1
|
Sarabia-Sánchez MA, Tinajero-Rodríguez JM, Ortiz-Sánchez E, Alvarado-Ortiz E. Cancer Stem Cell markers: Symphonic masters of chemoresistance and immune evasion. Life Sci 2024; 355:123015. [PMID: 39182567 DOI: 10.1016/j.lfs.2024.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Cancer Stem Cells (CSCs) are highly tumorigenic, chemoresistant, and immune evasive. They emerge as a central driver that gives rise to the bulk of tumoral mass, modifies the tumor microenvironment (TME), and exploits it, leading to poor clinical outcomes for patients with cancer. The existence of CSCs thus accounts for the failure of conventional therapies and immune surveillance. Identifying CSCs in solid tumors remains a significant challenge in modern oncology, with the use of cell surface markers being the primary strategy for studying, isolating, and enriching these cells. In this review, we explore CSC markers, focusing on the underlying signaling pathways that drive CSC self-renewal, which simultaneously makes them intrinsically chemoresistant and immune system evaders. We comprehensively discuss the autonomous and non-autonomous functions of CSCs, with particular emphasis on their interactions with the tumor microenvironment, especially immune cells. This reciprocal network enhances CSCs malignancy while compromising the surrounding niche, ultimately defining therapeutic vulnerabilities associated with each CSC marker. The most common CSCs surface markers addressed in this review-CD44, CD133, ICAM1/CD54, and LGR5-provide insights into the interplay between chemoresistance and immune evasion, two critically important phenomena in disease eradication. This new perspective on the state-of-the-art of CSCs will undoubtedly open new avenues for therapy.
Collapse
Affiliation(s)
- Miguel Angel Sarabia-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - José Manuel Tinajero-Rodríguez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México; Tecnológico Nacional de México, Tecnológico de Estudios Superiores de Huixquilucan, México
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México
| | - Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, México; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
2
|
Yang G, Cao Y, Yang X, Cui T, Tan NZV, Lim YK, Fu Y, Cao X, Bhandari A, Enikeev M, Efetov S, Balaban V, He M. Advancements in nanomedicine: Precision delivery strategies for male pelvic malignancies - Spotlight on prostate and colorectal cancer. Exp Mol Pathol 2024; 137:104904. [PMID: 38788248 DOI: 10.1016/j.yexmp.2024.104904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Pelvic malignancies consistently pose significant global health challenges, adversely affecting the well-being of the male population. It is anticipated that clinicians will continue to confront these cancers in their practice. Nanomedicine offers promising strategies that revolutionize the treatment of male pelvic malignancies by providing precise delivery methods that aim to improve the efficacy of therapeutic outcomes while minimizing side effects. Nanoparticles are designed to encapsulate therapeutic agents and selectively target cancer cells. They can also be loaded with theragnostic agents, enabling multifunctional capabilities. OBJECTIVE This review aims to summarize the latest nanomedicine research into clinical applications, focusing on nanotechnology-based treatment strategies for male pelvic malignancies, encompassing chemotherapy, radiotherapy, immunotherapy, and other cutting-edge therapies. The review is structured to assist physicians, particularly those with limited knowledge of biochemistry and bioengineering, in comprehending the functionalities and applications of nanomaterials. METHODS Multiple databases, including PubMed, the National Library of Medicine, and Embase, were utilized to locate and review recently published articles on advancements in nano-drug delivery for prostate and colorectal cancers. CONCLUSION Nanomedicine possesses considerable potential in improving therapeutic outcomes and reducing adverse effects for male pelvic malignancies. Through precision delivery methods, this emerging field presents innovative treatment modalities to address these challenging diseases. Nevertheless, the majority of current studies are in the preclinical phase, with a lack of sufficient evidence to fully understand the precise mechanisms of action, absence of comprehensive pharmacotoxicity profiles, and uncertainty surrounding long-term consequences.
Collapse
Affiliation(s)
- Guodong Yang
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Te Cui
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Yuen Kai Lim
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yu Fu
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Xinren Cao
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aanchal Bhandari
- HBT Medical College and Dr. R N Cooper Municipal General Hospital, Mumbai, India
| | - Mikhail Enikeev
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Sergey Efetov
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir Balaban
- Clinic of Coloproctology and Minimally Invasive Surgery, Sechenov University, Moscow, Russia
| | - Mingze He
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia.
| |
Collapse
|
3
|
Wang XW, Jiang YH, Ye W, Shao CF, Xie JJ, Li X. SIRT1 promotes the progression and chemoresistance of colorectal cancer through the p53/miR-101/KPNA3 axis. Cancer Biol Ther 2023; 24:2235770. [PMID: 37575080 PMCID: PMC10431729 DOI: 10.1080/15384047.2023.2235770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023] Open
Abstract
INTRODUCTION Sirtuin 1 (SIRT1) is a key modulator in several types of cancer, including colorectal cancer (CRC). Here, we probed into the molecular mechanism of SIRT1 regulating the development and chemoresistance of CRC. METHODS Differentially expressed genes related to the growth, metastasis and chemoresistance of CRC were identified by bioinformatics analysis. The expression of SIRT1 in clinical tissues from CRC patients and CRC cell lines was detected by RT-qPCR. Interactions among SIRT1, p53, miR-101 and KPNA3 were analyzed. The effect of SIRT1 on the cell viability, migration, invasion, epithelial-mesenchymal transformation and chemoresistance to 5-FU was evaluated using loss-function investigations in CRC cells. Finally, a xenograft model of CRC and a metastasis model were constructed for further exploration of the roles of SIRT1 in vivo. RESULTS SIRT1 was elevated in CRC tissues and cell lines. SIRT1 decreased p53 via deacetylation, and consequently downregulated the expression of miR-101 while increasing that of the miR-101 target gene KPNA3. By this mechanism, SIRT1 enhanced the proliferation, migration, invasion, epithelial-mesenchymal transformation, and resistance to 5-FU of CRC cells. In addition, in vivo data also showed that SIRT1 promoted the growth, metastasis and chemoresistance to 5-FU of CRC cells via regulation of the p53/miR-101/KPNA3 axis. CONCLUSIONS In conclusion, SIRT1 can function as an oncogene in CRC by accelerating the growth, metastasis and chemoresistance to 5-FU of CRC cells through the p53/miR-101/KPNA3 axis.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- Department of Anorectal Surgery, The First People’s Hospital of Wenling, Wenling, China
| | - Ying-Hao Jiang
- Department of Anorectal Surgery, The First People’s Hospital of Wenling, Wenling, China
| | - Wei Ye
- Department of Anorectal Surgery, The First People’s Hospital of Wenling, Wenling, China
| | - Chun-Fa Shao
- Department of Anorectal Surgery, The First People’s Hospital of Wenling, Wenling, China
| | - Jian-Jin Xie
- Department of Anorectal Surgery, The First People’s Hospital of Wenling, Wenling, China
| | - Xia Li
- Department of Anorectal Surgery, The First People’s Hospital of Wenling, Wenling, China
| |
Collapse
|
4
|
Chiriac MT, Hracsko Z, Becker C, Neurath MF. STAT2 Controls Colorectal Tumorigenesis and Resistance to Anti-Cancer Drugs. Cancers (Basel) 2023; 15:5423. [PMID: 38001683 PMCID: PMC10670206 DOI: 10.3390/cancers15225423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Colorectal cancer (CRC) is a significant socioeconomic burden in modern society and is accountable for millions of premature deaths each year. The role of signal transducer and activator of transcription 2 (STAT2)-dependent signaling in this context is not yet fully understood, and no therapies targeting this pathway are currently being pursued. We investigated the role of STAT2 in CRC using experimental mouse models coupled with RNA-sequencing (RNA-Seq) data and functional assays with anti-cancer agents in three-dimensional tumoroids. Stat2-/- mice showed greater resistance to the development of CRC in both inflammation-driven and inflammation-independent experimental CRC models. In ex vivo studies, tumoroids derived from Stat2-/- mice with the multiple intestinal neoplasia (Min) mutant allele of the adenomatous polyposis coli (Apc) locus exhibited delayed growth, were overall smaller and more differentiated as compared with tumoroids from ApcMin/+ wildtype (WT) mice. Notably, tumoroids from ApcMin/+ Stat2-/- mice were more susceptible to anti-cancer agents inducing cell death by different mechanisms. Our findings clearly indicated that STAT2 promotes CRC and suggested that interventions targeting STAT2-dependent signals might become an attractive therapeutic option for patients with CRC.
Collapse
Affiliation(s)
- Mircea T. Chiriac
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Zsuzsanna Hracsko
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
- Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Clevenger AJ, McFarlin MK, Collier CA, Sheshadri VS, Madyastha AK, Gorley JPM, Solberg SC, Stratman AN, Raghavan SA. Peristalsis-Associated Mechanotransduction Drives Malignant Progression of Colorectal Cancer. Cell Mol Bioeng 2023; 16:261-281. [PMID: 37811008 PMCID: PMC10550901 DOI: 10.1007/s12195-023-00776-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/21/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction In the colorectal cancer (CRC) tumor microenvironment, cancerous and precancerous cells continuously experience mechanical forces associated with peristalsis. Given that mechanical forces like shear stress and strain can positively impact cancer progression, we explored the hypothesis that peristalsis may also contribute to malignant progression in CRC. We defined malignant progression as enrichment of cancer stem cells and the acquisition of invasive behaviors, both vital to CRC progression. Methods We leveraged our peristalsis bioreactor to expose CRC cell lines (HCT116), patient-derived xenograft (PDX1,2) lines, or non-cancerous intestinal cells (HIEC-6) to forces associated with peristalsis in vitro. Cells were maintained in static control conditions or exposed to peristalsis for 24 h prior to assessment of cancer stem cell (CSC) emergence or the acquisition of invasive phenotypes. Results Exposure of HCT116 cells to peristalsis significantly increased the emergence of LGR5+ CSCs by 1.8-fold compared to static controls. Peristalsis enriched LGR5 positivity in several CRC cell lines, notably significant in KRAS mutant lines. In contrast, peristalsis failed to increase LGR5+ in non-cancerous intestinal cells, HIEC-6. LGR5+ emergence downstream of peristalsis was dependent on ROCK and Wnt activity, and not YAP1 activation. Additionally, HCT116 cells adopted invasive morphologies when exposed to peristalsis, with increased filopodia density and epithelial to mesenchymal gene expression, in a Wnt dependent manner. Conclusions Peristalsis associated forces drive malignant progression of CRC via ROCK, YAP1, and Wnt-related mechanotransduction. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00776-w.
Collapse
Affiliation(s)
- Abigail J. Clevenger
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Maygan K. McFarlin
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Claudia A. Collier
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Vibha S. Sheshadri
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Anirudh K. Madyastha
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - John Paul M. Gorley
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Spencer C. Solberg
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Amber N. Stratman
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Shreya A. Raghavan
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX USA
| |
Collapse
|
6
|
Xu H, Li W, Song X, Zhang H, Wang H, Wang J, Hu L, Li H, Sun X, Wang D. Expression and Prognostic Value of Lgr5 in Patients with Recurrent Nasopharyngeal Carcinoma. Int J Gen Med 2023; 16:2023-2034. [PMID: 37256083 PMCID: PMC10226542 DOI: 10.2147/ijgm.s408991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Background As a cancer stem cells (CSCs) surface marker, Lgr5 plays an important role in the signal transduction of cancer cells and is a potential biomarker for cancer diagnosis and prognosis. However, the expression and prognostic value of Lgr5 in recurrent nasopharyngeal carcinoma (rNPC) remains ambiguous. Materials We used RNA sequencing to screen differentially expressed mRNAs in eleven specimens of rNPC tissues and five fresh adjacent normal tissue samples and the CSC marker, Lgr5, was identified. The expression level of Lgr5 in rNPC samples was also detected by immunohistochemistry and Western blot assay. The chi-square test was used to analyze the relationship between the clinicopathological variables and the immunostaining of Lgr5. The Log-rank method was used for prognosis analysis. The Cox regression model was used for univariate and multivariate analysis. Results Significantly elevated expression of Lgr5 in the rNPC tissues was observed compared to the normal tissues using RNA sequencing, Western blot and immunohistochemistry. The expression of Lgr5 was significantly correlated with the T stage (P=0.014). High Lgr5 expression (P=0.007), tumor necrosis (P=0.013) and WHO type II (P=0.043) in rNPC patients exhibited worse overall survival (OS). Lgr5 expression was proved to be an independent risk factor for OS (P=0.035) in multivariate analyses, and had promising predictive value for survival and recurrence in rNPC patients (area under the ROC curve: 0.711 and 0.665, P=0.017 and 0.028, respectively). Conclusion Lgr5 as a CSC marker is a promising therapeutic target and could be employed to predict the survival prognosis of rNPC patients.
Collapse
Affiliation(s)
- Haoyuan Xu
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Wanpeng Li
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xiaole Song
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Huankang Zhang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Huan Wang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jingjing Wang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Li Hu
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Houyong Li
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xicai Sun
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Dehui Wang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Inflammation-Related Signature Profile Expression as a Poor Prognosis Marker after Oxaliplatin Treatment in Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24043821. [PMID: 36835258 PMCID: PMC9965239 DOI: 10.3390/ijms24043821] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Oxaliplatin is successfully used to eradicate micro-metastasis and improve survival, whereas the benefit of adjuvant chemotherapy in the early stages of colorectal cancer remains controversial. Inflammation plays a crucial role in colorectal cancer tumorigenesis. Inflammatory mechanisms are mediated by different immune cells through different cytokines, chemokines, and other proinflammatory molecules that trigger cell progression, an increase of cancer stem cell population, hyperplasia, and metastasis. This study focuses on the analysis of the oxaliplatin effect on tumourspheres formation efficiency, cell viability, cancer stem cells and stemness marker mRNA expression, as well as inflammation-related signature profile expression and its prognosis in primary- and metastatic-derived colorectal tumourspheres derived from colorectal cell lines isolated from the same patient 1 year apart. The results indicate that primary-derived colorectal tumourspheres respond to oxaliplatin, adapting to the adverse conditions through the modulation of CSCs and the stemness properties of tumourspheres. However, metastatic-derived colorectal tumourspheres response led to the release of cytokines and chemokines, promoting an inflammatory process. In addition, the expression of inflammatory markers showing greater difference between primary and metastatic tumours after oxaliplatin treatment correlates with poor prognosis in KM survival studies and is associated with a metastatic phenotype. Our data demonstrated that oxaliplatin triggers an inflammation-related signature profile expression in primary-derived colorectal tumourspheres, related with poor prognosis and a metastatic phenotype, which allow the tumour cells to adapt to the adverse condition. These data highlight the need for of drug testing and personalized medicine in the early stages of colorectal cancer.
Collapse
|
8
|
Wijewantha N, Sane S, Eikanger M, Antony RM, Potts RA, Lang L, Rezvani K, Sereda G. Enhancing Anti-Tumorigenic Efficacy of Eugenol in Human Colon Cancer Cells Using Enzyme-Responsive Nanoparticles. Cancers (Basel) 2023; 15:cancers15041145. [PMID: 36831488 PMCID: PMC9953800 DOI: 10.3390/cancers15041145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
This study is focused on the selective delivery and release of the plant-based anticancer compound eugenol (EUG) in colorectal cancer cells (CRC). EUG is an apoptotic and anti-growth compound in diverse malignant tumors, including CRC. However, EUG's rapid metabolization, excretion, and side effects on normal cells at higher dosages are major limitations of its therapeutic potential. To address this problem, we developed a "smart" enzyme-responsive nanoparticle (eNP) loaded with EUG that exposes tumors to a high level of the drug while keeping its concentration low among healthy cells. We demonstrated that EUG induces apoptosis in CRC cells irrespective of their grades in a dose- and time-dependent manner. EUG significantly decreases cancer cell migration, invasion, and the population of colon cancer stem cells, which are key players in tumor metastasis and drug resistance. The "smart" eNPs-EUG show a high affinity to cancer cells with rapid internalization with no affinity toward normal colon epithelial cells. NPs-EUG enhanced the therapeutic efficacy of EUG measured by a cell viability assay and showed no toxicity effect on normal cells. The development of eNPs-EUG is a promising strategy for innovative anti-metastatic therapeutics.
Collapse
Affiliation(s)
- Nisitha Wijewantha
- Department of Chemistry, The University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA
| | - Sanam Sane
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Morgan Eikanger
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Ryan M. Antony
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Rashaun A. Potts
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Lydia Lang
- Department of Chemistry, The University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA
| | - Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
- Correspondence: (K.R.); (G.S.)
| | - Grigoriy Sereda
- Department of Chemistry, The University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA
- Correspondence: (K.R.); (G.S.)
| |
Collapse
|
9
|
Cancer stem cell marker expression and methylation status in patients with colorectal cancer. Oncol Lett 2022; 24:231. [PMID: 35720495 PMCID: PMC9185140 DOI: 10.3892/ol.2022.13352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
The number of individuals diagnosed with colorectal cancer (CRC) has been on an alarming upward trajectory over the past decade. In some countries, this cancer represents one of the most frequently diagnosed types of neoplasia. Therefore, it is an important demand to study the pathology underlying this disease to gain insights into the mechanism of resistance to treatment. Resistance of tumors to chemotherapy and tumor aggressiveness have been associated with a minor population of neoplastic cells, which are considered to be responsible for tumor recurrence. These types of neoplastic cells are known as cancer stem cells, which have been previously reported to serve an important role in pathogenesis of this malignant disease. Slovakia has one of the highest incidence rates of CRC worldwide. In the present study, the aim was to classify the abundance of selected stem cell markers (CD133, CD166 and Lgr5) in CRC tumors using flow cytometry. In addition, the methylation status of selected genomic regions of CRC biomarkers (ADAMTS16, MGMT, PROM1 (CD133), LGR5 and ALCAM) was investigated by pyrosequencing in a cohort of patients from Martin University Hospital, Martin, Slovakia. Samples from both primary tumors and metastatic tumors were tested. Analysis of DNA methylation in the genomic regions of indicated five CRC biomarkers was also performed, which revealed the highest levels of methylation in the A disintegrin and metalloproteinase with thrombospondin motifs 16 and O6-methyguanine-DNA methyl transferase genes, whereas the lowest levels of methylation were found in genes expressing prominin-1, leucine-rich repeat-containing G-protein-coupled receptor 5 and activated leukocyte cell adhesion molecule. Furthermore, tumor tissues from metastases showed significantly higher levels of CD133+ cells compared with that in primary tumors. Higher levels of CD133+ cells correlated with TNM stage and the invasiveness of CRC into the lymphatic system. Although relatively small number of samples was processed, CD133 marker was consider to be important marker in pathology of CRC.
Collapse
|
10
|
Descarpentrie J, Araúzo-Bravo MJ, He Z, François A, González Á, Garcia-Gallastegi P, Badiola I, Evrard S, Pernot S, Creemers JWM, Khatib AM. Role of Furin in Colon Cancer Stem Cells Malignant Phenotype and Expression of LGR5 and NANOG in KRAS and BRAF-Mutated Colon Tumors. Cancers (Basel) 2022; 14:1195. [PMID: 35267511 PMCID: PMC8909039 DOI: 10.3390/cancers14051195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 01/01/2023] Open
Abstract
Proprotein convertases or PCs are known to regulate the malignant phenotype of colon cancer cells by different mechanisms, but their effects on cancer stem cells (CSCs) have been less widely investigated. Here, we report that PCs expression is altered in colon CSCs, and the inhibition of their activity reduced colon CSCs growth, survival, and invasion in three-dimensional spheroid cultures. In vivo, repression of PCs activity by the general PC inhibitors α1-PDX, Spn4A, or decanoyl-RVKR-chloromethylketone (CMK) significantly reduced tumor expression levels of the stem cell markers LGR5 and NANOG that are associated with reduced tumor xenografts. Further analysis revealed that reduced tumor growth mediated by specific silencing of the convertase Furin in KRAS or BRAF mutated-induced colon tumors was associated with reduced expression of LGR5 and NANOG compared to wild-type KRAS and BRAF tumors. Analysis of various calcium regulator molecules revealed that while the calcium-transporting ATPase 4 (ATP2B4) is downregulated in all the Furin-silenced colon cancer cells, the Ca2+-mobilizing P2Y receptors, was specifically repressed in BRAF mutated cells and ORAI1 and CACNA1H in KRAS mutated cells. Taken together, our findings indicate that PCs play an important role in the malignant phenotype of colon CSCs and stem cell markers' expression and highlight PCs repression, particularly of Furin, to target colon tumors with KRAS or BRAF mutation.
Collapse
Affiliation(s)
- Jean Descarpentrie
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, C/Doctor Beguiristain s/n, 20014 San Sebastian, Spain;
| | - Zongsheng He
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing 400042, China;
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium;
| | - Alexia François
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
| | - Álvaro González
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
| | - Patricia Garcia-Gallastegi
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Serge Evrard
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
- Institut Bergonié, 33000 Bordeaux, France;
| | | | - John W. M. Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium;
| | - Abdel-Majid Khatib
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
- Institut Bergonié, 33000 Bordeaux, France;
| |
Collapse
|
11
|
Abdelrahman AE, El-Azony A, Elsebai E, Ibrahim HM. Prognostic Impact of LGR5, Prox1, and Notch1 Biomarkers in Stage II to III Colon Cancer. Appl Immunohistochem Mol Morphol 2022; 30:126-135. [PMID: 34657081 DOI: 10.1097/pai.0000000000000983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
The potentiation and activation of Wnt signaling pathways are now assumed to mediate the self-renewal and proliferation of colon cancer stem cells that are responsible for therapeutic resistance, tumor relapse, and metastasis. We aimed to evaluate LGR5, Prox1, and Notch1 immunohistochemical expression in stage II to III colon cancer. Their predictive role of tumor relapse, overall survival, and disease-free survival was statistically analyzed. Our results revealed that high LGR5 expression was identified in 56.7% of the patients, LGR5 expression was significantly associated with left-sided tumors (P<0.001). Moreover, its expression was significantly associated with the unfavorable tumor characteristics including high grade, deep invasion (pT), lymph node metastasis, and advanced tumor stage (P<0.001 for each). High Prox1 expression was observed in 65% of the cases, and its expression was significantly associated with tumor grade, lymph node metastasis, and the advanced tumor stage (P=0.004, 0.009, 0.016, respectively). Positive Notch1 expression was identified in 35% of patients, and it was inversely associated with high grade lymph node metastasis, deep invasion (pT), and advanced tumor stage (P<0.001 for each). During the follow-up period, the tumor relapse was significantly associated with high LGR5, high Prox1, and negative Notch1 expression. Shorter overall survival and disease-free survival were significantly associated with high LGR5, high Prox1, and negative Notch1 expression. High LGR5, high Prox1, and negative Notch1 expression are unfavorable prognostic factors in colon cancer. Prox1 is a crucial regulator of Notch-independent LGR5+ stem cells that is mostly responsible for relapse and therapeutic resistance in stage II to III colon cancer.
Collapse
Affiliation(s)
| | - Ahmed El-Azony
- Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman Elsebai
- Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
12
|
Mohan A, Raj Rajan R, Mohan G, Kollenchery Puthenveettil P, Maliekal TT. Markers and Reporters to Reveal the Hierarchy in Heterogeneous Cancer Stem Cells. Front Cell Dev Biol 2021; 9:668851. [PMID: 34150761 PMCID: PMC8209516 DOI: 10.3389/fcell.2021.668851] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
A subpopulation within cancer, known as cancer stem cells (CSCs), regulates tumor initiation, chemoresistance, and metastasis. At a closer look, CSCs show functional heterogeneity and hierarchical organization. The present review is an attempt to assign marker profiles to define the functional heterogeneity and hierarchical organization of CSCs, based on a series of single-cell analyses. The evidences show that analogous to stem cell hierarchy, self-renewing Quiescent CSCs give rise to the Progenitor CSCs with limited proliferative capacity, and later to a Progenitor-like CSCs, which differentiates to Proliferating non-CSCs. Functionally, the CSCs can be tumor-initiating cells (TICs), drug-resistant CSCs, or metastasis initiating cells (MICs). Although there are certain marker profiles used to identify CSCs of different cancers, molecules like CD44, CD133, ALDH1A1, ABCG2, and pluripotency markers [Octamer binding transcriptional factor 4 (OCT4), SOX2, and NANOG] are used to mark CSCs of a wide range of cancers, ranging from hematological malignancies to solid tumors. Our analysis of the recent reports showed that a combination of these markers can demarcate the heterogeneous CSCs in solid tumors. Reporter constructs are widely used for easy identification and quantification of marker molecules. In this review, we discuss the suitability of reporters for the widely used CSC markers that can define the heterogeneous CSCs. Since the CSC-specific functions of CD44 and CD133 are regulated at the post-translational level, we do not recommend the reporters for these molecules for the detection of CSCs. A promoter-based reporter for ABCG2 may also be not relevant in CSCs, as the expression of the molecule in cancer is mainly regulated by promoter demethylation. In this context, a dual reporter consisting of one of the pluripotency markers and ALDH1A1 will be useful in marking the heterogeneous CSCs. This system can be easily adapted to high-throughput platforms to screen drugs for eliminating CSCs.
Collapse
Affiliation(s)
- Amrutha Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Reshma Raj Rajan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Gayathri Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | |
Collapse
|
13
|
Kopenhaver J, Crutcher M, Waldman SA, Snook AE. The shifting paradigm of colorectal cancer treatment: a look into emerging cancer stem cell-directed therapeutics to lead the charge toward complete remission. Expert Opin Biol Ther 2021; 21:1335-1345. [PMID: 33977849 DOI: 10.1080/14712598.2021.1929167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Colorectal cancer (CRC) is one of the most common forms of cancer worldwide and is the second leading cause of cancer-related death in the United States. Despite advances in early detection, ~25% of patients are late stage, and treated patients have <12% chance of survival after five years. Tumor relapse and metastasis are the main causes of patient death. Cancer stem cells (CSCs) are a rare population of cancer cells characterized by properties of self-renewal, chemo- and radio-resistance, tumorigenicity, and high plasticity. These qualities make CSCs particularly important for metastasic seeding, DNA-damage resistance, and tumor repopulating.Areas Covered: The following review article focuses on the role of CRC-SCs in tumor initiation, metastasis, drug resistance, and tumor relapse, as well as on potential therapeutic options for targeting CSCs.Expert Opinion: Current studies are underway to better isolate and discriminate CSCs from normal stem cells and to produce CSC-targeted therapeutics. The intestinal receptor, guanylate cyclase C (GUCY2C) could potentially provide a unique therapeutic target for both non-stem cells and CSCs alike in colorectal cancer through immunotherapies. Indeed, immunotherapies targeting CSCs have the potential to break the treatment-recurrence cycle in the management of advanced malignancies.
Collapse
Affiliation(s)
- Jessica Kopenhaver
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States
| | - Madison Crutcher
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States.,Department of Surgery, Thomas Jefferson University, Philadelphia, United States
| | - Scott A Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States
| |
Collapse
|
14
|
Azbazdar Y, Karabicici M, Erdal E, Ozhan G. Regulation of Wnt Signaling Pathways at the Plasma Membrane and Their Misregulation in Cancer. Front Cell Dev Biol 2021; 9:631623. [PMID: 33585487 PMCID: PMC7873896 DOI: 10.3389/fcell.2021.631623] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Wnt signaling is one of the key signaling pathways that govern numerous physiological activities such as growth, differentiation and migration during development and homeostasis. As pathway misregulation has been extensively linked to pathological processes including malignant tumors, a thorough understanding of pathway regulation is essential for development of effective therapeutic approaches. A prominent feature of cancer cells is that they significantly differ from healthy cells with respect to their plasma membrane composition and lipid organization. Here, we review the key role of membrane composition and lipid order in activation of Wnt signaling pathway by tightly regulating formation and interactions of the Wnt-receptor complex. We also discuss in detail how plasma membrane components, in particular the ligands, (co)receptors and extracellular or membrane-bound modulators, of Wnt pathways are affected in lung, colorectal, liver and breast cancers that have been associated with abnormal activation of Wnt signaling. Wnt-receptor complex components and their modulators are frequently misexpressed in these cancers and this appears to correlate with metastasis and cancer progression. Thus, composition and organization of the plasma membrane can be exploited to develop new anticancer drugs that are targeted in a highly specific manner to the Wnt-receptor complex, rendering a more effective therapeutic outcome possible.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Mustafa Karabicici
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Esra Erdal
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
15
|
Kang XL, He LR, Chen YL, Wang SB. Role of doublecortin-like kinase 1 and leucine-rich repeat-containing G-protein-coupled receptor 5 in patients with stage II/III colorectal cancer: Cancer progression and prognosis. World J Gastroenterol 2020; 26:6853-6866. [PMID: 33268966 PMCID: PMC7684452 DOI: 10.3748/wjg.v26.i43.6853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/29/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are a subpopulation of cancer cells with the potential of self-renewal and differentiation. CSCs play critical roles in tumorigenesis, recurrence, metastasis, radiation tolerance and chemoresistance.
AIM To assess the expression patterns and clinical potential of doublecortin-like kinase 1 (DCLK1) and leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5), as prognostic CSC markers of colorectal cancer (CRC).
METHODS The expression of DCLK1 and Lgr5 in CRC tissue sections from 92 patients was determined by immunohistochemistry. Each case was evaluated using a combined scoring method based on signal intensity staining (scored 0-3) and the proportion of positively stained cancer cells (scored 0-3). The final staining score was calculated as the intensity score multiplied by the proportion score. Low expression of DCLK1 and Lgr5 was defined as a score of 0-3; high expression of DCLK1 and Lgr5 was defined as a score of ≥ 4. Specimens were categorized as either high or low expression, and the correlation between the expression of DCLK1 or Lgr5 and clinicopathological factors was investigated.
RESULTS DCLK1 and Lgr5 expression levels were significantly positively correlated. CRC patients with high DCLK1, Lgr5 and DCLK1/Lgr5 expressions had poorer progression-free survival and overall survival. Moreover, high expression of DCLK1 was an independent prognostic factor for recurrence and overall survival in patients with CRC by multivariate analysis (P = 0.026 and P = 0.049, respectively).
CONCLUSION DCLK1 may be a potential CSC marker for the recurrence and survival of CRC patients.
Collapse
Affiliation(s)
- Xue-Ling Kang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong Province, China
| | - Li-Rui He
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Yao-Li Chen
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Shu-Bin Wang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, China Cancer Institute of Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong Province, China
| |
Collapse
|
16
|
Lai S, Cheng R, Gao D, Chen YG, Deng C. LGR5 constitutively activates NF-κB signaling to regulate the growth of intestinal crypts. FASEB J 2020; 34:15605-15620. [PMID: 33001511 DOI: 10.1096/fj.202001329r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 01/09/2023]
Abstract
Mammalian LGR5 and LGR4, markers of adult stem cells, are involved in many physiological functions by enhancing WNT signaling. However, whether LGR5 and LGR4 are coupled to other intracellular signaling pathways to regulate stem cell function remains unknown. Here, we show that LGR5 and LGR4 can constitutively activate NF-κB signaling in a ligand-independent manner, which is dependent on their C-termini, but independent of receptor endocytosis. Moreover, the C-termini of LGR5/4 interact with TROY, which is required for activating NF-κB signaling. In small intestinal crypt organoids, overexpression of a C-terminal deletion mutant of LGR5 inhibits the growth and bud formation of organoids, whereas overexpression of the R-spondin-binding mutant of LGR5 that is defective for WNT signaling can still promote organoid growth. Our study reveals that NF-κB signaling, regulated by LGR5 and LGR4, plays an important role in the survival of colon cancer cells and the growth of intestinal crypts. Our findings also suggest that LGR5/4-induced NF-κB signaling and WNT signaling may co-regulate the growth of LGR5+ adult stem cells and intestinal crypts.
Collapse
Affiliation(s)
- Shanshan Lai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ran Cheng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Dan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
17
|
Correlation of clinicopathological features and LGR5 expression in colon adenocarcinoma. Ann Diagn Pathol 2020; 48:151587. [PMID: 32829068 DOI: 10.1016/j.anndiagpath.2020.151587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Colon cancer stem cells (CSCs) are closely related to tumorigenesis and treatment response, and LGR5 is currently the most robust and reliable CSC marker in colorectal cancer (CRC). However, LGR5 expression in CRC tumor budding (TB) is not well understood. We examined the clinicopathological and prognostic significance of LGR5 in CRC TB. LGR5 expression was evaluated by RNAscope, a newly developed RNA in situ hybridization technique, using a tissue microarray consisting of 55 patient samples of TB in colon adenocarcinoma (CA) selected from the medical archives at our hospital. Patients were stratified into negative and positive LGR5 expression groups. Tumor-infiltrating lymphocytes (TILs) and histological grade were lower in the LGR5-positive group compared with the LGR5-negative group (P = .0407 and P = .0436, respectively). There was no significant difference in overall survival between the LGR5-positive group and the LGR5-negative group (log-rank test, P = .6931). LGR5 expression did not remain a predictor of prognosis in univariate analysis (OR = 0.84, 95% CI: 0.33-2.02, P = .6928). LGR5 expression may be affected by TILs, which have been demonstrated to be associated with worse prognosis in the budding area of CA and is an important potential marker of prognosis.
Collapse
|
18
|
Gzil A, Zarębska I, Jaworski D, Antosik P, Durślewicz J, Maciejewska J, Domanowska E, Skoczylas-Makowska N, Ahmadi N, Grzanka D, Szylberg Ł. The prognostic value of leucine-rich repeat-containing G-protein (Lgr5) and its impact on clinicopathological features of colorectal cancer. J Cancer Res Clin Oncol 2020; 146:2547-2557. [PMID: 32671503 PMCID: PMC7467967 DOI: 10.1007/s00432-020-03314-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022]
Abstract
Introduction Colorectal cancer (CRC) constitutes one of the most prevalent malignancies in the world. Recent research suggests that cancer stem cells (CSCs) are responsible for tumor cell’s malignant behavior in CRC. This study has been designed to determinate clinical implications of CSC markers: CD44, DCLK1, Lgr5, and ANXA2 in CRC. Materials and methods The study was performed on tissue samples which were collected from 89 patients undergoing colectomy. Formalin-fixed paraffin-embedded tissue blocks with representative tumor areas were identified and corded. Immunohistochemical staining was performed using anti-CD44, anti-LGR5, anti-ANXA2, and anti-DCLK1 antibodies. The H-score system was utilized to determine the immunointensity of CRC cells. Results The lower expression of Lgr5 was significantly correlated with the presence of lymph-node metastases (p = 0.011), while high expression of Lgr5 was statistically significant in vascular invasion in examined cancer tissue samples (p = 0.027). Moreover, a high H-score value of Lgr5 expression was significantly related to a reduced overall survival rate (p = 0.043). Conclusion Our results suggest a strong relationship between CSC marker Lgr5 and vascular invasion, presence of lymph-node metastasis, and overall poor survival. The presence of Lgr5 might be an unfavorable prognostic factor, and its high level in cancer tissue is related to an aggressive course. This marker could also be used to access the effectiveness of the treatment.
Collapse
Affiliation(s)
- Arkadiusz Gzil
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland. .,Nicolaus Copernicus University, Toruń, Poland.
| | - Izabela Zarębska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland.,Nicolaus Copernicus University, Toruń, Poland
| | - Damian Jaworski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland.,Nicolaus Copernicus University, Toruń, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland.,Nicolaus Copernicus University, Toruń, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland.,Nicolaus Copernicus University, Toruń, Poland
| | - Joanna Maciejewska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland.,Nicolaus Copernicus University, Toruń, Poland
| | - Ewa Domanowska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland.,Nicolaus Copernicus University, Toruń, Poland
| | - Natalia Skoczylas-Makowska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland.,Nicolaus Copernicus University, Toruń, Poland
| | - Navid Ahmadi
- Chair and Department of Oncologic Pathology and Prophylactics, Greater Poland Cancer Center, Poznan University of Medical Sciences, Poznan, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland.,Nicolaus Copernicus University, Toruń, Poland
| | - Łukasz Szylberg
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland.,Nicolaus Copernicus University, Toruń, Poland.,Department of Pathomorphology, Military Clinical Hospital, Bydgoszcz, Poland.,Department of Tumor Pathology and Pathomorphology, Oncology Center, Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| |
Collapse
|
19
|
Conciatori F, Bazzichetto C, Falcone I, Ferretti G, Cognetti F, Milella M, Ciuffreda L. Colorectal cancer stem cells properties and features: evidence of interleukin-8 involvement. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:968-979. [PMID: 35582268 PMCID: PMC9019202 DOI: 10.20517/cdr.2019.56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) still remains a disease with high percentage of death, principally due to therapy resistance and metastasis. During the time the hypothesis has been reinforced that CRC stem cells (CRCSC) are involved in allowing intratumoral heterogeneity, drug escape mechanisms and secondary tumors. CRCSC are characterized by specific surface markers (i.e., CD44 and CD133), signaling pathways activation (i.e., Wnt and Notch) and gene expression (i.e., Oct4 and Snail), which confer to CRCSC self-renewal abilities and pluripotent capacity. Interleukin (IL)-8 is correlated to CRC progression, development of liver metastases and chemoresistance; moreover, IL-8 modulates not only stemness maintenance but also stemness promotion, such as epithelial-mesenchymal transition. This review wants to give a brief and up-to-date overview on IL-8 implication in CRCSC cues.
Collapse
Affiliation(s)
- Fabiana Conciatori
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Chiara Bazzichetto
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Italia Falcone
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Gianluigi Ferretti
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona 37126, Italy
| | - Ludovica Ciuffreda
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy.,SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| |
Collapse
|
20
|
Yang WJ, Wang HB, Wang WD, Bai PY, Lu HX, Sun CH, Liu ZS, Guan DK, Yang GW, Zhang GL. A network-based predictive gene expression signature for recurrence risks in stage II colorectal cancer. Cancer Med 2019; 9:179-193. [PMID: 31724326 PMCID: PMC6943157 DOI: 10.1002/cam4.2642] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/07/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
The current criteria for defining the recurrence risks of stage II colorectal cancer (CRC) are not robust; therefore, we aimed to explore novel gene signatures to predict recurrence risks and to reveal the underlying mechanisms of stage II CRC. First, the gene expression profiles of 124 patients with stage II CRC from The Cancer Genome Atlas (TCGA) database were obtained to screen differentially expressed genes (DEGs). A total of 202 DEGs, including 128 upregulated and 74 downregulated, were identified in the recurrence group (n = 24) compared to the nonrecurrence group (n = 100). Furthermore, the top 5 DEGs (ZNF561, WFS1, SLC2A1, MFI2, and PTGR1) were identified by random forest variable hunting, and four (ZNF561, WFS1, SLC2A1, and PTGR1) were selected to create a four‐gene recurrent model (GRM), with an area under the curve (AUC) of 0.882 according to the receiver operating characteristic curve, and the robust diagnostic effectiveness of the GRM was further validated with another gene expression profiling dataset (GSE12032), with an AUC of 0.943. The diagnostic effectiveness of the GRM regarding recurrence was associated with poor disease‐free survival in all stages of CRC. In addition, gene ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed 18 enriched functions and 6 enriched pathways. Four genes, ABCG2, CACNA1F, CYP19A1, and TF, were identified as hub genes by the protein‐protein interaction network, which further validated that these genes were correlated with a poor pathologic stage and overall survival in all stages of CRC. In conclusion, the GRM can effectively classify stage II CRC into groups of high and low risks of recurrence, thereby making up for the prognostic value of the traditional clinicopathological risk factors defined by the National Comprehensive Cancer Network guidelines. The hub genes may be useful therapeutic targets for recurrence. Thus, the GRM and hub genes could offer clinical value in directing individualized and precision therapeutic regimens for stage II CRC patients.
Collapse
Affiliation(s)
- Wen-Jing Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hai-Bo Wang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Wen-Da Wang
- Department of Anorectal Surgery, Shanxi Cancer Hospital, Taiyuan, China
| | - Peng-Yu Bai
- Department of Anorectal Surgery, Shanxi Cancer Hospital, Taiyuan, China
| | - Hong-Xia Lu
- Department of Gastroenterology, Shanxi Cancer Hospital, Taiyuan, China
| | - Chang-He Sun
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zi-Shen Liu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ding-Kun Guan
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Guo-Wang Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Gan-Lin Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Correlation of clinicopathological features and LGR5 expression in colon adenocarcinoma. Ann Diagn Pathol 2019; 40:161-165. [PMID: 31100646 DOI: 10.1016/j.anndiagpath.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 01/16/2023]
Abstract
Colon cancer stem cells (CSCs) are closely related to tumorigenesis and treatment response, and LGR5 is currently the most robust and reliable CSC marker in colorectal cancer (CRC). However, LGR5 expression in CRC tumor budding (TB) is not well understood. We examined the clinicopathological and prognostic significance of LGR5 in CRC TB. LGR5 expression was evaluated by RNAscope, a newly developed RNA in situ hybridization technique, using a tissue microarray consisting of 55 patient samples of TB in colon adenocarcinoma (CA) selected from the medical archives at our hospital. Patients were stratified into negative and positive LGR5 expression groups. Inflammatory cell infiltration was weaker and histological grade was lower in the LGR5-positive group compared with the LGR5-negative group (P = 0.0407 and P = 0.0436, respectively). There was a significant difference in OS between the LGR5-positive group and LGR5-negative group (log-rank test, P = 0.0088). Cox proportional hazards models revealed that the LGR5-positive group (Overall survival (OS) = 0.37, 95% CI: 0.17-0.79, P = 0.0101) had better OS. LGR5 expression may be affected by inflammatory cell infiltration in the budding area of CA and is an important potential marker of prognosis.
Collapse
|
22
|
Nagata H, Ishihara S, Abe H, Ushiku T, Kishikawa J, Tanaka T, Hata K, Kawai K, Fukayama M, Nozawa H. LGR5 expression predicts peritoneal recurrence after curative resection of primary colon cancer. Br J Cancer 2019; 120:996-1002. [PMID: 31000786 PMCID: PMC6734652 DOI: 10.1038/s41416-019-0442-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 02/16/2019] [Accepted: 03/13/2019] [Indexed: 12/30/2022] Open
Abstract
Background The aim of this study was to clarify whether a cancer stem cell marker could be an indicator of post-operative peritoneal recurrence of colon cancer. Methods Expression of four putative markers (CD133, CD44 variant 6, aldehyde dehydrogenase-1 and leucine-rich repeating G-protein-coupled receptor-5 (LGR5)) was evaluated immunohistochemically in primary tumour samples from 292 patients who underwent curative resection for non-metastasised pT4 colon cancer at the University of Tokyo Hospital between 1997 and 2015. Results Peritoneal recurrence was significantly higher in LGR5-negative cases (5-year cumulative incidence: 27.5% vs. 14.4%, p = 0.037). Multivariable analysis confirmed that negative LGR5 expression was an independent risk factor for peritoneal recurrence (hazard ratio (HR) 2.79, p = 0.005) in addition to poor differentiation, positive lymph node metastasis, preoperative carcinoembryonic antigen > 5 ng/mL and anastomotic leakage. The addition of LGR5 significantly improved the predictive value of the multivariable model (net reclassification improvement: 0.186, p = 0.028: integrated discrimination improvement: 0.047, p = 0.008). Conclusions Negative LGR5 expression was a significant predictor of peritoneal recurrence in patients with pT4 colon cancer. Therefore, LGR5 might be a promising biomarker to identify patients at high risk of post-operative peritoneal metastasis.
Collapse
Affiliation(s)
- Hiroshi Nagata
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan.
| | - Soichiro Ishihara
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Abe
- Department of Pathology, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, The University of Tokyo, Tokyo, Japan
| | - Junko Kishikawa
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Tanaka
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Keisuke Hata
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Kazushige Kawai
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | | | - Hiroaki Nozawa
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Han SH, Kim JW, Kim M, Kim JH, Lee KW, Kim BH, Oh HK, Kim DW, Kang SB, Kim H, Shin E. Prognostic implication of ABC transporters and cancer stem cell markers in patients with stage III colon cancer receiving adjuvant FOLFOX-4 chemotherapy. Oncol Lett 2019; 17:5572-5580. [PMID: 31186779 PMCID: PMC6507487 DOI: 10.3892/ol.2019.10234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/20/2019] [Indexed: 01/15/2023] Open
Abstract
Cancer stem cell (CSC) and ATP-binding cassette (ABC) transporters are associated with treatment resistance and outcomes of patients with cancer. The present study investigated the prognostic implications of pre-therapeutic expression of ABC transporters and CSC markers in patients with colon cancer (CC) who received adjuvant 5-fluorouracil, leucovorin and oxaliplatin combination therapy (FOLFOX-4). The immunohistochemical expression of 3 ABC transporters, including ABC subfamily C member 2 (ABCC2), ABCC3 and ABC subfamily G member 2 (ABCG2), and 3 CSC markers, including sex determining region Y-box 2 (SOX2), leucine-rich repeat-containing G protein-coupled receptor 5 and aldehyde dehydrogenase 1, were determined in 164 CC tissues from patients with stage III CC, who underwent postoperative FOLFOX-4 chemotherapy. The association between the protein expression and patients' prognoses was statistically analyzed. ABCG2 was associated with favorable overall survival rate (OS; P=0.001), and ABCC2, ABCG2 and SOX2 were associated with increased disease-free survival rate (DFS; P=0.001, 0.002 and 0.013, respectively). In multivariate analyses, ABCG2 was an independent prognostic factor for OS [hazard ratio (HR)=2.877; P=0.046], and ABCC2 and SOX2 were independent prognostic factors for DFS (HR=2.831; P=0.014; HR=2.558, P=0.020, respectively). ABCC2, ABCG2 and SOX2 may be promising prognostic markers for patients with CC receiving FOLFOX-4 therapy.
Collapse
Affiliation(s)
- Song-Hee Han
- Department of Pathology, Dong-A University School of Medicine, Busan, South Gyeongsang 49201, Republic of Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Milim Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Bo-Hyung Kim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University College of Medicine and Hospital, Seoul 02447, Republic of Korea
| | - Heung-Kwon Oh
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Duck-Woo Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Sung-Bum Kang
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Hyunchul Kim
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi 18450, Republic of Korea
| | - Eun Shin
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea.,Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi 18450, Republic of Korea
| |
Collapse
|
24
|
Shekarriz R, Montazer F, Alizadeh-Navaei R. Overexpression of cancer stem cell marker Lgr5 in colorectal cancer patients and association with clinicopathological findings. CASPIAN JOURNAL OF INTERNAL MEDICINE 2019; 10:412-416. [PMID: 31814939 PMCID: PMC6856925 DOI: 10.22088/cjim.10.4.411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND To determine the expression of cancer stem cell marker Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) in colorectal carcinoma samples compared to normal adjacent tissue and any possible association with clinicopathological findings. METHODS This study was performed on forty samples of cancerous colorectal tissues (case group) and their adjacent normal mucosa (control group) in Imam Khomeini Hospital (Sari, Mazandaran, Iran). Expression of Lgr5 in tissue sections was done by immunohistochemistry. Statistical analysis was carried out using SPSS software. RESULTS Forty colorectal cancer patients including 21 males (57.8±11.6 years) and 19 females (58.4±12.77 years) were enrolled. Lgr5 was overexpressed in tumoral samples than normal adjacent tissues (77.5% vs 27.5%, p<0.001). Also, no association was found between primary tumor, regional lymph nodes, invasion, histological type, grade, distant metastasis and IHC results. Patients with low Lgr5 expression had a better survival rate than patients with high expression but this was not statistically significant (p=0.121). CONCLUSION The higher immunoreactivity of Lgr5 in colorectal cancer tissues may indicate its role as a cancer stem cell marker in tumor carcinogenesis and patient's survival however; Lgr5 is not associated with pathological prognostic variables.
Collapse
Affiliation(s)
- Ramin Shekarriz
- Department of Hematology and Oncology, Gastrointestinal Cancer Research Center, Mazandaran University of Medical Science, Sari, Iran
| | - Fatemeh Montazer
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Science, Sari, Iran
- Correspondence: Fatemeh Montazer, Gastrointestinal Cancer Research Center, Mazandaran University of Medical Science, Sari, Iran. E-mail: , Tel: 0098 2151048, Fax: 0098 2155900243
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Science, Sari, Iran
| |
Collapse
|
25
|
Liu XS, Lin XK, Mei Y, Ahmad S, Yan CX, Jin HL, Yu H, Chen C, Lin CZ, Yu JR. Regulatory T Cells Promote Overexpression of Lgr5 on Gastric Cancer Cells via TGF-beta1 and Confer Poor Prognosis in Gastric Cancer. Front Immunol 2019; 10:1741. [PMID: 31417548 PMCID: PMC6682668 DOI: 10.3389/fimmu.2019.01741] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/10/2019] [Indexed: 01/26/2023] Open
Abstract
Background: The leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5) is considered a cancer stem cell marker, and is often overexpressed in tumors. The interaction between Lgr5 and the immune-related tumor microenvironment is not completely understood. The aim of this study was to examine the role of Lgr5 in the microenvironment of gastric cancer (GC), and to explore possible immunological mechanisms influencing Lgr5 expression that are governed by regulatory T cells. Methods: Lgr5 expression was examined in 180 GC tumors by immunohistochemistry, and in 80 pairs of GC tumors for analysis of Th1/Th2 cytokines by ELISA. In addition, SGC7901 cells were co-cultured with patient-derived Tregs, varying concentrations of TGF-β1, TGF-β1 neutralizing antibody, or TGF-β receptor inhibitor SB431542, and Lgr5 and β-catenin expression were examined by qRT-PCR and western blot. Results: In this study, an immunosuppressive microenvironment was associated with high Lgr5 expression in GC. Furthermore, Lgr5 expression was up-regulated in GC cells co-cultured with Tregs or treated with exogenous TGF-β1. This up-regulation was partially inhibited by the TGF-β1 neutralizing antibody, or TGF-β1 receptor antagonist SB431542. β-catenin was up-regulated with high Lgr5 expression induced by exogenous TGF-β1, and this up-regulation was inhibited by SB431542. An increased number of Tregs and high Lgr5 expression in GC tissues were significantly associated with low overall survival. Conclusion: Tregs promoted increased Lgr5 expression in GC cells via TGF-β1 and TGF-β1 signaling pathway, which may involve activation of the Wnt signaling pathway. High Lgr5 expression via TGF-β confer poor prognosis in gastric cancer.
Collapse
Affiliation(s)
- Xiao-Sun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Xian-Ke Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Mei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sabir Ahmad
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chong-Xian Yan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Long Jin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cai-Zhao Lin
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ji-Ren Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Ji-Ren Yu
| |
Collapse
|
26
|
Jang BG, Kim HS, Chang WY, Bae JM, Kim WH, Kang GH. Expression Profile of LGR5 and Its Prognostic Significance in Colorectal Cancer Progression. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2236-2250. [PMID: 30036518 DOI: 10.1016/j.ajpath.2018.06.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
We investigated the expression profile of leucine-rich, repeat-containing, G-protein-coupled receptor 5 (LGR5) during colorectal cancer (CRC) progression and determined the prognostic impact of LGR5 in a large cohort of CRC samples. LGR5 expression was higher in CRCs than in normal mucosa, and was not associated with other cancer stem cell markers. LGR5 positivity was observed in 68% of 788 CRCs and was positively correlated with older age, moderately to well-differentiated cells, and nuclear β-catenin expression. Enhanced LGR5 expression remained persistent during the adenoma-carcinoma transition, but markedly declined in the budding cancer cells at the invasive fronts, which was not due to altered wingless-type mouse mammary tumor virus integration site family (Wnt) or epithelial-mesenchymal transition signaling. LGR5 showed negative correlations with microsatellite instability and CpG island methylator phenotype, and was not associated with KRAS or BRAF mutation. Notably, LGR5 positivity was an independent prognostic marker for better clinical outcomes in CRC patients. LGR5 overexpression attenuated tumor growth by decreasing ERK phosphorylation along with decreased colony formation and migration abilities in DLD1 cells. Likewise, knockdown of LGR5 expression resulted in a decline in the colony-forming and migration capacities in LoVo cells. Taken together, our data suggest a suppressive role of LGR5 in CRC progression.
Collapse
Affiliation(s)
- Bo Gun Jang
- Department of Pathology, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Hye Sung Kim
- Department of Pathology, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Weon Young Chang
- Department of General Surgery, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Jeong Mo Bae
- Department of Pathology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo Ho Kim
- Department of Pathology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Qin Y, Chen X, Liu Z, Tian X, Huo Z. miR-106a Reduces 5-Fluorouracil (5-FU) Sensitivity of Colorectal Cancer by Targeting Dual-Specificity Phosphatases 2 (DUSP2). Med Sci Monit 2018; 24:4944-4951. [PMID: 30011263 PMCID: PMC6067019 DOI: 10.12659/msm.910016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND 5-Fluorouracil (5-FU)-based chemotherapy is a conventional therapeutic approach for the treatment of patients with colorectal cancer (CRC). However, development of 5-FU resistance frequently occurs. We explored a potential method for regulating the sensitivity to 5-FU-based chemotherapy in CRC patients. MATERIAL AND METHODS Cell viability was determined by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Gene expression levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Protein expression levels were evaluated by Western blot. TargetScan was used for the prediction of binding sites for miRNA in mRNAs. The interaction between mRNA 3'UTR and miRNA was verified by dual luciferase reporter assay. Tissue samples were obtained from 33 CRC patients who received surgery at Xingtai People's Hospital. RESULTS miR-106a level was associated with 5-FU sensitivity in CRC cells. Overexpression of miR-106a reduced 5-FU sensitivity of HCT116 and SW620 cells, and antagonist of miR-106a sensitized HCT116 and SW620 towards 5-FU. miR-106a overexpression decreased dual-specificity phosphatases 2 (DUSP2) expression at mRNA and protein levels in HCT116 and SW620 cells. Through downregulation of DUSP2, miR-106a elevation increased COX-2 expression and stemness-maintenance genes (SOX2 and OCT4). Furthermore, we predicted that miR-106a directly binds to 3'UTR of DUSP2 mRNA, which was confirmed by dual luciferase assay. Silencing of DUSP2 reversed elevated 5-FU sensitivity induced by miR-106a antagonist in HCT116 cells. A negative correlation was discovered between miR-106a and DUSP2 in tumor samples of CRC patients. CONCLUSIONS miR-106a plays an important role in mediating response to 5-FU-based chemotherapy in CRC and could serve as a potential target for CRC patients.
Collapse
Affiliation(s)
- Yan Qin
- Surgical Department of Gastrointestinal Neoplasms, Xingtai People's Hospital, Xingtai, Hebei, China (mainland)
| | - Xiao Chen
- Departments of Anesthesiology, Xingtai People's Hospital, Xingtai, Hebei, China (mainland)
| | - Zhihu Liu
- Surgical Department of Gastrointestinal Neoplasms, Xingtai People's Hospital, Xingtai, Hebei, China (mainland)
| | - Xiaopeng Tian
- Department of Hepatobiliary Surgery, Xingtai People's Hospital, Xingtai, Hebei, China (mainland)
| | - Zhibin Huo
- Surgical Department of Gastrointestinal Neoplasms, Xingtai People's Hospital, Xingtai, Hebei, China (mainland)
| |
Collapse
|
28
|
Wang W, Wan L, Wu S, Yang J, Zhou Y, Liu F, Wu Z, Cheng Y. Mesenchymal marker and LGR5 expression levels in circulating tumor cells correlate with colorectal cancer prognosis. Cell Oncol (Dordr) 2018; 41:495-504. [PMID: 29949050 DOI: 10.1007/s13402-018-0386-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2018] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The presence of circulating tumor cells (CTCs) has been found to correlate with colorectal cancer (CRC) prognosis, whereas epithelial-mesenchymal transition (EMT) in CTCs has been found to be associated with CRC metastasis. LGR5 is a known target of Wnt signaling and plays an important role in CRC development. The aim of this study was to assess the clinical relevance of EMT and LGR5 expression in CTCs from CRC patients. METHODS Sixty-six CRC patients were included in this study. The detection and expression of EMT phenotypes in CTCs from these patients were assessed using CanPatrol™ CTC enrichment and mRNA in situ hybridization (ISH), respectively. LGR5 expression in the CTCs was assessed using mRNA ISH. RESULTS CTCs were detected in 86.4% (57/66) of the CRC patients included. Both the numbers of total CTCs and of CTCs displaying a mesenchymal phenotype (M+ CTCs) were found to significantly correlate with advanced disease stages and the occurrence of metastasis (p < 0.05). An adjusted multivariate analysis also indicated that the number of M+ CTCs significantly correlated with the occurrence of metastasis (p = 0.031). Additionally, we found that a high LGR5 expression level significantly correlated with the occurrence of metastasis (p < 0.05). We also found that the presence of ≥ 6 CTCs or ≥ 3 M+ CTCs per 5 ml blood significantly correlated with disease progression (p < 0.05). Patients with ≥ 6 CTCs or ≥ 3 M+ CTCs per 5 ml blood were found to exhibit poorer progression-free survival (PFS) and overall survival (OS) rates (p < 0.05 in all cases). Using Cox regression analyses, we found that only total CTC numbers remained as independent prognostic factors for a worse PFS (p = 0.043). CONCLUSIONS From our data we conclude that CTC numbers and EMT phenotypes may serve as prognostic markers for disease progression and metastasis in CRC patients. In addition, we conclude that LGR5 expression in CTCs may serve as a marker for CRC metastasis.
Collapse
Affiliation(s)
- Wuyi Wang
- Department of Gastrointestinal Surgery, The 1st Affiliated Hospital of CQMU, Chongqing, China
| | - Lin Wan
- Department of Gastrointestinal Surgery, The 1st Affiliated Hospital of CQMU, Chongqing, China
| | | | - Jianguo Yang
- Department of Gastrointestinal Surgery, The 1st Affiliated Hospital of CQMU, Chongqing, China
| | - Yang Zhou
- Department of Gastrointestinal Surgery, The 1st Affiliated Hospital of CQMU, Chongqing, China
| | - Fang Liu
- SurExam Bio-Tech Co., Guangzhou, China
| | | | - Yong Cheng
- Department of Gastrointestinal Surgery, The 1st Affiliated Hospital of CQMU, Chongqing, China.
| |
Collapse
|
29
|
Targeting LGR5 in Colorectal Cancer: therapeutic gold or too plastic? Br J Cancer 2018; 118:1410-1418. [PMID: 29844449 PMCID: PMC5988707 DOI: 10.1038/s41416-018-0118-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 12/14/2022] Open
Abstract
Leucine-rich repeat-containing G-protein coupled receptor (LGR5 or GPR49) potentiates canonical Wnt/β-catenin signalling and is a marker of normal stem cells in several tissues, including the intestine. Consistent with stem cell potential, single isolated LGR5+ cells from the gut generate self-organising crypt/villus structures in vitro termed organoids or 'mini-guts', which accurately model the parent tissue. The well characterised deregulation of Wnt/β-catenin signalling that occurs during the adenoma-carcinoma sequence in colorectal cancer (CRC) renders LGR5 an interesting therapeutic target. Furthermore, recent studies demonstrating that CRC tumours contain LGR5+ subsets and retain a degree of normal tissue architecture has heightened translational interest. Such reports fuel hope that specific subpopulations or molecules within a tumour may be therapeutically targeted to prevent relapse and induce long-term remissions. Despite these observations, many studies within this field have produced conflicting and confusing results with no clear consensus on the therapeutic value of LGR5. This review will recap the various oncogenic and tumour suppressive roles that have been described for the LGR5 molecule in CRC. It will further highlight recent studies indicating the plasticity or redundancy of LGR5+ cells in intestinal cancer progression and assess the overall merit of therapeutically targeting LGR5 in CRC.
Collapse
|
30
|
The silencing of replication protein A1 induced cell apoptosis via regulating Caspase 3. Life Sci 2018; 201:141-149. [DOI: 10.1016/j.lfs.2018.03.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/15/2023]
|
31
|
Mebarki M, Bennaceur A, Bonhomme-Faivre L. Human-cell-derived organoids as a new ex vivo model for drug assays in oncology. Drug Discov Today 2018; 23:857-863. [DOI: 10.1016/j.drudis.2018.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/19/2018] [Accepted: 02/04/2018] [Indexed: 12/13/2022]
|
32
|
Tucker DW, Getchell CR, McCarthy ET, Ohman AW, Sasamoto N, Xu S, Ko JY, Gupta M, Shafrir A, Medina JE, Lee JJ, MacDonald LA, Malik A, Hasselblatt KT, Li W, Zhang H, Kaplan SJ, Murphy GF, Hirsch MS, Liu JF, Matulonis UA, Terry KL, Lian CG, Dinulescu DM. Epigenetic Reprogramming Strategies to Reverse Global Loss of 5-Hydroxymethylcytosine, a Prognostic Factor for Poor Survival in High-grade Serous Ovarian Cancer. Clin Cancer Res 2018; 24:1389-1401. [PMID: 29263182 PMCID: PMC5951622 DOI: 10.1158/1078-0432.ccr-17-1958] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/11/2017] [Accepted: 12/14/2017] [Indexed: 01/10/2023]
Abstract
Purpose: A major challenge in platinum-based cancer therapy is the clinical management of chemoresistant tumors, which have a largely unknown pathogenesis at the level of epigenetic regulation.Experimental Design: We evaluated the potential of using global loss of 5-hydroxymethylcytosine (5-hmC) levels as a novel diagnostic and prognostic epigenetic marker to better assess platinum-based chemotherapy response and clinical outcome in high-grade serous tumors (HGSOC), the most common and deadliest subtype of ovarian cancer. Furthermore, we identified a targetable pathway to reverse these epigenetic changes, both genetically and pharmacologically.Results: This study shows that decreased 5-hmC levels are an epigenetic hallmark for malignancy and tumor progression in HGSOC. In addition, global 5-hmC loss is associated with a decreased response to platinum-based chemotherapy, shorter time to relapse, and poor overall survival in patients newly diagnosed with HGSOC. Interestingly, the rescue of 5-hmC loss restores sensitivity to platinum chemotherapy in vitro and in vivo, decreases the percentage of tumor cells with cancer stem cell markers, and increases overall survival in an aggressive animal model of platinum-resistant disease.Conclusions: Consequently, a global analysis of patient 5-hmC levels should be included in future clinical trials, which use pretreatment with epigenetic adjuvants to elevate 5-hmC levels and improve the efficacy of current chemotherapies. Identifying prognostic epigenetic markers and altering chemotherapeutic regimens to incorporate DNMTi pretreatment in tumors with low 5-hmC levels could have important clinical implications for newly diagnosed HGSOC disease. Clin Cancer Res; 24(6); 1389-401. ©2017 AACR.
Collapse
Affiliation(s)
- Douglass W Tucker
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher R Getchell
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eric T McCarthy
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anders W Ohman
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Naoko Sasamoto
- Epidemiology Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shuyun Xu
- Department of Pathology, Division of Dermatopathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joo Yeon Ko
- Department of Dermatology, Hanyang University College of Medicine, Seoul, Korea
| | - Mamta Gupta
- Epidemiology Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amy Shafrir
- Epidemiology Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jamie E Medina
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jonathan J Lee
- Department of Pathology, Division of Dermatopathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lauren A MacDonald
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts
| | - Ammara Malik
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts
| | - Kathleen T Hasselblatt
- Gynecologic Oncology Laboratory, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Wenjing Li
- Department of Medicine, Division of Endocrinology, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts
| | - Hong Zhang
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Samuel J Kaplan
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - George F Murphy
- Department of Pathology, Division of Dermatopathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michelle S Hirsch
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joyce F Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts
| | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts
| | - Kathryn L Terry
- Epidemiology Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Christine G Lian
- Department of Pathology, Division of Dermatopathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Daniela M Dinulescu
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
33
|
Maisonneuve C, Irrazabal T, Martin A, Girardin SE, Philpott DJ. The Impact of the Gut Microbiome on Colorectal Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Charles Maisonneuve
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| | - Thergiory Irrazabal
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| | - Stephen E. Girardin
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| |
Collapse
|
34
|
Tsoumas D, Nikou S, Giannopoulou E, Champeris Tsaniras S, Sirinian C, Maroulis I, Taraviras S, Zolota V, Kalofonos HP, Bravou V. ILK Expression in Colorectal Cancer Is Associated with EMT, Cancer Stem Cell Markers and Chemoresistance. Cancer Genomics Proteomics 2018; 15:127-141. [PMID: 29496692 PMCID: PMC5892607 DOI: 10.21873/cgp.20071] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/24/2018] [Accepted: 02/02/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIM Epithelial-mesenchymal transition (EMT) and cancer stem cells (CSC) are critically implicated in cancer metastasis and chemoresistance. Herein, we investigated integrin-linked kinase (ILK)'s role in human colon cancer (CRC) progression and chemoresistance in relation to EMT and CSC markers. PATIENTS AND METHODS Expression of ILK, EMT and CSC markers were evaluated by immunohistochemistry in 149 CRC samples. We also generated colon cancer cells resistant to 5-FU and oxaliplatin and studied the effect of ILK inhibition on drug response by MTT assay and on EMT and CSC markers' expression. RESULTS ILK expression in human CRC correlates with EMT and CSC markers and is associated with metastasis and chemoresistance. ILK inhibition increases sensitivity of resistant cells to 5-FU and oxaliplatin and reduces the levels of EMT and CSC markers in 5-FU resistant cells. CONCLUSION ILK overexpression in human CRC associates with EMT and CSC traits, contributing to tumor progression and chemoresistance.
Collapse
Affiliation(s)
- Dimitrios Tsoumas
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, Patras, Greece
| | - Sofia Nikou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, Patras, Greece
| | | | | | - Chaido Sirinian
- Clinical Oncology Laboratory, University of Patras Medical School, Patras, Greece
| | - Ioannis Maroulis
- Department of Surgery, University of Patras Medical School, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Vassiliki Zolota
- Department of Pathology, University of Patras Medical School, Patras, Greece
| | | | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
35
|
Paschall AV, Yang D, Lu C, Redd PS, Choi JH, Heaton CM, Lee JR, Nayak-Kapoor A, Liu K. CD133+CD24lo defines a 5-Fluorouracil-resistant colon cancer stem cell-like phenotype. Oncotarget 2018; 7:78698-78712. [PMID: 27659530 PMCID: PMC5346671 DOI: 10.18632/oncotarget.12168] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
The chemotherapeutic agent 5-Fluorouracil (5-FU) is the most commonly used drug for patients with advanced colon cancer. However, development of resistance to 5-FU is inevitable in almost all patients. The mechanism by which colon cancer develops 5-FU resistance is still unclear. One recently proposed theory is that cancer stem-like cells underlie colon cancer 5-FU resistance, but the phenotypes of 5-FU-resistant colon cancer stem cells are still controversial. We report here that 5-FU treatment selectively enriches a subset of CD133+ colon cancer cells in vitro. 5-FU chemotherapy also increases CD133+ tumor cells in human colon cancer patients. However, sorted CD133+ colon cancer cells exhibit no increased resistance to 5-FU, and CD133 levels exhibit no correlation with colon cancer patient survival or cancer recurrence. Genome-wide analysis of gene expression between sorted CD133+ colon cancer cells and 5-FU-selected colon cancer cells identifies 207 differentially expressed genes. CD24 is one of the genes whose expression level is lower in the CD133+ and 5-FU-resistant colon cancer cells as compared to CD133+ and 5-FU-sensitive colon cancer cells. Consequently, CD133+CD24lo cells exhibit decreased sensitivity to 5-FU. Therefore, we determine that CD133+CD24lo phenotype defines 5-FU-resistant human colon cancer stem cell-like cells.
Collapse
Affiliation(s)
- Amy V Paschall
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Jeong-Hyeon Choi
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | | | - Jeffrey R Lee
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Asha Nayak-Kapoor
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
36
|
Nishioka M, Suehiro Y, Sakai K, Matsumoto T, Okayama N, Mizuno H, Ueno K, Suzuki N, Hashimoto S, Takami T, Hazama S, Nagano H, Sakaida I, Yamasaki T. TROY is a promising prognostic biomarker in patients with colorectal cancer. Oncol Lett 2018; 15:5989-5994. [PMID: 29556315 DOI: 10.3892/ol.2018.8079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/07/2017] [Indexed: 12/15/2022] Open
Abstract
Tumor necrosis factor receptor superfamily member 19 (TROY) is involved in the Wnt/β-catenin signaling pathway and interacts with leucine-rich repeat containing G-protein-coupled receptor 5 (LGR5), which is a well-known biomarker of cancer stem cells and a prognostic marker of colorectal cancer (CRC). Because there have been no studies to evaluate the prognostic significance of TROY, we performed the present study to determine whether TROY can be a prognostic biomarker in CRC patients. We evaluated TROY expression levels in 100 CRC tissues by quantitative real-time PCR and investigated the association of TROY expression levels with clinicopathologic features. Cancer stage and TROY expression level were found to be independent prognostic factors of disease-free survival. Moreover, TROY overexpression was the sole independent prognostic factor of disease-free survival in patients with stage II and III CRC. These results suggest that analysis of TROY might help predict clinical outcome in patients with CRC. To support our findings, confirmatory studies using independent data sets are needed.
Collapse
Affiliation(s)
- Mitsuaki Nishioka
- Division of Laboratory, Yamaguchi University Hospital, Ube, Yamaguchi 755-8505, Japan
| | - Yutaka Suehiro
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Kouhei Sakai
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan.,Department of Gastroenterology, Showa Hospital, Shimonoseki, Yamaguchi 750-0059, Japan
| | - Toshihiko Matsumoto
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Naoko Okayama
- Division of Laboratory, Yamaguchi University Hospital, Ube, Yamaguchi 755-8505, Japan
| | - Hidekazu Mizuno
- Division of Laboratory, Yamaguchi University Hospital, Ube, Yamaguchi 755-8505, Japan
| | - Koji Ueno
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Shinichi Hashimoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Shoichi Hazama
- Department of Translational Research and Developmental Therapeutics Against Cancer, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Takahiro Yamasaki
- Division of Laboratory, Yamaguchi University Hospital, Ube, Yamaguchi 755-8505, Japan.,Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
37
|
Fiore D, Ramesh P, Proto MC, Piscopo C, Franceschelli S, Anzelmo S, Medema JP, Bifulco M, Gazzerro P. Rimonabant Kills Colon Cancer Stem Cells without Inducing Toxicity in Normal Colon Organoids. Front Pharmacol 2018; 8:949. [PMID: 29354056 PMCID: PMC5758598 DOI: 10.3389/fphar.2017.00949] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC), like other tumor types, is a highly heterogeneous disease. Within the tumor bulk, intra-tumoral heterogeneity is also ascribable to Cancer Stem Cells (CSCs) subpopulation, characterized by high chemoresistance and the unique ability to retain tumorigenic potential, thus associated to tumor recurrence. High dynamic plasticity of CSCs, makes the development of winning therapeutic strategies even more complex to completely eradicate tumor fuel. Rimonabant, originally synthesized as antagonist/inverse agonist of Cannabinoid Receptor 1, is able to inactivate Wnt signaling, both in vitro and in vivo, in CRC models, through inhibition of p300-histone acetyltransferase activity. Since Wnt/β-Catenin pathway is the main player underlying CSCs dynamic, this finding candidates Rimonabant as potential modulator of cancer stemness, in CRC. In this work, using established 3D cultures of primary colon CSCs, taking into account the tumor heterogeneity through monitoring of Wnt activity, we demonstrated that Rimonabant was able to reduces both tumor differentiated cells and colon CSCs proliferation and to control their survival in long term cultures. Interestingly, in ex vivo model of wild type human organoids, retaining both architecture and heterogeneity of original tissue, Rimonabant showed no toxicity against cells from healthy colon epithelium, suggesting its potential selectivity toward cancer cells. Overall, results from this work provided new insights on anti-tumor efficacy of Rimonabant, strongly suggesting that it could be a novel lead compound for CRC treatment.
Collapse
Affiliation(s)
- Donatella Fiore
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Prashanthi Ramesh
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academisch Medisch Centrum, University of Amsterdam, Amsterdam, Netherlands
| | - Maria C Proto
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Chiara Piscopo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | - Serena Anzelmo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Jan P Medema
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academisch Medisch Centrum, University of Amsterdam, Amsterdam, Netherlands
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | | |
Collapse
|
38
|
Overexpression of leucine-rich repeat-containing G protein-coupled receptor 5 predicts poor prognosis in hepatocellular carcinoma. Saudi J Biol Sci 2017; 25:904-908. [PMID: 30108439 PMCID: PMC6087805 DOI: 10.1016/j.sjbs.2017.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and the fifth leading cause of cancer-related death worldwide. Novel prognostic biomarkers are urgently needed for patients with HCC. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) overexpression may promote tumor metastasis in HCC. However, few studies investigate the prognosis predictive role of LGR5 in patients with HCC. Herein, we aimed to examine the expression level of LGR5 in tumors and its correlation with clinical characteristics and survivals of patients with HCC. LGR5 expression in tumor specimens and adjacent tissue resected from 66 patients were detected by immunohistochemistry. The results showed that the expression of LGR5 was markedly higher in HCC than in normal adjacent tissues (P = .006). High expression of LGR5 was significantly correlated with later disease stage (P = .009). In addition, high LGR5 expression was remarkably correlated with short overall survival than those with low LGR5 expression (P < .05). The median overall survival of patients with high LGR5 expression was 12 months, whereas that of patients with low LGR5 expression was still not reached (longer than 70 months). Notably, in our limited cases, we did not detect any difference in tumor size, lymphatic invasion, or metastasis in patients with high or low expression of LGR5. In conclusion, high protein level of LGR5 was associated with poor prognosis of these patients. LGR5 appears to be a valuable prognostic predictor clinically and a potential target in HCC therapy.
Collapse
|
39
|
Zhou Y, Xia L, Wang H, Oyang L, Su M, Liu Q, Lin J, Tan S, Tian Y, Liao Q, Cao D. Cancer stem cells in progression of colorectal cancer. Oncotarget 2017; 9:33403-33415. [PMID: 30279970 PMCID: PMC6161799 DOI: 10.18632/oncotarget.23607] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is one of the most common cancers worldwide with high mortality. Distant metastasis and relapse are major causes of patient death. Cancer stem cells (CSCs) play a critical role in the metastasis and relapse of colorectal cancer. CSCs are a subpopulation of cancer cells with unique properties of self-renewal, infinite division and multi-directional differentiation potential. Colorectal CSCs are defined with a group of cell surface markers, such as CD44, CD133, CD24, EpCAM, LGR5 and ALDH. They are highly tumorigenic, chemoresistant and radioresistant and thus are critical in the metastasis and recurrence of colorectal cancer and disease-free survival. This review article updates the colorectal CSCs with a focus on their role in tumor initiation, progression, drug resistance and tumor relapse.
Collapse
Affiliation(s)
- Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Heran Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qiang Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jingguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA
| |
Collapse
|
40
|
Cao B, Luo L, Feng L, Ma S, Chen T, Ren Y, Zha X, Cheng S, Zhang K, Chen C. A network-based predictive gene-expression signature for adjuvant chemotherapy benefit in stage II colorectal cancer. BMC Cancer 2017; 17:844. [PMID: 29237416 PMCID: PMC5729289 DOI: 10.1186/s12885-017-3821-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023] Open
Abstract
Background The clinical benefit of adjuvant chemotherapy for stage II colorectal cancer (CRC) is controversial. This study aimed to explore novel gene signature to predict outcome benefit of postoperative 5-Fu-based therapy in stage II CRC. Methods Gene-expression profiles of stage II CRCs from two datasets with 5-Fu-based adjuvant chemotherapy (training dataset, n = 212; validation dataset, n = 85) were analyzed to identify the indicator. A systemic approach by integrating gene-expression and protein-protein interaction (PPI) network was implemented to develop the predictive signature. Kaplan-Meier curves and Cox proportional hazards model were used to determine the survival benefit of adjuvant chemotherapy. Experiments with shRNA knock-down were carried out to confirm the signature identified in this study. Results In the training dataset, we identified 44 PPI sub-modules, by which we separate patients into two clusters (1 and 2) having different chemotherapeutic benefit. A predictor of 11 PPI sub-modules (11-PPI-Mod) was established to discriminate the two sub-groups, with an overall accuracy of 90.1%. This signature was independently validated in an external validation dataset. Kaplan-Meier curves showed an improved outcome for patients who received adjuvant chemotherapy in Cluster 1 sub-group, but even worse survival for those in Cluster 2 sub-group. Similar results were found in both the training and the validation dataset. Multivariate Cox regression revealed an interaction effect between 11-PPI-Mod signature and adjuvant therapy treatment in the training dataset (RFS, p = 0.007; OS, p = 0.006) and the validation dataset (RFS, p = 0.002). From the signature, we found that PTGES gene was up-regulated in CRC cells which were more resistant to 5-Fu. Knock-down of PTGES indicated a growth inhibition and up-regulation of apoptotic markers induced by 5-Fu in CRC cells. Conclusions Only a small proportion of stage II CRC patients could benefit from adjuvant therapy. The 11-PPI-Mod as a potential predictor could be helpful to distinguish this sub-group with favorable outcome. Electronic supplementary material The online version of this article (10.1186/s12885-017-3821-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bangrong Cao
- Department of Basic Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55 Renmin Ave. Fourth Section, Chengdu, Sichuan, 610041, China
| | - Liping Luo
- Department of Basic Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55 Renmin Ave. Fourth Section, Chengdu, Sichuan, 610041, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute & Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shiqi Ma
- Department of Basic Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55 Renmin Ave. Fourth Section, Chengdu, Sichuan, 610041, China
| | - Tingqing Chen
- Department of Basic Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55 Renmin Ave. Fourth Section, Chengdu, Sichuan, 610041, China
| | - Yuan Ren
- Department of Basic Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55 Renmin Ave. Fourth Section, Chengdu, Sichuan, 610041, China
| | - Xiao Zha
- Department of Basic Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55 Renmin Ave. Fourth Section, Chengdu, Sichuan, 610041, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute & Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute & Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Changmin Chen
- Department of Basic Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55 Renmin Ave. Fourth Section, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
41
|
Wahab SR, Islam F, Gopalan V, Lam AKY. The Identifications and Clinical Implications of Cancer Stem Cells in Colorectal Cancer. Clin Colorectal Cancer 2017; 16:93-102. [DOI: 10.1016/j.clcc.2017.01.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/16/2016] [Accepted: 01/13/2017] [Indexed: 12/18/2022]
|
42
|
Viswanathan V, Damle S, Zhang T, Opdenaker L, Modarai S, Accerbi M, Schmidt S, Green P, Galileo D, Palazzo J, Fields J, Haghighat S, Rigoutsos I, Gonye G, Boman BM. An miRNA Expression Signature for the Human Colonic Stem Cell Niche Distinguishes Malignant from Normal Epithelia. Cancer Res 2017; 77:3778-3790. [PMID: 28487386 DOI: 10.1158/0008-5472.can-16-2388] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/02/2017] [Accepted: 05/05/2017] [Indexed: 02/02/2023]
Abstract
Malignant transformation of tissue stem cells (SC) may be the root of most cancer. Accordingly, we identified miRNA expression patterns in the normal human colonic SC niche to understand how cancer stem cells (CSC) may arise. In profiling miRNA expression in SC-enriched crypt subsections isolated from fresh, normal surgical specimens, we identified 16 miRNAs that were differentially expressed in the crypt bottom, creating an SC signature for normal colonic epithelia (NCE). A parallel analysis of colorectal cancer tissues showed differential expression of 83 miRNAs relative to NCE. Within the 16 miRNA signature for the normal SC niche, we found that miR-206, miR-007-3, and miR-23b individually could distinguish colorectal cancer from NCE. Notably, miR-23b, which was increased in colorectal cancer, was predicted to target the SC-expressed G protein-coupled receptor LGR5. Cell biology investigations showed that miR-23b regulated CSC phenotypes globally at the level of proliferation, cell cycle, self-renewal, epithelial-mesenchymal transition, invasion, and resistance to the colorectal cancer chemotherapeutic agent 5-fluorouracil. In mechanistic experiments, we found that miR-23b decreased LGR5 expression and increased ALDH+ CSCs. CSC analyses confirmed that levels of LGR5 and miR-23b are inversely correlated in ALDH+ CSCs and that distinct subpopulations of LGR5+ and ALDH+ CSCs exist. Overall, our results define a critical function for miR-23b, which, by targeting LGR5, contributes to overpopulation of ALDH+ CSCs and colorectal cancer. Cancer Res; 77(14); 3778-90. ©2017 AACR.
Collapse
Affiliation(s)
- Vignesh Viswanathan
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Newark, Delaware.,Department of Biological Sciences, University of Delaware, Newark, Delaware.,Department of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Shirish Damle
- Thomas Jefferson University and Kimmel Cancer Center, Philadelphia, Pennsylvania
| | - Tao Zhang
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Newark, Delaware.,Department of Biological Sciences, University of Delaware, Newark, Delaware.,Thomas Jefferson University and Kimmel Cancer Center, Philadelphia, Pennsylvania
| | - Lynn Opdenaker
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Newark, Delaware.,Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Shirin Modarai
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Newark, Delaware.,Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Monica Accerbi
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, Newark, Delaware
| | - Skye Schmidt
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, Newark, Delaware
| | - Pamela Green
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, Newark, Delaware
| | - Deni Galileo
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Juan Palazzo
- Thomas Jefferson University and Kimmel Cancer Center, Philadelphia, Pennsylvania
| | | | - Sepehr Haghighat
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Newark, Delaware.,Department of Biological Sciences, University of Delaware, Newark, Delaware.,Thomas Jefferson University and Kimmel Cancer Center, Philadelphia, Pennsylvania
| | - Isidore Rigoutsos
- Thomas Jefferson University and Kimmel Cancer Center, Philadelphia, Pennsylvania
| | - Greg Gonye
- Thomas Jefferson University and Kimmel Cancer Center, Philadelphia, Pennsylvania.,Nanostring Technologies, Seattle, Washington
| | - Bruce M Boman
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Newark, Delaware. .,Department of Biological Sciences, University of Delaware, Newark, Delaware.,Thomas Jefferson University and Kimmel Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
The Effect of miR-200c Inhibition on Chemosensitivity (5- FluoroUracil) in Colorectal Cancer. Pathol Oncol Res 2017; 24:145-151. [DOI: 10.1007/s12253-017-0222-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/03/2017] [Indexed: 12/19/2022]
|
44
|
Establishment of a Novel Model for Anticancer Drug Resistance in Three-Dimensional Primary Culture of Tumor Microenvironment. Stem Cells Int 2016; 2016:7053872. [PMID: 28119740 PMCID: PMC5227181 DOI: 10.1155/2016/7053872] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/28/2016] [Accepted: 12/06/2016] [Indexed: 01/02/2023] Open
Abstract
Tumor microenvironment has been implicated in tumor development and progression. As a three-dimensional tumor microenvironment model, air liquid interface (ALI) organoid culture from oncogene transgenic mouse gastrointestinal tissues was recently produced. However, ALI organoid culture system from tissues of colorectal cancer patients has not been established. Here, we developed an ALI organoid model from normal and tumor colorectal tissues of human patients. Both organoids were successfully generated and showed cystic structures containing an epithelial layer and surrounding mesenchymal stromal cells. Structures of tumor organoids closely resembled primary tumor epithelium. Expression of an epithelial cell marker, E-cadherin, a goblet cell marker, MUC2, and a fibroblast marker, vimentin, but not a myofibroblast marker, α-smooth muscle actin (SMA), was observed in normal organoids. Expression of E-cadherin, MUC2, vimentin, and α-SMA was observed in tumor organoids. Expression of a cancer stem cell marker, LGR5 in tumor organoids, was higher than that in primary tumor tissues. Tumor organoids were more resistant to toxicity of 5-fluorouracil and Irinotecan than colorectal cancer cell lines, SW480, SW620, and HCT116. These findings indicate that ALI organoid culture from colorectal cancer patients may become a novel model that is useful for examining resistance to chemotherapy in tumor microenvironment.
Collapse
|
45
|
Stanisavljević L, Myklebust MP, Leh S, Dahl O. LGR5 and CD133 as prognostic and predictive markers for fluoropyrimidine-based adjuvant chemotherapy in colorectal cancer. Acta Oncol 2016; 55:1425-1433. [PMID: 27435662 DOI: 10.1080/0284186x.2016.1201215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Expression of leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5) gene is associated with a metastatic phenotype and poor prognosis in colorectal cancer (CRC). CD133 expression is a putative cancer stem cell marker and a proposed prognostic marker in CRC, whereas the predictive value of CD133 expression for effect of adjuvant chemotherapy in CRC is unclear. MATERIAL AND METHODS For the study of LGR5 mRNA and CD133 expression, tissue microarrays from 409 primary CRC stage II and III tumors, where patients had been randomized to adjuvant chemotherapy or surgery only, were available. LGR5 mRNA and CD133 expression were assessed by in situ hybridization (ISH) and immunohistochemistry (IHC), respectively. LGR5 mRNA and CD133 expression as prognostic and predictive markers were evaluated by univariate and multivariate analyses. RESULTS For all CRC patients, positive LGR5 mRNA and CD133 expression were associated with classic adenocarcinoma histology type (p = 0.001 and p = 0.014, respectively). Positive LGR5 mRNA expression was also associated with smaller tumor diameter for CRC stage II (p = 0.005), but not for CRC stage III (p = 0.054). For CRC stage II, lack of LGR5 mRNA expression was associated with longer time to recurrence (TTR) in Kaplan-Meier (p = 0.045) and in multivariate Cox analysis (HR 0.27, 95% CI 0.08-0.95, p = 0.041). For colon cancer stage III patients, lack of CD133 expression was associated with better effect of adjuvant chemotherapy (p = 0.016) in Kaplan-Meier univariate analysis, but the interaction between CD133 and adjuvant chemotherapy was not statistically significant in multivariate analysis (HR 0.59, 95% CI 0.18-1.89, p = 0.374). CONCLUSION LGR5 mRNA expression is a prognostic factor for CRC stage II patients, whereas the value of CD133 expression as prognostic and predictive biomarker is inconclusive.
Collapse
Affiliation(s)
| | - Mette P. Myklebust
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Sabine Leh
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Olav Dahl
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
46
|
Zhang F, Sun H, Zhang S, Yang X, Zhang G, Su T. Overexpression of PER3 Inhibits Self-Renewal Capability and Chemoresistance of Colorectal Cancer Stem-Like Cells via Inhibition of Notch and β-Catenin Signaling. Oncol Res 2016; 25:709-719. [PMID: 27983919 PMCID: PMC7841129 DOI: 10.3727/096504016x14772331883976] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PER3, a circadian clock gene, plays an important role in colorectal cancer, but its action and underlying mechanism in colorectal cancer stem-like cells (CSCs) remain unclear. In this study, the colorectal CSCs were enriched in colorectal HCT-116 sphere-forming cells, expressing lower levels of stem cell markers CD133, CD44, LGR5, and SOX2 compared with HCT-116 cells. A drug-resistant strain from HCT-116 was established. Western blot and qRT-PCR analysis showed that PER3 was downregulated in colorectal CSCs and drug-resistant HCT-116. Overexpression of PER3 could strengthen 5-FU-induced inhibitory effects on colorectal CSCs, but knockdown of PER3 decreased its inhibition of colorectal CSCs. In addition, overexpression of PER3 in colorectal CSCs resulted in reduced colony formation efficiency in a soft agar medium and self-renewal efficiency. Inversely, knockdown of PER3 enhanced self-renewal of colorectal CSCs. Overexpression of PER3 decreased stemness markers and Notch1, Jagged1, β-catenin, c-Myc, and LGR5 in colorectal CSCs. When Notch or β-catenin signaling was inhibited, the chemoresistance and self-renewal capability of colorectal CSCs were decreased. It was confirmed that PER3 can reduce chemoresistance and self-renewal capability of colorectal CSCs via inhibition of Notch and β-catenin signaling. Our results reveal that PER3 plays a critical role in maintaining the stemness of colorectal CSCs and may be a promising target for elimination of CSCs.
Collapse
|
47
|
Gong X, Azhdarinia A, Ghosh SC, Xiong W, An Z, Liu Q, Carmon KS. LGR5-Targeted Antibody-Drug Conjugate Eradicates Gastrointestinal Tumors and Prevents Recurrence. Mol Cancer Ther 2016; 15:1580-90. [PMID: 27207778 DOI: 10.1158/1535-7163.mct-16-0114] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/23/2016] [Indexed: 12/14/2022]
Abstract
Gastrointestinal cancer is one of the leading causes of cancer-related mortality in men and women worldwide. The adult stem cell marker LGR5 (leucine-rich repeat-containing, G protein-coupled receptor 5) is highly expressed in a significant fraction of gastrointestinal tumors of the colon, liver, pancreas, and stomach, relative to normal tissues. LGR5 is located on the cell surface and undergoes rapid, constitutive internalization independent of ligand. Furthermore, LGR5-high cancer cells have been shown to exhibit the properties of tumor-initiating cells or cancer stem cells (CSC). On the basis of these attributes, we generated two LGR5-targeting antibody-drug conjugates (ADC) by tethering the tubulin-inhibiting cytotoxic drug monomethyl auristatin E to a highly specific anti-LGR5 mAb via a protease cleavable or noncleavable chemical linker and compared them in receptor binding, cell internalization, and cytotoxic efficacy in cancer cells. Here, we show that both ADCs bind LGR5 with high specificity and equivalent nanomolar affinity and rapidly internalize to the lysosomes of LGR5-expressing gastrointestinal cancer cells. The anti-LGR5 ADCs effectively induced cytotoxicity in LGR5-high gastrointestinal cancer cells, but not in LGR5-negative or -knockdown cancer cell lines. Overall, we demonstrate that the cleavable ADC exhibited higher potency in vitro and was able to eradicate tumors and prevent recurrence in a xenograft model of colon cancer. These findings provide preclinical evidence for the potential of LGR5-targeting ADCs as effective new therapeutics for the treatment and eradication of gastrointestinal tumors and CSCs with high LGR5 expression. Mol Cancer Ther; 15(7); 1580-90. ©2016 AACR.
Collapse
Affiliation(s)
- Xing Gong
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ali Azhdarinia
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Sukhen C Ghosh
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Wei Xiong
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Zhiqiang An
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Qingyun Liu
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas.
| | - Kendra S Carmon
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
48
|
Jiang Y, Li W, He X, Zhang H, Jiang F, Chen Z. Lgr5 expression is a valuable prognostic factor for colorectal cancer: evidence from a meta-analysis. BMC Cancer 2016; 16:12. [PMID: 26758198 PMCID: PMC4709987 DOI: 10.1186/s12885-015-1986-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/08/2015] [Indexed: 01/05/2023] Open
Abstract
Background Lgr5 has recently been identified as a reliable biomarker of cancer stem cells (CSCs) in colorectal cancer (CRC); however, its prognostic value is still controversial. Methods We searched PubMed, Web of Science, and Wanfang databases with identical strategies to retrieve articles. We evaluated the impact of Lgr5 expression on survival of CRC patients through meta-analysis. Results A total of 12 studies comprising 2600 patients revealed that Lgr5 overexpression was negatively associated with overall survival (OS) (HR = 1.73, 95 % CI: 1.28–2.33; P = 0.00) and disease free survival (DFS) (HR = 2.89, 95 % CI: 1.89–4.44; P = 0.000) in CRC patients. Subgroup analysis suggested that Lgr5 overexpression was significantly associated with worse OS in subgroups with IHC as the method of Lgr5 assessment (HR = 2.01, 95 % CI: 1.39–2.89; P = 0.001), patients from Asia (HR = 1.81, 95 % CI: 1.27–2.58; P = 0.000), and NOS scores greater than 6 (HR = 2.12, 95 % CI: 1.41–3.19; P = 0.000). Furthermore, sensitivity analysis showed that the estimated HR ranged from 1.6 to 1.86 upon excluding one study sequentially from each analysis. In addition, Lgr5 overexpression was significantly associated with deep invasion of CRC (OR = 0.39, 95 % CI: 0.17–0.87; P = 0.002), lymphnode metastasis (OR = 0.45, 95 % CI: 0.26–0.76; P = 0.003), distant metastasis (OR = 0.37, 95 % CI: 0.22–0.62; P = 0.000), and AJCC stage (OR = 0.35, 95 % CI: 0.15–0.78; P = 0.01). However, Lgr5 overexpression was not correlated with tumor grade (OR = 0.75 95 % CI: 0.37–1.54; P = 0.433). Conclusions This study shows that Lgr5 can be a valuable and reliable prognostic factor of colorectal cancer progression.
Collapse
Affiliation(s)
- Yangyan Jiang
- Department of UItrasonic diagnosis, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wenlu Li
- Department of Pharmacology, Zhejiang University School of pharmacy, Hangzhou, China.
| | - Xin He
- Department of Hematology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hongbo Zhang
- Department of Neurology, Third people's hospital, Huzhou, China.
| | - Fangzhen Jiang
- Department of Plastic surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhigang Chen
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
49
|
Jiang Y, Li W, He X, Zhang H, Jiang F, Chen Z. Lgr5 expression is a valuable prognostic factor for colorectal cancer: evidence from a meta-analysis. BMC Cancer 2015; 15:948. [PMID: 26674601 PMCID: PMC4682230 DOI: 10.1186/s12885-015-1985-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 04/21/2015] [Indexed: 02/07/2023] Open
Abstract
Background Lgr5 has recently been identified as a reliable biomarker of cancer stem cells (CSCs) in colorectal cancer (CRC); however, its prognostic value is still controversial. Methods We searched PubMed, Web of Science, and Wanfang databases with identical strategies to retrieve articles. We evaluated the impact of Lgr5 expression on survival of CRC patients through meta-analysis. Results A total of 12 studies comprising 2600 patients revealed that Lgr5 overexpression was negatively associated with overall survival (OS) (HR = 1.73, 95 % CI: 1.28–2.33; P = 0.00) and disease free survival (DFS) (HR = 2.89, 95 % CI: 1.89–4.44; P = 0.000) in CRC patients. Subgroup analysis suggested that Lgr5 overexpression was significantly associated with worse OS in subgroups with IHC as the method of Lgr5 assessment (HR = 2.01, 95 % CI: 1.39–2.89; P = 0.001), patients from Asia (HR = 1.81, 95 % CI: 1.27–2.58; P = 0.000), and NOS scores greater than 6 (HR = 2.12, 95 % CI: 1.41–3.19; P = 0.000). Furthermore, sensitivity analysis showed that the estimated HR ranged from 1.6 to 1.86 upon excluding one study sequentially from each analysis. In addition, Lgr5 overexpression was significantly associated with deep invasion of CRC (OR = 0.39, 95 % CI: 0.17–0.87; P = 0.002), lymphnode metastasis (OR = 0.45, 95 % CI: 0.26–0.76; P = 0.003), distant metastasis (OR = 0.37, 95 % CI: 0.22–0.62; P = 0.000), and AJCC stage (OR = 0.35, 95 % CI: 0.15–0.78; P = 0.01). However, Lgr5 overexpression was not correlated with tumor grade (OR = 0.75 95 % CI: 0.37–1.54; P = 0.433). Conclusions This study shows that Lgr5 can be a valuable and reliable prognostic factor of colorectal cancer progression.
Collapse
Affiliation(s)
- Yangyan Jiang
- Department of UItrasonic diagnosis, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wenlu Li
- Department of Pharmacology, Zhejiang University School of pharmacy, Hangzhou, China.
| | - Xin He
- Department of Hematology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hongbo Zhang
- Department of Neurology, Third people's hospital, Huzhou, China.
| | - Fangzhen Jiang
- Department of Plastic surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhigang Chen
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
50
|
SW480 colorectal cancer cells that naturally express Lgr5 are more sensitive to the most common chemotherapeutic agents than Lgr5-negative SW480 cells. Anticancer Drugs 2015. [PMID: 26196680 DOI: 10.1097/cad.0000000000000270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5) is a colorectal cancer (CRC) stem cell marker. The role of Lgr5-expressing stem cells in resistance to chemotherapy is controversial. The notion that Lgr5-expressing cells are more chemotherapy resistant is supported by some data; other data do not support this notion. We hypothesized that Lgr5-expressing cells would be more chemotherapy sensitive, as Lgr5 is usually a marker of dividing cells. We tested this hypothesis by exploiting two natural variants of SW480 CRC cells: the less-differentiated Lgr5-expressing floating fraction and the more-differentiated Lgr5-depleted attached fraction. We estimated chemotherapy sensitivity using an XTT Cell Proliferation Assay Kit. We confirmed that the detected chemotherapy sensitivity differences were Lgr5-driven by overexpressing Lgr5. SW480 CRC cells that naturally express Lgr5 are those that are floating, and they are more sensitive to the chemotherapeutic compounds irinotecan (maximum difference approximately two times, 0.0001<P<0.0052) and oxaliplatin (maximum difference ∼1.5 times, 0.0001<P<0.0024) than Lgr5-negative (attached) SW480 cells. At IC50, the difference in sensitivity between these two fractions of SW480 cells to the drugs was twice as prominent with irinotecan as with oxaliplatin (P<0.0001). SW480 cells that naturally express Lgr5 were slightly more sensitive to 5-fluorouracil than non-Lgr5-expressing cells (0.0002<P<0.0344). Transfected Lgr5-overexpressing attached cells showed similar results with irinotecan and oxaliplatin, confirming that the detected differences in sensitivity to these drugs were Lgr5 driven. Most likely, Lgr5 makes cells vulnerable to chemotherapy, increasing their propensity to divide through activation of the Wnt/β-catenin pathway. There is one exception, Lgr5-overexpressing cells did not show this increase in sensitivity to 5-fluorouracil. Remarkably, Lgr5 reduced the number of floating cells two-fold (instead of increasing it, as one would expect from a stemness-determining factor) and slightly increased the number of attached differentiated cells at a significantly high transfection efficiency for these SW480 cells (∼30%). These results suggest that Lgr5, although purported to be a cancer stem cell marker, is not sufficient to promote floating in these colon cancer cells. In conclusion, CRC cells that naturally express Lgr5 are more sensitive to the most commonly used CRC chemotherapeutic compounds than those that are naturally Lgr5 negative.
Collapse
|