1
|
You Y, Zeng N, Wu W, Liu B, Rong S, Xu D. Association of Serum Homocysteine With Peripheral Arterial Disease in Patients Without Diabetes: A Study Based on National Health and Nutrition Examination Survey Database. Am J Cardiol 2024; 218:16-23. [PMID: 38458582 DOI: 10.1016/j.amjcard.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
This study aimed to investigate the association of serum homocysteine (Hcy) levels with peripheral arterial disease (PAD) in patients without diabetes on the basis of data from the National Health and Nutrition Examination Survey. The study used data from 3 survey cycles (1999 to 2004) in the National Health and Nutrition Examination Survey database as the research dataset. Serum Hcy levels were considered an independent variable, whereas PAD was a dependent variable. Weighted logistic regression and restricted cubic spline methods were used to explore the relation between Hcy level and PAD risk in patients without diabetes. A total of 4,819 samples were included. In the weighted logistics regression model, a significant positive association was observed between Hcy levels and the risk of PAD (odds ratio >1, p <0.05). Subgroup analysis results indicated a particularly significant association between Hcy levels and PAD risk in the older population (age ≥60 years), those with a history of smoking, and those without a history of myocardial infarction (all odds ratio >1, p <0.05) (p <0.05). Exploring the nonlinear association between Hcy levels and PAD risk through restricted cubic spline curves revealed an overall significant trend (p allover <0.05). In conclusion, elevated Hcy levels increased the risk of PAD, with a more pronounced effect observed in populations of patients without diabetes, especially in older patients (age ≥60 years), those with smoking history, and those without a history of myocardial infarction.
Collapse
Affiliation(s)
- Yi You
- Department of Cardiac and Vascular Surgery, Yueyang Central Hospital, Yueyang, China
| | - Naxin Zeng
- Department of Cardiac and Vascular Surgery, Yueyang Central Hospital, Yueyang, China
| | - Wengao Wu
- Department of Cardiac and Vascular Surgery, Yueyang Central Hospital, Yueyang, China
| | - Boyang Liu
- Department of Cardiac and Vascular Surgery, Yueyang Central Hospital, Yueyang, China
| | - Sheng Rong
- Department of Cardiac and Vascular Surgery, Yueyang Central Hospital, Yueyang, China
| | - Dong Xu
- Department of Cardiac and Vascular Surgery, Yueyang Central Hospital, Yueyang, China.
| |
Collapse
|
2
|
Xie Z, Liu J, Xie T, Liu P, Hui X, Zhang Q, Xiao X. Integration of proteomics and metabolomics reveals energy and metabolic alterations induced by glucokinase (GCK) partial inactivation in hepatocytes. Cell Signal 2024; 114:111009. [PMID: 38092300 DOI: 10.1016/j.cellsig.2023.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 01/01/2024]
Abstract
AIMS Glucokinase (GCK) acts as the glucose sensor in maintaining glucose homeostasis. The inactivating mutation of the GCK gene leads to glucokinase-maturity onset diabetes of the young (GCK-MODY). This study aims to gain further insights into the molecular alterations triggered by GCK partial inactivation in hepatocytes, potentially underlying the favorable prognosis of GCK-MODY. MAIN METHODS A GCK knockdown HepG2 cell model was established, and the integration of proteomics and metabolomics was used to gain a comprehensive understanding of the molecular pathway changes caused by GCK inactivation in the liver. KEY FINDINGS Proteomic analysis identified 257 differential proteins. KEGG pathway enrichment analysis showed that protein expression changes in the GCK knockdown group were significantly enriched in central carbon metabolism, the TCA cycle, amino acid metabolism and the oxidative phosphorylation pathway. Among them, enzymes in the TCA cycle (PC, IDH2, SDH) were significantly downregulated in GCK-knockdown group. Targeted metabolomics revealed that in the GCK knockdown hepatocytes, TCA cycle intermediates were significantly decreased, including pyruvate, oxaloacetate, citrate and succinic acid, and three metabolites increased including glycine, betaine and homocysteine. These metabolic alterations in turn reduced the accumulation of reactive oxygen species in GCK knockdown hepatocytes. Correlation analysis indicated that TCA cycle metabolites were positively correlated with proteins involved in the TCA cycle, carbon metabolism, glycolysis, Ras signaling, fibrosis and inflammation. SIGNIFICANCE In conclusion, GCK knockdown reduced TCA cycle flux and oxidative stress in hepatocytes by influencing the levels of key transcription factors and enzymes, providing a comprehensive understanding of the effects of GCK partial inactivation on liver metabolism and molecular mechanisms.
Collapse
Affiliation(s)
- Ziyan Xie
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jieying Liu
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ting Xie
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Peng Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiangyi Hui
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qian Zhang
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xinhua Xiao
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
3
|
Liu W, Li Q, Wang Q, Ma S, Yang X, Zhang J, Qiu J, Li J, Yang C, Li X, Zhang H, Jiang Y, Zhang Y, Zhao Y. Association between body fat composition and hyperhomocysteinemia in the analysis of the baseline data of the Northwest China Natural Population Cohort: Ningxia Project (CNC-NX). J Clin Hypertens (Greenwich) 2023. [PMID: 37147933 DOI: 10.1111/jch.14666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
The authors conducted an observational study to explore the association between body fat composition and the risk of hyperhomocysteinemia (HHcy) and their combined effect on the risk of developing cardiovascular disease (CVD). Adults aged 18-74 years from the Northwest China Natural Population Cohort: Ningxia Project (CNC-NX) were recruited in this study. Association between body fat composition and HHcy was evaluated by logistic regression model. Restricted cubic spline was used to find nonlinear association. The impact of the interaction between HHcy and body fat composition on CVD was evaluated using the addition interaction model and mediation effect model. In total, 16 419 participants were included in this research. Body fat percentage, visceral fat level, and abdominal fat thickness were positively associated with overall HHcy (p for trend < .001). Adjusted odds ratios (ORs) in quarter 4 were 1.181 (95% CI: 1.062, 1.313), 1.202 (95% CI: 1.085, 1.332), and 1.168 (95% CI: 1.055, 1.293) for body fat percentage, visceral fat level, and abdominal fat thickness, respectively, compared with those in quarter 1. Subgroup analysis indicated age, estimated glomerular filtration rate (eGFR), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), and CVD were the interaction factors of body fat percentage, visceral fat level, abdominal fat thickness with HHcy (all p for interaction < .05). ORs of CVD were higher in participants with HHcy and high body fat. Body fat composition was positively associated with HHcy, indicating that reducing body, abdominal, and visceral fat content may lower the risk of HHcy and CVD.
Collapse
Affiliation(s)
- Wanlu Liu
- School of Public Health and Management, Ningxia Medical University, Xingqing District, Yinchuan, China
| | - Qingqing Li
- School of Public Health and Management, Ningxia Medical University, Xingqing District, Yinchuan, China
| | - Qingan Wang
- School of Public Health and Management, Ningxia Medical University, Xingqing District, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Shengchao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
- The School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaoling Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
- The School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jiaxing Zhang
- School of Public Health and Management, Ningxia Medical University, Xingqing District, Yinchuan, China
| | - Jiangwei Qiu
- School of Public Health and Management, Ningxia Medical University, Xingqing District, Yinchuan, China
| | - Juan Li
- School of Public Health and Management, Ningxia Medical University, Xingqing District, Yinchuan, China
| | - Chan Yang
- School of Public Health and Management, Ningxia Medical University, Xingqing District, Yinchuan, China
- School of Nursing, Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Xiaoxia Li
- School of Public Health and Management, Ningxia Medical University, Xingqing District, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Huiping Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
- Department of Prenatal Diagnosis, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
- The School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yuhong Zhang
- School of Public Health and Management, Ningxia Medical University, Xingqing District, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Yi Zhao
- School of Public Health and Management, Ningxia Medical University, Xingqing District, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
4
|
Iciek M, Górny M, Kotańska M, Bilska-Wilkosz A, Kaczor-Kamińska M, Zagajewski J. Yohimbine Alleviates Oxidative Stress and Suppresses Aerobic Cysteine Metabolism Elevated in the Rat Liver of High-Fat Diet-Fed Rats. Molecules 2023; 28:2025. [PMID: 36903271 PMCID: PMC10004569 DOI: 10.3390/molecules28052025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Yohimbine is a small indole alkaloid derived from the bark of the yohimbe tree with documented biological activity, including anti-inflammatory, erectile dysfunction relieving, and fat-burning properties. Hydrogen sulfide (H2S) and sulfane sulfur-containing compounds are regarded as important molecules in redox regulation and are involved in many physiological processes. Recently, their role in the pathophysiology of obesity and obesity-induced liver injury was also reported. The aim of the present study was to verify whether the mechanism of biological activity of yohimbine is related to reactive sulfur species formed during cysteine catabolism. We tested the effect of yohimbine at doses of 2 and 5 mg/kg/day administered for 30 days on aerobic and anaerobic catabolism of cysteine and oxidative processes in the liver of high-fat diet (HFD)-induced obese rats. Our study revealed that HFD resulted in a decrease in cysteine and sulfane sulfur levels in the liver, while sulfates were elevated. In the liver of obese rats, rhodanese expression was diminished while lipid peroxidation increased. Yohimbine did not influence sulfane sulfur and thiol levels in the liver of obese rats, however, this alkaloid at a dose of 5 mg decreased sulfates to the control level and induced expression of rhodanese. Moreover, it diminished hepatic lipid peroxidation. It can be concluded that HFD attenuates anaerobic and enhances aerobic cysteine catabolism and induces lipid peroxidation in the rat liver. Yohimbine at a dose of 5 mg/kg can alleviate oxidative stress and reduce elevated concentrations of sulfate probably by the induction of TST expression.
Collapse
Affiliation(s)
- Małgorzata Iciek
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7, 31-034 Cracow, Poland
| | - Magdalena Górny
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7, 31-034 Cracow, Poland
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Anna Bilska-Wilkosz
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7, 31-034 Cracow, Poland
| | - Marta Kaczor-Kamińska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7, 31-034 Cracow, Poland
| | - Jacek Zagajewski
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7, 31-034 Cracow, Poland
| |
Collapse
|
5
|
Homocysteine causes neuronal leptin resistance and endoplasmic reticulum stress. PLoS One 2022; 17:e0278965. [PMID: 36512575 PMCID: PMC9746958 DOI: 10.1371/journal.pone.0278965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Abnormally high serum homocysteine levels have been associated with several disorders, including obesity, cardiovascular diseases or neurological diseases. Leptin is an anti-obesity protein and its action is mainly mediated by the activation of its Ob-R receptor in neuronal cells. The inability of leptin to induce activation of its specific signaling pathways, especially under endoplasmic reticulum stress, leads to the leptin resistance observed in obesity. The present study examined the effect of homocysteine on leptin signaling in SH-SY5Y neuroblastoma cells expressing the leptin receptor Ob-Rb. Phosphorylation of the signal transducer and activator of transcription (STAT3) and leptin-induced STAT3 transcriptional activity were significantly inhibited by homocysteine treatment. These effects may be specific to homocysteine and to the leptin pathway, as other homocysteine-related compounds, namely methionine and cysteine, have weak effect on leptin-induced inhibition of STAT3 phosphorylation, and homocysteine has no impact on IL-6-induced activation of STAT3. The direct effect of homocysteine on leptin-induced Ob-R activation, analyzed by Ob-R BRET biosensor to monitor Ob-R oligomerization and conformational change, suggested that homocysteine treatment does not affect early events of leptin-induced Ob-R activation. Instead, we found that, unlike methionine or cysteine, homocysteine increases the expression of the endoplasmic reticulum (ER) stress response gene, a homocysteine-sensitive ER resident protein. These results suggest that homocysteine may induce neuronal resistance to leptin by suppressing STAT3 phosphorylation downstream of the leptin receptor via ER stress.
Collapse
|
6
|
da Silva IV, Gullette S, Florindo C, Huang NK, Neuberger T, Ross AC, Soveral G, Castro R. The Effect of Nutritional Ketosis on Aquaporin Expression in Apolipoprotein E-Deficient Mice: Potential Implications for Energy Homeostasis. Biomedicines 2022; 10:biomedicines10051159. [PMID: 35625895 PMCID: PMC9138310 DOI: 10.3390/biomedicines10051159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Ketogenic diets (KDs) are very low-carbohydrate, very high-fat diets which promote nutritional ketosis and impact energetic metabolism. Aquaporins (AQPs) are transmembrane channels that facilitate water and glycerol transport across cell membranes and are critical players in energy homeostasis. Altered AQP expression or function impacts fat accumulation and related comorbidities, such as the metabolic syndrome. Here, we sought to determine whether nutritional ketosis impacts AQPs expression in the context of an atherogenic model. To do this, we fed ApoE−/− (apolipoprotein E-deficient) mice, a model of human atherosclerosis, a KD (Kcal%: 1/81/18, carbohydrate/fat/protein) or a control diet (Kcal%: 70/11/18, carbohydrate/fat/protein) for 12 weeks. Plasma was collected for biochemical analysis. Upon euthanasia, livers, white adipose tissue (WAT), and brown adipose tissue (BAT) were used for gene expression studies. Mice fed the KD and control diets exhibited similar body weights, despite the profoundly different fat contents in the two diets. Moreover, KD-fed mice developed nutritional ketosis and showed increased expression of thermogenic genes in BAT. Additionally, these mice presented an increase in Aqp9 transcripts in BAT, but not in WAT, which suggests the participation of Aqp9 in the influx of excess plasma glycerol to fuel thermogenesis, while the up-regulation of Aqp7 in the liver suggests the involvement of this aquaporin in glycerol influx into hepatocytes. The relationship between nutritional ketosis, energy homeostasis, and the AQP network demands further investigation.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Sean Gullette
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16802, USA; (S.G.); (T.N.)
| | - Cristina Florindo
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Neil K. Huang
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA; (N.K.H.); (A.C.R.)
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16802, USA; (S.G.); (T.N.)
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA; (N.K.H.); (A.C.R.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Correspondence: (G.S.); (R.C.)
| | - Rita Castro
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA; (N.K.H.); (A.C.R.)
- Correspondence: (G.S.); (R.C.)
| |
Collapse
|
7
|
Wang H, Wu Y, Tang W. Methionine cycle in nonalcoholic fatty liver disease and its potential applications. Biochem Pharmacol 2022; 200:115033. [PMID: 35395242 DOI: 10.1016/j.bcp.2022.115033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
Abstract
As a chronic metabolic disease affecting epidemic proportions worldwide, the pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD) is not clear yet. There is also a lack of precise biomarkers and specific medicine for the diagnosis and treatment of NAFLD. Methionine metabolic cycle, which is critical for the maintaining of cellular methylation and redox state, is involved in the pathophysiology of NAFLD. However, the molecular basis and mechanism of methionine metabolism in NAFLD are not completely understood. Here, we mainly focus on specific enzymes that participates in methionine cycle, to reveal their interconnections with NAFLD, in order to recognize the pathogenesis of NAFLD from a new angle and at the same time, explore the clinical characteristics and therapeutic strategies.
Collapse
Affiliation(s)
- Haoyu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yanwei Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Wei Tang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| |
Collapse
|
8
|
Betaine Supplementation Causes an Increase in Fatty Acid Oxidation and Carbohydrate Metabolism in Livers of Mice Fed a High-Fat Diet: A Proteomic Analysis. Foods 2022; 11:foods11060881. [PMID: 35327303 PMCID: PMC8949908 DOI: 10.3390/foods11060881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Betaine, a common methyl donor whose methylation is involved in the biosynthesis of carnitine and phospholipids in animals, serves as food and animal feed additive. The present study used liquid chromatography-mass spectrometry (LC-MS) to analyze the liver protein profile of mice on a high fat (HF) diet to investigate the mechanism by which betaine affects hepatic metabolism. Although betaine supplementation had no significant effect on body weight, a total of 103 differentially expressed proteins were identified between HF diet + 1% betaine group (HFB) and HF diet group by LC-MS (fold change > 2, p < 0.05). The addition of 1% betaine had a significant enhancement of the expression of enzymes related to fatty acid oxidation metabolism, such as hydroxyacyl-Coenzyme A dehydrogenase (HADHA), enoyl Coenzyme A hydratase 1 (ECHS1) (p < 0.05) etc., and the expression of apolipoprotein A-II (APOA2) protein was significantly reduced (p < 0.01). Meanwhile, the protein expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and succinate-CoA ligase (SUCLG1) were highly significant (p < 0.01). Pathway enrichment using the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the functions of differential proteins involved fatty acid catabolism, carbohydrate metabolism, tricarboxylic acid cycle (TCA) and peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway. Protein−protein interaction (PPI) analysis discovered that acetyl-Coenzyme A acetyltransferase 1 (ACAT1), HADHA and ECHS1 were central hubs of hepatic proteomic changes in the HFB group of mice. Betaine alleviates hepatic lipid accumulation by enhancing fatty acid oxidation and accelerating the TCA cycle and glycolytic process in the liver of mice on an HF diet.
Collapse
|
9
|
Hernandez-Landero F, Sanchez-Garcia E, Gomez-Crisostomo N, Contreras-Paredes A, Eduardo MA, de la Cruz-Hernandez E. Anthropometric, biochemical, and haematological indicators associated with hyperhomocysteinemia and their relation to global DNA methylation in a young adult population. Epigenetics 2021; 17:1269-1280. [PMID: 34923898 DOI: 10.1080/15592294.2021.2013420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Increased homocysteine (Hcy) levels have been associated with a higher risk of cardiovascular and neurodegenerative diseases. Passive DNA demethylation has been suggested as one of the mechanisms implicated in the development of these conditions, and most studies have investigated this relationship in older adult populations. Therefore, this study aimed to evaluate the relationship between corporal composition and biochemical and haematological indicators with plasma homocysteine levels and genome-wide methylation (Alu, LINE-1, and SAT2) in a population of healthy young adults (median age, 18 years). We showed that the prevalence of hyperhomocysteinemia was significantly higher in men (18.5%) than in women (6.6%) (P = 0.034). Increased Hcy level was substantially associated with higher levels of body mass index and visceral fat in females, whereas in males, it was significantly associated with reduced red cell distribution width and high-density lipoprotein (HDL) cholesterol (HDL-C) levels and increased low-density lipoprotein/HDL ratio. Hypomethylation of Alu was significantly associated with reduced levels of HDL-C (<40.0 mg dL-1), whereas hypomethylation of LINE-1 and SAT2 was significantly associated with higher levels of skeletal muscle (<39.3%) in males. These results highlight the participation of hormonal factors in regulating Hcy metabolism, primarily in the female population, whereas changes in DNA methylation observed in males might be associated with the consumption of a protein diet with high levels of methionine, independent of increased Hcy levels.
Collapse
Affiliation(s)
- Fernanda Hernandez-Landero
- Laboratory of Research in Metabolic and Infectious Diseases. Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco City, Mexico
| | - Erika Sanchez-Garcia
- Laboratory of Research in Metabolic and Infectious Diseases. Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco City, Mexico
| | - Nancy Gomez-Crisostomo
- Laboratory of Research in Metabolic and Infectious Diseases. Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco City, Mexico
| | - Adriana Contreras-Paredes
- Laboratory of Molecular Biology of Oncogenic Viruses, Unit of Biomedical Research in Cancer, National Cancer Institute - Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Martínez Abundis Eduardo
- Laboratory of Research in Metabolic and Infectious Diseases. Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco City, Mexico
| | - Erick de la Cruz-Hernandez
- Laboratory of Research in Metabolic and Infectious Diseases. Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco City, Mexico
| |
Collapse
|
10
|
Brütting C, Hildebrand P, Brandsch C, Stangl GI. Ability of dietary factors to affect homocysteine levels in mice: a review. Nutr Metab (Lond) 2021; 18:68. [PMID: 34193183 PMCID: PMC8243555 DOI: 10.1186/s12986-021-00594-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/14/2021] [Indexed: 01/10/2023] Open
Abstract
Homocysteine is associated with several diseases, and a series of dietary factors are known to modulate homocysteine levels. As mice are often used as model organisms to study the effects of dietary hyperhomocysteinemia, we collected data about concentrations of vitamin B12, vitamin B6, folate, methionine, cystine, and choline in mouse diets and the associated plasma/serum homocysteine levels. In addition, we more closely examined the composition of the control diet, the impact of the mouse strain, sex and age, and the duration of the dietary intervention on homocysteine levels. In total, 113 out of 1103 reviewed articles met the inclusion criteria. In the experimental and control diets, homocysteine levels varied from 0.1 to 280 µmol/l. We found negative correlations between dietary vitamin B12 (rho = − 0.125; p < 0.05), vitamin B6 (rho = − 0.191; p < 0.01) and folate (rho = − 0.395; p < 0.001) and circulating levels of homocysteine. In contrast, a positive correlation was observed between dietary methionine and homocysteine (methionine: rho = 0.146; p < 0.05). No significant correlations were found for cystine or choline and homocysteine levels. In addition, there was no correlation between the duration of the experimental diets and homocysteine levels. More importantly, the data showed that homocysteine levels varied widely in mice fed control diets as well. When comparing control diets with similar nutrient concentrations (AIN-based), there were significant differences in homocysteine levels caused by the strain (ANOVA, p < 0.05) and age of the mice at baseline (r = 0.47; p < 0.05). When comparing homocysteine levels and sex, female mice tended to have higher homocysteine levels than male mice (9.3 ± 5.9 µmol/l vs. 5.8 ± 4.5 µmol/l; p = 0.069). To conclude, diets low in vitamin B12, vitamin B6, or folate and rich in methionine are similarly effective in increasing homocysteine levels. AIN recommendations for control diets are adequate with respect to the amounts of homocysteine-modulating dietary parameters. In addition, the mouse strain and the age of mice can affect the homocysteine level.
Collapse
Affiliation(s)
- Christine Brütting
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120, Halle (Saale), Germany.
| | - Pia Hildebrand
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120, Halle (Saale), Germany
| | - Corinna Brandsch
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120, Halle (Saale), Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120, Halle (Saale), Germany
| |
Collapse
|
11
|
Obesity Prevents S-Adenosylmethionine-Mediated Improvements in Age-Related Peripheral and Hippocampal Outcomes. Nutrients 2021; 13:nu13041201. [PMID: 33917279 PMCID: PMC8067411 DOI: 10.3390/nu13041201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Age predisposes individuals to a myriad of disorders involving inflammation; this includes stress-related neuropsychiatric disorders such as depression and anxiety, and neurodegenerative diseases. Obesity can further exacerbate these effects in the brain. We investigated whether an inexpensive dietary supplement, s-adenosylmethionine (SAMe), could improve age- and/or obesity-related inflammatory and affective measures in the hippocampus. Methods: Mice were placed on their diets at six weeks of age and then aged to 14 months, receiving SAMe (0.1 g/kg of food) for the final six weeks of the experiment. Prior to tissue collection, mice were tested for anxiety-like behaviors in the open field test and for metabolic outcomes related to type 2 diabetes. Results: SAMe treatment significantly improved outcomes in aged control mice, where fasting glucose decreased, liver glutathione levels increased, and hippocampal microglia morphology improved. SAMe increased transforming growth factor β-1 mRNA in both control mice, potentially accounting for improved microglial outcomes. Obese mice demonstrated increased anxiety-like behavior, where SAMe improved some, but not all, open field measures. Conclusions: In summary, SAMe boosted antioxidant levels, improved diabetic measures, and hippocampal inflammatory and behavioral outcomes in aged mice. The effects of SAMe in obese mice were more subdued, but it could still provide some positive outcomes for obese individuals dealing with anxiety and having difficulty changing their behaviors to improve health outcomes.
Collapse
|
12
|
The Role of the Transsulfuration Pathway in Non-Alcoholic Fatty Liver Disease. J Clin Med 2021; 10:jcm10051081. [PMID: 33807699 PMCID: PMC7961611 DOI: 10.3390/jcm10051081] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing and approximately 25% of the global population may have NAFLD. NAFLD is associated with obesity and metabolic syndrome, but its pathophysiology is complex and only partly understood. The transsulfuration pathway (TSP) is a metabolic pathway regulating homocysteine and cysteine metabolism and is vital in controlling sulfur balance in the organism. Precise control of this pathway is critical for maintenance of optimal cellular function. The TSP is closely linked to other pathways such as the folate and methionine cycles, hydrogen sulfide (H2S) and glutathione (GSH) production. Impaired activity of the TSP will cause an increase in homocysteine and a decrease in cysteine levels. Homocysteine will also be increased due to impairment of the folate and methionine cycles. The key enzymes of the TSP, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), are highly expressed in the liver and deficient CBS and CSE expression causes hepatic steatosis, inflammation, and fibrosis in animal models. A causative link between the TSP and NAFLD has not been established. However, dysfunctions in the TSP and related pathways, in terms of enzyme expression and the plasma levels of the metabolites (e.g., homocysteine, cystathionine, and cysteine), have been reported in NAFLD and liver cirrhosis in both animal models and humans. Further investigation of the TSP in relation to NAFLD may reveal mechanisms involved in the development and progression of NAFLD.
Collapse
|
13
|
da Silva IV, Whalen CA, Mattie FJ, Florindo C, Huang NK, Heil SG, Neuberger T, Ross AC, Soveral G, Castro R. An Atherogenic Diet Disturbs Aquaporin 5 Expression in Liver and Adipocyte Tissues of Apolipoprotein E-Deficient Mice: New Insights into an Old Model of Experimental Atherosclerosis. Biomedicines 2021; 9:150. [PMID: 33557105 PMCID: PMC7913888 DOI: 10.3390/biomedicines9020150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/16/2022] Open
Abstract
The dysfunction of vascular endothelial cells is profoundly implicated in the pathogenesis of atherosclerosis and cardiovascular disease, the global leading cause of death. Aquaporins (AQPs) are membrane channels that facilitate water and glycerol transport across cellular membranes recently implicated in the homeostasis of the cardiovascular system. Apolipoprotein-E deficient (apoE-/-) mice are a common model to study the progression of atherosclerosis. Nevertheless, the pattern of expression of AQPs in this atheroprone model is poorly characterized. In this study, apoE-/- mice were fed an atherogenic high-fat (HF) or a control diet. Plasma was collected at multiple time points to assess metabolic disturbances. At the endpoint, the aortic atherosclerotic burden was quantified using high field magnetic resonance imaging. Moreover, the transcriptional levels of several AQP isoforms were evaluated in the liver, white adipocyte tissue (WAT), and brown adipocyte tissue (BAT). The results revealed that HF-fed mice, when compared to controls, presented an exacerbated systemic inflammation and atherosclerotic phenotype, with no major differences in systemic methylation status, circulating amino acids, or plasma total glutathione. Moreover, an overexpression of the isoform AQP5 was detected in all studied tissues from HF-fed mice when compared to controls. These results suggest a novel role for AQP5 on diet-induced atherosclerosis that warrants further investigation.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Courtney A. Whalen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Floyd J. Mattie
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Cristina Florindo
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Neil K. Huang
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Sandra G. Heil
- Department of Clinical Chemistry, Medical Center Rotterdam, Erasmus MC University, 3015 GD Rotterdam, The Netherlands;
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Rita Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| |
Collapse
|
14
|
Long-term effects of western diet consumption in male and female mice. Sci Rep 2020; 10:14686. [PMID: 32895402 PMCID: PMC7477228 DOI: 10.1038/s41598-020-71592-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/12/2020] [Indexed: 02/08/2023] Open
Abstract
Long-term consumption of a diet with excessive fat and sucrose (Western diet, WD) leads to an elevated risk of obesity and metabolic syndrome in both males and females. However, there are sexual dimorphisms in metabolism which are apparent when considering the prevalence of complications of metabolic syndrome, such as non-alcoholic fatty liver disease. This study aimed to elucidate the impact of a WD on the metabolome and the gut microbiota of male and female mice at 5, 10, and 15 months to capture the dynamic and comprehensive changes brought about by diet at different stages of life. Here we show that there are important considerations of age and sex that should be considered when assessing the impact of diet on the gut microbiome and health.
Collapse
|
15
|
Ribeiro DM, Planchon S, Leclercq CC, Dentinho MTP, Bessa RJB, Santos-Silva J, Paulos K, Jerónimo E, Renaut J, Almeida AM. The effects of improving low dietary protein utilization on the proteome of lamb tissues. J Proteomics 2020; 223:103798. [PMID: 32380293 DOI: 10.1016/j.jprot.2020.103798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/03/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
Cistus ladanifer L. is a common shrub endemic to the Mediterranean region with high levels of condensed tannins (CT). CT form complexes with dietary protein resisting microbial degradation in the rumen, which enhances dietary protein utilization in ruminant diets. The objective of this study was to evaluate the utilization of CT in the diet of lambs on the proteomes of muscle, hepatic and adipose tissues. Twenty-four Merino Branco ram lambs were randomly allocated to three treatments (n = 8): C - control (160 g crude protein (CP)) per kg DM, RP - reduced protein (120 g CP/kg DM); and RPCT - reduced protein (120 g CP/kg DM) treated with CT extract. At the end of the trial, lambs were slaughtered and the longissimus lumborum muscle, hepatic and peri-renal adipose tissues sampled. A two-way approach was used for proteomic analysis: 2D-DIGE and nanoLC-MS. In the muscle, C lambs had lower abundance proteins that partake in the glycolysis pathway than the lambs of other treatments. Control lambs had lower abundance of Fe-carrying proteins in the hepatic tissue than RP and RPCT lambs. The latter lambs had highest abundance of hepatic flavin reductase. In the adipose tissue, C lambs had lowest abundance of fatty-acid synthase. SIGNIFICANCE: soybean meal is an expensive feedstuff in which intensive animal production systems heavily rely on. It is a source of protein extensively degraded in the rumen, leading to efficiency losses on dietary protein utilization during digestion. Protection of dietary protein from extensive ruminal degradation throughout the use of plants or extracts rich in CT allow an increase in the digestive utilization of feed proteins. In addition to enhance the protein digestive utilization, dietary CT may induce other beneficial effects in ruminants such as the improvement of the antioxidant status.
Collapse
Affiliation(s)
- D M Ribeiro
- LEAF Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal; Luxembourg Institute of Science and Technology (LIST), Green Tech platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - S Planchon
- Luxembourg Institute of Science and Technology (LIST), Green Tech platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - C C Leclercq
- Luxembourg Institute of Science and Technology (LIST), Green Tech platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - M T P Dentinho
- CIISA - Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, Av. Univ. Técnica, Lisboa, Portugal; Instituto Nacional de Investigação Agrária e Veterinária, Pólo Investigação da Fonte Boa (INIAV-Fonte Boa), 2005-048 Santarém, Portugal
| | - R J B Bessa
- CIISA - Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, Av. Univ. Técnica, Lisboa, Portugal
| | - J Santos-Silva
- CIISA - Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, Av. Univ. Técnica, Lisboa, Portugal; Instituto Nacional de Investigação Agrária e Veterinária, Pólo Investigação da Fonte Boa (INIAV-Fonte Boa), 2005-048 Santarém, Portugal
| | - K Paulos
- Instituto Nacional de Investigação Agrária e Veterinária, Pólo Investigação da Fonte Boa (INIAV-Fonte Boa), 2005-048 Santarém, Portugal
| | - E Jerónimo
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal; MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - J Renaut
- Luxembourg Institute of Science and Technology (LIST), Green Tech platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - A M Almeida
- LEAF Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal.
| |
Collapse
|
16
|
Chronic liver diseases and the potential use of S-adenosyl-L-methionine as a hepatoprotector. Eur J Gastroenterol Hepatol 2018; 30:893-900. [PMID: 29683981 DOI: 10.1097/meg.0000000000001141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic liver diseases result in overall deterioration of health status and changes in metabolism. The search for strategies to control and combat these hepatic diseases has witnessed a great boom in the last decades. Nutritional therapy for controlling and managing liver diseases may be a positive influence as it improves the function of the liver. In this review, we focus mainly on describing liver conditions such as nonalcoholic fatty liver disease, and intrahepatic cholestasis as well as using S-adenosyl-L-methionine as a dietary supplement and its potential alternative therapeutic effect to correct the hepatic dysfunction associated with these conditions.
Collapse
|
17
|
LC–MS based urinary metabolomics study of the intervention effect of aloe-emodin on hyperlipidemia rats. J Pharm Biomed Anal 2018; 156:104-115. [DOI: 10.1016/j.jpba.2018.04.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/30/2022]
|
18
|
Han N, Chae JW, Jeon J, Lee J, Back HM, Song B, Kwon KI, Kim SK, Yun HY. Prediction of Methionine and Homocysteine levels in Zucker diabetic fatty (ZDF) rats as a T2DM animal model after consumption of a Methionine-rich diet. Nutr Metab (Lond) 2018; 15:14. [PMID: 29449868 PMCID: PMC5807833 DOI: 10.1186/s12986-018-0247-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/22/2018] [Indexed: 12/23/2022] Open
Abstract
Background Although alterations in the methionine metabolism cycle (MMC) have been associated with vascular complications of diabetes, there have not been consistent results about the levels of methionine and homocysteine in type 2 diabetes mellitus (T2DM). The aim of the current study was to predict changes in plasma methionine and homocysteine concentrations after simulated consumption of methionine-rich foods, following the development of a mathematical model for MMC in Zucker Diabetic Fatty (ZDF) rats, as a representative T2DM animal model. Method The model building and simulation were performed using NONMEM® (ver. 7.3.0) assisted by Perl-Speaks-NONMEM (PsN, ver. 4.3.0). Model parameters were derived using first-order conditional estimation method with interactions permitted among the parameters (FOCE-INTER). NCA was conducted using Phoenix (ver. 6.4.0). For all tests, we considered a P-value < 0.05 to reflect statistical significance. Results Our model featured seven compartments that considered all parts of the cycle by applying non-linear mixed effects model. Conversion of S-adenosyl-L-homocysteine (SAH) to homocysteine increased and the metabolism of homocysteine was reduced under diabetic conditions, and consequently homocysteine accumulated in the elimination phase. Using our model, we performed simulations to compare the changes in plasma methionine and homocysteine concentrations between ZDF and normal rats, by multiple administrations of the methionine-rich diet of 1 mmol/kg, daily for 60 days. The levels of methionine and homocysteine were elevated approximately two- and three-fold, respectively, in ZDF rats, while there were no changes observed in the normal control rats. Conclusion These results can be interpreted to mean that both methionine and homocysteine will accumulate in patients with T2DM, who regularly consume high-methionine foods.
Collapse
Affiliation(s)
- Nayoung Han
- 1College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 Republic of Korea
| | - Jung-Woo Chae
- 2College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea
| | - Jihyun Jeon
- 2College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea
| | - Jaeyeon Lee
- 2College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea.,New Drug Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk 28160 Republic of Korea
| | - Hyun-Moon Back
- 2College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea
| | - Byungjeong Song
- 2College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea.,Drug Discovery Center, JW Pharmaceutical, 2477 Nambusunhwan-ro, Seocho-gu, Seoul 06725 Republic of Korea
| | - Kwang-Il Kwon
- 2College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea
| | - Sang Kyum Kim
- 2College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea
| | - Hwi-Yeol Yun
- 2College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea
| |
Collapse
|
19
|
The Mechanism Research of Qishen Yiqi Formula by Module-Network Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:497314. [PMID: 26379745 PMCID: PMC4561322 DOI: 10.1155/2015/497314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/04/2015] [Indexed: 01/18/2023]
Abstract
Qishen Yiqi formula (QSYQ) has the effect of tonifying Qi and promoting blood circulation, which is widely used to treat the cardiovascular diseases with Qi deficiency and blood stasis syndrome. However, the mechanism of QSYQ to tonify Qi and promote blood circulation is rarely reported at molecular or systems level. This study aimed to elucidate the mechanism of QSYQ based on the protein interaction network (PIN) analysis. The targets' information of the active components was obtained from ChEMBL and STITCH databases and was further used to search against protein-protein interactions by String database. Next, the PINs of QSYQ were constructed by Cytoscape and were analyzed by gene ontology enrichment analysis based on Markov Cluster algorithm. Finally, based on the topological parameters, the properties of scale-free, small world, and modularity of the QSYQ's PINs were analyzed. And based on function modules, the mechanism of QSYQ was elucidated. The results indicated that Qi-tonifying efficacy of QSYQ may be partly attributed to the regulation of amino acid metabolism, carbohydrate metabolism, lipid metabolism, and cAMP metabolism, while QSYQ improves the blood stasis through the regulation of blood coagulation and cardiac muscle contraction. Meanwhile, the “synergy” of formula compatibility was also illuminated.
Collapse
|
20
|
Szlauer A, Mielimonka A, Głowacki R, Borowczyk K, Stachniuk J, Undas A. Protein N-linked homocysteine is associated with recurrence of venous thromboembolism. Thromb Res 2015; 136:911-6. [PMID: 26371408 DOI: 10.1016/j.thromres.2015.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND Recently, protein N-linked homocysteine (Hcy) has been measured in healthy subjects and patients with marked hyperhomocysteinemia. Since elevated total Hcy (tHcy) levels are associated with increased risk of venous thromboembolism (VTE), we aimed to investigate protein N-linked Hcy levels in patients with VTE. METHODS We studied 200 consecutive patients with VTE (89 men, 111 women, aged from 17 to 83 years), including 57 subjects with a subsequent episode of VTE (recurrent VTE) during 24 months of follow-up. Protein N-linked Hcy was assayed using high-performance liquid chromatography with an on-column derivatization with o-phthaldialdehyde and fluorescence detection. RESULTS The median protein N-linked Hcy was 1.404 μM (interquartile range [IQR] 0.859-2.066), while the median tHcy (IQR) was 9.1 μM (6.8-11.2). In the whole group protein N-linked Hcy correlated only with C-reactive protein (CRP; r = 0.44, p < 0.0001). In patients with recurrent VTE protein N-linked Hcy correlated with C-reactive protein (r = 0.43, p < 0.0001), tHcy (r = 0.42, p = 0.001) and age (r = 0.32, p = 0.014), but not with thrombophilia, unprovoked VTE or the current anticoagulation. Hyperhomocysteinemia, defined as tHcy ≥ 15 μM (n = 14.7%), was not associated with higher protein N-linked Hcy. Patients with recurrent VTE had higher levels of protein N-linked Hcy compared to those who experienced a single episode of VTE (1.553 μM, 1.157-2.445 vs. 1.27 μM, 0.826-1.884; p = 0.002). Multiple regression adjusted for potential confounders showed that the only independent predictor of protein N-linked Hcy in the upper quartile was CRP > 3mg/L (odds ratio 3.04, 95% confidence interval 2.12-4.36, p < 0.0001). CONCLUSION Elevated protein N-linked Hcy concentrations, indicating enhanced protein homocysteinylation in vivo, characterize patients with recurrent VTE and this phenomenon is associated with enhanced inflammatory state.
Collapse
Affiliation(s)
- Anastazja Szlauer
- Students' Scientific Association, Jagiellonian University Medical College, Krakow, Poland
| | - Aleksandra Mielimonka
- Students' Scientific Association, Jagiellonian University Medical College, Krakow, Poland
| | - Rafał Głowacki
- Department of Environmental Chemistry, University of Lodz, Lodz, Poland
| | - Kamila Borowczyk
- Department of Environmental Chemistry, University of Lodz, Lodz, Poland
| | - Justyna Stachniuk
- Department of Environmental Chemistry, University of Lodz, Lodz, Poland
| | - Anetta Undas
- Institute of Cardiology, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland.
| |
Collapse
|
21
|
Pacana T, Cazanave S, Verdianelli A, Patel V, Min HK, Mirshahi F, Quinlivan E, Sanyal AJ. Dysregulated Hepatic Methionine Metabolism Drives Homocysteine Elevation in Diet-Induced Nonalcoholic Fatty Liver Disease. PLoS One 2015; 10:e0136822. [PMID: 26322888 PMCID: PMC4556375 DOI: 10.1371/journal.pone.0136822] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 08/10/2015] [Indexed: 12/30/2022] Open
Abstract
Methionine metabolism plays a central role in methylation reactions, production of glutathione and methylarginines, and modulating homocysteine levels. The mechanisms by which these are affected in NAFLD are not fully understood. The aim is to perform a metabolomic, molecular and epigenetic analyses of hepatic methionine metabolism in diet-induced NAFLD. Female 129S1/SvlmJ;C57Bl/6J mice were fed a chow (n = 6) or high-fat high-cholesterol (HFHC) diet (n = 8) for 52 weeks. Metabolomic study, enzymatic expression and DNA methylation analyses were performed. HFHC diet led to weight gain, marked steatosis and extensive fibrosis. In the methionine cycle, hepatic methionine was depleted (30%, p< 0.01) while s-adenosylmethionine (SAM)/methionine ratio (p< 0.05), s-adenosylhomocysteine (SAH) (35%, p< 0.01) and homocysteine (25%, p< 0.01) were increased significantly. SAH hydrolase protein levels decreased significantly (p <0.01). Serine, a substrate for both homocysteine remethylation and transsulfuration, was depleted (45%, p< 0.01). In the transsulfuration pathway, cystathionine and cysteine trended upward while glutathione decreased significantly (p< 0.05). In the transmethylation pathway, levels of glycine N-methyltransferase (GNMT), the most abundant methyltransferase in the liver, decreased. The phosphatidylcholine (PC)/ phosphatidylethanolamine (PE) ratio increased significantly (p< 0.01), indicative of increased phosphatidylethanolamine methyltransferase (PEMT) activity. The protein levels of protein arginine methytransferase 1 (PRMT1) increased significantly, but its products, monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), decreased significantly. Circulating ADMA increased and approached significance (p< 0.06). Protein expression of methionine adenosyltransferase 1A, cystathionine β-synthase, γ-glutamylcysteine synthetase, betaine-homocysteine methyltransferase, and methionine synthase remained unchanged. Although gene expression of the DNA methyltransferase Dnmt3a decreased, the global DNA methylation was unaltered. Among individual genes, only HMG-CoA reductase (Hmgcr) was hypermethylated, and no methylation changes were observed in fatty acid synthase (Fasn), nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (Nfκb1), c-Jun, B-cell lymphoma 2 (Bcl-2) and Caspase 3. NAFLD was associated with hepatic methionine deficiency and homocysteine elevation, resulting mainly from impaired homocysteine remethylation, and aberrancy in methyltransferase reactions. Despite increased PRMT1 expression, hepatic ADMA was depleted while circulating ADMA was increased, suggesting increased export to circulation.
Collapse
Affiliation(s)
- Tommy Pacana
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, United States of America
- * E-mail: (AJS); (TP)
| | - Sophie Cazanave
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, United States of America
| | - Aurora Verdianelli
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, United States of America
| | - Vaishali Patel
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, United States of America
| | - Hae-Ki Min
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, United States of America
| | - Faridoddin Mirshahi
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, United States of America
| | - Eoin Quinlivan
- Biomedical Mass Spectrometry Laboratory, General Clinical Research Center, University of Florida, Gainesville, FL, United States of America
| | - Arun J. Sanyal
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, United States of America
- * E-mail: (AJS); (TP)
| |
Collapse
|
22
|
Kwak HC, Kim YM, Oh SJ, Kim SK. Sulfur amino acid metabolism in Zucker diabetic fatty rats. Biochem Pharmacol 2015; 96:256-66. [PMID: 26047850 DOI: 10.1016/j.bcp.2015.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
Abstract
The present study was aimed to investigate the metabolomics of sulfur amino acids in Zucker diabetic fatty (ZDF) rats, an obese type 2 diabetic animal model. Plasma levels of total cysteine, homocysteine and methionine, but not glutathione (GSH) were markedly decreased in ZDF rats. Hepatic methionine, homocysteine, cysteine, betaine, taurine, spermidine and spermine were also decreased. There are no significant difference in hepatic S-adenosylmethionine, S-adenosylhomocysteine, GSH, GSH disulfide, hypotaurine and putrescine between control and ZDF rats. Hepatic SAH hydrolase, betaine-homocysteine methyltransferase and methylene tetrahydrofolate reductase were up-regulated while activities of gamma-glutamylcysteine ligase and methionine synthase were decreased. The area under the curve (AUC) of methionine and methionine-d4 was not significantly different in control and ZDF rats treated with a mixture of methionine (60mg/kg) and methionine-d4 (20mg/kg). Moreover, the AUC of the increase in plasma total homocysteine was comparable between two groups, although the homocysteine concentration curve was shifted leftward in ZDF rats, suggesting that the plasma total homocysteine after the methionine loading was rapidly increased and normalized in ZDF rats. These results show that the AUC of plasma homocysteine is not responsive to the up-regulation of hepatic BHMT in ZDF rats. The present study suggests that the decrease in hepatic methionine may be responsible for the decreases in its metabolites, such as homocysteine, cysteine, and taurine in liver and consequently decreased plasma homocysteine levels.
Collapse
Affiliation(s)
- Hui Chan Kwak
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Young-Mi Kim
- College of Pharmacy, Hanyang University, Ansan, Gyeonggido 426-791, Republic of Korea
| | - Soo Jin Oh
- Bio-Evaluation Center, KRIBB, Ochang, Chungbuk, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
23
|
Niu S, Wang L, He M, Peng Y, Li S. Exendin-4 regulates redox homeostasis in rats fed with high-fat diet. Acta Biochim Biophys Sin (Shanghai) 2015; 47:397-403. [PMID: 25910576 DOI: 10.1093/abbs/gmv027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/15/2015] [Indexed: 12/29/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with increased plasma homocysteine level, which is caused by down-regulation of hepatic cystathionine beta-synthase (CBS) activity. CBS catalyzes the first step in the transsulfuration of homocysteine to cysteine, which contributes ∼50% of the cysteine required for hepatic biosynthesis of glutathione (GSH), the most abundant antioxidant in cells. As the glucagon-like peptide-1 (GLP-1) receptor agonists (e.g. exendin-4) effectively reverse hepatic steatosis, the effect of exendin-4 on both homocysteine and redox status was investigated in the livers of rats fed with high-fat diet (HFD). It was found that HFD down-regulated CBS protein expression, which was probably due to induction of rno-miR-376c expression in the liver. The level of GSH was markedly reduced, whereas the level of malonydialdehyde, an indicator of lipid peroxidation, was significantly increased in the livers of rats fed with HFD. Exendin-4 treatment increased hepatic CBS protein and GSH levels, and reduced malonydialdehyde level in hyperlipidemic rats. Our findings suggest that GLP-1 receptor agonists have beneficial effects on redox homeostasis in NAFLD.
Collapse
Affiliation(s)
- Shiwei Niu
- Department of Biochemistry, Kunming Medical University, Kunming 650031, China
| | - Liqiong Wang
- Department of Pathology, Yan'an Hospital, Kunming 650051, China
| | - Ming He
- Department of Biochemistry, Kunming Medical University, Kunming 650031, China
| | - Yunzhu Peng
- Department of Cardiology, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| | - Shude Li
- Department of Biochemistry, Kunming Medical University, Kunming 650031, China
| |
Collapse
|
24
|
Niu S, Wang L, He M, Peng Y, Li S. Exendin-4 regulates redox homeostasis in rats fed with high-fat diet. Acta Biochim Biophys Sin (Shanghai) 2015. [DOI: 10.1093/abbs/gmv027 order by 31548--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Gao XH, Zhang GY, Wang Y, Zhang HY. Correlations of MTHFR 677C>T polymorphism with cardiovascular disease in patients with end-stage renal disease: a meta-analysis. PLoS One 2014; 9:e102323. [PMID: 25050994 PMCID: PMC4106822 DOI: 10.1371/journal.pone.0102323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/17/2014] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE This meta-analysis was conducted to evaluate the correlations of a common polymorphism (677C>T) in the methylenetetrahydrofolate reductase (MTHFR) gene with risk of cardiovascular disease (CVD) in patients with end-stage renal disease (ESRD). METHOD The following electronic databases were searched without language restrictions: Web of Science (1945∼2013), the Cochrane Library Database (Issue 12, 2013), MEDLINE (1966∼2013), EMBASE (1980∼2013), CINAHL (1982∼2013) and the Chinese Biomedical Database (CBM) (1982∼2013). Meta-analysis was performed using STATA statistical software. Odds ratios (ORs) with their 95% confidence intervals (95%CIs) were calculated. RESULTS Eight cohort studies met all inclusion criteria and were included in this meta-analysis. A total of 2,292 ESRD patients with CVD were involved in this meta-analysis. Our meta-analysis results revealed that the MTHFR 677C>T polymorphism might increase the risk of CVD in ESRD patients (TT vs. CC: OR = 2.75, 95%CI = 1.35∼5.59, P = 0.005; CT+TT vs. CC: OR = 1.39, 95%CI = 1.09∼1.78, P = 0.008; TT vs. CC+CT: OR = 2.52, 95%CI = 1.25∼5.09, P = 0.010; respectively). Further subgroup analysis by ethnicity suggested that the MTHFR 677C>T polymorphism was associated with an elevated risk for CVD in ESRD patients among Asians (TT vs. CC: OR = 3.38, 95%CI = 1.11∼10.28, P = 0.032; CT+TT vs. CC: OR = 1.44, 95%CI = 1.05∼1.97, P = 0.022; TT vs. CC+CT: OR = 3.15, 95%CI = 1.02∼9.72, P = 0.046; respectively), but not among Africans or Caucasians (all P>0.05). CONCLUSION Our findings indicate that the MTHFR 677C>T polymorphism may be associated with an elevated risk for CVD in ESRD patients, especially among Asians.
Collapse
Affiliation(s)
- Xian-Hui Gao
- Laboratory of Preventive Medicine, School of Public Health, Liaoning Medical University, Jinzhou, China
- * E-mail:
| | - Guo-Yi Zhang
- Laboratory of Preventive Medicine, School of Public Health, Liaoning Medical University, Jinzhou, China
| | - Ying Wang
- Department of Toxicology, School of Public Health, Liaoning Medical University, Jinzhou, China
| | - Hui-Ying Zhang
- Sleep Monitoring Center, First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| |
Collapse
|
26
|
Ahmed AA, Balogun KA, Bykova NV, Cheema SK. Novel regulatory roles of omega-3 fatty acids in metabolic pathways: a proteomics approach. Nutr Metab (Lond) 2014; 11:6. [PMID: 24438320 PMCID: PMC3898484 DOI: 10.1186/1743-7075-11-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/15/2014] [Indexed: 12/28/2022] Open
Abstract
Background Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been shown to alleviate the symptoms of metabolic disorders, such as heart disease, diabetes, obesity and insulin resistance. Several putative mechanisms by which n-3 PUFA elicit beneficial health effects have been proposed; however, there is still a shortage of knowledge on the proteins and pathways that are regulated by n-3 PUFA. Methods Using two dimensional polyacrylamide gel electrophoresis (2D-PAGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, we investigated the effects of diets high or low in n-3 PUFA on hepatic proteomic profile of C57BL/6 mice. Results The findings show for the first time that high dietary n-3 PUFA reduced the expression of regucalcin, adenosine kinase and aldehyde dehydrogenase. On the other hand, diets high in n-3 PUFA increased the expression of apolipoprotein A-I, S-adenosylmethionine synthase, fructose-1, 6-bisphosphatase, ketohexokinase, malate dehydrogenase, GTP-specific succinyl CoA synthase, ornithine aminotransferase and protein disulfide isomerase-A3. Conclusions Our findings revealed for the first time that n-3 PUFA causes alterations in several novel functional proteins involved in regulating lipid, carbohydrate, one-carbon, citric acid cycle and protein metabolism, suggesting integrated regulation of metabolic pathways. These novel proteins are potential targets to develop therapeutic strategies against metabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Sukhinder K Cheema
- Department of Biochemistry, Memorial University of Newfoundland, St, John's, NL, A1B 3X9, Canada.
| |
Collapse
|
27
|
Kim SY, Hong SW, Kim MO, Kim HS, Jang JE, Leem J, Park IS, Lee KU, Koh EH. S-adenosyl methionine prevents endothelial dysfunction by inducing heme oxygenase-1 in vascular endothelial cells. Mol Cells 2013; 36:376-84. [PMID: 24046187 PMCID: PMC3887983 DOI: 10.1007/s10059-013-0210-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 01/12/2023] Open
Abstract
S-adenosyl methionine (SAM) is a key intermediate in the metabolism of sulfur amino acids and is a major methyl donor in the cell. Although the low plasma level of SAM has been associated with atherosclerosis, the effect of SAM administration on atherosclerosis is not known. Endothelial dysfunction is an early prerequisite for atherosclerosis. This study was undertaken to investigate the possible preventive effect of SAM on endothelial dysfunction and the molecular mechanism of its action. SAM treatment prevented endothelial dysfunction in high fat diet (HFD)-fed rats. In cultured human aortic endothelial cells, linoleic acid (LA) increased and SAM decreased cell apoptosis and endoplasmic reticulum stress. Both LA and SAM increased heme oxygenase-1 (HO-1) expression in an NF-E2-related factor 2-dependent manner. However, knockdown of HO-1 reversed only the SAM-induced preventive effect of cell apoptosis. The LA-induced HO-1 expression was dependent on PPARα, whereas SAM induced HO-1 in a PPAR-independent manner. These data demonstrate that SAM treatment prevents endothelial dysfunction in HFDfed animals by inducing HO-1 in vascular endothelial cells. In cultured endothelial cells, SAM-induced HO-1 was responsible for the observed prevention of cell apoptosis. We propose that SAM treatment may represent a new therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Sun Young Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Korea
| | - Seok Woo Hong
- Department of Anatomy, College of Medicine, Inha University, Incheon 401-103, Korea
| | - Mi-Ok Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Korea
| | - Hyun-Sik Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Korea
| | - Jung Eun Jang
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Jaechan Leem
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - In-Sun Park
- Department of Anatomy, College of Medicine, Inha University, Incheon 401-103, Korea
| | - Ki-Up Lee
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Eun Hee Koh
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 138-736, Korea
| |
Collapse
|
28
|
Hwang SY, Sarna LK, Siow YL, O K. High-fat diet stimulates hepatic cystathionine β-synthase and cystathionine γ-lyase expression. Can J Physiol Pharmacol 2013; 91:913-9. [PMID: 24117258 DOI: 10.1139/cjpp-2013-0106] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) catalyze homocysteine (Hcy) metabolism via the trans-sulfuration pathway. They are also responsible for hydrogen sulfide (H2S) production via desulfuration reactions. The liver contributes significantly to the regulation of Hcy and H2S homeostasis, which might participate in many physiological and pathological processes. The aim of this study was to investigate the effect of a high-fat diet (HFD) on hepatic CBS and CSE expression and its impact on Hcy and H2S metabolism. Mice (C57BL/6) fed a HFD (60% kcal fat) for 5 weeks developed fatty liver. The mRNA and protein levels of CBS and CSE in the liver were significantly elevated in mice fed a HFD. Subsequently the metabolism of Hcy by CBS and CSE was increased in the liver, and its level decreased in the circulation. Increased CBS and CSE expression also caused a significant elevation in H2S production in the liver. The level of lipid peroxides was elevated, indicating oxidative stress, while the level of total glutathione remained unchanged in the liver of HFD-fed mice. Upregulation of the trans-sulfuration pathway might play an adaptive role against oxidative stress by maintaining total glutathione levels in the liver.
Collapse
Affiliation(s)
- Sun-Young Hwang
- a Department of Physiology, University of Manitoba, Winnipeg, Manitoba
| | | | | | | |
Collapse
|
29
|
Tlili A, Jacobs F, de Koning L, Mohamed S, Bui LC, Dairou J, Belin N, Ducros V, Dubois T, Paul JL, Delabar JM, De Geest B, Janel N. Hepatocyte-specific Dyrk1a gene transfer rescues plasma apolipoprotein A-I levels and aortic Akt/GSK3 pathways in hyperhomocysteinemic mice. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:718-28. [PMID: 23429073 DOI: 10.1016/j.bbadis.2013.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 02/11/2013] [Indexed: 11/17/2022]
Abstract
Hyperhomocysteinemia, characterized by high plasma homocysteine levels, is recognized as an independent risk factor for cardiovascular diseases. The increased synthesis of homocysteine, a product of methionine metabolism involving B vitamins, and its slower intracellular utilization cause increased flux into the blood. Plasma homocysteine level is an important reflection of hepatic methionine metabolism and the rate of processes modified by B vitamins as well as different enzyme activity. Lowering homocysteine might offer therapeutic benefits. However, approximately 50% of hyperhomocysteinemic patients due to cystathionine-beta-synthase deficiency are biochemically responsive to pharmacological doses of B vitamins. Therefore, effective treatments to reduce homocysteine levels are needed, and gene therapy could provide a novel approach. We recently showed that hepatic expression of DYRK1A, a serine/threonine kinase, is negatively correlated with plasma homocysteine levels in cystathionine-beta-synthase deficient mice, a mouse model of hyperhomocysteinemia. Therefore, Dyrk1a is a good candidate for gene therapy to normalize homocysteine levels. We then used an adenoviral construct designed to restrict expression of DYRK1A to hepatocytes, and found decreased plasma homocysteine levels after hepatocyte-specific Dyrk1a gene transfer in hyperhomocysteinemic mice. The elevation of pyridoxal phosphate was consistent with the increase in cystathionine-beta-synthase activity. Commensurate with the decreased plasma homocysteine levels, targeted hepatic expression of DYRK1A resulted in elevated plasma paraoxonase-1 activity and apolipoprotein A-I levels, and rescued the Akt/GSK3 signaling pathways in aorta of mice, which can prevent homocysteine-induced endothelial dysfunction. These results demonstrate that hepatocyte-restricted Dyrk1a gene transfer can offer a useful therapeutic targets for the development of new selective homocysteine lowering therapy.
Collapse
Affiliation(s)
- Asma Tlili
- Univ Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptative Biology, EAC-CNRS 4413, 75013 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Clifford AJ, Chen K, McWade L, Rincon G, Kim SH, Holstege DM, Owens JE, Liu B, Müller HG, Medrano JF, Fadel JG, Moshfegh AJ, Baer DJ, Novotny JA. Gender and single nucleotide polymorphisms in MTHFR, BHMT, SPTLC1, CRBP2, CETP, and SCARB1 are significant predictors of plasma homocysteine normalized by RBC folate in healthy adults. J Nutr 2012; 142:1764-71. [PMID: 22833659 PMCID: PMC3417835 DOI: 10.3945/jn.112.160333] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Using linear regression models, we studied the main and 2-way interaction effects of the predictor variables gender, age, BMI, and 64 folate/vitamin B-12/homocysteine (Hcy)/lipid/cholesterol-related single nucleotide polymorphisms (SNP) on log-transformed plasma Hcy normalized by RBC folate measurements (nHcy) in 373 healthy Caucasian adults (50% women). Variable selection was conducted by stepwise Akaike information criterion or least angle regression and both methods led to the same final model. Significant predictors (where P values were adjusted for false discovery rate) included type of blood sample [whole blood (WB) vs. plasma-depleted WB; P < 0.001] used for folate analysis, gender (P < 0.001), and SNP in genes SPTLC1 (rs11790991; P = 0.040), CRBP2 (rs2118981; P < 0.001), BHMT (rs3733890; P = 0.019), and CETP (rs5882; P = 0.017). Significant 2-way interaction effects included gender × MTHFR (rs1801131; P = 0.012), gender × CRBP2 (rs2118981; P = 0.011), and gender × SCARB1 (rs83882; P = 0.003). The relation of nHcy concentrations with the significant SNP (SPTLC1, BHMT, CETP, CRBP2, MTHFR, and SCARB1) is of interest, especially because we surveyed the main and interaction effects in healthy adults, but it is an important area for future study. As discussed, understanding Hcy and genetic regulation is important, because Hcy may be related to inflammation, obesity, cardiovascular disease, and diabetes mellitus. We conclude that gender and SNP significantly affect nHcy.
Collapse
Affiliation(s)
- Andrew J. Clifford
- Department of Nutrition,To whom correspondence should be addressed. E-mail:
| | | | | | | | | | | | - Janel E. Owens
- Department of Nutrition,Department of Chemistry and Biochemistry, University of Colorado, Colorado Springs, CO
| | | | | | | | | | | | - David J. Baer
- Food Components and Health Laboratory, USDA, Beltsville, MD
| | | |
Collapse
|
31
|
Jackson MI, Cao J, Zeng H, Uthus E, Combs GF. S-adenosylmethionine-dependent protein methylation is required for expression of selenoprotein P and gluconeogenic enzymes in HepG2 human hepatocytes. J Biol Chem 2012; 287:36455-64. [PMID: 22932905 DOI: 10.1074/jbc.m112.412932] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cellular methylation processes enable expression of gluconeogenic enzymes and metabolism of the nutrient selenium. Selenium status has been proposed to relate to type II diabetes risk, and plasma levels of selenoprotein P (SEPP1) have been positively correlated with insulin resistance. Increased expression of gluconeogenic enzymes glucose-6-phosphatase (G6PC) and phosphoenolpyruvate carboxykinase 1 (PCK1) has negative consequences for blood glucose management in type II diabetics. Transcriptional regulation of SEPP1 is directed by the same transcription factors that control the expression of G6PC and PCK1, and these factors are activated by methylation of arginine residues. We sought to determine whether expression of SEPP1 and the aforementioned glucoconeogenic enzymes are regulated by protein methylation, the levels of which are reliant upon adequate S-adenosylmethionine (SAM) and inhibited by S-adenosylhomocysteine (SAH). We treated a human hepatocyte cell line, HepG2, with inhibitors of adenosylhomocysteine hydrolase (AHCY) known to increase concentration of SAH before analysis of G6PC, PCK1, and SEPP1 expression. Increasing SAH decreased 1) the SAM/SAH ratio, 2) protein-arginine methylation, and 3) expression of SEPP1, G6PC, and PCK1 transcripts. Furthermore, hormone-dependent induction of gluconeogenic enzymes was reduced by inhibition of protein methylation. When protein-arginine methyltransferase 1 expression was reduced by siRNA treatment, G6PC expression was inhibited. These findings demonstrate that hepatocellular SAM-dependent protein methylation is required for both SEPP1 and gluconeogenic enzyme expression and that inhibition of protein arginine methylation might provide a route to therapeutic interventions in type II diabetes.
Collapse
Affiliation(s)
- Matthew I Jackson
- Grand Forks Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Grand Forks, North Dakota 58203, USA.
| | | | | | | | | |
Collapse
|