with an aim to reduce complications and enhance bladder functions. In vitro assays showed that the crosslinking has conferred the biomaterial with superior mechanical property and anti-calcification property, ability to promote smooth muscle cell adhesion and upregulate functional genes expression. Using a rabbit model with bladder defects, we demonstrated that the PC-SIS scaffold can rapidly promote in situ tissue regrowth and regeneration, in particular smooth muscle remodeling and improvement of urinary functions. The PC-SIS scaffold has therefore provided a promising material for the reconstruction of a functional bladder.
Collapse
Affiliation(s)
- Xiu-Zhen Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Jun-Gen Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Long-Mei Zhao
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Qiu-Zhu Chen
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yan Liang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiong-Xin Lei
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Rui Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yi Lei
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Bury MI, Fuller NJ, Sturm RM, Rabizadeh RR, Nolan BG, Barac M, Edassery SS, Chan YY, Sharma AK. The effects of bone marrow stem and progenitor cell seeding on urinary bladder tissue regeneration. Sci Rep 2021; 11:2322. [PMID: 33504876 PMCID: PMC7840904 DOI: 10.1038/s41598-021-81939-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/12/2021] [Indexed: 11/09/2022] Open
Abstract
Complications associated with urinary bladder augmentation provide the motivation to delineate alternative bladder tissue regenerative engineering strategies. We describe the results of varying the proportion of bone marrow (BM) mesenchymal stem cells (MSCs) to CD34 + hematopoietic stem/progenitor cells (HSPCs) co-seeded onto synthetic POC [poly(1,8 octamethylene citrate)] or small intestinal submucosa (SIS) scaffolds and their contribution to bladder tissue regeneration. Human BM MSCs and CD34 + HSPCs were co-seeded onto POC or SIS scaffolds at cell ratios of 50 K CD34 + HSPCs/15 K MSCs (CD34-50/MSC15); 50 K CD34 + HSPCs/30 K MSCs (CD34-50/MSC30); 100 K CD34 + HSPCs/15 K MSCs (CD34-100/MSC15); and 100 K CD34 + HSPCs/30 K MSCs (CD34-100/MSC30), in male (M/POC; M/SIS; n = 6/cell seeded scaffold) and female (F/POC; F/SIS; n = 6/cell seeded scaffold) nude rats (n = 96 total animals). Explanted scaffold/composite augmented bladder tissue underwent quantitative morphometrics following histological staining taking into account the presence (S+) or absence (S−) of bladder stones. Urodynamic studies were also performed. Regarding regenerated tissue vascularization, an upward shift was detected for some higher seeded density groups including the CD34-100/MSC30 groups [F/POC S− CD34-100/MSC30 230.5 ± 12.4; F/POC S+ CD34-100/MSC30 245.6 ± 23.4; F/SIS S+ CD34-100/MSC30 278.1; F/SIS S− CD34-100/MSC30 187.4 ± 8.1; (vessels/mm2)]. Similarly, a potential trend toward increased levels of percent muscle (≥ 45% muscle) with higher seeding densities was observed for F/POC S− [CD34-50/MSC30 48.8 ± 2.2; CD34-100/MSC15 53.9 ± 2.8; CD34-100/MSC30 50.7 ± 1.7] and for F/SIS S− [CD34-100/MSC15 47.1 ± 1.6; CD34-100/MSC30 51.2 ± 2.3]. As a potential trend, higher MSC/CD34 + HSPCs cell seeding densities generally tended to increase levels of tissue vascularization and aided with bladder muscle growth. Data suggest that increasing cell seeding density has the potential to enhance bladder tissue regeneration in our model.
Collapse
Affiliation(s)
- Matthew I Bury
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Natalie J Fuller
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Renea M Sturm
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Rebecca R Rabizadeh
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Bonnie G Nolan
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Milica Barac
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Sonia S Edassery
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Yvonne Y Chan
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Arun K Sharma
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA. .,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA. .,Northwestern University, Simpson Querrey Biomedical Research Institute, 303 East Superior St., Chicago, IL, 60611, USA. .,Stanley Manne Children's Research Institute, 303 East Superior St., Chicago, IL, 60611, USA. .,Department of Urology, Northwestern University Feinberg School of Medicine, 676 North St. Clair, Chicago, IL, 60611, USA. .,Center for Advanced Regenerative Engineering, Northwestern University, 633 Clark St., Evanston, IL, 60208, USA.
| |
Collapse
|
8
|
Pokrywczynska M, Jundzill A, Warda K, Buchholz L, Rasmus M, Adamowicz J, Bodnar M, Marszalek A, Helmin-Basa A, Michalkiewicz J, Gagat M, Grzanka A, Frontczak-Baniewicz M, Gastecka AM, Kloskowski T, Nowacki M, Ricordi C, Drewa T. Does the Mesenchymal Stem Cell Source Influence Smooth Muscle Regeneration in Tissue-Engineered Urinary Bladders? Cell Transplant 2018; 26:1780-1791. [PMID: 29338385 PMCID: PMC5784518 DOI: 10.1177/0963689717722787] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A variety of tissue engineering techniques utilizing different cells and biomaterials are currently being explored to construct urinary bladder walls de novo, but so far no approach is clearly superior. The aim of this study was to determine whether mesenchymal stem cells (MSCs) isolated from different sources, (bone marrow [BM-MSCs] and adipose tissue [ADSCs]), differ in their potential to regenerate smooth muscles in tissue-engineered urinary bladders and to determine an optimal number of MSCs for urinary bladder smooth muscle regeneration. Forty-eight rats underwent hemicystectomy and bladder augmentation with approximately 0.8 cm2 graft. In the first and second groups, urinary bladders were reconstructed with small intestinal submucosa (SIS) seeded with 10 × 106 or 4 × 106 ADSCs/cm2, respectively. In the third and fourth groups, urinary bladders were augmented with SIS seeded with 10 × 106 or 4 × 106 BM-MSCs/cm2, respectively. In the fifth group, urinary bladders were augmented with SIS without cells. The sixth group (control) was left intact. Smooth muscle regeneration was evaluated by real-time polymerase chain reaction (RT-PCR) and histological examinations. Histologically, there were no significant differences between urinary bladders augmented with ADSCs and BM-MSCs, but there was a marked increase in smooth muscle formation in bladders augmented with grafts seeded with MSCs in higher density (10 × 106/cm2) compared to lower density (4 × 106/cm2). Molecular analysis revealed that bladders reconstructed with ADSC-seeded grafts expressed higher levels of smooth muscle myosin heavy chain, caldesmon, and vinculin. Bladders augmented with unseeded SIS were fibrotic and devoid of smooth muscles. ADSCs and BM-MSCs have comparable smooth muscle regenerative potential, but the number of MSCs used for graft preparation significantly affects the smooth muscle content in tissue-engineered urinary bladders.
Collapse
Affiliation(s)
- Marta Pokrywczynska
- 1 Department of Regenerative Medicine, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland.,2 The Diabetes Research Institute Federation, Miami, FL, USA.,3 The Cure Alliance, Miami, FL, USA
| | - Arkadiusz Jundzill
- 1 Department of Regenerative Medicine, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Karolina Warda
- 1 Department of Regenerative Medicine, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Lukasz Buchholz
- 1 Department of Regenerative Medicine, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Marta Rasmus
- 1 Department of Regenerative Medicine, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Jan Adamowicz
- 1 Department of Regenerative Medicine, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Magdalena Bodnar
- 4 Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Andrzej Marszalek
- 5 Department of Tumor Pathology, Center of Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Helmin-Basa
- 6 Department of Immunology, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Jacek Michalkiewicz
- 6 Department of Immunology, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Maciej Gagat
- 7 Department of Embryology and Histology, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Alina Grzanka
- 7 Department of Embryology and Histology, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | | | - Agata Magdalena Gastecka
- 1 Department of Regenerative Medicine, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Tomasz Kloskowski
- 1 Department of Regenerative Medicine, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Maciej Nowacki
- 1 Department of Regenerative Medicine, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Camillo Ricordi
- 2 The Diabetes Research Institute Federation, Miami, FL, USA.,3 The Cure Alliance, Miami, FL, USA.,9 Diabetes Research Institute and Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tomasz Drewa
- 1 Department of Regenerative Medicine, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| |
Collapse
|
9
|
Schäfer FM, Stehr M. Tissue engineering in pediatric urology - a critical appraisal. Innov Surg Sci 2018; 3:107-118. [PMID: 31579774 PMCID: PMC6604568 DOI: 10.1515/iss-2018-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/17/2018] [Indexed: 01/01/2023] Open
Abstract
Tissue engineering is defined as the combination of biomaterials and bioengineering principles together with cell transplantation or directed growth of host cells to develop a biological replacement tissue or organ that can be a substitute for normal tissue both in structure and function. Despite early promising preclinical studies, clinical translation of tissue engineering in pediatric urology into humans has been unsuccessful both for cell-seeded and acellular scaffolds. This can be ascribed to various factors, including the use of only non-diseased models that inaccurately describe the structural and functional modifications of diseased tissue. The paper addresses potential future strategies to overcome the limitations experienced in clinical applications so far. This includes the use of stem cells of various origins (mesenchymal stem cells, hematopoietic stem/progenitor cells, urine-derived stem cells, and progenitor cells of the urothelium) as well as the need for a deeper understanding of signaling pathways and directing tissue ingrowth and differentiation through the concept of dynamic reciprocity. The development of smart scaffolds that release trophic factors in a set and timely manner will probably improve regeneration. Modulation of innate immune response as a major contributor to tissue regeneration outcome is also addressed. It is unlikely that only one of these strategies alone will lead to clinically applicable tissue engineering strategies in pediatric urology. In the meanwhile, the fundamental new insights into regenerative processes already obtained in the attempts of tissue engineering of the lower urogenital tract remain our greatest gain.
Collapse
Affiliation(s)
- Frank-Mattias Schäfer
- Department of Pediatric Surgery and Pediatric Urology, Cnopfsche Kinderklinik, Nürnberg, Germany
| | - Maximilian Stehr
- Department of Pediatric Surgery and Pediatric Urology, Cnopfsche Kinderklinik, Nürnberg, Germany
| |
Collapse
|
10
|
Ajalloueian F, Lemon G, Hilborn J, Chronakis IS, Fossum M. Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder. Nat Rev Urol 2018; 15:155-174. [DOI: 10.1038/nrurol.2018.5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
The utility of stem cells in pediatric urinary bladder regeneration. Pediatr Res 2018; 83:258-266. [PMID: 28915233 DOI: 10.1038/pr.2017.229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
Pediatric patients with a neurogenic urinary bladder, caused by developmental abnormalities including spina bifida, exhibit chronic urological problems. Surgical management in the form of enterocystoplasty is used to enlarge the bladder, but is associated with significant clinical complications. Thus, alternative methods to enterocystoplasty have been explored through the incorporation of stem cells with tissue engineering strategies. Within the context of this review, we will examine the use of bone marrow stem cells and induced pluripotent stem cells (iPSCs), as they relate to bladder regeneration at the anatomic and molecular levels. The use of bone marrow stem cells has demonstrated significant advances in bladder tissue regeneration as multiple aspects of bladder tissue have been recapitulated including the urothelium, bladder smooth muscle, vasculature, and peripheral nerves. iPSCs, on the other hand, have been well characterized and used in multiple tissue-regenerative settings, yet iPSC research is still in its infancy with regards to bladder tissue regeneration with recent studies describing the differentiation of iPSCs to the bladder urothelium. Finally, we examine the role of the Sonic Hedgehog signaling cascade that mediates the proliferative response during regeneration between bladder smooth muscle and urothelium. Taken together, this review provides a current, comprehensive perspective on bladder regeneration.
Collapse
|
12
|
Abstract
Decellularization technology promises to overcome some of the significant limitations in the regenerative medicine field by providing functional biocompatible grafts. The technique involves removal of the cells from the biological tissues or organs for further use in tissue engineering and clinical interventions. There are significant differences between decellularization protocols due to the intrinsic properties of different tissue types and purpose of use. This multistep, chemical-solution-based protocol is optimized for the preparation of decellularized bovine small intestinal submucosa (SIS).
Collapse
Affiliation(s)
- Mahmut Parmaksiz
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Yaşar Murat Elçin
- Biovalda Health Technologies, Inc., Ankara, Turkey.
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Ankara, Turkey.
| |
Collapse
|
13
|
Lee JS, Choi YS, Cho SW. Decellularized Tissue Matrix for Stem Cell and Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:161-180. [DOI: 10.1007/978-981-13-0445-3_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Moraes T, Canellas A, Rodrigues A, Lancetta C, Degani V, Ferreira M. Avaliação morfofuncional do enxerto de túnica albugínea suína na cistoplastia em ratos. ARQ BRAS MED VET ZOO 2017. [DOI: 10.1590/1678-4162-9116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO O objetivo deste trabalho é avaliar o uso da túnica albugínea suína na cistoplastia em ratos, avaliando funcionalidade, capacidade de reparação do órgão e possibilidades de complicações. Foram selecionados 30 ratos Wistar, machos, de seis meses de idade, divididos em: um grupo teste (TA), em que os animais receberam o enxerto de túnica albugínea suína após a cistectomia parcial e um grupo controle (C), em que os animais sofreram somente a cistectomia parcial. Os animais pertencentes a ambos os grupos foram divididos igualmente em subgrupos de cinco animais cada, que sofreram eutanásia em sete, 28 e 42 dias de pós-operatório. Foi realizada uma análise macroscópica e, posteriormente, uma análise histopatológica da região da ferida cirúrgica. Aos sete e 28 dias, os animais pertencentes ao grupo C e ao grupo TA apresentaram urotelização, regeneração da lâmina própria e da musculatura, porém o grupo TA apresentou menores sinais inflamatórios e maior organização tecidual, principalmente com relação à formação das fibras musculares. Aos 42 dias de pós-operatório, ambos os grupos já apresentavam características histológicas normais. Concluiu-se que o enxerto de túnica albugínea suína obteve sucesso na regeneração da bexiga de ratos, mantendo a funcionalidade do órgão, sem rejeição, e favorecendo a migração celular.
Collapse
|
15
|
Xu Q, Shanti RM, Zhang Q, Cannady SB, O'Malley BW, Le AD. A Gingiva-Derived Mesenchymal Stem Cell-Laden Porcine Small Intestinal Submucosa Extracellular Matrix Construct Promotes Myomucosal Regeneration of the Tongue. Tissue Eng Part A 2017; 23:301-312. [PMID: 27923325 DOI: 10.1089/ten.tea.2016.0342] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the oral cavity, the tongue is the anatomic subsite most commonly involved by invasive squamous cell carcinoma. Current treatment protocols often require significant tissue resection to achieve adequate negative margins and optimal local tumor control. Reconstruction of the tongue while preserving and/or restoring its critical vocal, chewing, and swallowing functions remains one of the major challenges in head and neck oncologic surgery. We investigated the in vitro feasibility of fabricating a novel combinatorial construct using porcine small intestinal submucosa extracellular matrix (SIS-ECM) and human gingiva-derived mesenchymal stem cells (GMSCs) as a GMSC/SIS-ECM tissue graft for the tongue reconstruction. We developed a rat model of critical-sized myomucosal defect of the tongue that allowed the testing of therapeutic effects of an acellular SIS-ECM construct versus a GMSC/SIS-ECM construct on repair and regeneration of the tongue defect. We showed that the GMSC/SIS-ECM construct engrafted at the host recipient site, promoted soft tissue healing, and regenerated the muscular layer, compared to the SIS-ECM alone or nontreated defect controls. Furthermore, our results revealed that transplantation of the GMSC/SIS-ECM construct significantly increased the expression of several myogenic transcriptional factors and simultaneously suppressed the expression of type I collagen at the wounded area of the tongue. These compelling findings suggest that, unlike the tongue contracture and fibrosis of the nontreated defect group, transplantation of the combinatorial GMSC/SIS-ECM constructs accelerates wound healing and muscle regeneration and maintains the overall tongue shape, possibly by both enhancing the function of endogenous skeletal progenitor cells and suppressing fibrosis. Together, our findings indicate that GMSC/SIS-ECM potentially served as a myomucosal graft for tongue reconstruction postsurgery of head and neck cancer.
Collapse
Affiliation(s)
- Qilin Xu
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine , Philadelphia, Pennsylvania
| | - Rabie M Shanti
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine , Philadelphia, Pennsylvania.,2 Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania.,3 Department of Oral and Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania , Philadelphia, Pennsylvania
| | - Qunzhou Zhang
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine , Philadelphia, Pennsylvania
| | - Steven B Cannady
- 2 Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Bert W O'Malley
- 2 Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Anh D Le
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine , Philadelphia, Pennsylvania.,3 Department of Oral and Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Chang CW, Petrie T, Clark A, Lin X, Sondergaard CS, Griffiths LG. Mesenchymal Stem Cell Seeding of Porcine Small Intestinal Submucosal Extracellular Matrix for Cardiovascular Applications. PLoS One 2016; 11:e0153412. [PMID: 27070546 PMCID: PMC4829265 DOI: 10.1371/journal.pone.0153412] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/29/2016] [Indexed: 01/16/2023] Open
Abstract
In this study, we investigate the translational potential of a novel combined construct using an FDA-approved decellularized porcine small intestinal submucosa extracellular matrix (SIS-ECM) seeded with human or porcine mesenchymal stem cells (MSCs) for cardiovascular indications. With the emerging success of individual component in various clinical applications, the combination of SIS-ECM with MSCs could provide additional therapeutic potential compared to individual components alone for cardiovascular repair. We tested the in vitro effects of MSC-seeding on SIS-ECM on resultant construct structure/function properties and MSC phenotypes. Additionally, we evaluated the ability of porcine MSCs to modulate recipient graft-specific response towards SIS-ECM in a porcine cardiac patch in vivo model. Specifically, we determined: 1) in vitro loading-capacity of human MSCs on SIS-ECM, 2) effect of cell seeding on SIS-ECM structure, compositions and mechanical properties, 3) effect of SIS-ECM seeding on human MSC phenotypes and differentiation potential, and 4) optimal orientation and dose of porcine MSCs seeded SIS-ECM for an in vivo cardiac application. In this study, histological structure, biochemical compositions and mechanical properties of the FDA-approved SIS-ECM biomaterial were retained following MSCs repopulation in vitro. Similarly, the cellular phenotypes and differentiation potential of MSCs were preserved following seeding on SIS-ECM. In a porcine in vivo patch study, the presence of porcine MSCs on SIS-ECM significantly reduced adaptive T cell response regardless of cell dose and orientation compared to SIS-ECM alone. These findings substantiate the clinical translational potential of combined SIS-ECM seeded with MSCs as a promising therapeutic candidate for cardiac applications.
Collapse
Affiliation(s)
- Chia Wei Chang
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Tye Petrie
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Alycia Clark
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Xin Lin
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Claus S. Sondergaard
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Leigh G. Griffiths
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Electrodiagnostic Evaluation of Individuals Implanted With Extracellular Matrix for the Treatment of Volumetric Muscle Injury: Case Series. Phys Ther 2016; 96:540-9. [PMID: 26564252 PMCID: PMC4817212 DOI: 10.2522/ptj.20150133] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/03/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Electrodiagnosis can reveal the nerve and muscle changes following surgical placement of an extracellular matrix (ECM) bioscaffold for treatment of volumetric muscle loss (VML). OBJECTIVE The purpose of this study was to characterize nerve conduction study (NCS) and electromyography (EMG) changes following ECM bioscaffold placement in individuals with VML. The ability of presurgical NCS and EMG to be used as a tool to help identify candidates who are likely to display improvements postsurgically also was explored. DESIGN A longitudinal case series design was used. METHODS The study was conducted at the McGowan Institute for Regenerative Medicine at the University of Pittsburgh. Eight individuals with a history of chronic VML participated. The intervention was surgical placement of an ECM bioscaffold at the site of VML. The strength of the affected region was measured using a handheld dynamometer, and electrophysiologic evaluation was conducted on the affected limb with standard method of NCS and EMG. All measurements were obtained the day before surgery and repeated 6 months after surgery. RESULTS Seven of the 8 participants had a preoperative electrodiagnosis of incomplete mononeuropathy within the site of VML. After ECM treatment, 5 of the 8 participants showed improvements in NCS amplitude or needle EMG parameters. The presence of electrical activity within the scaffold remodeling site was concomitant with clinical improvement in muscle strength. LIMITATIONS This study had a small sample size, and participants served as their own controls. The electromyographers and physical therapists performing the evaluation were not blinded. CONCLUSIONS Electrodiagnostic data provide objective evidence of physiological improvements in muscle function following ECM placement at sites of VML. Future studies are warranted to further investigate the potential of needle EMG as a predictor of successful outcomes following ECM treatment for VML.
Collapse
|
18
|
Zafar F, Hinton RB, Moore RA, Baker RS, Bryant R, Narmoneva DA, Taylor MD, Morales DL. Physiological Growth, Remodeling Potential, and Preserved Function of a Novel Bioprosthetic Tricuspid Valve: Tubular Bioprosthesis Made of Small Intestinal Submucosa-Derived Extracellular Matrix. J Am Coll Cardiol 2015; 66:877-88. [PMID: 26293756 DOI: 10.1016/j.jacc.2015.06.1091] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Prosthetic valves currently used in children lack the ability to grow with the patient and often require multiple reoperations. Small intestinal submucosa-derived extracellular matrix (SIS-ECM) has been used successfully as a patch for repair in various tissues, including vessels, valves, and myocardium. OBJECTIVES This study sought to assess the remodeling potential of a tubular tricuspid valve (TV) bioprosthesis made of SIS-ECM by evaluating its growth, structure, and function in a growing ovine model. METHODS A total of 12 3-month-old lambs were studied for a period of 3 or 8 months. SIS-ECM TVs were placed in 8 lambs; conventional bioprosthetic valves and native valves (NV) were studied as controls. All lambs underwent serial echocardiography, measuring annulus diameter and valve and right ventricular function. RESULTS The SIS-ECM valves demonstrated an incremental increase in annular diameter similar to NV. SIS-ECM valve function was normal in 7 of 8; 1 valve had severe regurgitation due to a flail leaflet. Explanted SIS-ECM valves approximated native tissue in gross appearance. Histopathology demonstrated migration of resident mesenchymal cells into the scaffold and trilaminar ECM organization similar to an NV, without inflammation or calcification at 8 months. Ex vivo mechanical testing of SIS-ECM valve tissue showed normalization of the elastic modulus by 8 months. CONCLUSIONS In an ovine model, tubular SIS-ECM TV bioprostheses demonstrate "growth" and a cell-matrix structure similar to mature NVs while maintaining normal valve function. The SIS-ECM valve may provide a novel solution for TV replacement in children and adults.
Collapse
Affiliation(s)
- Farhan Zafar
- Division of Pediatric Cardiothoracic Surgery, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio.
| | - Robert B Hinton
- Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Ryan A Moore
- Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - R Scott Baker
- Division of Pediatric Cardiothoracic Surgery, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Roosevelt Bryant
- Division of Pediatric Cardiothoracic Surgery, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Daria A Narmoneva
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Michael D Taylor
- Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - David L Morales
- Division of Pediatric Cardiothoracic Surgery, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
19
|
Yang M, Zhou G, Castano-Izquierdo H, Zhu Y, Mao C. Biomineralization of Natural Collagenous Nanofibrous Membranes and Their Potential Use in Bone Tissue Engineering. J Biomed Nanotechnol 2015; 11:447-56. [PMID: 25883539 DOI: 10.1166/jbn.2015.2038] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Small intestinal submucosa (SIS) membranes as a decellularized tissue are known to be a natural nanofibrous biomaterial mainly made of type I collagen fibers and containing some growth factors (fibroblast growth factor 2 and transforming growth factor β) desired in tissue engineering. Here we show that the SIS membranes can promote the formation of bone mineral hydroxylapatite (HAP) crystals along the collagen fibers constituting the membranes from a HAP-supersaturated solution. The resultant biomineralized HAP-SIS scaffolds were found to promote the attachment, growth and osteogenic differentiation of mesenchymal stem cells (MSCs) in both basal and osteogenic media by the evaluation of osteogenic marker formation. More importantly, the HAP-SIS scaffolds could induce the osteogenic differentiation in the basal media without osteogenic supplements due to the presence of HAP crystals in the scaffolds. Histological characterization of the MSC-seeded scaffolds showed that HAP-SIS scaffolds are biocompatible and promote the formation of new tissue in vitro. The biomineralized SIS membranes mimic some aspects of natural bone in terms of the composition and nanostructures and can find potential use in bone tissue engineering.
Collapse
|
20
|
Chow DW, Westermeyer HD. Retrospective evaluation of corneal reconstruction using ACell Vet™alone in dogs and cats: 82 cases. Vet Ophthalmol 2015; 19:357-66. [DOI: 10.1111/vop.12294] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Derek W.Y. Chow
- Veterinary Specialty Hospital, Hong Kong; 1/F & 2/F 165 Wanchai Road Wan Chai, Hong Kong Island Hong Kong SAR China
| | - Hans D. Westermeyer
- Department of Clinical Sciences; North Carolina State University College of Veterinary Medicine; 1060 William Moore Drive Raleigh NC 27606 USA
| |
Collapse
|
21
|
Lin HK, Madihally SV, Palmer B, Frimberger D, Fung KM, Kropp BP. Biomatrices for bladder reconstruction. Adv Drug Deliv Rev 2015; 82-83:47-63. [PMID: 25477305 DOI: 10.1016/j.addr.2014.11.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
Abstract
There is a demand for tissue engineering of the bladder needed by patients who experience a neurogenic bladder or idiopathic detrusor overactivity. To avoid complications from augmentation cystoplasty, the field of tissue engineering seeks optimal scaffolds for bladder reconstruction. Naturally derived biomaterials as well as synthetic and natural polymers have been explored as bladder substitutes. To improve regenerative properties, these biomaterials have been conjugated with functional molecules, combined with nanotechology, or seeded with exogenous cells. Although most studies reported complete and functional bladder regeneration in small-animal models, results from large-animal models and human clinical trials varied. For functional bladder regeneration, procedures for biomaterial fabrication, incorporation of biologically active agents, introduction of nanotechnology, and application of stem-cell technology need to be standardized. Advanced molecular and medical technologies such as next generation sequencing and magnetic resonance imaging can be introduced for mechanistic understanding and non-invasive monitoring of regeneration processes, respectively.
Collapse
Affiliation(s)
- Hsueh-Kung Lin
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sundar V Madihally
- Department of Chemical Engineering, 423 Engineering North, Oklahoma State University, Stillwater, OK 74078, USA
| | - Blake Palmer
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Dominic Frimberger
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kar-Ming Fung
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Bradley P Kropp
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
22
|
Sloff M, Simaioforidis V, de Vries R, Oosterwijk E, Feitz W. Tissue Engineering of the Bladder—Reality or Myth? A Systematic Review. J Urol 2014; 192:1035-42. [DOI: 10.1016/j.juro.2014.03.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Marije Sloff
- Department of Urology, Radboud Institute for Molecular Life Sciences and Systematic Review Center for Laboratory Animal Experimentation, Central Animal Facility (RdeV), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vasileios Simaioforidis
- Department of Urology, Radboud Institute for Molecular Life Sciences and Systematic Review Center for Laboratory Animal Experimentation, Central Animal Facility (RdeV), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob de Vries
- Department of Urology, Radboud Institute for Molecular Life Sciences and Systematic Review Center for Laboratory Animal Experimentation, Central Animal Facility (RdeV), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud Institute for Molecular Life Sciences and Systematic Review Center for Laboratory Animal Experimentation, Central Animal Facility (RdeV), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wout Feitz
- Department of Urology, Radboud Institute for Molecular Life Sciences and Systematic Review Center for Laboratory Animal Experimentation, Central Animal Facility (RdeV), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Bury MI, Fuller NJ, Meisner JW, Hofer MD, Webber MJ, Chow LW, Prasad S, Thaker H, Yue X, Menon VS, Diaz EC, Stupp SI, Cheng EY, Sharma AK. The promotion of functional urinary bladder regeneration using anti-inflammatory nanofibers. Biomaterials 2014; 35:9311-21. [PMID: 25145852 DOI: 10.1016/j.biomaterials.2014.07.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/25/2014] [Indexed: 01/06/2023]
Abstract
Current attempts at tissue regeneration utilizing synthetic and decellularized biologic-based materials have typically been met in part by innate immune responses in the form of a robust inflammatory reaction at the site of implantation or grafting. This can ultimately lead to tissue fibrosis with direct negative impact on tissue growth, development, and function. In order to temper the innate inflammatory response, anti-inflammatory signals were incorporated through display on self-assembling peptide nanofibers to promote tissue healing and subsequent graft compliance throughout the regenerative process. Utilizing an established urinary bladder augmentation model, the highly pro-inflammatory biologic scaffold (decellularized small intestinal submucosa) was treated with anti-inflammatory peptide amphiphiles (AIF-PAs) or control peptide amphiphiles and used for augmentation. Significant regenerative advantages of the AIF-PAs were observed including potent angiogenic responses, limited tissue collagen accumulation, and the modulation of macrophage and neutrophil responses in regenerated bladder tissue. Upon further characterization, a reduction in the levels of M2 macrophages was observed, but not in M1 macrophages in control groups, while treatment groups exhibited decreased levels of M1 macrophages and stabilized levels of M2 macrophages. Pro-inflammatory cytokine production was decreased while anti-inflammatory cytokines were up-regulated in treatment groups. This resulted in far fewer incidences of tissue granuloma and bladder stone formation. Finally, functional urinary bladder testing revealed greater bladder compliance and similar capacities in groups treated with AIF-PAs. Data demonstrate that AIF-PAs can alleviate galvanic innate immune responses and provide a highly conducive regenerative milieu that may be applicable in a variety of clinical settings.
Collapse
Affiliation(s)
- Matthew I Bury
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL 60614, USA
| | - Natalie J Fuller
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL 60614, USA
| | | | - Matthias D Hofer
- Northwestern University Feinberg School of Medicine, Department of Urology, Chicago, IL 60611, USA
| | - Matthew J Webber
- Northwestern University, Institute for BioNanotechnology in Medicine (IBNAM), Chicago, IL 60611, USA; Department of Biomedical Engineering, Evanston, IL 60208, USA
| | - Lesley W Chow
- Imperial College London, Royal School of Mines, Department of Materials and Institute for Biomedical Engineering, London, UK
| | - Sheba Prasad
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL 60614, USA
| | - Hatim Thaker
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL 60614, USA
| | - Xuan Yue
- Northwestern University, Institute for BioNanotechnology in Medicine (IBNAM), Chicago, IL 60611, USA
| | - Vani S Menon
- Department of Urology, Loyola University Health System, Maywood, IL 60153, USA
| | - Edward C Diaz
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL 60614, USA
| | - Samuel I Stupp
- Northwestern University, Institute for BioNanotechnology in Medicine (IBNAM), Chicago, IL 60611, USA; Northwestern University, Department of Materials Science and Engineering, Evanston, IL 60208, USA; Northwestern University, Department of Chemical and Biological Engineering, Evanston, IL 60208, USA; Northwestern University Feinberg School of Medicine, Department of Medicine, Chicago, IL 60611, USA
| | - Earl Y Cheng
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL 60614, USA; Northwestern University Feinberg School of Medicine, Department of Urology, Chicago, IL 60611, USA; Northwestern University, Institute for BioNanotechnology in Medicine (IBNAM), Chicago, IL 60611, USA
| | - Arun K Sharma
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL 60614, USA; Northwestern University Feinberg School of Medicine, Department of Urology, Chicago, IL 60611, USA; Northwestern University, Institute for BioNanotechnology in Medicine (IBNAM), Chicago, IL 60611, USA; Department of Biomedical Engineering, Evanston, IL 60208, USA.
| |
Collapse
|
24
|
Chatzistavrou X, Fenno JC, Faulk D, Badylak S, Kasuga T, Boccaccini AR, Papagerakis P. Fabrication and characterization of bioactive and antibacterial composites for dental applications. Acta Biomater 2014; 10:3723-32. [PMID: 24802300 DOI: 10.1016/j.actbio.2014.04.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 04/21/2014] [Accepted: 04/28/2014] [Indexed: 02/05/2023]
Abstract
There is an increasing clinical need to design novel dental materials that combine regenerative and antibacterial properties. In this work the characterization of a recently developed sol-gel-derived bioactive glass ceramic containing silver ions (Ag-BG) is presented. The microstructural characteristics, ion release profile, zeta potential value and changes in weight loss and pH value as a function of the immersion time of Ag-BG in Tris buffer are evaluated. Ag-BG is also incorporated into natural extracellular matrix (ECM) hydrogel to further enhance its regenerative properties. Then, the micro and macro architectures of these new composites (ECM/Ag-BG) are characterized. In addition, the antibacterial properties of these new composites are tested against Escherichia coli and Enterococcus faecalis, a bacterium commonly implicated in the pathogenesis of dental pulp infections. Cell-material interaction is also monitored in a primary culture of dental pulp cells. Our study highlights the benefits of the successful incorporation of Ag in the bioactive glass, resulting in a stable antibacterial material with long-lasting bactericidal activity. Furthermore, this work presents for the first time the fabrication of new Ag-doped composite materials, with inductive pulp-cell proliferation and antibacterial properties (ECM/Ag-BG). This advanced composite made of Ag-BG incorporated into natural ECM possesses improved properties that may facilitate potential applications in tooth regeneration approaches.
Collapse
Affiliation(s)
- Xanthippi Chatzistavrou
- Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - J Christopher Fenno
- Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Denver Faulk
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Stephen Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Toshihiro Kasuga
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Petros Papagerakis
- Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Histomorphometric Analysis of Early Epithelialization and Dermal Changes in Mid–Partial-Thickness Burn Wounds in Humans Treated With Porcine Small Intestinal Submucosa and Silver-Containing Hydrofiber. J Burn Care Res 2014; 35:e330-7. [DOI: 10.1097/bcr.0000000000000015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Schaefer M, Kaiser A, Stehr M, Beyer HJ. Bladder augmentation with small intestinal submucosa leads to unsatisfactory long-term results. J Pediatr Urol 2013; 9:878-83. [PMID: 23332207 DOI: 10.1016/j.jpurol.2012.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 12/05/2012] [Indexed: 01/08/2023]
Abstract
PURPOSE To evaluate the use of small intestinal submucosa (SIS) for bladder augmentation in a series of select patients. MATERIAL AND METHODS Six patients (age 6.5-15.4, mean 9.8 years) underwent bladder augmentation with SIS: one after a cloacal exstrophy repair, one after multiple surgery of the bladder because of vesicoureteral reflux, two with spina bifida, two after bladder exstrophy repair. All suffered from a microbladder with a mean volume of 61.5 ml (range 15-120, 7-36% of expected bladder capacity for age). Preoperative bladder compliance ranged from 1.0 to 3.3 (mean 1.3) ml/cmH2O. RESULTS Follow-up time ranged from 4.6 to 33.5 (mean 24.4) months. An increase of bladder volume was achieved in four patients (53-370 ml, 16-95% of expected bladder capacity for age). Bladder compliance postoperatively ranged from 0.9 to 5.6 (mean 3.0) ml/cmH2O. Histological examinations showed a complete conversion of SIS, leaving irregular urothelial lining and bladder wall containing muscular, vascular and relatively thick connective tissue in four patients and regular urothelium in two patients. Major complications were bladder stones in two patients and a bladder rupture in one patient. CONCLUSION Bladder augmentation with SIS in humans failed to fulfill the hopes raised by animal studies. Due to the insufficient increase in bladder compliance and therefore failure to accomplish sufficient protection of the upper urinary tract, bladder augmentation with SIS cannot be recommended as a substitute for enterocystoplasty.
Collapse
Affiliation(s)
- M Schaefer
- Department of Pediatric Surgery and Urology, Cnopf'sche Kinderklinik, St.-Johannis-Mühlgasse 19, 90419 Nuremberg, Germany.
| | | | | | | |
Collapse
|
27
|
Lin HK, Godiwalla SY, Palmer B, Frimberger D, Yang Q, Madihally SV, Fung KM, Kropp BP. Understanding roles of porcine small intestinal submucosa in urinary bladder regeneration: identification of variable regenerative characteristics of small intestinal submucosa. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:73-83. [PMID: 23777420 DOI: 10.1089/ten.teb.2013.0126] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuropathic bladders are the result from damages to the central or peripheral nervous system, and ultimately may require surgical reconstruction to increase bladder volumes and to reduce the risk of damages to the kidneys. Surgical reconstruction through bladder augmentation has traditionally been practiced using a segment of the ileum, colon, or stomach from the patient through enterocystoplasty. However, the use of gastrointestinal segments can lead to serious adverse consequences. Porcine small intestinal submucosa (SIS), a xenogeneic, acellular, biocompatable, biodegradable, and collagen-based bioscaffold is best known to encourage bladder regeneration without ex vivo cell seeding before implantation in various experimental and preclinical animal models. Although it has been demonstrated that SIS supports bladder cell growth in vitro, and SIS-regenerated bladders are histologically and functionally indistinguishable from normal functional tissues, clinical utilization of SIS for bladder augmentation has been hampered by inconsistent preclinical results. Several variables in SIS, such as the age of pigs, the region of the small intestine, and method of sterilization, can have different physical properties, biochemical characteristics, inflammatory cell infiltration, and regenerative capacity due to cellular responses in vitro and in vivo. These parameters are particularly important for bladder regeneration due to its specific biological function in urine storage. Clinical application of SIS for surgical bladder reconstruction may require graft materials to be prepared from a specific region of the small intestine, or to be further formulated or processed to provide uniform physical and biochemical properties for consistent, complete, and functional bladder regeneration.
Collapse
Affiliation(s)
- Hsueh-Kung Lin
- 1 Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Tan B, Wei RQ, Tan MY, Luo JC, Deng L, Chen XH, Hou JL, Li XQ, Yang ZM, Xie HQ. Tissue engineered esophagus by mesenchymal stem cell seeding for esophageal repair in a canine model. J Surg Res 2013; 182:40-8. [PMID: 22925499 DOI: 10.1016/j.jss.2012.07.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 06/20/2012] [Accepted: 07/20/2012] [Indexed: 02/05/2023]
Abstract
PURPOSE Acellular porcine small intestinal submucosa (SIS) has been successfully used for esophagoplasty in dogs. However, this has not led to complete epithelialization and muscular regeneration. We undertook the present study to assess the effect of tissue-engineered esophagus generated by seeding bone marrow mesenchymal stem cells (BMSCs) onto an SIS scaffold (BMSCs-SIS) in a canine model. METHODS We cultured, passaged, and measured autologous BMSCs and myoblasts with cell proliferation and immunohistochemical assays. We labeled the third passage of BMSCs with PKH-26, a fluorescent dye, before seeded it onto the SIS. We resected canine cervical esophagus to generate a defect 5 cm in length and 50% in circumference, which we repaired with BMSCs-SIS or SIS alone. RESULTS Four weeks later, barium esophagram demonstrated that esophageal lumen surface of the patch graft was smoother in the BMSCs-SIS group compared with the SIS group. Histological examination suggested a strong similarity between BMSCs and esophageal myoblasts in terms of morphology and function. Although both BMSCs-SIS and SIS repaired the esophageal defects, we noted complete re-epithelialization with almost no inflammation only in the former group. By 12 wk after the surgery, we observed long bundles of skeletal muscles only in the BMSCs-SIS group, where the microvessel density was also much greater. CONCLUSIONS Bone marrow mesenchymal stem cells on an SIS scaffold can promote re-epithelialization, revascularization, and muscular regeneration. This approach may provide an attractive option for esophageal regeneration.
Collapse
Affiliation(s)
- Bo Tan
- Laboratory of Stem Cell and Tissue Engineering, Regenerative Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abou Neel EA, Bozec L, Knowles JC, Syed O, Mudera V, Day R, Hyun JK. Collagen--emerging collagen based therapies hit the patient. Adv Drug Deliv Rev 2013; 65:429-56. [PMID: 22960357 DOI: 10.1016/j.addr.2012.08.010] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 12/11/2022]
Abstract
The choice of biomaterials available for regenerative medicine continues to grow rapidly, with new materials often claiming advantages over the short-comings of those already in existence. Going back to nature, collagen is one of the most abundant proteins in mammals and its role is essential to our way of life. It can therefore be obtained from many sources including porcine, bovine, equine or human and offer a great promise as a biomimetic scaffold for regenerative medicine. Using naturally derived collagen, extracellular matrices (ECMs), as surgical materials have become established practice for a number of years. For clinical use the goal has been to preserve as much of the composition and structure of the ECM as possible without adverse effects to the recipient. This review will therefore cover in-depth both naturally and synthetically produced collagen matrices. Furthermore the production of more sophisticated three dimensional collagen scaffolds that provide cues at nano-, micro- and meso-scale for molecules, cells, proteins and bulk fluids by inducing fibrils alignments, embossing and layered configuration through the application of plastic compression technology will be discussed in details. This review will also shed light on both naturally and synthetically derived collagen products that have been available in the market for several purposes including neural repair, as cosmetic for the treatment of dermatologic defects, haemostatic agents, mucosal wound dressing and guided bone regeneration membrane. There are other several potential applications of collagen still under investigations and they are also covered in this review.
Collapse
|
30
|
Andrée B, Bär A, Haverich A, Hilfiker A. Small intestinal submucosa segments as matrix for tissue engineering: review. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:279-91. [PMID: 23216258 DOI: 10.1089/ten.teb.2012.0583] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue engineering (TE) is an emerging interdisciplinary field aiming at the restoration or improvement of impaired tissue function. A combination of cells, scaffold materials, engineering methods, and biochemical and physiological factors is employed to generate the desired tissue substitute. Scaffolds often play a pivotal role in the engineering process supporting a three-dimensional tissue formation. The ideal scaffold should mimic the native extracellular environment providing mechanical and biological properties to allow cell attachment, migration, and differentiation, as well as remodeling by the host organism. The scaffold should be nonimmunogenic and should ideally be resorbed by the host over time, leaving behind only the regenerated tissue. More than 40 years ago, a preparation of the small intestine was introduced for the replacement of vascular structures. Since then the small intestinal submucosa (SIS) has gained a lot of interest in TE and subsequent clinical applications, as this material exhibits key features of a highly supportive scaffold. This review will focus on the general properties of the SIS and its applications in therapeutical approaches as well as in generating tissue substitutes in vitro. Furthermore, the main problem of TE, which is the insufficient nourishment of cells within three-dimensional, artificial tissues exceeding certain dimensions is addressed. To solve this issue the implementation of another small intestine-derived preparation, the biological vascularized matrix (BioVaM), could be a feasible option. The BioVaM comprises in addition to SIS the arterial and venous mesenteric pedicles and exhibits thereby a perfusable vessel bed that is preserved after decellularization.
Collapse
|
31
|
Abstract
Urinary diversion after radical cystectomy in patients with bladder cancer normally takes the form of an ileal conduit or neobladder. However, such diversions are associated with a number of complications including increased risk of infection. A plausible alternative is the construction of a neobladder (or bladder tissue) in vitro using autologous cells harvested from the patient. Biomaterials can be used as a scaffold for naturally occurring regenerative stem cells to latch onto to regrow the bladder smooth muscle and epithelium. Such engineered tissues show great promise in urologic tissue regeneration, but are faced with a number of challenges. For example, the differentiation mesenchymal stem cells from various sources can be difficult and the smooth muscle cells formed do not precisely mimic the natural cells.
Collapse
|
32
|
Agrawal V, Siu BF, Chao H, Hirschi KK, Raborn E, Johnson SA, Tottey S, Hurley KB, Medberry CJ, Badylak SF. Partial characterization of the Sox2+ cell population in an adult murine model of digit amputation. Tissue Eng Part A 2012; 18:1454-63. [PMID: 22530556 DOI: 10.1089/ten.tea.2011.0550] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tissue regeneration in response to injury in adult mammals is generally limited to select tissues. Nonmammalian species such as newts and axolotls undergo regeneration of complex tissues such as limbs and digits via recruitment and accumulation of local and circulating multipotent progenitors preprogrammed to recapitulate the missing tissue. Directed recruitment and activation of progenitor cells at a site of injury in adult mammals may alter the default wound-healing response from scar tissue toward regeneration. Bioactive molecules derived from proteolytic degradation of extracellular matrix (ECM) proteins have been shown to recruit a variety of progenitor cells in vitro and in vivo to the site of injury. The present study further characterized the population of cells accumulating at the site of injury after treatment with ECM degradation products in a well-established model of murine digit amputation. After a mid-second phalanx digit amputation in 6-8-week-old adult mice, treatment with ECM degradation products resulted in the accumulation of a heterogeneous population of cells, a subset of which expressed the transcription factor Sox2, a marker of pluripotent and adult progenitor cells. Sox2+ cells were localized lateral to the amputated P2 bone and coexpressed progenitor cell markers CD90 and Sca1. Transgenic Sox2 eGFP/+ and bone marrow chimeric mice showed that the bone marrow and blood circulation did not contribute to the Sox2+ cell population. The present study showed that, in addition to circulating progenitor cells, resident tissue-derived cells also populate at the site of injury after treatment with ECM degradation products. Although future work is necessary to determine the contribution of Sox2+ cells to functional tissue at the site of injury, recruitment and/or activation of local tissue-derived cells may be a viable approach to tissue engineering of more complex tissues in adult mammals.
Collapse
Affiliation(s)
- Vineet Agrawal
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Caione P, Boldrini R, Salerno A, Nappo SG. Bladder augmentation using acellular collagen biomatrix: a pilot experience in exstrophic patients. Pediatr Surg Int 2012; 28:421-8. [PMID: 22350082 DOI: 10.1007/s00383-012-3063-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/01/2012] [Indexed: 11/24/2022]
Abstract
PURPOSE A preliminary experience on in vivo bladder wall regeneration in a subset of patients born with exstrophy-epispadias complex is reported. The objective was to improve bladder capacity and compliance without bowel augmentation. METHODS Five patients (3 males, 2 females), mean age 10.4 years, presenting poor bladder capacity and compliance after complete exstrophy repair, underwent bladder augmentation using small intestinal submucosa (SIS) scaffold. Ultrasonography, cystoscopy with cystogram, assessment of bladder volume and compliance and bladder biopsy were performed before surgery (T0), at 6 (T1) and 18 months (T2) follow-up. Histology was compared with normal bladder specimens. Wilcoxon test was adopted for statistics. RESULTS Bladder capacity and compliance resulted increased (+30%) at T1 (p < 0.05) and remained stable at T2, despite dry intervals did not changed significantly. Bladder biopsy at T1 showed no evidence of SIS, but normal transitional mucosa and sero-muscular layer containing smooth muscle fascicles, small nerve trunks and vessels within abundant type-3 collagen. Muscle/collagen ratio was decreased compared with controls at T1 and T2 (p < 0.05). No kidney damage, bladder diverticula, or stones were observed at 3 years follow-up. CONCLUSIONS Bladder regeneration was feasible in these patients, but bladder capacity and compliance was poorly increased to obtain significant clinical benefit. Histology showed poor muscle components. The acellular matrix grafting failed to provide long-term effective results in terms of continence achievement.
Collapse
Affiliation(s)
- Paolo Caione
- Division of Pediatric Urology, Department of Nephrology-Urology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio, 4, 00165, Rome, Italy.
| | | | | | | |
Collapse
|
34
|
Zhu WD, Xu YM, Feng C, Fu Q, Song LJ. Different bladder defects reconstructed with bladder acellular matrix grafts in a rabbit model. Urologe A 2012; 50:1420-5. [PMID: 21720832 DOI: 10.1007/s00120-011-2627-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To evaluate the potential use of the bladder acellular matrix graft (BAMG), two different bladder defects in the rabbit model were reconstructed. MATERIALS AND METHODS Two groups of rabbits underwent partial bladder wall cystectomy (group A, 30-40%; group B, 70-60%) and reconstruction of the defects with an equally sized BAMG. After 4, 12, and 24 weeks, bladder cystographs were performed. Then the rabbits were killed after uneventful postoperative periods, and the grafts were harvested for H&E staining and immunohistochemical staining. RESULTS Two rabbits died on the postoperative days 3 and 6 in group A due to urinary peritonitis. At 24 weeks, in group A, the reconstructed bladders reached a mean volume of 94.39±0.54% of the precystectomy bladder capacity. Histologically, complete regeneration of smooth muscle and urothelium tissue was evident. Regenerated SMCs and urothelium stained positive for α-smooth muscle actin and AE1/AE3. In group B, the mean bladder volume was 64.5±3.19% of the precystectomy volume. Histologically, group B was characterized by multilayered urothelium without organized muscle tissue. CONCLUSION The BAMG was an effective scaffold for bladder wall regeneration in the rabbit model. However, the use of BAMG reconstruction in larger bladder defects did not induce the same quality and quantity of bladder regeneration as the reconstruction of smaller bladder defects.
Collapse
Affiliation(s)
- W-D Zhu
- Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, 600 Yi Shan Road, Shanghai, China
| | | | | | | | | |
Collapse
|
35
|
Agrawal V, Kelly J, Tottey S, Daly KA, Johnson SA, Siu BF, Reing J, Badylak SF. An isolated cryptic peptide influences osteogenesis and bone remodeling in an adult mammalian model of digit amputation. Tissue Eng Part A 2011; 17:3033-44. [PMID: 21740273 DOI: 10.1089/ten.tea.2011.0257] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Biologic scaffolds composed of extracellular matrix (ECM) have been used successfully in preclinical models and humans for constructive remodeling of functional, site-appropriate tissue after injury. The mechanisms underlying ECM-mediated constructive remodeling are not completely understood, but scaffold degradation and site-directed recruitment of progenitor cells are thought to play critical roles. Previous studies have identified a cryptic peptide derived from the C-terminal telopeptide of collagen IIIα that has chemotactic activity for progenitor cells. The present study characterized the osteogenic activity of the same peptide in vitro and in vivo in an adult murine model of digit amputation. The present study showed that the cryptic peptide increased calcium deposition, alkaline phosphatase activity, and osteogenic gene expression in human perivascular stem cells in vitro. Treatment with the cryptic peptide in a murine model of mid-second phalanx digit amputation led to the formation of a bone nodule at the site of amputation. In addition to potential therapeutic implications for the treatment of bone injuries and facilitation of reconstructive surgical procedures, cryptic peptides with the ability to alter stem cell recruitment and differentiation at a site of injury may serve as powerful new tools for influencing stem cell fate in the local injury microenvironment.
Collapse
Affiliation(s)
- Vineet Agrawal
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Agrawal V, Tottey S, Johnson SA, Freund JM, Siu BF, Badylak SF. Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation. Tissue Eng Part A 2011; 17:2435-43. [PMID: 21563860 DOI: 10.1089/ten.tea.2011.0036] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Biologic scaffolds composed of extracellular matrix (ECM) have been used successfully in preclinical models and humans for constructive remodeling of functional, site-appropriate tissue after injury. The mechanisms underlying ECM-mediated constructive remodeling are not completely understood, but scaffold degradation and site-directed recruitment of both differentiated and progenitor cells are thought to play critical roles. Previous studies have shown that degradation products of ECM scaffolds can recruit a population of progenitor cells both in vitro and in vivo. The present study identified a single cryptic peptide derived from the α subunit of the collagen III molecule that is chemotactic for a well-characterized perivascular stem cell in vitro and causes the site-directed accumulation of progenitor cells in vivo. The oligopeptide was additionally chemotactic for human cortical neural stem cells, rat adipocyte stem cells, C2C12 myoblast cells, and rat Schwann cells in vitro. In an adult murine model of digit amputation, treatment with this peptide after mid-second phalanx amputation resulted in a greater number of Sox2+ and Sca1+,Lin- cells at the site of injury compared to controls. Since progenitor cell activation and recruitment are key prerequisites for epimorphic regeneration in adult mammalian tissues, endogenous site-directed recruitment of such cells has the potential to alter the default wound healing response from scar tissue toward regeneration.
Collapse
Affiliation(s)
- Vineet Agrawal
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
37
|
Kajbafzadeh AM, Esfahani SA, Talab SS, Elmi A, Monajemzadeh M. In-vivo autologous bladder muscular wall regeneration: application of tissue-engineered pericardium in a model of bladder as a bioreactor. J Pediatr Urol 2011; 7:317-23. [PMID: 21527218 DOI: 10.1016/j.jpurol.2011.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Tissue-engineered pericardium (TEP) is a collagen-rich matrix that has previously been shown to promote in vivo and in vitro tissue regeneration. We evaluated the potential of TEP as a source for the in-vivo creation of bladder muscular wall grafts. We used bladder wall as a bioreactor to create a natural environment for cellular growth and differentiation. MATERIALS AND METHODS Sixteen rabbits were divided into four groups. A control group underwent classical bladder autoaugmentation. Other groups underwent insertion of TEP between bladder mucosa and muscular layer: group 2 with insertion of TEP, group 3 with TEP over autologous bladder muscular wall fragments, and group 4 with autologous bladder smooth muscle cells (SMCs) seeded on TEP. After 4 and 8 weeks, grafts were biopsied for histopathological evaluations. RESULTS Frames from groups 3 and 4 demonstrated more organized muscular wall generation with a significantly higher number of CD34 + endothelial progenitor cells and CD31 + microvessels, and maintenance of α-smooth muscle actin expression through immunohistochemistry. Group 4 showed significant enhancement of SMC penetration to TEP. Although the fragment-seeded group required a simpler procedure, the cell-seeded group showed superior organization of the muscular layer on histopathology. We found a semi-organized muscular layer and new vessels in the margins of TEP in group 3, while there was a homogeneous pattern of SMCs and new vessels in both the margins and center of TEP in group 4. CONCLUSIONS This preliminary work has important functional and clinical implications, as it indicates that use of the autologous SMC seeding method may enhance the properties of TEP in terms of bladder wall regeneration.
Collapse
Affiliation(s)
- Abdol-Mohammad Kajbafzadeh
- Pediatric Urology Research Center, Department of Pediatric Urology, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 32, 2nd Floor, 7th Street, Saadat-Abad, Ave. Tehran 1998714616, Iran.
| | | | | | | | | |
Collapse
|
38
|
Dapena L, Dapena I, Regadera J, Gaspar MJ, González-Peramato P. Histerocystoplasty: a novel surgical procedure in the rat. J Surg Res 2011; 175:157-62. [PMID: 21529834 DOI: 10.1016/j.jss.2011.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/27/2011] [Accepted: 03/02/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Enterocystoplasties are associated to complications. To avoid them, different types of tissue templates have been used to augment the bladder and induce native bladder regeneration. MATERIALS AND METHODS A novel surgical technique for bladder reconstruction using autologous uterine tissue was evaluated in a rat model. Forty-two female Wistar rats were randomly allocated into three groups: sham-operation hysterocystorrhaphy (n = 12), hysterocystoplasty (n = 18), and control (n = 12). Two weeks after surgery, ultrasound examination of the bladder was performed. At 2, 4, or 6 mo after surgery, the rats were anesthetized and blood and urine samples were taken. They were then euthanized and post-mortem and histologic examination were performed. Ultrasound examination, analytical parameters and weight control, as well as gross and histologic examination were performed in all the operated animals. The statistical analysis was performed using Kruskal-Wallis and the extension of Fisher's exact tests. Significance was set at 5% (P < 0.05). RESULTS Serum chemistry, blood count and peripheral blood smears, electrolytes, and urinary parameters were all within the normal range for the rat. Histologic sections of the surgically augmented zone between the bladder and uterine horn demonstrated urothelial epithelization, providing adequate coverage of the transition area in 72.22% of the rats that underwent hysterocystoplasty. CONCLUSIONS The hysterocystoplasty was technically viable in all the cases and proved to be an easy and safe surgical model for bladder reconstruction. All animals were healthy after surgery and all systemic parameters analyzed were within normal physiologic range for the rat.
Collapse
Affiliation(s)
- Lidia Dapena
- Department of Biomedicine, University of Leon, Leon, Spain.
| | | | | | | | | |
Collapse
|
39
|
Mimura Y, Imamura T, Kinebuchi Y, Aizawa N, Ishizuka O, Nishizawa O. Rat Bladders Augmented with a Novel Bovine Pericardium-Derived Biomaterial Reconstruct Functional Tissue Structures. Low Urin Tract Symptoms 2010; 2:76-82. [PMID: 26676287 DOI: 10.1111/j.1757-5672.2010.00067.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To determine if rat bladders augmented with an acellular Japanese bovine pericardium-derived biomaterial (CardioDISC [CD]) could support bladder reconstruction, and increase bladder volume and compliance. METHODS Female Sprague-Dawley rats were randomly divided into three groups (n = 5 each). After partial cystectomy, bladders were closed without augmentation (non-augmentation) or augmented with porcine small intestinal submucosa (SIS) or CD, both of which are acellular. At 1, 2, 4 and 8 weeks after surgery, bladder volume and compliance were measured. The bladders were then analyzed by immunohistochemistry for smooth muscle actin (SMA), urothelium uroplakin III (UPIII), and nerve fiber S100. RESULTS At 4 weeks after augmentation, the SMA-positive cells from the host bladder tissues were present near the regions augmented with CD. In addition, S100-positive cells were present within the CD-augmented tissues. At 8 weeks after surgery, the CD-augmented tissues contained layered SMA-positive cells, urothelium uroplakin III -positive urothelium, and S100 fibers, similar to normal bladder tissue. The SIS-augmented bladders showed similar results. At 8 weeks after augmentation, the bladder volume of CD-augmented bladders was larger than that at 4 weeks, while the SIS-augmented bladders were the same as those at 4 weeks. The bladder volume of the non-augmented group did not increase. The bladder compliance of the CD-augmented bladders at 8 weeks was significantly higher than at earlier times. The bladder compliance of neither the non-augmented nor the SIS-augmented groups increased during the study period. CONCLUSION Acellular bovine pericardium-derived material could be a suitable biomaterial for bladder augmentations.
Collapse
Affiliation(s)
- Yuji Mimura
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tetsuya Imamura
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiaki Kinebuchi
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoki Aizawa
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Osamu Ishizuka
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Osamu Nishizawa
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
40
|
Parshotam Kumar G, Barker A, Ahmed S, Gerath J, Orford J. Urinary bladder auto augmentation using INTEGRA and SURGISIS: an experimental model. Pediatr Surg Int 2010; 26:275-80. [PMID: 19885663 DOI: 10.1007/s00383-009-2521-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE We present our experience with an experimental urinary bladder auto augmentation model using SURGISIS and INTEGRA (collagen layer) in comparison with seromuscular enterocystoplasty. The aim of the study was to evaluate the change in compliance and elasticity of the urinary bladder. MATERIALS AND METHODS Eighteen lambs were divided into three different groups. Auto augmentation was performed using the seromuscular layer of small bowel, SURGISIS or the collagen layer of INTEGRA. After 3 months of the initial procedure, the lambs were re-operated, the bladder compliance was measured and the urinary bladder was submitted for histological examination and assessment of elasticity. The lambs were euthanized. RESULTS The postoperative period was uneventful in 17 lambs except for intestinal obstruction in one lamb from the seromuscular enterocystoplasty group. A statistically significant difference in compliance was observed with SURGISIS and the INTEGRA. Histologically, there was neovascularization in all the specimens from the SURGISIS and INTEGRA groups with the presence of fibrosis in the SURGISIS group. The INTEGRA group showed better elastic properties than the SURGISIS. CONCLUSIONS Urinary bladder auto augmentation using the collagen layer of INTEGRA showed better functional and histological results when compared with SURGISIS and demucosalized enterocystoplasty in the present model.
Collapse
|
41
|
Agrawal V, Brown BN, Beattie AJ, Gilbert TW, Badylak SF. Evidence of innervation following extracellular matrix scaffold-mediated remodelling of muscular tissues. J Tissue Eng Regen Med 2010; 3:590-600. [PMID: 19701935 DOI: 10.1002/term.200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Naturally occurring porcine-derived extracellular matrix (ECM) has successfully been used as a biological scaffold material for site-specific reconstruction of a wide variety of tissues. The site-specific remodelling process includes rapid degradation of the scaffold, with concomitant recruitment of mononuclear, endothelial and bone marrow-derived cells, and can lead to the formation of functional skeletal and smooth muscle tissue. However, the temporal and spatial patterns of innervation of the remodelling scaffold material in muscular tissues are not well understood. A retrospective study was conducted to investigate the presence of nervous tissue in a rat model of abdominal wall reconstruction and a canine model of oesophageal reconstruction in which ECM scaffolds were used as inductive scaffolds. Evidence of mature nerve, immature nerve and Schwann cells was found within the remodelled ECM at 28 days in the rat body wall model, and at 91 days post surgery in a canine model of oesophageal repair. Additionally, a microscopic and morphological study that investigated the response of primary cultured neurons seeded upon an ECM scaffold showed that neuronal survival and outgrowth were supported by the ECM substrate. Finally, matricryptic peptides resulting from rapid degradation of the ECM scaffold induced migration of terminal Schwann cells in a concentration-dependent fashion in vitro. The findings of this study suggest that the reconstruction of tissues in which innervation is an important functional component is possible with the use of biological scaffolds composed of extracellular matrix.
Collapse
Affiliation(s)
- Vineet Agrawal
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | | | |
Collapse
|
42
|
Andreoni AA, Voss K. Reconstruction of a large diaphragmatic defect in a kitten using small intestinal submucosa (SIS). J Feline Med Surg 2009; 11:1019-22. [PMID: 19699669 PMCID: PMC11318770 DOI: 10.1016/j.jfms.2009.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2009] [Indexed: 11/19/2022]
Abstract
A double-layer sheet of small intestinal submucosa (SIS) was used to reconstruct a large chronic diaphragmatic defect in a 4-month-old kitten. The SIS graft was easy to use, postoperative recovery was uneventful, no side effects of the SIS implant were observed, and the SIS graft resulted in restoration of normal clinical function while allowing growth of the kitten without restriction of chest wall development. Herniation of fat through the caval hiatus was diagnosed 29 months postoperatively on a CT scan. The cat was free of clinical signs.
Collapse
Affiliation(s)
- Angelo A Andreoni
- Clinic for Small Animal Surgery, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8053 Zurich, Switzerland.
| | | |
Collapse
|
43
|
Small intestinal submucosa for anular defect closure: long-term response in an in vivo sheep model. Spine (Phila Pa 1976) 2009; 34:1457-63. [PMID: 19525836 DOI: 10.1097/brs.0b013e3181a48554] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN After undergoing anulotomy, lumbar intervertebral discs from sheep were treated with small intestinal submucosa (SIS) and assessed functionally at 24 weeks after surgery. OBJECTIVE To determine the efficacy of an SIS-based patch and plug scaffold to facilitate anular defect closure and anular functional recovery after anulotomy and partial discectomy. SUMMARY OF BACKGROUND DATA The incidence of reherniation following discectomy remains high and mechanical means of anular closure have met with limited success. SIS is a naturally occurring collagen-based material, which acts as a resorbable scaffold in vivo that promotes soft tissue regeneration. METHODS Twelve sheep underwent retroperitoneal exposure of the lumbar spine. Three levels were assigned to either: no additional procedure, box anulotomy alone, or box anulotomy followed by placement of an SIS "patch and plug" anchored by titanium bone screws. At 26 weeks after surgery, 18 motion segments underwent pressure-volume testing to assess the competency of the anulus. High resolution MRI images were taken of the remaining 18 segments. Undecalcified histology was conducted on all specimens. RESULTS Radiographs, MRI images, and histology indicate that there was an exuberant tissue response at SIS-treated levels. New tissue formation in SIS-treated specimens was integrated well with the native anulus, but did not resemble the organization of native anulus. The extent of anular closure was substantial enough to allow the disc a functional recovery to a mean 66% of its capacity to develop internal pressure. MRI images indicate that SIS-treated levels did not maintain signal intensity comparable to exposure-only (intact) levels, but SIS-treated discs were statistically significantly higher than anulotomy-only levels. CONCLUSION SIS-treated discs were better able to maintain hydration and resulted in a functional recovery relative to anulotomy alone levels. The SIS patch and plug reduced the cascade of functional degeneration that an intervertebral disc undergoes following anulotomy.
Collapse
|
44
|
Abstract
There are many diseases in which autologous urothelial and muscle cells cannot be used for in vitro construction of the urinary bladder wall for augmentation (cystoplasty). These diseases are the most frequent indications for bladder augmentation. The present paper focuses on the idea of harvesting potentially multipotent stem cells out of hair follicles in order to use them for regeneration of the urinary bladder wall. Current clinical practice suggests the use of cultures enriched with progenitors. The hair follicle stem cell niche gives an opportunity to reduce the invasiveness of harvesting these cells. Both epithelial and dermal multipotent stem cells populations within hair follicles raise new possibilities for tissue engineering of the urinary bladder. The hypothesis is that hair-follicle stem cells can be used, with the guarantee of the sufficient cell number, for a construction in vitro of the urinary bladder wall replacement.
Collapse
Affiliation(s)
- Tomasz Drewa
- Department of Tissue Engineering, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, ul. Karlowicza 24, 85-092 Bydgoszcz, Poland.
| |
Collapse
|
45
|
Mondalek FG, Lawrence BJ, Kropp BP, Grady BP, Fung KM, Madihally SV, Lin HK. The incorporation of poly(lactic-co-glycolic) acid nanoparticles into porcine small intestinal submucosa biomaterials. Biomaterials 2008; 29:1159-66. [PMID: 18076986 DOI: 10.1016/j.biomaterials.2007.11.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 11/15/2007] [Indexed: 11/18/2022]
Abstract
Small intestinal submucosa (SIS) derived from porcine small intestine has been intensively studied for its capacity in repairing and regenerating wounded and dysfunctional tissues. However, SIS suffers from a large spectrum of heterogeneity in microarchitecture leading to inconsistent results. In this study, we introduced nanoparticles (NPs) to SIS with an intention of decreasing the heterogeneity and improving the consistency of this biomaterial. As determined by scanning electron microscopy and urea permeability, the optimum NP size was estimated to be between 200 nm and 500 nm using commercial monodisperse latex spheres. The concentration of NPs that is required to alter pore sizes of SIS as determined by urea permeability was estimated to be 1 mg/ml 260 nm poly(lactic-co-glycolic) acid (PLGA) NPs. The 1mg/ml PLGA NPs loaded in the SIS did not change the tensile properties of the unmodified SIS or even alter pH values in a cell culture environment. More importantly, PLGA NP modified SIS did not affect human mammary endothelial cells (HMEC-1) morphology or adhesion, but actually enhanced HEMC-1 cell growth.
Collapse
Affiliation(s)
- Fadee G Mondalek
- Department of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Yinan Z, Guomin W. Allogeneic stem cells seeded tissue engineered bladder: A possible alternative for bladder reconstruction and treatment to bladder cancer. Med Hypotheses 2008; 70:294-7. [PMID: 17669597 DOI: 10.1016/j.mehy.2007.05.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 05/28/2007] [Indexed: 10/23/2022]
Abstract
Bladder cancer remains a difficult management problem, because of the high recurrence rate or the functional disorder of bladder post radical cystectomy. The autologous tissue engineering techniques have been advanced enough to reconstruct functional bladders for patients with myelomeningocele, but not capable for bladder cancer patients. On the other hand, allogeneic stem cells share the same multipotential, self-renewing and multi differentiated abilities with autologous ones, and would present anti-tumor effects when transplanted to recipients. Since the stem cells seeded tissue engineering techniques for bladder regeneration have already been feasible, a hypothesis was then proposed that the allogeneic stem cells seeded tissue engineered bladder would be a possible alternative for functional bladder reconstructions and treatments for bladder cancer recurrences and latent metastases postoperatively.
Collapse
Affiliation(s)
- Zhang Yinan
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | |
Collapse
|
47
|
Game X, Karsenty G, Chartier-Kastler E, Ruffion A. Chapitre C-2 C - Traitement de l’hyperactivité détrusorienne neurologique : entérocystoplasties. Prog Urol 2007; 17:584-96. [PMID: 17622095 DOI: 10.1016/s1166-7087(07)92373-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The importance of a good capacity bladder reservoir able to fill at low pressure has now been clearly established. These properties have a double advantage: they ensure urinary continence and prevent damage to the upper urinary tract. In the case of failure of the various medical treatments, including botulinum toxin injections, surgical bladder augmentation can be considered, especially in the presence of poor bladder compliance. The authors present the technical details of bladder augmentation by enterocystoplasty or by alternative techniques and their medium- and long-term results, and define the postoperative surveillance of this type of surgery.
Collapse
Affiliation(s)
- X Game
- Service d'urologie, Centre hospitalo-universitaire de Toulouse, France.
| | | | | | | |
Collapse
|