1
|
Wei C, Mao A, Liu Y, Zhang Q, Pan G, Liu W, Liu J. Proteomics Analysis of Polyphyllin D-Treated Triple-Negative Breast Cancer Cells Reveal the Anticancer Mechanisms of Polyphyllin D. Appl Biochem Biotechnol 2024; 196:3148-3161. [PMID: 37624509 PMCID: PMC11166742 DOI: 10.1007/s12010-023-04679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Polyphyllin D (PD), one of the important steroid saponins in traditional medicinal herb Paris polyphylla, has been demonstrated to have anticancer activity both in vitro and in vivo. However, the mechanisms through which PD exerts its anticancer effects in triple-negative breast cancer (TNBC) remain unclear. Our study was presented to evaluate the anticancer effect and the potential mechanisms of PD in two TNBC cell lines, BT-549 and MDA-MB-231. Through comprehensively comparing the liquid chromatography-tandem mass spectrometry (LC-MS/MS) data of PD-treated and untreated BT-549 and MDA-MB-231 cells, we found that PD could induce apoptosis of TNBC cells by activating oxidative phosphorylation pathway in BT-549 cells, as well as inhibiting spliceosome function alteration in MDA-MB-231 cells. These results suggested that the mechanisms underlying the pro-apoptotic effect of PD on TNBC may be cell type-specificity-dependent. Moreover, we found that nodal modulator 2/3 (NOMO2/3) were downregulated both in PD-treated BT-549 and MDA-MB-231 cells, suggesting that NOMO2/3 may be the potential target of PD. Verification experiments revealed that PD deceased NOMO2/3 expression at protein level, rather than mRNA level. Whether NOMO2/3 are the upstream modulators of oxidative phosphorylation pathway and spliceosome needs further validation. In conclusion, a comprehensive proteomics study was performed on PD-treated or untreated TNBC cells, revealing the anticancer mechanisms of PD.
Collapse
Affiliation(s)
- Chuanchao Wei
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Anwei Mao
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Yongzhi Liu
- Department of General Surgery, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Zhejiang, China
| | - Qing Zhang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Gaofeng Pan
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Weiyan Liu
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Jiazhe Liu
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201100, China.
| |
Collapse
|
2
|
Qian F, Kong W, Wang S, Wei K. Predicting the prognosis of hepatocellular carcinoma based on the interaction between pyroptosis, apoptosis, and necroptosis. Clin Exp Med 2023; 23:2087-2104. [PMID: 36271962 DOI: 10.1007/s10238-022-00910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022]
Abstract
Multiple programmed cell death pathways (pyroptosis, apoptosis, and necroptosis) are closely related to the progression of hepatocellular carcinoma (HCC). Furthermore, molecular interactions among pyroptotic, apoptotic, and necroptotic components may be new targets for cancer therapy. However, the signature of the genes involved in the interaction between pyroptosis, apoptosis, and necroptosis (PANRGs), and their prognostic value, is still unclear in HCC. In this study, we used HCC clinical and expression data from TCGA and GEO to explore the relationship between PANRGs and HCC. First, we determined the copy number variation incidence of 41 PANRGs genes and explored the prognostic correlation of these genes in HCC. Based on PANRGs, two molecular subgroups of HCC associated with prognosis were identified. We also found significant differences in the overall survival time and the immune infiltration of HCC patients between the two subgroups. Finally, based on the nine PANRGs (CDC25B, EZH2, HMOX1, PLK1, SQSTM1, WEE1, TREM2, MYCN, and FLT3), we constructed a prognostic model using LASSO-Cox regression analysis. The prognostic model could predict OS of HCC patients in TCGA and GEO cohorts with high accuracy. Significant correlations were found between prognosis-related PANRGs and the tumor immune microenvironment (TIME), tumor mutational burden (TMB), and drug sensitivity. In conclusion, we explored the role of PANRGs in HCC and the association of these genes with TIME, TMB, and drug sensitivity.
Collapse
Affiliation(s)
- Fang Qian
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai, 201306, People's Republic of China
| | - Shuaiqun Wang
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai, 201306, People's Republic of China
| | - Kai Wei
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Bouabdallah S, Al-Maktoum A, Amin A. Steroidal Saponins: Naturally Occurring Compounds as Inhibitors of the Hallmarks of Cancer. Cancers (Basel) 2023; 15:3900. [PMID: 37568716 PMCID: PMC10417465 DOI: 10.3390/cancers15153900] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer is a global health burden responsible for an exponentially growing number of incidences and mortalities, regardless of the significant advances in its treatment. The identification of the hallmarks of cancer is a major milestone in understanding the mechanisms that drive cancer initiation, development, and progression. In the past, the hallmarks of cancer have been targeted to effectively treat various types of cancers. These conventional cancer drugs have shown significant therapeutic efficacy but continue to impose unfavorable side effects on patients. Naturally derived compounds are being tested in the search for alternative anti-cancer drugs. Steroidal saponins are a group of naturally occurring compounds that primarily exist as secondary metabolites in plant species. Recent studies have suggested that steroidal saponins possess significant anti-cancer capabilities. This review aims to summarize the recent findings on steroidal saponins as inhibitors of the hallmarks of cancer and covers key studies published between the years 2014 and 2024. It is reported that steroidal saponins effectively inhibit the hallmarks of cancer, but poor bioavailability and insufficient preclinical studies limit their utilization.
Collapse
Affiliation(s)
- Salwa Bouabdallah
- Theranostic Biomarkers, LR23ES02, Faculty of Medicine of Tunis, Université Tunis El Manar, Tunis 1006, Tunisia
| | - Amna Al-Maktoum
- Biology Department, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Amr Amin
- Biology Department, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| |
Collapse
|
4
|
Wang Y, Chen YY, Gao GB, Zheng YH, Yu NN, Ouyang L, Gao X, Li N, Wen SY, Huang S, Zhao Q, Liu L, Cao M, Zhang S, Zhang J, He QY. Polyphyllin D punctures hypertrophic lysosomes to reverse drug resistance of hepatocellular carcinoma by targeting acid sphingomyelinase. Mol Ther 2023; 31:2169-2187. [PMID: 37211762 PMCID: PMC10362416 DOI: 10.1016/j.ymthe.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/13/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023] Open
Abstract
Hypertrophic lysosomes are critical for tumor progression and drug resistance; however, effective and specific lysosome-targeting compounds for cancer therapy are lacking. Here we conducted a lysosomotropic pharmacophore-based in silico screen in a natural product library (2,212 compounds), and identified polyphyllin D (PD) as a novel lysosome-targeted compound. PD treatment was found to cause lysosomal damage, as evidenced by the blockade of autophagic flux, loss of lysophagy, and the release of lysosomal contents, thus exhibiting anticancer effects on hepatocellular carcinoma (HCC) cell both in vitro and in vivo. Closer mechanistic examination revealed that PD suppressed the activity of acid sphingomyelinase (SMPD1), a lysosomal phosphodieserase that catalyzes the hydrolysis of sphingomyelin to produce ceramide and phosphocholine, by directly occupying its surface groove, with Trp148 in SMPD1 acting as a major binding residue; this suppression of SMPD1 activity irreversibly triggers lysosomal injury and initiates lysosome-dependent cell death. Furthermore, PD-enhanced lysosomal membrane permeabilization to release sorafenib, augmenting the anticancer effect of sorafenib both in vivo and in vitro. Overall, our study suggests that PD can potentially be further developed as a novel autophagy inhibitor, and a combination of PD with classical chemotherapeutic anticancer drugs could represent a novel therapeutic strategy for HCC intervention.
Collapse
Affiliation(s)
- Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Yan-Yan Chen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gui-Bin Gao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang-Han Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nan-Nan Yu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lan Ouyang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xuejuan Gao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shi-Yuan Wen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shangjia Huang
- MOE Key Laboratory of Tumor Molecular Biology, The First Affiliated Hospital of Jinan University, Guangzhou 510613, China
| | - Qian Zhao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Langxia Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Mingrong Cao
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510613, China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510613, China; MOE Key Laboratory of Tumor Molecular Biology, The First Affiliated Hospital of Jinan University, Guangzhou 510613, China.
| | - Jing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510613, China; MOE Key Laboratory of Tumor Molecular Biology, The First Affiliated Hospital of Jinan University, Guangzhou 510613, China.
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; MOE Key Laboratory of Tumor Molecular Biology, The First Affiliated Hospital of Jinan University, Guangzhou 510613, China.
| |
Collapse
|
5
|
Watanabe S, Inoue M, Suzuki T, Kondo Y, Murayama M. Polyphyllin D induces necroptosis in neuroblastoma cells (IMR-32 and LA-N-2) in mice. Pediatr Surg Int 2023; 39:196. [PMID: 37160784 DOI: 10.1007/s00383-023-05425-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND We previously reported that polyphyllin D, the main component of the traditional herbal medicinal Paris polyphylla, exhibited anticancer effects in vitro against human neuroblastoma cells. The aim of this investigation was to examine in vivo antitumor effects of polyphyllin D. METHODS Subcutaneous tumors were established in immune-deficient BALB/c nude mice using human neuroblastoma cell lines IMR-32 and LA-N-2. To evaluate the polyphyllin D activity, we used a mouse model of IMR-32 or LA-N-2 cell lines and analyzed subcutaneous tumors. RESULTS Subcutaneous tumor models were successfully established in mice using two human neuroblastoma cell lines. In the subcutaneous tumor model, porphyrin D was found to suppress tumor volume. We found that polyphyllin D suppressed the number of foci by Ki-67 staining (IMR-32 and LA-N-2; p < 0.01, 0.02, respectively). We found that polyphyllin D induces the RIPK3 expression, while polyphyllin D phosphorylates Ser358 in IMR-32 and Ser358 and Tyr376 in LA-N-2. CONCLUSION We developed a mouse model of subcutaneous tumors of neuroblastoma and demonstrated for the first time that polyphyllin D has an antitumor effect on neuroblastoma. Polyphyllin D can cause necroptosis depending on the cell type. The new drug can be expected by investigating a method to selectively induce cell death through the analysis of necroptosis.
Collapse
Affiliation(s)
- Shunsuke Watanabe
- Department of Pediatric Surgery, Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi Prefecture, 470-1192, Japan.
| | - Mikihiro Inoue
- Department of Pediatric Surgery, Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi Prefecture, 470-1192, Japan
| | - Tatsuya Suzuki
- Department of Pediatric Surgery, Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi Prefecture, 470-1192, Japan
| | - Yasuhiro Kondo
- Department of Pediatric Surgery, Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi Prefecture, 470-1192, Japan
| | - Mika Murayama
- Department of Pediatric Surgery, Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi Prefecture, 470-1192, Japan
| |
Collapse
|
6
|
Chaouhan HS, Vinod C, Mahapatra N, Yu SH, Wang IK, Chen KB, Yu TM, Li CY. Necroptosis: A Pathogenic Negotiator in Human Diseases. Int J Mol Sci 2022; 23:12714. [PMID: 36361505 PMCID: PMC9655262 DOI: 10.3390/ijms232112714] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Over the past few decades, mechanisms of programmed cell death have attracted the scientific community because they are involved in diverse human diseases. Initially, apoptosis was considered as a crucial mechanistic pathway for programmed cell death; recently, an alternative regulated mode of cell death was identified, mimicking the features of both apoptosis and necrosis. Several lines of evidence have revealed that dysregulation of necroptosis leads to pathological diseases such as cancer, cardiovascular, lung, renal, hepatic, neurodegenerative, and inflammatory diseases. Regulated forms of necrosis are executed by death receptor ligands through the activation of receptor-interacting protein kinase (RIPK)-1/3 and mixed-lineage kinase domain-like (MLKL), resulting in the formation of a necrosome complex. Many papers based on genetic and pharmacological studies have shown that RIPKs and MLKL are the key regulatory effectors during the progression of multiple pathological diseases. This review focused on illuminating the mechanisms underlying necroptosis, the functions of necroptosis-associated proteins, and their influences on disease progression. We also discuss numerous natural and chemical compounds and novel targeted therapies that elicit beneficial roles of necroptotic cell death in malignant cells to bypass apoptosis and drug resistance and to provide suggestions for further research in this field.
Collapse
Affiliation(s)
- Hitesh Singh Chaouhan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Ch Vinod
- Department of Biological Sciences, School of Applied Sciences, KIIT University, Bhubaneshwar 751024, India
| | - Nikita Mahapatra
- Department of Biological Sciences, School of Applied Sciences, KIIT University, Bhubaneshwar 751024, India
| | - Shao-Hua Yu
- Department of Emergency Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - I-Kuan Wang
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Kuen-Bao Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Tung-Min Yu
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40402, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
7
|
Kondo Y, Watanabe S, Naoe A, Takeuchi T, Niimi A, Suzuki M, Asai N, Okada S, Tsuchiya T, Murayama M, Yasui T, Inoue M, Suzuki T. Antitumor effect of polyphyllin D on liver metastases of neuroblastoma. Pediatr Surg Int 2022; 38:1157-1163. [PMID: 35699751 DOI: 10.1007/s00383-022-05146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE We previously reported that polyphyllin D, a main component of the traditional Chinese medicinal herb Paris polyphylla, exhibited anticancer effects in vitro against human neuroblastoma cells. The aims of this investigation was to examine the presence or absence of in vivo anti-metastasis effects of polyphyllin D were to establish a liver metastasis model of neuroblastoma and to evaluate the anti-metastasis effects of polyphyllin D. METHODS Subcutaneous and intraperitoneal tumors, and metastasis models were established in immune-deficient BALB/c nude and BALB/c Rag-2/Jak3 double-deficient (BRJ) mice using the human neuroblastoma cell lines IMR-32, LA-N-2, or NB-69. For evaluating polyphyllin D activity, we used a mouse model of liver metastasis with the IMR-32 cells line injected through the tail vein. We analyzed the livers number and area of liver tumors in of the phosphate buffer solution- and polyphyllin D-treated groups. RESULTS Liver metastasis and intraperitoneal dissemination models were successfully established in immune-deficient BRJ mice using the three human neuroblastoma cell lines. In the liver metastasis, the model of IMR-32 cells, we found that polyphyllin D suppressed both the number and total area of metastatic foci the average number of metastatic foci, average focus areas, and number of cleaved caspase-3-positive cells were significantly lower in the polyphyllin D group (p = 0.016, 0.020, 0.043, respectively). CONCLUSIONS We developed a mouse models of neuroblastoma metastasis and demonstrated for the first time that polyphyllin D has an antitumor effect on neuroblastoma liver metastases.
Collapse
Affiliation(s)
- Yasuhiro Kondo
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan.
| | - Shunsuke Watanabe
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Atsuki Naoe
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Toshiyuki Takeuchi
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Atsuko Niimi
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Motoshi Suzuki
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Naoya Asai
- Department of Pathology, Fujita Health University, Toyoake, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomonori Tsuchiya
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Mika Murayama
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Toshihiro Yasui
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Mikihiro Inoue
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Tatsuya Suzuki
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
8
|
Xin S, Mao J, Duan C, Wang J, Lu Y, Yang J, Hu J, Liu X, Guan W, Wang T, Wang S, Liu J, Song W, Song X. Identification and Quantification of Necroptosis Landscape on Therapy and Prognosis in Kidney Renal Clear Cell Carcinoma. Front Genet 2022; 13:832046. [PMID: 35237304 PMCID: PMC8882778 DOI: 10.3389/fgene.2022.832046] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/19/2022] [Indexed: 01/11/2023] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) has high morbidity and gradually increased in recent years, and the rate of progression once relapsed is high. At present, owing to lack of effective prognosis predicted markers and post-recurrence drug selection guidelines, the prognosis of KIRC patients is greatly affected. Necroptosis is a regulated form of cell necrosis in a way that is independent of caspase. Induced necroptosis is considered an effective strategy in chemotherapy and targeted drugs, and it can also be used to improve the efficacy of immunotherapy. Herein, we quantified the necroptosis landscape of KIRC patients from The Cancer Genome Atlas (TCGA) database and divided them into two distinct necroptosis-related patterns (C1 and C2) through the non-negative matrix factorization (NMF) algorithm. Multi-analysis revealed the differences in clinicopathological characteristics and tumor immune microenvironment (TIME). Then, we constructed the NRG prognosis signature (NRGscore), which contained 10 NRGs (PLK1, APP, TNFRSF21, CXCL8, MYCN, TNFRSF1A, TRAF2, HSP90AA1, STUB1, and FLT3). We confirmed that NRGscore could be used as an independent prognostic marker for KIRC patients and performed excellent stability and accuracy. A nomogram model was also established to provide a more beneficial prognostic indicator for the clinic. We found that NRGscore was significantly correlated with clinicopathological characteristics, TIME, and tumor mutation burden (TMB) of KIRC patients. Moreover, NRGscore had effective guiding significance for immunotherapy, chemotherapy, and targeted drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Wen Song
- *Correspondence: Wen Song, ; Xiaodong Song,
| | | |
Collapse
|
9
|
Liu J, Liu Y, Li H, Wei C, Mao A, Liu W, Pan G. Polyphyllin D induces apoptosis and protective autophagy in breast cancer cells through JNK1-Bcl-2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114591. [PMID: 34481873 DOI: 10.1016/j.jep.2021.114591] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polyphyllin D (PD), an active component from rhizome of Paris polyphylla Sm, root and rhizome, shows a strong anti-cancer activity in several cancers. However, whether autophagy is involved in PD-induced cell death in breast cancer cells and its molecular mechanism has not yet been elucidated. AIM OF THE STUDY To explore the anti-tumor effects of PD in breast cancer and the underlying mechanisms. MATERIALS AND METHODS PD was isolated from P. polyphylla Sm and confirmed by HPLC and NMR. The role of PD in cell viability, apoptosis, autophagy in breast cancer cells were determined. RESULTS PD shows significant anti-tumor activity by inhibit cell proliferation and induce caspase-dependent apoptosis in breast cancer cells. Moreover, PD treatment could induce autophagy by activation of JNK1/Bcl-2 pathway. Importantly, blocking of autophagy by using autophagy inhibitor 3-methyladenine (3-MA) dramatically increase PD-induced apoptosis as evidence by the increased percentage of apoptotic cell death. The anti-tumor effects of PD also investigated in vivo. The results showed that the combinatory treatment of PD with autophagy inhibitor significantly promote PD-induced apoptosis. CONCLUSION PD could induce caspase-dependent apoptosis and cyto-protectvie autophagy by activation of JNK1/Bcl-2 pathway in breast cancer cells. Combination with an autophagy inhibitor significantly enhance cytotoxic effect of PD and this combination may be a promising candidate for breast cancer therapy.
Collapse
Affiliation(s)
- Jiazhe Liu
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongzhi Liu
- Department of General Surgery, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Zhejiang, China
| | - Hongchang Li
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuangchao Wei
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anwei Mao
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiyan Liu
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Gaofeng Pan
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Elekofehinti OO, Iwaloye O, Olawale F, Ariyo EO. Saponins in Cancer Treatment: Current Progress and Future Prospects. PATHOPHYSIOLOGY 2021; 28:250-272. [PMID: 35366261 PMCID: PMC8830467 DOI: 10.3390/pathophysiology28020017] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Saponins are steroidal or triterpenoid glycoside that is distinguished by the soap-forming nature. Different saponins have been characterized and purified and are gaining attention in cancer chemotherapy. Saponins possess high structural diversity, which is linked to the anticancer activities. Several studies have reported the role of saponins in cancer and the mechanism of actions, including cell-cycle arrest, antioxidant activity, cellular invasion inhibition, induction of apoptosis and autophagy. Despite the extensive research and significant anticancer effects of saponins, there are currently no known FDA-approved saponin-based anticancer drugs. This can be attributed to a number of limitations, including toxicities and drug-likeness properties. Recent studies have explored options such as combination therapy and drug delivery systems to ensure increased efficacy and decreased toxicity in saponin. This review discusses the current knowledge on different saponins, their anticancer activity and mechanisms of action, as well as promising research within the last two decades and recommendations for future studies.
Collapse
Affiliation(s)
- Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, PMB 704, Nigeria; (O.I.); (E.O.A.)
| | - Opeyemi Iwaloye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, PMB 704, Nigeria; (O.I.); (E.O.A.)
| | - Femi Olawale
- Nanogene and Drug Delivery Group, Department of Biochemistry, University of Kwa-Zulu Natal, Durban 4000, South Africa;
- Department of Biochemistry, College of Medicine, University of Lagos, Lagos 101017, Nigeria
| | - Esther Opeyemi Ariyo
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, PMB 704, Nigeria; (O.I.); (E.O.A.)
| |
Collapse
|
11
|
Tomita Y, Smith E, Palethorpe HM, Nakhjavani M, Yeo KKL, Townsend AR, Price TJ, Yool AJ, Hardingham JE. In Vitro Synergistic Inhibition of HT-29 Proliferation and 2H-11 and HUVEC Tubulogenesis by Bacopaside I and II Is Associated with Ca 2+ Flux and Loss of Plasma Membrane Integrity. Pharmaceuticals (Basel) 2021; 14:ph14050436. [PMID: 34066415 PMCID: PMC8148107 DOI: 10.3390/ph14050436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023] Open
Abstract
We previously showed how triterpene saponin bacopaside (bac) II, purified from the medicinal herb Bacopa monnieri, induced cell death in colorectal cancer cell lines and reduced endothelial cell migration and tube formation, and further demonstrated a synergistic effect of a combination of bac I and bac II on the inhibition of breast cancer cell line growth. Here, we assessed the effects of bac I and II on the colorectal cancer HT-29 cell line, and mouse (2H-11) and human umbilical vein endothelial cell (HUVEC) lines, measuring outcomes including cell viability, proliferation, migration, tube formation, apoptosis, cytosolic Ca2+ levels and plasma membrane integrity. Combined bac I and II, each applied at concentrations below IC50 values, caused a synergistic reduction of the viability and proliferation of HT-29 and endothelial cells, and impaired the migration of HT-29 and tube formation of endothelial cells. A significant enhancement of apoptosis was induced only in HUVEC, although an increase in cytosolic Ca2+ was detected in all three cell lines. Plasma membrane integrity was compromised in 2H-11 and HUVEC, as determined by an increase in propidium iodide staining, which was preceded by Ca2+ flux. These in vitro findings support further research into the mechanisms of action of the combined compounds for potential clinical use.
Collapse
Affiliation(s)
- Yoko Tomita
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Correspondence: ; Tel.: +61-8-8222-7096
| | - Eric Smith
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Helen M. Palethorpe
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Maryam Nakhjavani
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Kenny K. L. Yeo
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Amanda R. Townsend
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Timothy J. Price
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Andrea J. Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Jennifer E. Hardingham
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
12
|
Ahmad B, Gamallat Y, Khan MF, Din SR, Israr M, Ahmad M, Tahir N, Azam N, Rahman KU, Xin W, Zexu W, Linjie P, Su P, Liang W. Natural Polyphyllins (I, II, D, VI, VII) Reverses Cancer Through Apoptosis, Autophagy, Mitophagy, Inflammation, and Necroptosis. Onco Targets Ther 2021; 14:1821-1841. [PMID: 33732000 PMCID: PMC7956893 DOI: 10.2147/ott.s287354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is the second leading cause of mortality worldwide. Conventional therapies, including surgery, radiation, and chemotherapy, have limited success because of secondary resistance. Therefore, safe, non-resistant, less toxic, and convenient drugs are urgently required. Natural products (NPs), primarily sourced from medicinal plants, are ideal for cancer treatment because of their low toxicity and high success. NPs cure cancer by regulating different pathways, such as PI3K/AKT/mTOR, ER stress, JNK, Wnt, STAT3, MAPKs, NF-kB, MEK-ERK, inflammation, oxidative stress, apoptosis, autophagy, mitophagy, and necroptosis. Among the NPs, steroid saponins, including polyphyllins (I, II, D, VI, and VII), have potent pharmacological, analgesic, and anticancer activities for the induction of cytotoxicity. Recent research has demonstrated that polyphyllins (PPs) possess potent effects against different cancers through apoptosis, autophagy, inflammation, and necroptosis. This review summarizes the available studies on PPs against cancer to provide a basis for future research.
Collapse
Affiliation(s)
- Bashir Ahmad
- Department of Biology, University of Haripur, KPK, I. R. Pakistan.,College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Yaser Gamallat
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China
| | | | - Syed Riaz Din
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Muhammad Israr
- Department of Biology, University of Haripur, KPK, I. R. Pakistan.,Biochemistry and Molecular Biology, College of Life Science, Hebei Normal University, Hebei, People's Republic of China
| | - Manzoor Ahmad
- Department of Chemistry, Malakand University, Chakdara, KPK, I. R. Pakistan
| | - Naeem Tahir
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Nasir Azam
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Khalil Ur Rahman
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wang Xin
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wang Zexu
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Peng Linjie
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Pengyu Su
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wang Liang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical, Dalian City, Liaoning Province, 116011, People's Republic of China
| |
Collapse
|
13
|
Cytotoxicity of a naturally occuring spirostanol saponin, progenin III, towards a broad range of cancer cell lines by induction of apoptosis, autophagy and necroptosis. Chem Biol Interact 2020; 326:109141. [DOI: 10.1016/j.cbi.2020.109141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
|
14
|
SOX7 is involved in polyphyllin D-induced G0/G1 cell cycle arrest through down-regulation of cyclin D1. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:191-200. [PMID: 31955140 DOI: 10.2478/acph-2020-0017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/06/2019] [Indexed: 01/19/2023]
Abstract
The incidence of mortality of prostate cancer (PCa) has been an uptrend in recent years. Our previous study showed that the sex-determining region Y-box 7 (SOX7) was low-expressed and served as a tumor suppressor in PCa cells. Here, we describe the effects of polyphyllin D (PD) on proliferation and cell cycle modifications of PCa cells, and whether SOX7 participates in this process. PC-3 cells were cultured in complete medium containing PD for 12, 24, and 48 h. MTT assay was used to investigate the cytotoxic effects of PD. Cell cycle progression was analyzed using propidium iodide (PI) staining, and protein levels were assayed by Western blot analysis. Our results showed low expression of SOX7 in PCa tissues/cells compared to their non-tumorous counterparts/RWPE-1 cells. Moreover, PD inhibited the proliferation of PC-3 cells in a dose- and time-dependent manner. PD induced G0/G1 cell cycle arrest, while co-treatment with short interfering RNA targeting SOX7 (siSOX7) had reversed this effect. PD downregulated SOX7, cyclin D1, cyclin-dependent kinase 4 (CDK4), and cyclin-dependent kinase 6 (CDK6) expressions in a dose-dependent manner, whereas co-treatment of siSOX7 and PD rescued the PD-inhibited cyclin D1 expression. However, no obvious changes were observed in CDK4 or CDK6 expression. These results indicate that SOX7 is involved in PD-induced PC-3 cell cycle arrest through down-regulation of cyclin D1.
Collapse
|
15
|
Yu J, Zhong B, Xiao Q, Du L, Hou Y, Sun HS, Lu JJ, Chen X. Induction of programmed necrosis: A novel anti-cancer strategy for natural compounds. Pharmacol Ther 2020; 214:107593. [PMID: 32492512 DOI: 10.1016/j.pharmthera.2020.107593] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 02/08/2023]
Abstract
Cell death plays a critical role in organism development and the pathogenesis of diseases. Necrosis is considered a non-programmed cell death in an extreme environment. Recent advances have provided solid evidence that necrosis could be programmed and quite a few types of programmed necrosis, such as necroptosis, ferroptosis, pyroptosis, paraptosis, mitochondrial permeability transition-driven necrosis, and oncosis, have been identified. The specific biomarkers, detailed signaling, and precise pathophysiological importance of programmed necrosis are yet to be clarified, but these forms of necrosis provide novel strategies for the treatment of various diseases, including cancer. Natural compounds are a unique source of lead compounds for the discovery of anti-cancer drugs. Natural compounds can induce both apoptosis and programmed necrosis. In this review, we summarized the recent progress of programmed necrosis and introduced their natural inducers. Noptosis, which is a novel type of programmed necrosis that is strictly dependent on NAD(P)H: quinone oxidoreductase 1-derived oxidative stress was proposed. Furthermore, the anti-cancer strategies that take advantage of programmed necrosis and the main concerns from the scientific community in this regard were discussed.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Bingling Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Qingwen Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lida Du
- Department of Surgery, University of Toronto, Ontario, Canada
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hong-Shuo Sun
- Department of Surgery, University of Toronto, Ontario, Canada
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
16
|
Zeng Y, Zhang Z, Wang W, You L, Dong X, Yin X, Qu C, Ni J. Underlying mechanisms of apoptosis in HepG2 cells induced by polyphyllin I through Fas death and mitochondrial pathways. Toxicol Mech Methods 2020; 30:397-406. [PMID: 32208876 DOI: 10.1080/15376516.2020.1747125] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aims: Polyphyllin I, a steroidal saponin in Rhizoma paridis, which possess broad application prospects in cancer prevention and treatment. The purpose of this study was to determine the potential cytotoxicity and mechanism of Polyphyllin I in HepG2 cells.Main methods: In this study, we used MTT to evaluate cell survival. Cell apoptosis rate, cell cycle distribution, mitochondrial membrane potential and ros levels were measured by flow cytometry, and the expression of apoptosis-related proteins was determined by Western blot analysis.Key findings: Polyphyllin I significantly reduced cell viability and induced HepG2 cell apoptosis in a dose and time-dependent manner. Compared with the control group, it could induce reactive oxygen species (ROS) generation and depolarization of matrix metalloproteinases in liver cells. Polyphyllin I dose-dependent increased the release of mitochondrial cytochrome c, and levels of Fas, p53, p21, and Bax/Bcl-2 ratios, as well as the activation of cleaved caspase-3, -8, -9, and subsequent cleavage of the poly (ADP-ribose) polymerase (PARP). The G2/M phase cell cycle arrest was induced by increasing the expression of p21 and cyclin E1, and significantly reducing the expression of cyclin A2 and CDK2.Significance: Our results suggested that Polyphylin I inhibited cell proliferation and growth by triggering G2/M cell cycle arrest, and induced apoptosis through intracellular and extracellular apoptosis pathways to cause cell death by generating reactive oxygen species.
Collapse
Affiliation(s)
- Yawen Zeng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenping Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Changhai Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Luo H, Xu Y, Sun D, Cheng Y, Sun Z, Gao J, Zhang Y, Wang X. Assessment of the inhibition risk of paris saponins, bioactive compounds from Paris polyphylla, on CYP and UGT enzymes via cocktail inhibition assays. Regul Toxicol Pharmacol 2020; 113:104637. [PMID: 32145316 DOI: 10.1016/j.yrtph.2020.104637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 11/17/2022]
Abstract
Paris saponins, also known as polyphyllins, are natural compounds extracted from Paris polyphylla, which have many pharmacological activities, such as anti-inflammation and anti-cancer. In particular, paris saponin I, II, VII and polyphyllin VI are the components of the quality standard for Paris polyphylla. However, the inhibition risk of polyphyllins on cytochrome P450 (CYP) and UDP-glucuronosyltransferases (UGT) remains unclear. Therefore, this report investigated the potential inhibitory effects of paris saponin I, II, VII and polyphyllin VI on the activities of CYP (CYP1A2, CYP2B1, CYP2C11, CYP2D1, CYP2E1 and CYP3A2) and UGT (UGT1A1, UGT1A3, UGT1A6, PROG and AZTG) through cocktail inhibition assays in vitro. In the study of CYP, polyphyllin VI exhibited weak inhibition on CYP2D1 activity in rat liver microsomes with IC50 value at 45.2 μM, while paris saponin VII weakly inhibited CYP2C11 and CYP2E1 activities with IC50 value at 42.0 and 67.7 μM, respectively. In the study of UGT, none of the four steroidal saponins showed significant inhibition risk. In conclusion, paris saponin I, II, VII and polyphyllin VI have very low potential to cause the possible toxicity and drug interactions involving CYP and UGT enzymes, indicating that they are safe enough to take with drugs.
Collapse
Affiliation(s)
- Han Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongyi Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhenliang Sun
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China.
| | - Jing Gao
- College of Life Sciences, Northwest University, Xi'an, China
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
18
|
Wang W, Liu Y, Sun M, Sai N, You L, Dong X, Yin X, Ni J. Hepatocellular Toxicity of Paris Saponins I, II, VI and VII on Two Kinds of Hepatocytes-HL-7702 and HepaRG Cells, and the Underlying Mechanisms. Cells 2019; 8:cells8070690. [PMID: 31324003 PMCID: PMC6678998 DOI: 10.3390/cells8070690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 01/28/2023] Open
Abstract
Rhizoma paridis is a popularly-used Chinese medicine in clinics, based on the pharmacodynamic properties of its saponin components. The four main saponins in Rhizoma paridis are designated saponins I, II, VI, and VII. At present, much attention is focused on the anticancer effect of Rhizoma paridis which is manifested in its cytotoxicity to various cancer cells. The purpose of this study was to investigate the hepatocellular toxicities of the four saponins in Rhizoma paridis and the relative intensities of their cytotoxic effects. It was found that the four saponins were cytotoxic to two types of hepatocytes-HL-7702 and HepaRG cells. The cytotoxicities of the four saponins to the two cell models were compared. One of the most cytotoxic saponins was Rhizoma paridis saponin I (PSI). This was used to determine the mechanism of hepatocellular toxicity. Results from MTT assays demonstrated that the four saponins induced apoptosis of the two hepatocyte models in a dose-dependent and time-dependent manner. In addition, fluorescent 4′,6-diamidino-2-phenylindole (DAPI) staining was used to observe the morphological changes of HepaRG cells after saponin administration. Further, as the concentration increased, PSI-induced lactate dehydrogenase (LDH) release from HepaRG cells increased gradually. In addition, PSI enhanced the levels of reactive oxygen species (ROS) and blocked the S and G2 phases of the cell cycle in HepaRG cells. A western blot indicated that PSI upregulated the protein expression levels of p53, p21, and Fas. Furthermore, the PSI-induced changes in the p53 protein increased the Bax/bcl-2 ratio, resulting in enhancement of the release of mitochondrial cytochrome c, activation of caspases-3, -8, and -9, poly-ADP ribose polymerase (PARP), and ultimately apoptosis. Increased Fas protein activated caspase-8, which led to the activation of caspase-3 and its downstream PARP protein, resulting in cell apoptosis. These results indicate that PSI induced apoptosis in HepaRG cells through activation of ROS and death receptor pathways. The results obtained in this study suggest that the hepatocellular toxicity of saponins in Rhizoma paridis should be considered during the clinical application of this drug. In addition, they provide a reference for future anti-cancer studies on Rhizoma paridis.
Collapse
Affiliation(s)
- Wenping Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Mingyi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Na Sai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Jian Ni
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
19
|
Naoe A, Tsuchiya T, Kondo Y, Uga N, Watanabe S, Yasui T, Hara F, Suzuki T. Arctigenin induces apoptosis in human hepatoblastoma cells. Pediatr Surg Int 2019; 35:723-728. [PMID: 30891641 DOI: 10.1007/s00383-019-04473-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Arctigenin has been shown to have anti-tumor effects in various types of cancers. This study was conducted to verify these effects in the human-derived hepatoblastoma cell line, HUH-6 clone 5 (hereinafter, HUH-6). METHODS Arctigenin was added to cultured HUH-6 cells, and cellular activity was evaluated by MTS assay. To determine the relationship between reduced cellular activity and apoptosis, we measured the activities of caspase 3/7, 8, and 9 and conducted flow cytometry with Annexin V/PI staining. RESULTS The MTS assay revealed that cellular activity decreased after arctigenin treatment in a concentration-dependent manner (IC50 = 4 µM). To investigate apoptosis induction, activity assays of caspase 3/7, 8, and 9 were performed. While caspase 3/7 and 8 exhibited high activity, caspase 9 showed no activity. Thus, apoptosis induction may have involved the action of tumor necrosis factor receptor 1 (TNFR1). Flow cytometry conducted with Annexin V/PI staining revealed the occurrence of early apoptosis. CONCLUSION We found that arctigenin has anti-tumor effects in HUH-6 cells in a concentration-dependent manner. Arctigenin may have exerted its anti-tumor effect by inducing apoptosis via TNFR1, which recruits Complex IIa to activate caspase 8 and 3/7. These results may be useful for developing therapeutic agents for hepatoblastoma.
Collapse
Affiliation(s)
- Atsuki Naoe
- Pediatric Surgery Department, Fujita Health University, Toyoake, Japan.
| | - Tomonori Tsuchiya
- Pediatric Surgery Department, Fujita Health University, Toyoake, Japan
| | - Yasuhiro Kondo
- Pediatric Surgery Department, Fujita Health University, Toyoake, Japan
| | - Naoko Uga
- Pediatric Surgery Department, Fujita Health University, Toyoake, Japan
| | - Shunsuke Watanabe
- Pediatric Surgery Department, Fujita Health University, Toyoake, Japan
| | - Toshihiro Yasui
- Pediatric Surgery Department, Fujita Health University, Toyoake, Japan
| | - Fujio Hara
- Pediatric Surgery Department, Fujita Health University, Toyoake, Japan
| | - Tatsuya Suzuki
- Pediatric Surgery Department, Fujita Health University, Toyoake, Japan
| |
Collapse
|
20
|
Molecular Mechanisms of Apoptosis in HepaRG Cell Line Induced by Polyphyllin VI via the Fas Death Pathway and Mitochondrial-Dependent Pathway. Toxins (Basel) 2018; 10:toxins10050201. [PMID: 29762502 PMCID: PMC5983257 DOI: 10.3390/toxins10050201] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/27/2022] Open
Abstract
Polyphyllin VI, which is an active saponin, is mainly isolated from traditional medicinal plant Paris polyphylla, which causes liver damage in rats. In the present study, we aimed to explore the potential cytotoxicity of polyphyllin VI on the growth of HepaRG cells and to determine the molecular mechanism. The results revealed that polyphyllin VI changed cell morphology and induced apoptosis in HepaRG cells. Flow cytometric assay displayed that polyphyllin VI promoted the generation of reactive oxygen species (ROS), depolarized the mitochondrial membrane potential (MMP), and induced S phase cell cycle arrest by decreasing the expression of cyclin A2 and CDK2, while significantly increasing the expression of p21 protein. Polyphyllin VI induced the release of cytochrome c from the mitochondria to the cytosol and activated Fas, caspase-3, -8, -9, and PARP proteins. Pretreatment with NAC and Z-VAD-FMK (ROS scavenger and caspase inhibitor, respectively) on HepaRG cells increased the percentage of viable cells, which indicated that polyphyllin VI induced cell apoptosis through mitochondrial pathway by the generation of ROS and Fas death-dependent pathway. All of the effects are in dose- and time-dependent manners. Taken together, these findings emphasize the necessity of risk assessment to polyphyllin VI and offer an insight into polyphyllin VI-induced apoptosis of HepaRG cells.
Collapse
|
21
|
Lu Z, Wang H, Zhu M, Song W, Wang J, Wu C, Kong Y, Guo J, Li N, Liu J, Li Y, Xu H. Ophiopogonin D', a Natural Product From Radix Ophiopogonis, Induces in Vitro and in Vivo RIPK1-Dependent and Caspase-Independent Apoptotic Death in Androgen-Independent Human Prostate Cancer Cells. Front Pharmacol 2018; 9:432. [PMID: 29760660 PMCID: PMC5936779 DOI: 10.3389/fphar.2018.00432] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/12/2018] [Indexed: 12/26/2022] Open
Abstract
Objective: The purpose of this study was to evaluate the anticancer effects of Ophiopogonin D′ (OPD′, a natural product extracted from a traditional Chinese medicine (Radix Ophiopogonis) against androgen-independent prostate cancer cells and to explore the underlying molecular mechanism(s) of action. Methods: The CCK-8 assay was used to assess the viability of prostate cancer cells. The cell morphology was examined by an ultrastructural analysis via transmission electron microscopy. Cells in apoptosis (early and late stages) were detected using an Annexin V-FITC/propidium iodide kit with a FACSCaliber flow cytometer. JC-1, a cationic lipophilic probe, was employed to measure the mitochondrial membrane potential (MMP) of PC3 cells. Changes in the protein expression of RIPK1, C-RIPK1, caspase 8, cleaved-caspase 8, Bim, Bid, caspase 10, and cleaved-caspase 10 were evaluated by Western blotting. The mRNA expression of Bim was examined by quantitative real-time reverse transcription polymerase chain reaction. Z-VAD-FMK (a caspase inhibitor) and necrostatin-1 (a specific inhibitor of RIPK1) were utilized to determine whether the cell death was mediated by RIPK1 or caspases. PC3 and DU145 xenograft models in BALB/c nude mice were used to evaluate the anticancer activity of OPD′ in vivo. Results: OPD′ was shown to exert potent anti-tumor activity against PC3 cells. It induced apoptosis via a RIPK1-related pathway, increased the protein expression levels of RIPK1 and Bim, and decreased the levels of cleaved-RIPK1, caspase 8, cleaved-caspase 8, Bid, caspase 10, and cleaved-caspase 10. OPD′ also increased the mRNA expression of Bim. The protein expression of Bim was decreased when cells were pre-treated with necrostatin-1. Treatment with OPD′ inhibited the growth of PC3 and DU145 xenograft tumors in BALB/c nude mice. Conclusion: OPD′ significantly inhibited the in vitro and in vivo growth of prostate cells via RIPK1, suggesting that OPD′ may be developed as a potential anti-prostate cancer agent.
Collapse
Affiliation(s)
- Zongliang Lu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - He Wang
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Mingxing Zhu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Wei Song
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Jiajia Wang
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China.,Department of Clinical Nutrition, Yubei District People's Hospital, Chongqing, China
| | - Changpeng Wu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Ya Kong
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Jing Guo
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Na Li
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Jie Liu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Yanwu Li
- Pharmacy College, Chongqing Medical University, Chongqing, China
| | - Hongxia Xu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| |
Collapse
|
22
|
New Steroidal Saponins from the Rhizomes of Paris vietnamensis and Their Cytotoxicity. Molecules 2018; 23:molecules23030588. [PMID: 29509694 PMCID: PMC6017139 DOI: 10.3390/molecules23030588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 02/28/2018] [Accepted: 03/04/2018] [Indexed: 11/23/2022] Open
Abstract
Four new spirostanol saponins, named pavitnosides A–D (1–4), with six known steroidal saponins 5–10 were isolated from the rhizomes of Paris vietnamensis. Their chemical structures were determined based on extensive spectroscopic studies and chemical methods. The aglycones of pavitnoside B and pavitnoside C were not reported in previous work. The cytotoxicity of all saponins was evaluated against human glioblastoma U87MG and U251 cell lines. The new spirostanol saponin 1 displayed weak anti-proliferative activity against U87MG cell line and the known saponins 8 and 9 exhibited significant cytotoxicity against the two tumor cell lines, with IC50 values of 2.16 to 3.14 μM, but did not affect the growth of primary cultures of human astrocytes.
Collapse
|
23
|
Abstract
Neuroblastoma (NB) is the most common solid childhood tumor outside the brain and causes 15% of childhood cancer-related mortality. The main drivers of NB formation are neural crest cell-derived sympathoadrenal cells that undergo abnormal genetic arrangements. Moreover, NB is a complex disease that has high heterogeneity and is therefore difficult to target for successful therapy. Thus, a better understanding of NB development helps to improve treatment and increase the survival rate. One of the major causes of sporadic NB is known to be MYCN amplification and mutations in ALK (anaplastic lymphoma kinase) are responsible for familial NB. Many other genetic abnormalities can be found; however, they are not considered as driver mutations, rather they support tumor aggressiveness. Tumor cell elimination via cell death is widely accepted as a successful technique. Therefore, in this review, we provide a thorough overview of how different modes of cell death and treatment strategies, such as immunotherapy or spontaneous regression, are or can be applied for NB elimination. In addition, several currently used and innovative approaches and their suitability for clinical testing and usage will be discussed. Moreover, significant attention will be given to combined therapies that show more effective results with fewer side effects than drugs targeting only one specific protein or pathway.
Collapse
|