1
|
Rai R, Singh V, Ahmad Z, Jain A, Jat D, Mishra SK. Autonomic neuronal modulations in cardiac arrhythmias: Current concepts and emerging therapies. Physiol Behav 2024; 279:114527. [PMID: 38527577 DOI: 10.1016/j.physbeh.2024.114527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The pathophysiology of atrial fibrillation and ventricular tachycardia that result in cardiac arrhythmias is related to the sustained complicated mechanisms of the autonomic nervous system. Atrial fibrillation is when the heart beats irregularly, and ventricular arrhythmias are rapid and inconsistent heart rhythms, which involves many factors including the autonomic nervous system. It's a complex topic that requires careful exploration. Cultivation of speculative knowledge on atrial fibrillation; the irregular rhythm of the heart and ventricular arrhythmias; rapid oscillating waves resulting from mistakenly inconsistent P waves, and the inclusion of an autonomic nervous system is an inconceivable approach toward clinical intricacies. Autonomic modulation, therefore, acquires new expansions and conceptions of appealing therapeutic intelligence to prevent cardiac arrhythmia. Notably, autonomic modulation uses the neural tissue's flexibility to cause remodeling and, hence, provide therapeutic effects. In addition, autonomic modulation techniques included stimulation of the vagus nerve and tragus, renal denervation, cardiac sympathetic denervation, and baroreceptor activation treatment. Strong preclinical evidence and early human studies support the annihilation of cardiac arrhythmias by sympathetic and parasympathetic systems to transmigrate the cardiac myocytes and myocardium as efficient determinants at the cellular and physiological levels. However, the goal of this study is to draw attention to these promising early pre-clinical and clinical arrhythmia treatment options that use autonomic modulation as a therapeutic modality to conquer the troublesome process of irregular heart movements. Additionally, we provide a summary of the numerous techniques for measuring autonomic tone such as heart rate oscillations and its association with cutaneous sympathetic nerve activity appear to be substitute indicators and predictors of the outcome of treatment.
Collapse
Affiliation(s)
- Ravina Rai
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar 470003 MP, India
| | - Virendra Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 UP, India
| | - Zaved Ahmad
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar 470003 MP, India
| | - Abhishek Jain
- Sanjeevani Diabetes and Heart Care Centre, Shri Chaitanya Hospital, Sagar, 470002, MP, India
| | - Deepali Jat
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar 470003 MP, India.
| | | |
Collapse
|
2
|
Batnyam U, Vlassakov KV, Halawa A, Seligson E, Chen L, Redouane B, Janfaza D, Tedrow UB. Safety and Efficacy of Ultrasound-Guided Sympathetic Blockade by Proximal Intercostal Block in Electrical Storm Patients. JACC Clin Electrophysiol 2024; 10:734-746. [PMID: 38300210 DOI: 10.1016/j.jacep.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Electrical storm (ES) patients who fail standard therapies have a high mortality rate. Previous studies report effective management of ES with bedside, ultrasound-guided percutaneous stellate ganglion block (SGB). We report our experience with sympathetic blockade administered via a novel alternative approach: proximal intercostal block (PICB). Compared with SGB, this technique targets an area typically free of other catheters and support devices, and may pose less strict requirements for anticoagulation interruption, along with lower risk of focal neurological side effects. OBJECTIVES The authors sought to describe the safety and efficacy of PICB in patients with refractory ES. METHODS We reviewed our institutional data on ES patients who underwent PICB between January 2018 and February 2023 to analyze procedural safety and short- and long-term outcomes. RESULTS A total of 15 consecutive patients with ES underwent PICB during this period. Of those, 11 patients (73.3%) were maintained on PICB alone, and 4 patients (26.6%) were maintained on combined block with SGB and PICB. Overall, 72.7% patients who were maintained on PICB alone and 77.8% patients who were maintained on bilateral PICB had excellent arrhythmia suppression. After PICB, implantable cardioverter-defibrillator therapies were significantly reduced (P < 0.05), with 93.3% of patients receiving PICB having no implantable cardioverter-defibrillator shock until discharge or heart transplant. Anticoagulation was continued in all patients and there were no procedure-related complications. Apart from mild transient neurological symptoms seen in 3 patients, no significant neurological or hemodynamic sequelae were observed. CONCLUSIONS In patients with refractory ES, continuous PICB provided safe and effective sympathetic block (77.8% ventricular arrhythmia suppression), achievable without interruption of anticoagulation, and without significant side effects.
Collapse
Affiliation(s)
- Uyanga Batnyam
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kamen V Vlassakov
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ahmad Halawa
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Erica Seligson
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Liting Chen
- Department of Anesthesiology, Northwestern Memorial Hospital, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brahim Redouane
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David Janfaza
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Usha B Tedrow
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Lenarczyk R, Zeppenfeld K, Tfelt-Hansen J, Heinzel FR, Deneke T, Ene E, Meyer C, Wilde A, Arbelo E, Jędrzejczyk-Patej E, Sabbag A, Stühlinger M, di Biase L, Vaseghi M, Ziv O, Bautista-Vargas WF, Kumar S, Namboodiri N, Henz BD, Montero-Cabezas J, Dagres N. Management of patients with an electrical storm or clustered ventricular arrhythmias: a clinical consensus statement of the European Heart Rhythm Association of the ESC-endorsed by the Asia-Pacific Heart Rhythm Society, Heart Rhythm Society, and Latin-American Heart Rhythm Society. Europace 2024; 26:euae049. [PMID: 38584423 PMCID: PMC10999775 DOI: 10.1093/europace/euae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 04/09/2024] Open
Abstract
Electrical storm (ES) is a state of electrical instability, manifesting as recurrent ventricular arrhythmias (VAs) over a short period of time (three or more episodes of sustained VA within 24 h, separated by at least 5 min, requiring termination by an intervention). The clinical presentation can vary, but ES is usually a cardiac emergency. Electrical storm mainly affects patients with structural or primary electrical heart disease, often with an implantable cardioverter-defibrillator (ICD). Management of ES requires a multi-faceted approach and the involvement of multi-disciplinary teams, but despite advanced treatment and often invasive procedures, it is associated with high morbidity and mortality. With an ageing population, longer survival of heart failure patients, and an increasing number of patients with ICD, the incidence of ES is expected to increase. This European Heart Rhythm Association clinical consensus statement focuses on pathophysiology, clinical presentation, diagnostic evaluation, and acute and long-term management of patients presenting with ES or clustered VA.
Collapse
Affiliation(s)
- Radosław Lenarczyk
- Medical University of Silesia, Division of Medical Sciences, Department of Cardiology and Electrotherapy, Silesian Center for Heart Diseases, Skłodowskiej-Curie 9, 41-800 Zabrze, Poland
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The Department of Forensic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Frank R Heinzel
- Cardiology, Angiology, Intensive Care, Städtisches Klinikum Dresden Campus Friedrichstadt, Dresden, Germany
| | - Thomas Deneke
- Clinic for Interventional Electrophysiology, Heart Center RHÖN-KLINIKUM Campus Bad Neustadt, Bad Neustadt an der Saale, Germany
- Clinic for Electrophysiology, Klinikum Nuernberg, University Hospital of the Paracelsus Medical University, Nuernberg, Germany
| | - Elena Ene
- Clinic for Interventional Electrophysiology, Heart Center RHÖN-KLINIKUM Campus Bad Neustadt, Bad Neustadt an der Saale, Germany
| | - Christian Meyer
- Division of Cardiology/Angiology/Intensive Care, EVK Düsseldorf, Teaching Hospital University of Düsseldorf, Düsseldorf, Germany
| | - Arthur Wilde
- Department of Cardiology, Amsterdam UMC University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and arrhythmias, Amsterdam, the Netherlands
| | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; IDIBAPS, Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ewa Jędrzejczyk-Patej
- Department of Cardiology, Congenital Heart Diseases and Electrotherapy, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Avi Sabbag
- The Davidai Center for Rhythm Disturbances and Pacing, Chaim Sheba Medical Center, Tel Hashomer, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Markus Stühlinger
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Luigi di Biase
- Albert Einstein College of Medicine at Montefiore Hospital, New York, NY, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrythmia Center, Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Ohad Ziv
- Case Western Reserve University, Cleveland, OH, USA
- The MetroHealth System Campus, Cleveland, OH, USA
| | | | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Westmead Applied Research Centre, University of Sydney, Sydney, Australia
| | | | - Benhur Davi Henz
- Instituto Brasilia de Arritmias-Hospital do Coração do Brasil-Rede Dor São Luiz, Brasilia, Brazil
| | - Jose Montero-Cabezas
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
4
|
Trohman RG. Etiologies, Mechanisms, Management, and Outcomes of Electrical Storm. J Intensive Care Med 2024; 39:99-117. [PMID: 37731333 DOI: 10.1177/08850666231192050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Electrical storm (ES) is characterized by three or more discrete sustained ventricular tachyarrhythmia episodes occurring within a limited time frame (generally ≤ 24 h) or an incessant ventricular tachyarrhythmia lasting > 12 h. In patients with an implantable cardioverterdefibrillator (ICD), ES is defined as three or more appropriate device therapies, separated from each other by at least 5 min, which occur within a 24-h period. ES may constitute a medical emergency, depending on the number arrhythmic episodes, their duration, the type, and the cycle length of the ventricular arrhythmias, as well as the underlying ventricular function. This narrative review was facilitated by a search of MEDLINE to identify peer-reviewed clinical trials, randomized controlled trials, meta-analyses, and other clinically relevant studies. The search was limited to English-language reports published between 1999 and 2023. ES was searched using the terms mechanisms, genetics, channelopathies, management, pharmacological therapy, sedation, neuraxial modulation, cardiac sympathetic denervation, ICDs, and structural heart disease. Google and Google scholar as well as bibliographies of identified articles were reviewed for additional references. This manuscript examines the current strategies available to treat ES and compares pharmacological and invasive treatment strategies to diminish ES recurrence, morbidity, and mortality.
Collapse
Affiliation(s)
- Richard G Trohman
- Section of Electrophysiology, Division of Cardiology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
5
|
Zheng M, Deng KQ, Wang X, Luo D, Qu W, Chen C, Yu X, He W, Xie J, Jiang H, He B, Lu Z. Pulmonary Artery Denervation Inhibits Left Stellate Ganglion Stimulation-Induced Ventricular Arrhythmias Originating From the RVOT. JACC Clin Electrophysiol 2023; 9:1354-1367. [PMID: 37086230 DOI: 10.1016/j.jacep.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 01/20/2023] [Accepted: 02/15/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Electrical stimulation of the left stellate ganglion (LSG) can evoke ventricular arrhythmias (VAs) that originate from the right ventricular outflow tract (RVOT). The involvement of pulmonary artery innervation is unclear. OBJECTIVES This study investigated the effects of selective pulmonary artery denervation (PADN) on blood pressure (BP), sympathetic activity, ventricular effective refractory period (ERP), and the incidence of VAs induced by LSG stimulation in canines. METHODS Radiofrequency ablation with basic anesthetic monitoring was used to induce PADN in canines. In Protocol 1 (n = 11), heart rate variability, serum norepinephrine and angiotensin-II levels, BP changes and ventricular ERP in response to LSG stimulation were measured before and after PADN. In Protocol 2 (n = 8), the incidence of VAs induced by LSG stimulation was calculated before and after PADN in a canine model of complete atrioventricular block. In addition, sympathetic nerves in the excised pulmonary arteries were immunohistochemically stained with tyrosine hydroxylase. RESULTS The low-frequency components of heart rate variability, serum norepinephrine and angiotensin-II levels were remarkably decreased post-PADN. Systolic BP elevation and RVOT ERP shortening induced by LSG stimulation were mitigated by PADN. The number of RVOT-premature ventricular contractions as well as RVOT tachycardia episodes and duration induced by LSG stimulation were significantly reduced after PADN. In addition, a large number of tyrosine hydroxylase-immunoreactive nerve fibers were located in the anterior wall of the pulmonary artery. CONCLUSIONS PADN ameliorated RVOT ERP shortening, and RVOT-VAs induced by LSG stimulation by inhibiting cardiac sympathetic nerve activity.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Ke-Qiong Deng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xiaoying Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Da Luo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiyi Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaomei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenbo He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo He
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China.
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Huang TC, Lo LW, Chou YH, Lin WL, Chang SL, Lin YJ, Liu SH, Cheng WH, Liu PY, Chen SA. Renal denervation reverses ventricular structural and functional remodeling in failing rabbit hearts. Sci Rep 2023; 13:8664. [PMID: 37248400 DOI: 10.1038/s41598-023-35954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/26/2023] [Indexed: 05/31/2023] Open
Abstract
Renal denervation (RDN) suppresses the activity of the renin-angiotensin-aldosterone system and inflammatory cytokines, leading to the prevention of cardiac remodeling. Limited studies have reported the effects of renal denervation on ventricular electrophysiology. We aimed to use optical mapping to evaluate the effect of RDN on ventricular structural and electrical remodeling in a tachycardia-induced cardiomyopathy rabbit model. Eighteen rabbits were randomized into 4 groups: sham control group (n = 5), renal denervation group receiving RDN (n = 5), heart failure group receiving rapid ventricular pacing for 1 month (n = 4), and RDN-heart failure group (n = 4). Rabbit hearts were harvested for optical mapping. Different cycle lengths were paced (400, 300, 250, 200, and 150 ms), and the results were analyzed. In optical mapping, the heart failure group had a significantly slower epicardial ventricular conduction velocity than the other three groups. The RDN-heart failure, sham control, and RDN groups had similar velocities. We then analyzed the 80% action potential duration at different pacing cycle lengths, which showed a shorter action potential duration as cycle length decreased (P for trend < 0.01), which was consistent across all groups. The heart failure group had a significantly longer action potential duration than the sham control and RDN groups. Action potential duration was shorter in the RDN-heart failure group than the heart failure group (P < 0.05). Reduction of conduction velocity and prolongation of action potential duration are significant hallmarks of heart failure, and RDN reverses these remodeling processes.
Collapse
Affiliation(s)
- Ting-Chun Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Wei Lo
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Road, 11217, Taipei, Taiwan.
- Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
| | - Yu-Hui Chou
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Road, 11217, Taipei, Taiwan
| | - Wei-Lun Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Road, 11217, Taipei, Taiwan
- Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Shih-Lin Chang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Road, 11217, Taipei, Taiwan
- Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Yenn-Jiang Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Road, 11217, Taipei, Taiwan
- Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Shin-Huei Liu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Road, 11217, Taipei, Taiwan
- Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Wen-Han Cheng
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Road, 11217, Taipei, Taiwan
- Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Ann Chen
- Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
7
|
Steinberg JS, Blount N, Ponomarev D, Shabanov V, Pokushalov E, Romanov A. The Evaluate Renal Artery Denervation in Addition to Catheter Ablation to Eliminate Atrial Fibrillation (ERADICATE-AF) trial: arrhythmia suppression, blood pressure control, and potential interactions. Europace 2023; 25:euad107. [PMID: 37084084 PMCID: PMC10228602 DOI: 10.1093/europace/euad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 04/22/2023] Open
Affiliation(s)
- Jonathan S Steinberg
- Clinical Cardiovascular Research Center, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642, USA
- Hackensack Meridian School of Medicine, 123 Metro Blvd, Nutley, NJ 07110, USA
| | - Nicholas Blount
- Hackensack Meridian School of Medicine, 123 Metro Blvd, Nutley, NJ 07110, USA
| | - Dmitry Ponomarev
- Meshalkin National Medical Research Center, Novosibirsk, Russian Federation
| | - Vitaly Shabanov
- Meshalkin National Medical Research Center, Novosibirsk, Russian Federation
| | - Evgeny Pokushalov
- Center of the New Medical Technologies, Novosibirsk, Russian Federation
| | - Alexander Romanov
- Meshalkin National Medical Research Center, Novosibirsk, Russian Federation
| |
Collapse
|
8
|
Guarracini F, Bonvicini E, Zanon S, Martin M, Casagranda G, Mochen M, Coser A, Quintarelli S, Branzoli S, Mazzone P, Bonmassari R, Marini M. Emergency Management of Electrical Storm: A Practical Overview. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:405. [PMID: 36837606 PMCID: PMC9963509 DOI: 10.3390/medicina59020405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Electrical storm is a medical emergency characterized by ventricular arrythmia recurrence that can lead to hemodynamic instability. The incidence of this clinical condition is rising, mainly in implantable cardioverter defibrillator patients, and its prognosis is often poor. Early acknowledgment, management and treatment have a key role in reducing mortality in the acute phase and improving the quality of life of these patients. In an emergency setting, several measures can be employed. Anti-arrhythmic drugs, based on the underlying disease, are often the first step to control the arrhythmic burden; besides that, new therapeutic strategies have been developed with high efficacy, such as deep sedation, early catheter ablation, neuraxial modulation and mechanical hemodynamic support. The aim of this review is to provide practical indications for the management of electrical storm in acute settings.
Collapse
Affiliation(s)
| | - Eleonora Bonvicini
- Department of Cardiology, S. Chiara Hospital, 38122 Trento, Italy
- Department of Cardiology, University of Verona, 37126 Verona, Italy
| | - Sofia Zanon
- Department of Cardiology, University of Verona, 37126 Verona, Italy
| | - Marta Martin
- Department of Cardiology, S. Chiara Hospital, 38122 Trento, Italy
| | | | - Marianna Mochen
- Department of Radiology, Santa Chiara Hospital, 38122 Trento, Italy
| | - Alessio Coser
- Department of Cardiology, S. Chiara Hospital, 38122 Trento, Italy
| | | | - Stefano Branzoli
- Cardiac Surgery Unit, Santa Chiara Hospital, 38122 Trento, Italy
- Department of Cardiac Surgery, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Patrizio Mazzone
- Cardiothoracovascular Department, Electrophysiology Unit, Niguarda Hospital, 20162 Milan, Italy
| | | | - Massimiliano Marini
- Department of Cardiology, S. Chiara Hospital, 38122 Trento, Italy
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, 1090 Brussel, Belgium
| |
Collapse
|
9
|
Ye J, Xiao R, Wang X, He R, Liu Z, Gao J. Effects and mechanism of renal denervation on ventricular arrhythmia after acute myocardial infarction in rats. BMC Cardiovasc Disord 2022; 22:544. [PMID: 36510123 PMCID: PMC9743565 DOI: 10.1186/s12872-022-02980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Renal denervation (RDN) can reduce ventricular arrhythmia after acute myocardial infarction (AMI), but the mechanism is not clear. The purpose of this study is to study its mechanism. METHODS Thirty-two Sprague-Dawley rats were divided into four groups: control group, AMI group, RDN-1d + AMI group, RDN-2w + AMI group. The AMI model was established 1 day after RDN in the RDN-1d + AMI group and 2 weeks after RDN in the RDN-2w + AMI group. At the same time, 8 normal rats were subjected to AMI modelling (the AMI group). The control group consisted of 8 rats without RDN intervention or AMI modelling. RESULTS The study confirmed that RDN can reduce the occurrence of ventricular tachycardia in AMI rats, reduce renal sympathetic nerve discharge, and inhibit the activity of local sympathetic nerves and cell growth factor (NGF) protein expression in the heart after AMI. In addition, RDN decreased the expression of norepinephrine (NE) and glutamate in the hypothalamus,and NE in cerebrospinal fluid, and increased the expression level of γ aminobutyric acid (GABA) in the hypothalamus after AMI. CONCLUSION RDN can effectively reduce the occurrence of ventricular arrhythmia after AMI, and its main mechanism may be via the inhibition of central sympathetic nerve discharge.
Collapse
Affiliation(s)
- Jian Ye
- grid.412540.60000 0001 2372 7462Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 People’s Republic of China
| | - Rongxue Xiao
- grid.186775.a0000 0000 9490 772XShanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062 People’s Republic of China ,grid.186775.a0000 0000 9490 772XThe Fifth School of Clinical Medicine, Anhui Medical University, Shanghai, 200062 People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 People’s Republic of China
| | - Xu Wang
- grid.412540.60000 0001 2372 7462Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 People’s Republic of China
| | - Ruiqing He
- grid.412540.60000 0001 2372 7462Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 People’s Republic of China
| | - Zongjun Liu
- grid.186775.a0000 0000 9490 772XShanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062 People’s Republic of China ,grid.186775.a0000 0000 9490 772XThe Fifth School of Clinical Medicine, Anhui Medical University, Shanghai, 200062 People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 People’s Republic of China
| | - Junqing Gao
- grid.412540.60000 0001 2372 7462Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 People’s Republic of China
| |
Collapse
|
10
|
Yang W, Xu YL, Gao JQ, Shen D, Li M, Fa JJ, Zhang Y, Wang R, Hou SX, Hu WY, Jin HG, Liu ZJ. Effects of renal denervation therapy on cardiac function and malignant arrhythmia in patients with reduced left ventricular ejection fraction and narrow QRS complexes treated with implantable cardioverter defibrillator. Front Physiol 2022; 13:938486. [PMID: 36035484 PMCID: PMC9412050 DOI: 10.3389/fphys.2022.938486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/27/2022] [Indexed: 12/03/2022] Open
Abstract
Objective : The purpose of this study was to explore the effects of renal denervation (RDN) on cardiac function and malignant arrhythmia in patients with reduced left ventricular ejection fraction (HFrEF) and narrow QRS treated with an implantable cardioverter defibrillator (ICD). Methods: A total of 20 eligible HFrEF patients [left ventricular ejection fraction (LVEF) <40%] and narrow QRS complexes (QRS duration <120 ms) were randomized into either the ICD plus RDN group or the ICD only group during 17 April 2014 to 22 November 2016. Clinical data, including clinical characteristics, blood biochemistry, B-type natriuretic peptide, echocardiographic indexes, 6-min walk distance (6MWD), New York Heart Association (NYHA) classification, and count of ICD discharge events before and after the operation were analyzed. Patients were followed up for up to 3 years post ICD or ICD plus RDN. Results: Baseline clinical data were comparable between the two groups. Higher LVEF (%) (mixed model repeated measure, p = 0.0306) (39.50% ± 9.63% vs. 31.20% ± 4.52% at 1 year; 41.57% ± 9.62% vs. 31.40% ± 8.14% at 3 years), systolic blood pressure (p = 0.0356), and longer 6MWD (p < 0.0001) as well as reduction of NYHA classification (p < 0.0001) were evidenced in the ICD plus RDN group compared to ICD only group during follow-up. Patients in the ICD plus RDN group experienced fewer ICD discharge events (2 vs. 40) and decreased diuretic use; rehospitalization rate (30% vs. 100%, p = 0.0031) and cardiogenic mortality rate (0% vs. 50%, p = 0.0325) were also significantly lower in the ICD plus RDN group than in the ICD only group during follow-up. Conclusion: ICD implantation plus RDN could significantly improve cardiac function and cardiac outcome as well as increase exercise capacity compared to ICD only for HFrEF patients with narrow QRS complexes.
Collapse
Affiliation(s)
- Wei Yang
- Department of Cardiology, Putuo Hospital, Shanghai Putuo District Central Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Cardiology, Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University/The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - You-Long Xu
- Department of Cardiology, Putuo Hospital, Shanghai Putuo District Central Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun-Qing Gao
- Department of Cardiology, Putuo Hospital, Shanghai Putuo District Central Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deng Shen
- Department of Cardiology, Putuo Hospital, Shanghai Putuo District Central Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Li
- Department of Cardiology, Putuo Hospital, Shanghai Putuo District Central Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Jing Fa
- Department of Cardiology, Putuo Hospital, Shanghai Putuo District Central Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhang
- Department of Cardiology, Putuo Hospital, Shanghai Putuo District Central Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Wang
- Department of Cardiology, Putuo Hospital, Shanghai Putuo District Central Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Xin Hou
- Department of Cardiology, Putuo Hospital, Shanghai Putuo District Central Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Ying Hu
- Department of Cardiology, Putuo Hospital, Shanghai Putuo District Central Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui-Gen Jin
- Department of Cardiology, Putuo Hospital, Shanghai Putuo District Central Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zong-Jun Liu
- Department of Cardiology, Putuo Hospital, Shanghai Putuo District Central Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Cardiology, Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University/The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Renal artery denervation prevents ventricular arrhythmias in long QT rabbit models. Sci Rep 2022; 12:2904. [PMID: 35190635 PMCID: PMC8861097 DOI: 10.1038/s41598-022-06882-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022] Open
Abstract
Long QT syndrome (LQTS) is commonly presented with life-threatening ventricular arrhythmias (VA). Renal artery denervation (RDN) is an alternative antiadrenergic treatment that attenuates sympathetic activity. We aimed to evaluate the efficacy of RDN on preventing VAs in LQTS rabbits induced by drugs. The subtypes of LQTS were induced by infusion of HMR-1556 for LQTS type 1 (LQT1), erythromycin for LQTS type 2 (LQT2), and veratridine for LQTS type 3 (LQT3). Forty-four rabbits were randomized into the LQT1, LQT2, LQT3, LQT1-RDN, LQT2-RDN, and LQT3-RDN groups. All rabbits underwent cardiac electrophysiology studies. The QTc interval of the LQT2-RDN group was significantly shorter than those in the LQT2 group (650.08 ± 472.67 vs. 401.78 ± 42.91 ms, p = 0.011). The QTc interval of the LQT3-RDN group was significantly shorter than those in the LQT3 group (372.00 ± 22.41 vs. 335.70 ± 28.21 ms, p = 0.035). The VA inducibility in all subtypes of the LQT-RDN groups was significantly lower than those in the LQT-RDN groups, respectively (LQT1: 9.00 ± 3.30 vs. 47.44 ± 4.21%, p < 0.001; LQT2: 11.43 ± 6.37 vs. 45.38 ± 5.29%, p = 0.026; LQT3: 10.00 ± 6.32 vs. 32.40 ± 7.19%, p = 0.006). This study demonstrated the neuromodulation of RDN leading to electrical remodeling and reduced VA inducibility of the ventricular substrate in LQT models.
Collapse
|
12
|
Abstract
Motivated by the persistence of uncontrolled blood pressure and its public health impact, the development and evaluation of device-based therapies for hypertension has advanced at an accelerated pace to complement pharmaceutical and lifestyle intervention strategies. Countering widespread interest from early studies, the lack of demonstrable efficacy for renal denervation (RDN) in a large, sham-controlled randomized trial motivated revision of trial design and conduct to account for confounding variables of procedural technique, medication variability, and selection of both patients and end points. Now amidst varied trial design and methods, several sham-controlled, randomized trials have demonstrated clinically meaningful reductions in blood pressure with RDN. With this momentum, additional studies are underway to position RDN as a potential part of standard therapy for the world's leading cause of death and disability. In parallel, further studies will address unresolved issues including durability of blood pressure lowering and reduction in antihypertensive medications, late-term safety, and impact on clinical outcomes. Identifying predictors of treatment effect and surveys of patient-reported outcomes and treatment preferences are also evolving areas of investigation. Aside from confirmatory studies of safety and effectiveness, these additional studies will further inform patient selection, expand experience with RDN in broader populations with hypertension, and provide guidance to how RDN may be incorporated into treatment pathways.
Collapse
|
13
|
Li L, Hu Z, Xiong Y, Yao Y. Device-Based Sympathetic Nerve Regulation for Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:803984. [PMID: 34957267 PMCID: PMC8695731 DOI: 10.3389/fcvm.2021.803984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 12/05/2022] Open
Abstract
Sympathetic overactivation plays an important role in promoting a variety of pathophysiological processes in cardiovascular diseases (CVDs), including ventricular remodeling, vascular endothelial injury and atherosclerotic plaque progression. Device-based sympathetic nerve (SN) regulation offers a new therapeutic option for some CVDs. Renal denervation (RDN) is the most well-documented method of device-based SN regulation in clinical studies, and several large-scale randomized controlled trials have confirmed its value in patients with resistant hypertension, and some studies have also found RDN to be effective in the control of heart failure and arrhythmias. Pulmonary artery denervation (PADN) has been clinically shown to be effective in controlling pulmonary hypertension. Hepatic artery denervation (HADN) and splenic artery denervation (SADN) are relatively novel approaches that hold promise for a role in cardiovascular metabolic and inflammatory-immune related diseases, and their first-in-man studies are ongoing. In addition, baroreflex activation, spinal cord stimulation and other device-based therapies also show favorable outcomes. This review summarizes the pathophysiological rationale and the latest clinical evidence for device-based therapies for some CVDs.
Collapse
Affiliation(s)
| | | | | | - Yan Yao
- National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Fu Wai Hospital, Beijing, China
| |
Collapse
|
14
|
van Weperen VYH, Vos MA, Ajijola OA. Autonomic modulation of ventricular electrical activity: recent developments and clinical implications. Clin Auton Res 2021; 31:659-676. [PMID: 34591191 PMCID: PMC8629778 DOI: 10.1007/s10286-021-00823-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE This review aimed to provide a complete overview of the current stance and recent developments in antiarrhythmic neuromodulatory interventions, focusing on lifethreatening vetricular arrhythmias. METHODS Both preclinical studies and clinical studies were assessed to highlight the gaps in knowledge that remain to be answered and the necessary steps required to properly translate these strategies to the clinical setting. RESULTS Cardiac autonomic imbalance, characterized by chronic sympathoexcitation and parasympathetic withdrawal, destabilizes cardiac electrophysiology and promotes ventricular arrhythmogenesis. Therefore, neuromodulatory interventions that target the sympatho-vagal imbalance have emerged as promising antiarrhythmic strategies. These strategies are aimed at different parts of the cardiac neuraxis and directly or indirectly restore cardiac autonomic tone. These interventions include pharmacological blockade of sympathetic neurotransmitters and neuropeptides, cardiac sympathetic denervation, thoracic epidural anesthesia, and spinal cord and vagal nerve stimulation. CONCLUSION Neuromodulatory strategies have repeatedly been demonstrated to be highly effective and very promising anti-arrhythmic therapies. Nevertheless, there is still much room to gain in our understanding of neurocardiac physiology, refining the current neuromodulatory strategic options and elucidating the chronic effects of many of these strategic options.
Collapse
Affiliation(s)
- Valerie Y H van Weperen
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, UCLA Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, University of California, 100 Medical Plaza, Suite 660, Westwood Blvd, Los Angeles, CA, 90095-1679, USA
| | - Marc A Vos
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, UCLA Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, University of California, 100 Medical Plaza, Suite 660, Westwood Blvd, Los Angeles, CA, 90095-1679, USA.
| |
Collapse
|
15
|
Nantha Kumar N, Nyatsuro K, Ahmad S, Fazmin IT, Saadeh K, Tse G, Jeevaratnam K. Systematic review of renal denervation for the management of cardiac arrhythmias. Clin Res Cardiol 2021; 111:971-993. [PMID: 34748053 PMCID: PMC9424137 DOI: 10.1007/s00392-021-01950-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/04/2021] [Indexed: 01/19/2023]
Abstract
Background In the wake of the controversy surrounding the SYMPLICITY HTN-3 trial and data from subsequent trials, this review aims to perform an updated and more comprehensive review of the impact of renal sympathetic denervation on cardiac arrhythmias. Methods and results A systematic search was performed using the Medline, Scopus and Embase databases using the terms “Renal Denervation” AND “Arrhythmias or Atrial or Ventricular”, limited to Human and English language studies within the last 10 years. This search yielded 19 relevant studies (n = 6 randomised controlled trials, n = 13 non-randomised cohort studies) which comprised 783 patients. The studies show RSD is a safe procedure, not associated with increases in complications or mortality post-procedure. Importantly, there is no evidence RSD is associated with a deterioration in renal function, even in patients with chronic kidney disease. RSD with or without adjunctive pulmonary vein isolation (PVI) is associated with improvements in freedom from atrial fibrillation (AF), premature atrial complexes (PACs), ventricular arrhythmias and other echocardiographic parameters. Significant reductions in ambulatory and office blood pressure were also observed in the majority of studies. Conclusion This review provides evidence based on original research that ‘second generation’ RSD is safe and is associated with reductions in short-term blood pressure and AF burden. However, the authors cannot draw firm conclusions with regards to less prominent arrhythmia subtypes due to the paucity of evidence available. Large multi-centre RCTs investigating the role of RSD are necessary to comprehensively assess the efficacy of the procedure treating various arrhythmias. Graphic abstract ![]()
Collapse
Affiliation(s)
- Nakulan Nantha Kumar
- Bristol Medical School, University of Bristol, Bristol, UK.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - Kuda Nyatsuro
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Shiraz Ahmad
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - Ibrahim T Fazmin
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK.,Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Khalil Saadeh
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK.,School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Gary Tse
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK.,Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK.
| |
Collapse
|
16
|
Müller J, Behnes M, Schupp T, Ellguth D, Taton G, Reiser L, Engelke N, Borggrefe M, Reichelt T, Bollow A, El-Battrawy I, Weidner K, Kim SH, Barth C, Ansari U, Große Meininghaus D, Akin M, Mashayekhi K, Akin I. Electrical storm reveals worse prognosis compared to myocardial infarction complicated by ventricular tachyarrhythmias in ICD recipients. Heart Vessels 2021; 36:1701-1711. [PMID: 33900449 PMCID: PMC8481166 DOI: 10.1007/s00380-021-01844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/02/2021] [Indexed: 11/27/2022]
Abstract
Both acute myocardial infarction complicated by ventricular tachyarrhythmias (AMI-VTA) and electrical storm (ES) represent life-threatening clinical conditions. However, a direct comparison of both sub-groups regarding prognostic endpoints has never been investigated. All consecutive implantable cardioverter-defibrillator (ICD) recipients were included retrospectively from 2002 to 2016. Patients with ES apart from AMI (ES) were compared to patients with AMI accompanied by ventricular tachyarrhythmias (AMI-VTA). The primary endpoint was all-cause mortality at 3 years, secondary endpoints were in-hospital mortality, rehospitalization rates and major adverse cardiac event (MACE) at 3 years. A total of 198 consecutive ICD recipients were included (AMI-VTA: 56%; ST-segment elevation myocardial infarction (STEMI): 22%; non-ST-segment myocardial infarction (NSTEMI) 78%; ES: 44%). ES patients were older and had higher rates of severely reduced left ventricular ejection fraction (LVEF) < 35%. ES was associated with increased all-cause mortality at 3 years (37% vs. 19%; p = 0.001; hazard ratio [HR] = 2.242; 95% CI 2.291-3.894; p = 0.004) and with increased risk of first cardiac rehospitalization (44% vs. 12%; p = 0.001; HR = 4.694; 95% CI 2.498-8.823; p = 0.001). This worse prognosis of ES compared to AMI-VTA was still evident after multivariable adjustment (long-term all-cause mortality: HR = 2.504; 95% CI 1.093-5.739; p = 0.030; first cardiac rehospitalization: HR = 2.887; 95% CI 1.240-6.720; p = 0.014). In contrast, the rates of MACE (40% vs. 32%; p = 0.326) were comparable in both groups. At long-term follow-up of 3 years, ES was associated with higher rates of all-cause mortality and rehospitalization compared to patients with AMI-VTA.
Collapse
Affiliation(s)
- Julian Müller
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Michael Behnes
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Tobias Schupp
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Dominik Ellguth
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Gabriel Taton
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Linda Reiser
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Niko Engelke
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Martin Borggrefe
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Thomas Reichelt
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Armin Bollow
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Ibrahim El-Battrawy
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Kathrin Weidner
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Seung-Hyun Kim
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christian Barth
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Uzair Ansari
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | | | - Muharrem Akin
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Kambis Mashayekhi
- Department of Cardiology and Angiology II, University Heart Center Freiburg, Bad Krozingen, Germany
| | - Ibrahim Akin
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
17
|
Kiuchi MG, Carnagarin R, Nolde JM, Lugo-Gavidia LM, Ward NC, Schlaich MP. Renal denervation as a management strategy for hypertension: current evidence and recommendations. Expert Rev Cardiovasc Ther 2021; 19:825-835. [PMID: 34353197 DOI: 10.1080/14779072.2021.1965878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The concept of targeting the renal sympathetic nerves therapeutically to lower blood pressure (BP) is based on their crucial role in regulating both renal and cardiovascular control. These effects are mainly mediated via three major mechanisms including alteration of renal blood flow, renin-release, and Na+ retention. Initial surgical approaches applying crude and unselected sympathectomy, while rendering significant BP lowering and cardiovascular event reducing properties, where plagued by side effects. More modern selective catheter-based denervation approaches selectively targeting the renal nerves have been shown to be safe and effective in reducing BP in various forms of hypertension and multiple comorbidities. AREAS COVERED This article covers the background relevant for the concept of renal denervation (RDN), the evidence obtained from relevant randomized controlled trials to substantiate the safety and efficacy of RDN, and recently published clinical recommendations. EXPERT OPINION Catheter-based RDN is safe and has now been shown in sham-controlled randomized clinical trials to result in clinically meaningful BP lowering in both drug naïve hypertensive patients and those on concomitant antihypertensive therapy. Real world data from a large global registry further supports the clinical utility of RDN. It now seems time to embed renal denervation into routine clinical care.
Collapse
Affiliation(s)
- Márcio Galindo Kiuchi
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit and RPH Research Foundation, Faculty of Medicine, Dentistry & Health Sciences, the University of Western Australia, Perth, Western Australia, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit and RPH Research Foundation, Faculty of Medicine, Dentistry & Health Sciences, the University of Western Australia, Perth, Western Australia, Australia
| | - Janis M Nolde
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit and RPH Research Foundation, Faculty of Medicine, Dentistry & Health Sciences, the University of Western Australia, Perth, Western Australia, Australia
| | - Leslie Marisol Lugo-Gavidia
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit and RPH Research Foundation, Faculty of Medicine, Dentistry & Health Sciences, the University of Western Australia, Perth, Western Australia, Australia
| | - Natalie C Ward
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit and RPH Research Foundation, Faculty of Medicine, Dentistry & Health Sciences, the University of Western Australia, Perth, Western Australia, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit and RPH Research Foundation, Faculty of Medicine, Dentistry & Health Sciences, the University of Western Australia, Perth, Western Australia, Australia.,Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.,Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
18
|
Martinek M, Manninger M, Schönbauer R, Scherr D, Schukro C, Pürerfellner H, Petzl A, Strohmer B, Derndorfer M, Bisping E, Stühlinger M, Fiedler L. Expert consensus on acute management of ventricular arrhythmias - VT network Austria. IJC HEART & VASCULATURE 2021; 34:100760. [PMID: 33869728 PMCID: PMC8047164 DOI: 10.1016/j.ijcha.2021.100760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022]
Abstract
The Arrhythmia Working Group of the Austrian Society of Cardiology (ÖKG) has set the goal of systematically structuring and organizing the acute care of patients with ventricular arrhythmias (VA), i.e. ventricular tachycardia (VT) or ventricular fibrillation (VF) in Austria. Within a consensus paper, national recommendations on the basic diagnostic work-up of VA (12-lead ECG, medical history, family history, laboratory analyses, echocardiography, search for reversible causes, ICD interrogation), as well as further medical treatment and therapeutic measures (indication of coronary angiography, ablation therapy) are established. Since acute ablation of VT is indicated in the current ESC guidelines as a class IB indication for scar-associated incessant VT or electrical storm (ES; ≥ 3 ICD therapies in 24 h) as well as for ischemic cardiomyopathy (iCMP) with recurrent ICD shocks, organizational measures must be taken to ensure that these guidelines can be implemented. Therefore, a VT network will be established covering all areas in Austria, consisting of primary and secondary VT centers. Organizational aspects of an acute VT network are defined and should subsequently be implemented by the participating hospitals. All electrophysiologic centers in Austria that deal with VT ablation are to be integrated into the network in the medium-term. Centers that co-operate in the network are divided into primary and secondary VT centers according to predefined criteria.
Collapse
Affiliation(s)
- M. Martinek
- Ordensklinikum Linz Elisabethinen, Interne 2 mit Kardiologie, Angiologie und Intensivmedizin, Fadingerstrasse 1, 4020 Linz, Austria
- Universitätsklinikum St. Pölten, Interne 3 – Kardiologie, Dunant-Platz 1, 3100 St. Pölten, Austria
| | - M. Manninger
- Medizinische Universität Graz, Universitätsklinik für Innere Medizin – Klinische Abteilung für Kardiologie, Auenbruggerplatz 15, 8036 Graz, Austria
| | - R. Schönbauer
- Universitätsklinik für Innere Medizin II – Klinische Abteilung für Kardiologie, Währinger Gürtel 18-20, 1090 Wien, Austria
| | - D. Scherr
- Medizinische Universität Graz, Universitätsklinik für Innere Medizin – Klinische Abteilung für Kardiologie, Auenbruggerplatz 15, 8036 Graz, Austria
| | - C. Schukro
- Universitätsklinik für Innere Medizin II – Klinische Abteilung für Kardiologie, Währinger Gürtel 18-20, 1090 Wien, Austria
| | - H. Pürerfellner
- Ordensklinikum Linz Elisabethinen, Interne 2 mit Kardiologie, Angiologie und Intensivmedizin, Fadingerstrasse 1, 4020 Linz, Austria
| | - A. Petzl
- Universitätsklinikum St. Pölten, Interne 3 – Kardiologie, Dunant-Platz 1, 3100 St. Pölten, Austria
| | - B. Strohmer
- Universitätsklinik für Innere Medizin II – Paracelsus Medizinische Privatuniversität, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
| | - M. Derndorfer
- Ordensklinikum Linz Elisabethinen, Interne 2 mit Kardiologie, Angiologie und Intensivmedizin, Fadingerstrasse 1, 4020 Linz, Austria
| | - E. Bisping
- Medizinische Universität Graz, Universitätsklinik für Innere Medizin – Klinische Abteilung für Kardiologie, Auenbruggerplatz 15, 8036 Graz, Austria
| | - M. Stühlinger
- Universitätsklinik für Innere Medizin III – Kardiologie und Angiologie, Anichstrasse 35, 6020 Innsbruck, Austria
| | - L. Fiedler
- Landesklinikum Wiener Neustadt, Abteilung für Innere Medizin, Kardiologie und Nephrologie, Corvinusring 3-5, 2700 Wiener Neustadt, Austria
| |
Collapse
|
19
|
Bazoukis G, Thomopoulos C, Tse G, Vassiliou VS, Liu T, Dimitriadis K, Tatakis F, Konstantinou K, Doumas M, Tsioufis K. Impact of renal sympathetic denervation on cardiac magnetic resonance-derived cardiac indices in hypertensive patients - A meta-analysis. J Cardiol 2021; 78:314-321. [PMID: 34088560 DOI: 10.1016/j.jjcc.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Renal sympathetic denervation (RDN) is a safe device-based option for the treatment of hypertension although current guidelines do not recommend its use in routine clinical practice. In this meta-analysis, we investigated the effects of RDN in cardiac magnetic resonance (CMR)-derived cardiac indices. METHODS This meta-analysis was performed in accordance with the PRISMA statement. A comprehensive systematic search of MEDLINE database and Cochrane library through to January 2021 was performed. The inclusion criteria were studies that enrolled patients undergoing RDN in whom CMR data were provided for left ventricular end-diastolic volume indexed to body surface area (BSA) (LVEDVI), left ventricular end-systolic volume indexed (LVESVI), left ventricular mass indexed (LVMI), and left ventricular ejection fraction (LVEF) pre and post RDN. A random effects model was used for the analyses. RESULTS Our search strategy revealed 9 studies that were finally included in the meta-analysis (n=300 patients, mean age: 60 years old, males: 59%). Compared to control group, RDN patients showed significantly lower values in the attained volumes (LVEDVI: -6.70 ml/m2, p=0.01; LVESVI: -3.63 ml/m2, p=0.006). Moreover, RDN group achieved a statistically significant higher attained LVEF (3.49%, p=0.01). A non-significant difference was found in the attained LVMI between RDN and control groups (-2.59 g/m2, p=0.39). Compared to pre-RDN values, RDN reduces significantly the LVMI, the LVEDVI, and the LVESVI while a non-significant change of LVEF was found. CONCLUSIONS In conclusion, the current study demonstrates the potential beneficial role of RDN in CMR-derived cardiac indices that reflect adverse remodeling. However, large, randomized studies are needed to elucidate the role of RDN in cardiac remodeling in hypertension, heart failure, and other clinical settings.
Collapse
Affiliation(s)
- George Bazoukis
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece.
| | | | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Vassilios S Vassiliou
- Norfolk and Norwich University Hospital, Norwich, UK; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Kyriakos Dimitriadis
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Fotios Tatakis
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Konstantinos Konstantinou
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Michael Doumas
- 2nd Propedeutic Department of Internal Medicine, Aristotle University, Thessaloniki, Greece
| | - Konstantinos Tsioufis
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| |
Collapse
|
20
|
Chatterjee NA, Singh JP. Autonomic modulation and cardiac arrhythmias: old insights and novel strategies. Europace 2021; 23:1708-1721. [PMID: 34050642 DOI: 10.1093/europace/euab118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
The autonomic nervous system (ANS) plays a critical role in both health and states of cardiovascular disease. There has been a long-recognized role of the ANS in the pathogenesis of both atrial and ventricular arrhythmias (VAs). This historical understanding has been expanded in the context of evolving insights into the anatomy and physiology of the ANS, including dysfunction of the ANS in cardiovascular disease such as heart failure and myocardial infarction. An expanding armamentarium of therapeutic strategies-both invasive and non-invasive-have brought the potential of ANS modulation to contemporary clinical practice. Here, we summarize the integrative neuro-cardiac anatomy underlying the ANS, review the physiological rationale for autonomic modulation in atrial and VAs, highlight strategies for autonomic modulation, and finally frame future challenges and opportunities for ANS therapeutics.
Collapse
Affiliation(s)
- Neal A Chatterjee
- Electrophysiology Section, Cardiology Division, Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Jagmeet P Singh
- Cardiac Arrhythmia Service, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Liu SH, Lo LW, Chou YH, Lin WL, Tsai TY, Cheng WH, Yamada S, Chen SA. Renal denervation prevents myocardial structural remodeling and arrhythmogenicity in a chronic kidney disease rabbit model. Heart Rhythm 2021; 18:1596-1604. [PMID: 33992732 DOI: 10.1016/j.hrthm.2021.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The electrophysiological (EP) effects and safety of renal artery denervation (RDN) in chronic kidney disease (CKD) are unclear. OBJECTIVE The purpose of this study was to investigate the arrhythmogenicity of RDN in a rabbit model of CKD. METHODS Eighteen New Zealand white rabbits were randomized to control (n = 6), CKD (n = 6), and CKD-RDN (n = 6) groups. A 5/6 nephrectomy was selected for the CKD model. RDN was applied in the CKD-RDN group. All rabbits underwent cardiac EP studies for evaluation. Immunohistochemistry, myocardial fibrosis, and renal catecholamine levels were evaluated. RESULTS The CKD group (34.8% ± 9.2%) had a significantly higher ventricular arrhythmia (VA) inducibility than the control (8.6% ± 3.8%; P <.01) and CKD-RDN (19.5% ± 6.3%; P = .01) groups. In the CKD-RDN group, ventricular fibrosis was significantly decreased compared to the CKD group (7.4% ± 2.0 % vs 10.4% ± 3.7%; P = .02). Sympathetic innervation in the CKD group was significantly increased compared to the control and CKD-RDN groups [left ventricle: 4.1 ± 1.8 vs 0.8 ± 0.5 (102 μm2/mm2), P <.01; 4.1 ± 1.8 vs 0.9± 0.6 (102 μm2/mm2), P <.01; right ventricle: 3.6 ± 1.0 vs 1.0 ± 0.4 (102 μm2/mm2), P <.01; 3.6 ± 1.0 vs 1.0 ± 0.5 (102 μm2/mm2), P <.01]. CONCLUSION Neuromodulation by RDN demonstrated protective effects with less structural and electrical remodeling, leading to attenuated VAs. In a rabbit model of CKD, RDN plays a therapeutic role by lowering the risk of VA caused by autonomic dysfunction.
Collapse
Affiliation(s)
- Shin-Huei Liu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Wei Lo
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yu-Hui Chou
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Lun Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tseng-Ying Tsai
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Han Cheng
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shinya Yamada
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Ann Chen
- Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
22
|
Prado GM, Mahfoud F, Lopes RD, Moreira DAR, Staico R, Damiani LP, Ukena C, Armaganijan LV. Renal denervation for the treatment of ventricular arrhythmias: A systematic review and meta-analysis. J Cardiovasc Electrophysiol 2021; 32:1430-1439. [PMID: 33724602 DOI: 10.1111/jce.15004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Ventricular arrhythmias (VAs) are a major cause of morbidity and mortality in patients with heart disease. Recent studies evaluated the effect of renal denervation (RDN) on the occurrence of VAs. We conducted a systematic review and meta-analysis to determine the efficacy and safety of this procedure. METHODS AND RESULTS A systematic search of the literature was performed to identify studies that evaluated the use of RDN for the management of VAs. Primary outcomes were reduction in the number of VAs and implantable cardioverter-defibrillator (ICD) therapies. Secondary outcomes were changes in blood pressure and renal function. Ten studies (152 patients) were included in the meta-analysis. RDN was associated with a reduction in the number of VAs, antitachycardia pacing, ICD shocks, and overall ICD therapies of 3.53 events/patient/month (95% confidence interval [CI] = -5.48 to -1.57), 2.86 events/patient/month (95% CI = -4.09 to -1.63), 2.04 events/patient/month (95% CI = -2.12 to -1.97), and 2.68 events/patient/month (95% CI = -3.58 to -1.78), respectively. Periprocedural adverse events occurred in 1.23% of patients and no significant changes were seen in blood pressure or renal function. CONCLUSIONS In patients with refractory VAs, RDN was associated with a reduction in the number of VAs and ICD therapies, and was shown to be a safe procedure.
Collapse
Affiliation(s)
- Gabriela M Prado
- Electrophysiology and Cardiac Arrhythmias Department, Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil
| | - Felix Mahfoud
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Saarbrücken, Germany
| | - Renato D Lopes
- Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Dalmo A R Moreira
- Electrophysiology and Cardiac Arrhythmias Department, Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil
| | - Rodolfo Staico
- Electrophysiology and Cardiac Arrhythmias Department, Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil
| | - Lucas P Damiani
- HCor Research Institute, Hospital do Coração (HCor), São Paulo, Brazil
| | - Christian Ukena
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Saarbrücken, Germany
| | - Luciana V Armaganijan
- Electrophysiology and Cardiac Arrhythmias Department, Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil
| |
Collapse
|
23
|
Garg J, Shah S, Shah K, Turagam MK, Natale A, Lakkireddy D. Renal sympathetic denervation for the treatment of recurrent ventricular arrhythmias-ELECTRAM investigators. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2021; 44:865-874. [PMID: 33786832 DOI: 10.1111/pace.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/21/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Renal sympathetic denervation (RSDN) is an alternate management approach for refractory ventricular arrhythmias (VAs). We aimed to perform a systematic review of clinical outcomes on the impact of RSDN on refractory VA patients. METHODS A systematic search without language restriction, using PubMed, EMBASE, SCOPUS, Google Scholar, and ClinicalTrials.gov from inception to August 18, 2020, was performed for the studies that reported outcomes in patients who underwent RSDN for VA. The outcomes studied were-(1) recurrent VA; and (2) all-cause mortality. RESULTS Five studies (from 2014 to 2018) with a total of 51 VA patients met study inclusion criteria. The mean age was 61.92 ± 11.76 years, and 78.4% were men. The pooled incidence of short-term (3 months or less) and long-term (more than 3 months) VA recurrence was 63.85% (95% CI 16.75 to 99.32) and 10.52% (95% CI 0.14 to 28.75), respectively. When stratified by the number of VA episodes, there was a significant reduction in mean VA episodes (SMD -3.79, 95% CI -6.59 to -0.98, p < .01), ICD shocks (SMD -1.71, 95% CI -3.0 to -0.42, p < .01) and anti-tachycardia pacing (SMD -1.21, 95% CI -1.98 to -0.44, p < .01) following RSDN denervation. The pooled incidence of all-cause mortality after RSDN was 10.16% (95% CI 1.08 to 24.12). There were no major vascular complications, one minor vascular complication-small non-flow limiting renal artery dissection (no intervention needed). CONCLUSION RSDN appears to be a safe and effective treatment strategy in patients with prior failed antiarrhythmic drugs and catheter ablation for recurrent ventricular arrhythmia and electrical storm.
Collapse
Affiliation(s)
- Jalaj Garg
- Division of Cardiology, Cardiac Arrhythmia Service, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Siddharth Shah
- Division of Cardiology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Kuldeep Shah
- Department of Cardiovascular Medicine, Beaumont Hospital, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, USA
| | - Mohit K Turagam
- Helmsley Electrophysiology Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrea Natale
- Cardiac Arrhythmia Service, Texas Cardiac Arrhythmia Institute at St. David's Medical Center, Austin, Texas, USA
| | - Dhanunjaya Lakkireddy
- Cardiac Arrhythmia Service, Kansas City Heart Rhythm Institute and Research Foundation, Kansas City, Kansas, USA
| |
Collapse
|
24
|
Noheria A, Anderson J. Advances in Mapping and Ablation of Ventricular Fibrillation. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2021. [DOI: 10.1007/s11936-021-00899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Lauder L, Böhm M, Mahfoud F. The current status of renal denervation for the treatment of arterial hypertension. Prog Cardiovasc Dis 2021; 65:76-83. [PMID: 33587963 DOI: 10.1016/j.pcad.2021.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023]
Abstract
Despite the availability of safe and effective antihypertensive drugs, blood pressure (BP) control to guideline-recommended target values is poor. Several device-based therapies have been introduced to lower BP. The most extensively investigated approach is catheter-based renal sympathetic denervation (RDN), which aims to interrupt the activity of afferent and efferent renal sympathetic nerves by applying radiofrequency energy, ultrasound energy, or injection of alcohol in the perivascular space. The second generation of placebo-controlled trials have provided solid evidence for the BP-lowering efficacy of radiofrequency- and ultrasound-based RDN in patients with and without concomitant pharmacological therapy. In addition, the safety profile of RDN appears to be excellent in all registries and clinical trials. However, there remain unsolved issues to be addressed. This review summarizes the rationale as well as the current evidence and discusses open questions and possible future indications of catheter-based RDN.
Collapse
Affiliation(s)
- Lucas Lauder
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Homburg/Saar, Germany
| | - Michael Böhm
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Homburg/Saar, Germany
| | - Felix Mahfoud
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Homburg/Saar, Germany; Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA.
| |
Collapse
|
26
|
Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, Aguinaga L, Leite LR, Al-Khatib SM, Anter E, Berruezo A, Callans DJ, Chung MK, Cuculich P, d'Avila A, Deal BJ, Della Bella P, Deneke T, Dickfeld TM, Hadid C, Haqqani HM, Kay GN, Latchamsetty R, Marchlinski F, Miller JM, Nogami A, Patel AR, Pathak RK, Sáenz Morales LC, Santangeli P, Sapp JL, Sarkozy A, Soejima K, Stevenson WG, Tedrow UB, Tzou WS, Varma N, Zeppenfeld K. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Europace 2020; 21:1143-1144. [PMID: 31075787 DOI: 10.1093/europace/euz132] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ventricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias.
Collapse
Affiliation(s)
| | | | | | - Petr Peichl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Minglong Chen
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Elad Anter
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | | | | | - Andre d'Avila
- Hospital Cardiologico SOS Cardio, Florianopolis, Brazil
| | - Barbara J Deal
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | - Claudio Hadid
- Hospital General de Agudos Cosme Argerich, Buenos Aires, Argentina
| | - Haris M Haqqani
- University of Queensland, The Prince Charles Hospital, Chermside, Australia
| | - G Neal Kay
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - John M Miller
- Indiana University School of Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana
| | | | - Akash R Patel
- University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | | | | | | | - John L Sapp
- Queen Elizabeth II Health Sciences Centre, Halifax, Canada
| | - Andrea Sarkozy
- University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, Aguinaga L, Leite LR, Al-Khatib SM, Anter E, Berruezo A, Callans DJ, Chung MK, Cuculich P, d'Avila A, Deal BJ, Bella PD, Deneke T, Dickfeld TM, Hadid C, Haqqani HM, Kay GN, Latchamsetty R, Marchlinski F, Miller JM, Nogami A, Patel AR, Pathak RK, Saenz Morales LC, Santangeli P, Sapp JL, Sarkozy A, Soejima K, Stevenson WG, Tedrow UB, Tzou WS, Varma N, Zeppenfeld K. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. J Interv Card Electrophysiol 2020; 59:145-298. [PMID: 31984466 PMCID: PMC7223859 DOI: 10.1007/s10840-019-00663-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ventricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias.
Collapse
Affiliation(s)
| | | | | | - Petr Peichl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Minglong Chen
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Elad Anter
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | | - Andre d'Avila
- Hospital Cardiologico SOS Cardio, Florianopolis, Brazil
| | - Barbara J Deal
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | - Claudio Hadid
- Hospital General de Agudos Cosme Argerich, Buenos Aires, Argentina
| | - Haris M Haqqani
- University of Queensland, The Prince Charles Hospital, Chermside, Australia
| | - G Neal Kay
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - John M Miller
- Indiana University School of Medicine, Krannert Institute of Cardiology, Indianapolis, IN, USA
| | | | - Akash R Patel
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | | | | | | | - John L Sapp
- Queen Elizabeth II Health Sciences Centre, Halifax, Canada
| | - Andrea Sarkozy
- University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
28
|
Hawson J, Harmer JA, Cowan M, Virk S, Campbell T, Bennett RG, Anderson RD, Kalman J, Lee G, Kumar S. Renal Denervation for the Management of Refractory Ventricular Arrhythmias: A Systematic Review. JACC Clin Electrophysiol 2020; 7:100-108. [PMID: 33478701 DOI: 10.1016/j.jacep.2020.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/09/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The authors performed a systematic review and meta-analysis to determine the efficacy of renal denervation (RDN) in patients with refractory ventricular arrhythmias (VA) or electrical storm (ES). BACKGROUND Although catheter ablation is efficacious for the treatment of structural heart disease ventricular tachycardia (VT), there are proportion of patients who have refractory VT despite multiple procedures. In this setting, novel adjunctive therapies such as renal denervation have been performed. METHODS A systematic review of published data was performed. Studies that evaluated patients undergoing RDN for VA or ES were included. Outcome measures of VA, sudden cardiac death, ES, or device therapy were required. Case reports, editorials, and conference presentations were excluded. Random effects meta-analysis was conducted to explore change or final mean values in the study outcomes. RESULTS A total of 328 articles were identified by the literature search. Seven studies met the eligibility criteria and were included in the systematic review, with a total of 121 pooled patients. The weighted mean age was 63.8 ± 13.1 years, ejection fraction 30.5 ± 10.3%, 76% were men, 99% were on a beta blocker, 79% were on amiodarone, 46% had previously undergone catheter ablation, and 8.3% had previously undergone cardiac sympathetic denervation. Meta-analysis demonstrated a significant effect of RDN in reducing implantable cardiac defibrillator therapies, with a standardized mean difference (SMD) of -3.11 (p < 0.001). RDN also reduced the number of VA episodes (SMD -2.13; p < 0.001), antitachycardia pacing episodes (SMD -2.82; p = 0.002), and shocks (SMD -2.82; p = 0.002). CONCLUSIONS RDN is an effective treatment for refractory VAs and ES, although randomized data are lacking.
Collapse
Affiliation(s)
- Joshua Hawson
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Jason A Harmer
- Department of Cardiology, Royal North Shore Hospital, St. Leonards, New South Wales, Australia; Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Mitchell Cowan
- Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Sohaib Virk
- Department of Cardiology, Westmead Hospital and Westmead Applied Research Centre, Westmead, New South Wales, Australia
| | - Timothy Campbell
- Western Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard G Bennett
- Western Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Robert D Anderson
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia; Western Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Geoffrey Lee
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital and Westmead Applied Research Centre, Westmead, New South Wales, Australia.
| |
Collapse
|
29
|
Kiuchi MG, Chen S, Villacorta H, Carnagarin R, Nolde JM, Matthews VB, Schlaich MP. Renal denervation as a synergistic tool for the treatment of polymorphic ventricular ectopic beats: A case report. Medicine (Baltimore) 2020; 99:e21098. [PMID: 32702857 PMCID: PMC7373520 DOI: 10.1097/md.0000000000021098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Ventricular ectopic beats (VEBs) are very common and often occur in hypertensive or obese individuals, as well as in patients presenting with either sleep apnea or structural cardiac disease. Sympathetic overactivity plays a crucial role in the development, continuation, and exacerbation of ventricular arrhythmias. Recent studies have reported the relevance of sympathetic activation in patients with ventricular arrhythmias and suggested a potential role for catheter-based renal denervation (RDN) in reducing the arrhythmic burden. PATIENT CONCERNS We describe a 38-year-old female symptomatic patient that at the time of presentation was complaining of fatigue in response to minor and medium efforts and not tolerating any physical activity, and episodes of tachycardia associated with dyspnoea, pre-syncope, and syncope. DIAGNOSIS She had a high incidence of polymorphic VEBs on 24-hour-Holter monitoring who also presented with left ventricular (LV) hypertrophy for which she was treated with bisoprolol 10 mg/d. The 24-hour-Holter on bisoprolol at baseline showed sinus rhythm with an average heart rate of 92 bpm. There were 44,743 isolated VEBs. A total of 2538 nonsustained ventricular tachycardia events were registered. Her cardiac magnetic resonance imaging showed an increase in LV diastolic diameter and impairment of the right ventricle. INTERVENTIONS The patient underwent endocardial ablation of the right ventricular outflow tract and the LV free lateral wall, and concomitantly underwent bilateral RDN. OUTCOMES Three months post-procedure, her 24-hour-Holter off medication demonstrated an average heart rate 72 bpm and a substantially reduced number of 2823 isolated monomorphic VEBs. Thus far, 18-months follow-up, she has been asymptomatic and doing physical exercises. CONCLUSION In our current patient, we used RDN as a synergistic method to attenuate the sympathetic overactivity, which is narrowly linked to VEBs appearance. Our case report highlighted that RDN may become a potential adjuvant treatment for VEBs in the future.
Collapse
Affiliation(s)
- Márcio Galindo Kiuchi
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, University of Western Australia, Crawley, Australia
| | - Shaojie Chen
- Cardioangiologisches Centrum Bethanien (CCB) Frankfurt am Main, Medizinische Klinik III, Agaplesion Markus Krankenhaus, Frankfurt am Main, Germany
| | - Humberto Villacorta
- Cardiology Division, Department of Medicine, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, University of Western Australia, Crawley, Australia
| | - Janis M. Nolde
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, University of Western Australia, Crawley, Australia
| | - Vance B. Matthews
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, University of Western Australia, Crawley, Australia
| | - Markus P. Schlaich
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, University of Western Australia, Crawley, Australia
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, Australia
- Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
30
|
Renal sympathetic denervation in addition to pulmonary vein isolation reduces the recurrence rate of atrial fibrillation: an updated meta-analysis of randomized control trials. J Interv Card Electrophysiol 2020; 60:459-467. [DOI: 10.1007/s10840-020-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/14/2020] [Indexed: 11/25/2022]
|
31
|
DeLalio LJ, Sved AF, Stocker SD. Sympathetic Nervous System Contributions to Hypertension: Updates and Therapeutic Relevance. Can J Cardiol 2020; 36:712-720. [PMID: 32389344 DOI: 10.1016/j.cjca.2020.03.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
The sympathetic nervous system plays a pivotal role in the long-term regulation of arterial blood pressure through the ability of the central nervous system to integrate neurohumoral signals and differentially regulate sympathetic neural input to specific end organs. Part 1 of this review will discuss neural mechanisms of salt-sensitive hypertension, obesity-induced hypertension, and the ability of prior experiences to sensitize autonomic networks. Part 2 of this review focuses on new therapeutic advances to treat resistant hypertension including renal denervation and carotid baroactivation. Both advances lower arterial blood pressure by reducing sympathetic outflow. We discuss potential mechanisms and areas of future investigation to target the sympathetic nervous system.
Collapse
Affiliation(s)
- Leon J DeLalio
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan F Sved
- Department of Neuroscience, University of Pittsburgh, Pennsylvania, USA
| | - Sean D Stocker
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
32
|
Steinberg JS, Shabanov V, Ponomarev D, Losik D, Ivanickiy E, Kropotkin E, Polyakov K, Ptaszynski P, Keweloh B, Yao CJ, Pokushalov EA, Romanov AB. Effect of Renal Denervation and Catheter Ablation vs Catheter Ablation Alone on Atrial Fibrillation Recurrence Among Patients With Paroxysmal Atrial Fibrillation and Hypertension: The ERADICATE-AF Randomized Clinical Trial. JAMA 2020; 323:248-255. [PMID: 31961420 PMCID: PMC6990678 DOI: 10.1001/jama.2019.21187] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE Renal denervation can reduce cardiac sympathetic activity that may result in an antiarrhythmic effect on atrial fibrillation. OBJECTIVE To determine whether renal denervation when added to pulmonary vein isolation enhances long-term antiarrhythmic efficacy. DESIGN, SETTING, AND PARTICIPANTS The Evaluate Renal Denervation in Addition to Catheter Ablation to Eliminate Atrial Fibrillation (ERADICATE-AF) trial was an investigator-initiated, multicenter, single-blind, randomized clinical trial conducted at 5 referral centers for catheter ablation of atrial fibrillation in the Russian Federation, Poland, and Germany. A total of 302 patients with hypertension despite taking at least 1 antihypertensive medication, paroxysmal atrial fibrillation, and plans for ablation were enrolled from April 2013 to March 2018. Follow-up concluded in March 2019. INTERVENTIONS Patients were randomized to either pulmonary vein isolation alone (n = 148) or pulmonary vein isolation plus renal denervation (n = 154). Complete pulmonary vein isolation to v an end point of elimination of all pulmonary vein potentials; renal denervation using an irrigated-tip ablation catheter delivering radiofrequency energy to discrete sites in a spiral pattern from distal to proximal in both renal arteries. MAIN OUTCOMES AND MEASURES The primary end point was freedom from atrial fibrillation, atrial flutter, or atrial tachycardia at 12 months. Secondary end points included procedural complications within 30 days and blood pressure control at 6 and 12 months. RESULTS Of the 302 randomized patients (median age, 60 years [interquartile range, 55-65 years]; 182 men [60.3%]), 283 (93.7%) completed the trial. All successfully underwent their assigned procedures. Freedom from atrial fibrillation, flutter, or tachycardia at 12 months was observed in 84 of 148 (56.5%) of those undergoing pulmonary vein isolation alone and in 111 of 154 (72.1%) of those undergoing pulmonary vein isolation plus renal denervation (hazard ratio, 0.57; 95% CI, 0.38 to 0.85; P = .006). Of 5 prespecified secondary end points, 4 are reported and 3 differed between groups. Mean systolic blood pressure from baseline to 12 months decreased from 151 mm Hg to 147 mm Hg in the isolation-only group and from 150 mm Hg to 135 mm Hg in the renal denervation group (between-group difference, -13 mm Hg; 95% CI, -15 to -11 mm Hg; P < .001). Procedural complications occurred in 7 patients (4.7%) in the isolation-only group and 7 (4.5%) of the renal denervation group. CONCLUSIONS AND RELEVANCE Among patients with paroxysmal atrial fibrillation and hypertension, renal denervation added to catheter ablation, compared with catheter ablation alone, significantly increased the likelihood of freedom from atrial fibrillation at 12 months. The lack of a formal sham-control renal denervation procedure should be considered in interpreting the results of this trial. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01873352.
Collapse
Affiliation(s)
- Jonathan S. Steinberg
- University of Rochester School of Medicine & Dentistry, Heart Research Follow-up Program, Rochester, New York
| | - Vitaliy Shabanov
- E. Meshalkin National Medical Research Center, Novosibirsk, Russian Federation
| | - Dmitry Ponomarev
- E. Meshalkin National Medical Research Center, Novosibirsk, Russian Federation
| | - Denis Losik
- E. Meshalkin National Medical Research Center, Novosibirsk, Russian Federation
| | - Eduard Ivanickiy
- E. Meshalkin National Medical Research Center, Novosibirsk, Russian Federation
| | - Evgeny Kropotkin
- Federal Center of Cardiovascular Surgery, Krasnoyarsk, Russian Federation
| | | | | | | | - Christopher J. Yao
- University of Rochester School of Medicine & Dentistry, Heart Research Follow-up Program, Rochester, New York
| | | | | |
Collapse
|
33
|
Kiuchi MG, Ho JK, Nolde JM, Gavidia LML, Carnagarin R, Matthews VB, Schlaich MP. Sympathetic Activation in Hypertensive Chronic Kidney Disease - A Stimulus for Cardiac Arrhythmias and Sudden Cardiac Death? Front Physiol 2020; 10:1546. [PMID: 32009970 PMCID: PMC6974800 DOI: 10.3389/fphys.2019.01546] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Studies have revealed a robust and independent correlation between chronic kidney disease (CKD) and cardiovascular (CV) events, including death, heart failure, and myocardial infarction. Recent clinical trials extend this range of adverse CV events, including malignant ventricular arrhythmias and sudden cardiac death (SCD). Moreover, other studies point out that cardiac structural and electrophysiological changes are a common occurrence in this population. These processes are likely contributors to the heightened hazard of arrhythmias in CKD population and may be useful indicators to detect patients who are at a higher SCD risk. Sympathetic overactivity is associated with increased CV risk, specifically in the population with CKD, and it is a central feature of the hypertensive state, occurring early in its clinical course. Sympathetic hyperactivity is already evident at the earliest clinical stage of CKD and is directly related to the progression of renal failure, being most pronounced in those with end-stage renal disease. Sympathetic efferent and afferent neural activity in kidney failure is a crucial facilitator for the perpetuation and evolvement of the disease. Here, we will revisit the role of the feedback loop of the sympathetic neural cycle in the context of CKD and how it may aggravate several of the risk factors responsible for causing SCD. Targeting the overactive sympathetic nervous system therapeutically, either pharmacologically or with newly available device-based approaches, may prove to be a pivotal intervention to curb the substantial burden of cardiac arrhythmias and SCD in the high-risk population of patients with CKD.
Collapse
Affiliation(s)
- Márcio Galindo Kiuchi
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Jan K Ho
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Janis Marc Nolde
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Leslie Marisol Lugo Gavidia
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Vance B Matthews
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia.,Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, WA, Australia.,Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Lee YS. Is Renal Denervation Using Radiofrequency a Treatment Option for the Ventricular Arrhythmia Following Acute Myocardial Infarction? Korean Circ J 2020; 50:50-51. [PMID: 31854156 PMCID: PMC6923229 DOI: 10.4070/kcj.2019.0361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/20/2019] [Indexed: 01/04/2023] Open
Affiliation(s)
- Young Soo Lee
- Department of Cardiology, College of Medicine Catholic University of Daegu, Daegu, Korea.
| |
Collapse
|
35
|
Zhang WH, Zhou QN, Lu YM, Li YD, Zhang L, Zhang JH, Xing Q, Lv WK, Cheng XC, Zhang GG, Wang XS, Gu Q, Lou X, Guli B, Tang BP, Zhou XH. Renal Denervation Reduced Ventricular Arrhythmia After Myocardial Infarction by Inhibiting Sympathetic Activity and Remodeling. J Am Heart Assoc 2019; 7:e009938. [PMID: 30371294 PMCID: PMC6474949 DOI: 10.1161/jaha.118.009938] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Ventricular arrhythmia after myocardial infarction is the most important risk factor for sudden cardiac death, which poses a serious threat to human health. As the correlation between autonomic nervous systemic dysfunction and heart rhythm abnormality has been gradually revealed, remedies targeting autonomic nervous system dysfunction, especially the sympathetic nerve, have emerged. Among them, renal denervation is noted for its powerful effect on the inhibition of sympathetic nerve activity. We aim to investigate whether renal denervation can reduce ventricular arrhythmia after myocardial infarction and thus decrease the risk of sudden cardiac death. In addition, we explore the potential mechanism with respect to nerve activity and remodeling. Methods and Results Twenty-four beagles were randomized into the control (n=4), renal denervation (n=10), and sham (n=10) groups. Permanent left anterior descending artery ligation was performed to establish myocardial infarction in the latter 2 groups. Animals in the renal denervation group underwent both surgical and chemical renal denervation. Compared with dogs in the sham group, dogs in the renal denervation group demonstrated attenuated effective refractory period shortening and inhomogeneity, flattened restitution curve, increased ventricular threshold, and decreased ventricular arrhythmia. Heart rate variability assessment, catecholamine measurement, and nerve discharge recordings all indicated that renal denervation could reduce whole-body and local tissue sympathetic tone. Tissue analysis revealed a significant decrease in neural remodeling in both the heart and stellate ganglion. Conclusions Surgical and chemical renal denervation decreased whole-body and local tissue sympathetic activity and reversed neural remodeling in the heart and stellate ganglion. Consequently, renal denervation led to beneficial remodeling of the electrophysiological characteristics in the infarction border zone, translating to a decrease in ventricular arrhythmia after myocardial infarction.
Collapse
Affiliation(s)
- Wen-Hui Zhang
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Qi-Na Zhou
- 2 Xinjiang Key Laboratory of Medical Animal Model Research Clinical Medical Research Institute The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Yan-Mei Lu
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Yao-Dong Li
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Ling Zhang
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Jiang-Hua Zhang
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Qiang Xing
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Wen-Kui Lv
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Xin-Chun Cheng
- 3 Geriatric Center The People's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Ge-Ge Zhang
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Xue-Sheng Wang
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Qi Gu
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Xue Lou
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Buajier Guli
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Bao-Peng Tang
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Xian-Hui Zhou
- 1 Cardiac Pacing and Electrophysiological Division The First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang China
| |
Collapse
|
36
|
Elvan A. Antiarrhythmic effects of renal sympathetic denervation in patients with refractory ventricular arrhythmias and structural heart disease. Heart Rhythm 2019; 17:228-229. [PMID: 31593779 DOI: 10.1016/j.hrthm.2019.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Arif Elvan
- Department of Cardiology, Isala Heart Centre, Zwolle, The Netherlands.
| |
Collapse
|
37
|
Electrical storm is associated with impaired prognosis compared to ventricular tachyarrhythmias. Int J Cardiol 2019; 292:119-125. [DOI: 10.1016/j.ijcard.2019.04.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/09/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
|
38
|
Waldron NH, Fudim M, Mathew JP, Piccini JP. Neuromodulation for the Treatment of Heart Rhythm Disorders. JACC Basic Transl Sci 2019; 4:546-562. [PMID: 31468010 PMCID: PMC6712352 DOI: 10.1016/j.jacbts.2019.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022]
Abstract
Derangement of autonomic nervous signaling is an important contributor to cardiac arrhythmogenesis. Modulation of autonomic nervous signaling holds significant promise for the prevention and treatment of cardiac arrhythmias. Further clinical investigation is necessary to establish the efficacy and safety of autonomic modulatory therapies in reducing cardiac arrhythmias.
There is an increasing recognition of the importance of interactions between the heart and the autonomic nervous system in the pathophysiology of arrhythmias. These interactions play a role in both the initiation and maintenance of arrhythmias and are important in both atrial and ventricular arrhythmia. Given the importance of the autonomic nervous system in the pathophysiology of arrhythmias, there has been notable effort in the field to improve existing therapies and pioneer additional interventions directed at cardiac-autonomic targets. The interventions are targeted to multiple and different anatomic targets across the neurocardiac axis. The purpose of this review is to provide an overview of the rationale for neuromodulation in the treatment of arrhythmias and to review the specific treatments under evaluation and development for the treatment of both atrial fibrillation and ventricular arrhythmias.
Collapse
Key Words
- AERP, atrial effective refractory period
- AF, atrial fibrillation
- AGP, autonomic ganglionic plexus
- ANS, autonomic nervous system
- CABG, coronary artery bypass grafting
- HRV, heart rate variability
- ICD, implantable cardioverter-defibrillator
- LLVNS, low-level vagal nerve stimulation
- OSA, obstructive sleep apnea
- POAF, post-operative atrial fibrillation
- PVI, pulmonary vein isolation
- RDN, renal denervation
- SCS, spinal cord stimulation
- SGB, stellate ganglion blockade
- SNS, sympathetic nervous system
- VF, ventricular fibrillation
- VNS, vagal nerve stimulation
- VT, ventricular tachycardia
- arrhythmia
- atrial fibrillation
- autonomic nervous system
- ganglionated plexi
- neuromodulation
- ventricular arrhythmias
Collapse
Affiliation(s)
- Nathan H Waldron
- Department of Anesthesia, Duke University Medical Center, Durham, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina
| | - Marat Fudim
- Duke Clinical Research Institute, Durham, North Carolina.,Electrophysiology Section, Duke University Medical Center, Durham, North Carolina
| | - Joseph P Mathew
- Department of Anesthesia, Duke University Medical Center, Durham, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina
| | - Jonathan P Piccini
- Duke Clinical Research Institute, Durham, North Carolina.,Electrophysiology Section, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Interventional cardiology and in particular the field of renal denervation is subject to constant change. This review provides an up to date overview of renal denervation trials and an outlook on what to expect in the future. RECENT FINDINGS After the sham-controlled SYMPLICITY HTN-3 trial dampened the euphoria following early renal denervation trials, the recently published results of the sham-controlled SPYRAL HTN and RADIANCE HTN trials provided proof-of-principle for the blood pressure-lowering efficacy of renal denervation. However, these studies underline the major issue of patients' non-adherence to antihypertensive medication as well as the need for reliable patient- and procedure-related predictors of response. The second generation of sham-controlled renal denervation trials provided proof of principle for the blood pressure-lowering efficacy of RDN. However, larger trials have to assess long-term safety and efficacy.
Collapse
Affiliation(s)
- Lucas Lauder
- Klinik für Innere Medizin III, Kardiologie, Angiologie, Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University Medical Center and Saarland University, 66421, Homburg, Saar, Germany.
| | - Milan A Wolf
- Klinik für Innere Medizin III, Kardiologie, Angiologie, Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University Medical Center and Saarland University, 66421, Homburg, Saar, Germany
| | - Sean S Scholz
- Klinik für Innere Medizin III, Kardiologie, Angiologie, Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University Medical Center and Saarland University, 66421, Homburg, Saar, Germany
| | - Mathias Hohl
- Klinik für Innere Medizin III, Kardiologie, Angiologie, Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University Medical Center and Saarland University, 66421, Homburg, Saar, Germany
| | - Felix Mahfoud
- Klinik für Innere Medizin III, Kardiologie, Angiologie, Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University Medical Center and Saarland University, 66421, Homburg, Saar, Germany
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Böhm
- Klinik für Innere Medizin III, Kardiologie, Angiologie, Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University Medical Center and Saarland University, 66421, Homburg, Saar, Germany
| |
Collapse
|
40
|
The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat Rev Cardiol 2019; 16:707-726. [DOI: 10.1038/s41569-019-0221-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 12/19/2022]
|
41
|
Hoogerwaard AF, Elvan A. Is renal denervation still a treatment option in cardiovascular disease? Trends Cardiovasc Med 2019; 30:189-195. [PMID: 31147257 DOI: 10.1016/j.tcm.2019.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 11/19/2022]
Abstract
The role of renal sympathetic denervation (RDN) has been the topic of ongoing debate ever since the impressive initial results. The rationale of RDN is strong and supported by non-clinical studies, which lies in uncoupling the autonomic nervous crosstalk between the kidneys and the central nervous system. Since we know that cardiovascular diseases, such as hypertension, atrial, ventricular arrhythmias and heart failure (HF) are related to sympathetic (over)activity, modulation of the renal nerve activity appears to be a reasonable and attractive therapeutic target in these patients. This review will focus on the existing evidence and potential future perspectives for RDN as treatment option in cardiovascular disease.
Collapse
Affiliation(s)
- Annemiek F Hoogerwaard
- Department of Cardiology, Isala Heart Centre, Isala Hospital, Dr. Van Heesweg 2, 8025 AB Zwolle, The Netherlands
| | - Arif Elvan
- Department of Cardiology, Isala Heart Centre, Isala Hospital, Dr. Van Heesweg 2, 8025 AB Zwolle, The Netherlands.
| |
Collapse
|
42
|
Kiuchi MG, Nolde JM, Villacorta H, Carnagarin R, Chan JJSY, Lugo-Gavidia LM, Ho JK, Matthews VB, Dwivedi G, Schlaich MP. New Approaches in the Management of Sudden Cardiac Death in Patients with Heart Failure-Targeting the Sympathetic Nervous System. Int J Mol Sci 2019; 20:E2430. [PMID: 31100908 PMCID: PMC6567277 DOI: 10.3390/ijms20102430] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) have been considered the most predominant cause of death and one of the most critical public health issues worldwide. In the past two decades, cardiovascular (CV) mortality has declined in high-income countries owing to preventive measures that resulted in the reduced burden of coronary artery disease (CAD) and heart failure (HF). In spite of these promising results, CVDs are responsible for ~17 million deaths per year globally with ~25% of these attributable to sudden cardiac death (SCD). Pre-clinical data demonstrated that renal denervation (RDN) decreases sympathetic activation as evaluated by decreased renal catecholamine concentrations. RDN is successful in reducing ventricular arrhythmias (VAs) triggering and its outcome was not found inferior to metoprolol in rat myocardial infarction model. Registry clinical data also suggest an advantageous effect of RDN to prevent VAs in HF patients and electrical storm. An in-depth investigation of how RDN, a minimally invasive and safe method, reduces the burden of HF is urgently needed. Myocardial systolic dysfunction is correlated to neuro-hormonal overactivity as a compensatory mechanism to keep cardiac output in the face of declining cardiac function. Sympathetic nervous system (SNS) overactivity is supported by a rise in plasma noradrenaline (NA) and adrenaline levels, raised central sympathetic outflow, and increased organ-specific spillover of NA into plasma. Cardiac NA spillover in untreated HF individuals can reach ~50-fold higher levels compared to those of healthy individuals under maximal exercise conditions. Increased sympathetic outflow to the renal vascular bed can contribute to the anomalies of renal function commonly associated with HF and feed into a vicious cycle of elevated BP, the progression of renal disease and worsening HF. Increased sympathetic activity, amongst other factors, contribute to the progress of cardiac arrhythmias, which can lead to SCD due to sustained ventricular tachycardia. Targeted therapies to avoid these detrimental consequences comprise antiarrhythmic drugs, surgical resection, endocardial catheter ablation and use of the implantable electronic cardiac devices. Analogous NA agents have been reported for single photon-emission-computed-tomography (SPECT) scans usage, specially the 123I-metaiodobenzylguanidine (123I-MIBG). Currently, HF prognosis assessment has been improved by this tool. Nevertheless, this radiotracer is costly, which makes the use of this diagnostic method limited. Comparatively, positron-emission-tomography (PET) overshadows SPECT imaging, because of its increased spatial definition and broader reckonable methodologies. Numerous ANS radiotracers have been created for cardiac PET imaging. However, so far, [11C]-meta-hydroxyephedrine (HED) has been the most significant PET radiotracer used in the clinical scenario. Growing data has shown the usefulness of [11C]-HED in important clinical situations, such as predicting lethal arrhythmias, SCD, and all-cause of mortality in reduced ejection fraction HF patients. In this article, we discussed the role and relevance of novel tools targeting the SNS, such as the [11C]-HED PET cardiac imaging and RDN to manage patients under of SCD risk.
Collapse
Affiliation(s)
- Márcio Galindo Kiuchi
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Janis Marc Nolde
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Humberto Villacorta
- Cardiology Division, Department of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24033-900, Brazil.
| | - Revathy Carnagarin
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Justine Joy Su-Yin Chan
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Leslie Marisol Lugo-Gavidia
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Jan K Ho
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Vance B Matthews
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Girish Dwivedi
- Harry Perkins Institute of Medical Research and Fiona Stanley Hospital, The University of Western Australia, Perth 6150, Australia.
| | - Markus P Schlaich
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth 6000, Australia.
- Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia.
| |
Collapse
|
43
|
Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, Aguinaga L, Leite LR, Al-Khatib SM, Anter E, Berruezo A, Callans DJ, Chung MK, Cuculich P, d'Avila A, Deal BJ, Della Bella P, Deneke T, Dickfeld TM, Hadid C, Haqqani HM, Kay GN, Latchamsetty R, Marchlinski F, Miller JM, Nogami A, Patel AR, Pathak RK, Saenz Morales LC, Santangeli P, Sapp JL, Sarkozy A, Soejima K, Stevenson WG, Tedrow UB, Tzou WS, Varma N, Zeppenfeld K. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Heart Rhythm 2019; 17:e2-e154. [PMID: 31085023 PMCID: PMC8453449 DOI: 10.1016/j.hrthm.2019.03.002] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Indexed: 01/10/2023]
Abstract
Ventricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias.
Collapse
Affiliation(s)
| | | | | | - Petr Peichl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Minglong Chen
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Elad Anter
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | | | | | - Andre d'Avila
- Hospital Cardiologico SOS Cardio, Florianopolis, Brazil
| | - Barbara J Deal
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | - Claudio Hadid
- Hospital General de Agudos Cosme Argerich, Buenos Aires, Argentina
| | - Haris M Haqqani
- University of Queensland, The Prince Charles Hospital, Chermside, Australia
| | - G Neal Kay
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - John M Miller
- Indiana University School of Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana
| | | | - Akash R Patel
- University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | | | | | | | - John L Sapp
- Queen Elizabeth II Health Sciences Centre, Halifax, Canada
| | - Andrea Sarkozy
- University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
44
|
Kumar S, Tedrow UB, Stevenson WG. Adjunctive Interventional Techniques When Percutaneous Catheter Ablation for Drug Refractory Ventricular Arrhythmias Fail: A Contemporary Review. Circ Arrhythm Electrophysiol 2019; 10:e003676. [PMID: 28213504 DOI: 10.1161/circep.116.003676] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saurabh Kumar
- From the Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (S.K., U.B.T., W.G.S.); and Department of Cardiology, Westmead Hospital, University of Sydney, NSW, Australia (S.K.)
| | - Usha B Tedrow
- From the Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (S.K., U.B.T., W.G.S.); and Department of Cardiology, Westmead Hospital, University of Sydney, NSW, Australia (S.K.)
| | - William G Stevenson
- From the Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (S.K., U.B.T., W.G.S.); and Department of Cardiology, Westmead Hospital, University of Sydney, NSW, Australia (S.K.).
| |
Collapse
|
45
|
Yao Y, Qian J, Rong S, Huang Y, Xiong B, Yang G, Zhang D, Deng S, Tan J, Zhu Q, Deng C, Liu D, Ran H, Wang Z, Huang J. Cardiac Denervation for Arrhythmia Treatment with Transesophageal Ultrasonic Strategy in Canine Models. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:490-499. [PMID: 30527842 DOI: 10.1016/j.ultrasmedbio.2018.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 09/27/2018] [Accepted: 10/03/2018] [Indexed: 06/09/2023]
Abstract
Stellate ganglion (SG) modification has been investigated for arrhythmia treatment. In this study, transesophageal SG imaging and intervention were explored using a homemade 30F integrated focused ultrasonic catheter in healthy mongrel canines in vivo. Anatomic details of SGs were ultrasonically imaged and evaluated. SG had a heterogeneous echoic structure and characteristic profiles sketched by hyper-echoic outlines in an ultrasonogram. Left SGs in the experimental group were successfully ablated through the esophagus under ultrasonic guidance provided by the catheter itself. Two weeks after the ablation, the QT and QTc of the experimental group decreased compared with those of the sham group and at baseline (both p values < 0.001). Histologic examination revealed that left SGs were destroyed. No major complications were observed. This approach may be further explored as a method for ganglia remodeling evaluation and as a strategy of ganglia modification for arrhythmia and for other diseases.
Collapse
Affiliation(s)
- Yuanqing Yao
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Ultrasonographic Institute of Chongqing Medical University and Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China
| | - Jun Qian
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shunkang Rong
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuwen Huang
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Ultrasonographic Institute of Chongqing Medical University and Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China
| | - Bo Xiong
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Ultrasonographic Institute of Chongqing Medical University and Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China
| | - Gang Yang
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dengqing Zhang
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Ultrasonographic Institute of Chongqing Medical University and Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China
| | - Shimin Deng
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Tan
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Que Zhu
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changming Deng
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dichuan Liu
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Ran
- Ultrasonographic Institute of Chongqing Medical University and Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China; Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhigang Wang
- Ultrasonographic Institute of Chongqing Medical University and Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China; Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Ultrasonographic Institute of Chongqing Medical University and Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China.
| |
Collapse
|
46
|
Geraghty L, Santangeli P, Tedrow UB, Shivkumar K, Kumar S. Contemporary Management of Electrical Storm. Heart Lung Circ 2019; 28:123-133. [DOI: 10.1016/j.hlc.2018.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 01/10/2023]
|
47
|
Weidner K, Behnes M, Schupp T, Rusnak J, Reiser L, Taton G, Reichelt T, Ellguth D, Engelke N, Bollow A, El-Battrawy I, Ansari U, Hoppner J, Nienaber CA, Mashayekhi K, Weiß C, Akin M, Borggrefe M, Akin I. Prognostic impact of chronic kidney disease and renal replacement therapy in ventricular tachyarrhythmias and aborted cardiac arrest. Clin Res Cardiol 2018; 108:669-682. [DOI: 10.1007/s00392-018-1396-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
|
48
|
Atrial fibrillation reduction by renal sympathetic denervation: 12 months' results of the AFFORD study. Clin Res Cardiol 2018; 108:634-642. [PMID: 30413869 PMCID: PMC6529371 DOI: 10.1007/s00392-018-1391-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
Aim The purpose of this pilot study was to assess whether renal sympathetic denervation (RDN) decreases atrial fibrillation (AF) burden in hypertensive patients with symptomatic AF at 6- and 12-month follow-up, as measured using an implantable cardiac monitor (ICM). Methods and results A total of 20 patients with symptomatic paroxysmal or persistent AF (EHRA ≥ II) and primary hypertension with a mean office systolic blood pressure (BP) of > 140 mmHg were enrolled. After enrolment, an ICM was implanted 3 months pre-RDN to monitor AF burden. Quality of life (QOL) was assessed using the Atrial Fibrillation Effect on QualiTy-of-life (AFEQT) questionnaire. Mean age was 64 ± 7 years and 55% were females. AF burden in min/day decreased from a median (IQR) of 1.39 (0–11) pre-RDN to 0.67 (0–31.6) at 6 months (p = 0.64) and to 0.94 (0–6.0) at 12 months (pre-RDN vs. 12 months; p = 0.03). QOL improved significantly at both 6 months (+ 11 ± 15 points, p = 0.006) and 12 months (+ 10 ± 19, p = 0.04) as compared to pre-RDN. Office BP decreased significantly at 12-month follow-up (− 20 ± 19/− 7 ± 10 mmHg), p < 0.01) as compared to pre-RDN. Ambulatory BP decreased − 7 ± 16/− 3 ± 9 mmHg (p > 0.05) at 12-month follow-up as compared to pre-RDN. Conclusion This pilot study suggests that RDN might be able to decrease AF burden in min/day as measured using an ICM, with a positive effect on QOL. Large-scale randomized trials are needed to prove the definite value of RDN in hypertensive patients with atrial fibrillation. Electronic supplementary material The online version of this article (10.1007/s00392-018-1391-3) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Thomas D, Christ T, Fabritz L, Goette A, Hammwöhner M, Heijman J, Kockskämper J, Linz D, Odening KE, Schweizer PA, Wakili R, Voigt N. German Cardiac Society Working Group on Cellular Electrophysiology state-of-the-art paper: impact of molecular mechanisms on clinical arrhythmia management. Clin Res Cardiol 2018; 108:577-599. [PMID: 30306295 DOI: 10.1007/s00392-018-1377-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
Cardiac arrhythmias remain a common challenge and are associated with significant morbidity and mortality. Effective and safe rhythm control strategies are a primary, yet unmet need in everyday clinical practice. Despite significant pharmacological and technological advances, including catheter ablation and device-based therapies, the development of more effective alternatives is of significant interest to increase quality of life and to reduce symptom burden, hospitalizations and mortality. The mechanistic understanding of pathophysiological pathways underlying cardiac arrhythmias has advanced profoundly, opening up novel avenues for mechanism-based therapeutic approaches. Current management of arrhythmias, however, is primarily guided by clinical and demographic characteristics of patient groups as opposed to individual, patient-specific mechanisms and pheno-/genotyping. With this state-of-the-art paper, the Working Group on Cellular Electrophysiology of the German Cardiac Society aims to close the gap between advanced molecular understanding and clinical decision-making in cardiac electrophysiology. The significance of cellular electrophysiological findings for clinical arrhythmia management constitutes the main focus of this document. Clinically relevant knowledge of pathophysiological pathways of arrhythmias and cellular mechanisms of antiarrhythmic interventions are summarized. Furthermore, the specific molecular background for the initiation and perpetuation of atrial and ventricular arrhythmias and mechanism-based strategies for therapeutic interventions are highlighted. Current "hot topics" in atrial fibrillation are critically appraised. Finally, the establishment and support of cellular and translational electrophysiology programs in clinical rhythmology departments is called for to improve basic-science-guided patient management.
Collapse
Affiliation(s)
- Dierk Thomas
- Department of Cardiology, Medical University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany. .,HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.,Department of Cardiology, UHB NHS Trust, Birmingham, UK.,Department of Cardiovascular Medicine, Division of Rhythmology, University Hospital Münster, Münster, Germany
| | - Andreas Goette
- St. Vincenz-Hospital, Paderborn, Germany.,Working Group: Molecular Electrophysiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Matthias Hammwöhner
- St. Vincenz-Hospital, Paderborn, Germany.,Working Group: Molecular Electrophysiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jordi Heijman
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.,Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jens Kockskämper
- Biochemical and Pharmacological Center (BPC) Marburg, Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Dominik Linz
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, SA, Australia.,Experimental Electrophysiology, University Hospital of Saarland, Homburg, Saar, Germany
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Freiburg, Germany
| | - Patrick A Schweizer
- Department of Cardiology, Medical University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.,Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany
| | - Reza Wakili
- Department of Cardiology and Vascular Medicine, Medical Faculty, West German Heart Center, University Hospital Essen, Essen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.
| |
Collapse
|
50
|
Prochnau D, Hoyme M. Renal denervation as a second-line option in a patient with electrical storm resistant to medical treatment and conventional radiofrequency catheter ablation. J Electrocardiol 2018; 51:475-478. [DOI: 10.1016/j.jelectrocard.2018.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 10/18/2022]
|