1
|
Ma RX. A detective story of intermittent fasting effect on immunity. Immunology 2024; 173:227-247. [PMID: 38922825 DOI: 10.1111/imm.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intermittent fasting (IF) refers to periodic fasting routines, that caloric intake is minimized not by meal portion size reduction but by intermittently eliminating ingestion of one or several consecutive meals. IF can instigate comprehensive and multifaceted alterations in energy metabolism, these metabolic channels may aboundingly function as primordial mechanisms that interface with the immune system, instigating intricate immune transformations. This review delivers a comprehensive understanding of IF, paying particular attention to its influence on the immune system, thus seeking to bridge these two research domains. We explore how IF effects lipid metabolism, hormonal levels, circadian rhythm, autophagy, oxidative stress, gut microbiota, and intestinal barrier integrity, and conjecture about the mechanisms orchestrating the intersect between these factors and the immune system. Moreover, the review includes research findings on the implications of IF on the immune system and patients burdened with autoimmune diseases.
Collapse
Affiliation(s)
- Ru-Xue Ma
- School of Medical, Qinghai University, Xining, China
| |
Collapse
|
2
|
Wang L, Wang Q, Wang X, Yang C, Wang X, Liu H, Wang H. Intermittent fasting alleviates postoperative cognitive dysfunction by reducing neuroinflammation in aged mice. Brain Res Bull 2024; 216:111034. [PMID: 39053649 DOI: 10.1016/j.brainresbull.2024.111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Elderly individuals undergoing surgical procedures are often confronted with the peril of experiencing postoperative cognitive dysfunction (POCD). Prior research has demonstrated the exacerbating effect of sevoflurane anesthesia on neuroinflammation, which can further deteriorate the condition of POCD in elderly patients. Intermittent fasting (IF) restricts food consumption to a specific time window and has been demonstrated to ameliorate cognitive dysfunction induced by neuropathic inflammation. We subjected 18-month-old male mice to 16 hours of fasting and 8 hours of unrestricted eating over a 24-hour period for 0, 1, 2, and 4 weeks, followed by abdominal exploration under sevoflurane anesthesia. In this study, we aim to explore the potential impact of IF on postoperative cognitive function in aged mice undergoing sevoflurane surgery through the preoperative implementation of IF measures. The findings indicate two weeks of IF leads to a significant enhancement of learning and memory capabilities in mice following surgery. The cognitive performance, as determined by the novel object recognition and Morris water maze tests, as well as the synaptic plasticity, as measured by in vivo electrophysiological recordings, has demonstrated marked improvements. Furthermore, the administration of IF markedly enhances the expression of synaptic-associated proteins in hippocampal neurons, concomitant with a decreasing expression of pro-inflammatory factors and a reduced density of microglial cells within the hippocampal brain region. To summarize, the results of this study indicate that IF may mitigate inflammation in the hippocampal area of the brain. Furthermore, IF appears to provide a safeguard against cognitive impairment and synaptic plasticity impairment brought on by sevoflurane anesthesia.
Collapse
Affiliation(s)
- Lei Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, China
| | - Qiang Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Xiaoqing Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Chenyi Yang
- Department of Anesthesiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Nankai University 300071, Tianjin, China; Nankai University Affinity the Third Central Hospital, Tianjin 300170, China
| | - Xinyi Wang
- Department of Anesthesiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Nankai University 300071, Tianjin, China; Nankai University Affinity the Third Central Hospital, Tianjin 300170, China
| | - Huan Liu
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Haiyun Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Nankai University 300071, Tianjin, China; Nankai University Affinity the Third Central Hospital, Tianjin 300170, China.
| |
Collapse
|
3
|
Luo Y, Wang H, Chen Z, Deng Y, Zhang Y, Hu W. Sex-specific effects of intermittent fasting on hippocampal neurogenesis via the gut-brain axis. Food Funct 2024; 15:8432-8447. [PMID: 39049753 DOI: 10.1039/d4fo00318g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Intermittent fasting (IF) is a widely used dietary strategy that has shown several advantageous impacts on general health and aging. IF has recently been linked to the control of neurogenesis, a crucial process for emotional control, memory, and learning, in the hippocampus. Nevertheless, there is little knowledge about the sex-specific impacts of IF on hippocampal neurogenesis and the related mechanisms, which were investigated in this study among both male and female rats, together with analyzing the involvement of the flora-gut-brain axis in facilitating these effects. Our findings show that IF favorably affects hippocampus neurogenesis in female mice relative to male mice, suggesting a sex-specific mechanism. In addition, IF influenced the diversity of the gut microbiota and decreased the synthesis of fructose-1-phosphate (F-1-P), which is believed together with fructose metabolism to be linked to neurological damage and cognitive decline. Collectively, these data indicate that the connection between the flora-gut-brain axis and hippocampus neurogenesis is significant.
Collapse
Affiliation(s)
- Yimin Luo
- Department of Biological Science, Jining Medical University, Rizhao, China.
| | - Hui Wang
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhaomin Chen
- Department of Biological Science, Jining Medical University, Rizhao, China.
| | - Yuqing Deng
- Department of Biological Science, Jining Medical University, Rizhao, China.
| | - Yuran Zhang
- Department of Biological Science, Jining Medical University, Rizhao, China.
| | - Wenjie Hu
- Department of Biological Science, Jining Medical University, Rizhao, China.
| |
Collapse
|
4
|
Wei J, Ai Q, Lv P, Fang W, Wang Z, Zhao J, Xu W, Chen L, Dong J, Luo B. Acupoint catgut embedding attenuates oxidative stress and cognitive impairment in chronic cerebral ischemia by inhibiting the Ang II/AT1R/NOX axis. Pflugers Arch 2024; 476:1249-1261. [PMID: 38940824 DOI: 10.1007/s00424-024-02981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Chronic cerebral ischemia (CCI) is a common neurological disorder, characterized by progressive cognitive impairment. Acupoint catgut embedding (ACE) represents a modern acupuncture form that has shown neuroprotective effects; nevertheless, its effects on CCI and the mechanisms remain largely unknown. Here, we aimed to explore the therapeutic action of ACE in CCI-induced cognitive impairment and its mechanisms. The cognitive function of CCI rats was determined using Morris water maze test, and histopathological changes in the brain were assessed through hematoxylin-eosin (HE) staining. To further explore the molecular mechanisms, the expression levels of oxidative stress markers and the Ang II/AT1R/NOX axis-associated molecules in the hippocampus were evaluated using enzyme-linked immunosorbent assay (ELISA), western blotting, and immunohistochemistry. Here, we observed that ACE treatment alleviated cognitive dysfunction and histopathological injury in CCI rats. Intriguingly, candesartan (an AT1R blocker) enhanced the beneficial effects of ACE on ameliorating cognitive impairment in CCI rats. Mechanistically, ACE treatment blocked the Ang II/AT1R/NOX pathway and subsequently suppressed oxidative stress, thus mitigating cognitive impairment in CCI. Our findings first reveal that ACE treatment could suppress cognitive impairment in CCI, which might be partly due to the suppression of Ang II/AT1R/NOX axis.
Collapse
Affiliation(s)
- Jurui Wei
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China
| | - Qi Ai
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China
| | - Peier Lv
- Science and Education Section, The First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Wenyao Fang
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China
| | - Zixuan Wang
- Department of Anesthesiology, The First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Jiumei Zhao
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China
| | - Wenqing Xu
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China
| | - Lin Chen
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China
| | - Jun Dong
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China.
| | - Bijun Luo
- Department of Respiratory Medicine, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China.
| |
Collapse
|
5
|
Rajeev V, Tabassum NI, Fann DY, Chen CP, Lai MK, Arumugam TV. Intermittent Metabolic Switching and Vascular Cognitive Impairment. J Obes Metab Syndr 2024; 33:92-107. [PMID: 38736362 PMCID: PMC11224924 DOI: 10.7570/jomes24010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024] Open
Abstract
Intermittent fasting (IF), a dietary pattern alternating between eating and fasting periods within a 24-hour cycle, has garnered recognition for its potential to enhance both healthspan and lifespan in animal models and humans. It also shows promise in alleviating age-related diseases, including neurodegeneration. Vascular cognitive impairment (VCI) spans a severity range from mild cognitive deficits to severe cognitive deficits and loss of function in vascular dementia. Chronic cerebral hypoperfusion has emerged as a significant contributor to VCI, instigating vascular pathologies such as microbleeds, blood-brain barrier dysfunction, neuronal loss, and white matter lesions. Preclinical studies in rodents strongly suggest that IF has the potential to attenuate pathological mechanisms, including excitotoxicity, oxidative stress, inflammation, and cell death pathways in VCI models. Hence, this supports evaluating IF in clinical trials for both existing and at-risk VCI patients. This review compiles existing data supporting IF's potential in treating VCI-related vascular and neuronal pathologies, emphasizing the mechanisms by which IF may mitigate these issues. Hence providing a comprehensive overview of the available data supporting IF's potential in treating VCI by emphasizing the underlying mechanisms that make IF a promising intervention for VCI.
Collapse
Affiliation(s)
- Vismitha Rajeev
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nishat I. Tabassum
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - David Y. Fann
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher P. Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore
| | - Mitchell K.P. Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore
| | - Thiruma V. Arumugam
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
6
|
Wang C, Liu Z, Cai J, Xu X. The regulatory effect of intermittent fasting on inflammasome activation in health and disease. Nutr Rev 2024; 82:978-987. [PMID: 37634143 DOI: 10.1093/nutrit/nuad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Intermittent fasting (IF), one of the most popular diets, can regulate inflammation and promote health; however, the detailed molecular mechanisms are not fully understood. The present review aims to provide an overview of recent preclinical and clinical studies that have examined the effect of IF on inflammasome signaling, and to discuss the translational gap between preclinical and clinical studies. Three databases (PubMed, Web of Science, and Embase) were searched to identify all relevant preclinical and clinical studies up to October 30, 2022. A total of 1544 studies were identified through the database searches, and 29 preclinical and 10 clinical studies were included. Twenty-three of the 29 preclinical studies reported that IF treatment could reduce inflammasome activation in neurological diseases, metabolic and cardiovascular diseases, immune and inflammatory diseases, gastrointestinal diseases, and pulmonary diseases, and 7 of the 10 clinical studies demonstrated reduced inflammasome activation after IF intervention in both healthy and obese participants. Among various IF regimens, time-restricted eating seemed to be the most effective one in terms of inflammasome regulation, and the efficacy of IF might increase over time. This review highlights the regulatory effect of IF on inflammasome activation in health and disease. Future studies using different IF regimens, in various populations, are needed in order to evaluate its potential to be used alone or as an adjunct therapy in humans to improve health and counteract diseases.
Collapse
Affiliation(s)
- Chenchen Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, P. R. China
| | - Zhiqin Liu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, P. R. China
| | - Jinpeng Cai
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, P. R. China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, P. R. China
| |
Collapse
|
7
|
Tao W, Zhang Y, Wang B, Nie S, Fang L, Xiao J, Wu Y. Advances in molecular mechanisms and therapeutic strategies for central nervous system diseases based on gut microbiota imbalance. J Adv Res 2024:S2090-1232(24)00124-3. [PMID: 38579985 DOI: 10.1016/j.jare.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUD Central nervous system (CNS) diseases pose a serious threat to human health, but the regulatory mechanisms and therapeutic strategies of CNS diseases need to be further explored. It has been demonstrated that the gut microbiota (GM) is closely related to CNS disease. GM structure disorders, abnormal microbial metabolites, intestinal barrier destruction and elevated inflammation exist in patients with CNS diseases and promote the development of CNS diseases. More importantly, GM remodeling alleviates CNS pathology to some extent. AIM OF REVIEW Here, we have summarized the regulatory mechanism of the GM in CNS diseases and the potential treatment strategies for CNS repair based on GM regulation, aiming to provide safer and more effective strategies for CNS repair from the perspective of GM regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW The abundance and composition of GM is closely associated with the CNS diseases. On the basis of in-depth analysis of GM changes in mice with CNS disease, as well as the changes in its metabolites, therapeutic strategies, such as probiotics, prebiotics, and FMT, may be used to regulate GM balance and affect its microbial metabolites, thereby promoting the recovery of CNS diseases.
Collapse
Affiliation(s)
- Wei Tao
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yanren Zhang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Bingbin Wang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Saiqun Nie
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Li Fang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
8
|
Xu W, Wang X, Hou X, Yang Y, Ma R, Lv R, Yin Q. The role of microglia in the pathogenesis of diabetic-associated cognitive dysfunction. Front Endocrinol (Lausanne) 2024; 14:1246979. [PMID: 38274227 PMCID: PMC10808430 DOI: 10.3389/fendo.2023.1246979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Affiliation(s)
- Wenwen Xu
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinyu Wang
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xunyao Hou
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Yang
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Rongrong Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Renjun Lv
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qingqing Yin
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
9
|
Albrahim T, Alangry R, Alotaibi R, Almandil L, Alburikan S. Effects of Regular Exercise and Intermittent Fasting on Neurotransmitters, Inflammation, Oxidative Stress, and Brain-Derived Neurotrophic Factor in Cortex of Ovariectomized Rats. Nutrients 2023; 15:4270. [PMID: 37836554 PMCID: PMC10574130 DOI: 10.3390/nu15194270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
A collection of metabolic disorders and neurodegenerative diseases linked to oxidative stress and neuroinflammation frequently affect postmenopausal women or estrogen deprivation. Recent research has focused on alternative therapies that can enhance these women's quality of life. This study set out to investigate the effects of physical exercise (EX) and intermittent fasting (IF) on oxidants/antioxidants, inflammatory cytokines, neurotransmitters, and brain-derived neurotrophic factor (BDNF) in the cortex of rats. Additionally, it sought to assess the response to oxidative stress and neuroinflammation in the brains of rats following ovariectomy (OVX) and the potential mechanisms of these interventions. Fifty female rats were divided into one of the following groups 30 days after bilateral OVX: Control, OVX, OVX + EX, OVX + IF, and OVX + EX + IF groups. The rats in the Control and OVX groups continued their normal activities and had unrestricted access to food and water, but the rats in the OVX + EX and OVX + EX + IF groups had a 4-week treadmill training program, and the rats in the OXV + IF and OVX + EX + IF groups fasted for 13 h each day. The rats were killed, the cerebral cortex was taken, tissue homogenates were created, and various parameters were estimated using these homogenates. The results show that ovariectomized rats had decreased levels of neurotransmitters (DA, NE, and SE), acetylcholinesterase, brain GSH (glutathione), SOD (superoxide dismutase), catalase, GPx (glutathione peroxidase), and TAC (total antioxidant capacity), as well as elevated levels of proinflammatory cytokines and mediators (TNF-α, IL-1β, Cox-2). While ovariectomy-induced declines in neurotransmitters, enzymatic and nonenzymatic molecules, neuroinflammation, and oxidative brain damage were considerably mitigated and prevented by treadmill exercise and intermittent fasting, BDNF was significantly increased. These results suggest that ovariectomy can impair rat neuronal function and regular treadmill exercise and intermittent fasting seem to protect against ovariectomy-induced neuronal impairment through the inhibition of oxidative stress and neuroinflammation and increased BDNF levels in the brain cortex. However, combining regular exercise and intermittent fasting did not provide additional benefits compared to either treatment alone.
Collapse
Affiliation(s)
- Tarfa Albrahim
- Department of Health Sciences, Clinical Nutrition, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (R.A.); (R.A.); (L.A.); (S.A.)
| | | | | | | | | |
Collapse
|
10
|
Wang Z, Li T, Du M, Zhang L, Xu L, Song H, Zhang J. β-hydroxybutyrate improves cognitive impairment caused by chronic cerebral hypoperfusion via amelioration of neuroinflammation and blood-brain barrier damage. Brain Res Bull 2023; 193:117-130. [PMID: 36577190 DOI: 10.1016/j.brainresbull.2022.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Vascular cognitive impairment (VCI) is the second most common type of dementia after Alzheimer's disease (AD) in elderly people. Chronic cerebral hypoperfusion (CCH) is the early pathophysiological basis of VCI. β-Hydroxybutyrate (BHB) is one of the important components of ketone bodies, an intermediate product of endogenous energy metabolism, which can mitigate neuroinflammation in stroke and neurodegenerative diseases. The present study aimed to investigate whether BHB can improve cognitive impairment caused by CCH and the underlying mechanism. METHODS The CCH model was established by permanent bilateral common carotid artery occlusion (2VO). CCH rats were intraperitoneally injected with BHB (1.5 mmol/kg/d) every day for 8 consecutive weeks from 2 weeks before surgery. The hippocampal blood flow of rats was measured by using a laser Doppler velocimetry. Used the Morris water maze test (MWM) to assess spatial learning and memory of rats, and harvested brain tissues for molecular, biochemical, and pathological tests. RESULTS We found that BHB intervention for 8 weeks could effectively restore hippocampal blood flow and improve spatial learning and memory in CCH rats. BHB can protect the blood-brain barrier (BBB), as manifested by reducing the ultrastructural damage and leakage of the BBB, restoring the expression of tight junction-related proteins and reducing the expression of Matrix Metalloproteinases-9 (MMP-9). Additionally, after BHB intervention, microglia activation was reduced, oligodendrocyte motility was active, and the expression levels of pro-inflammatory factors such as tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), nuclear factor-κB (NF-κB) and advanced glycation end-products (RAGE) were lower, which also indicated that BHB had a beneficial effect in mitigating neuroinflammation. CONCLUSION BHB can improve the cognitive impairment caused by CCH. The potential mechanisms of BHB may be through reducing neuroinflammation and protecting BBB.
Collapse
Affiliation(s)
- Zhitian Wang
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| | - Tian Li
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| | - Miaoyu Du
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| | - Lei Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| | - Linling Xu
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| | - Hao Song
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| |
Collapse
|
11
|
Yang Y, Zhao X, Zhu Z, Zhang L. Vascular dementia: A microglia's perspective. Ageing Res Rev 2022; 81:101734. [PMID: 36113763 DOI: 10.1016/j.arr.2022.101734] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023]
Abstract
Vascular dementia (VaD) is a second most common form of age-related dementia. It is characterized by cognitive impairment associated with vascular pathology, symptoms mainly caused by cerebral damage due to inadequate blood flow to the brain. The pathogenesis of VaD is complex, and a growing body of literature emphasizes on the involvement of microglia in disease development and progression. Here, we review the current knowledge on the role of microglia in regulating neuroinflammation under the pathogenesis of VaD. The commonly used animal and cell models for understanding the disease pathogenesis were summarized. The mechanisms by which microglia contribute to VaD are multifactorial, and we specifically focus on some of the predominant functions of microglia, including chemotaxis, secretory property, phagocytosis, and its crosstalk with other neurovascular unit cells. Finally, potential therapeutic strategies targeting microglia-modulated neuroinflammation are discussed.
Collapse
Affiliation(s)
- Yi Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Xinyuan Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China
| | - Zirui Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China
| | - Lihui Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
12
|
Niotis K, Akiyoshi K, Carlton C, Isaacson R. Dementia Prevention in Clinical Practice. Semin Neurol 2022; 42:525-548. [PMID: 36442814 DOI: 10.1055/s-0042-1759580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over 55 million people globally are living with dementia and, by 2050, this number is projected to increase to 131 million. This poses immeasurable challenges for patients and their families and a significant threat to domestic and global economies. Given this public health crisis and disappointing results from disease-modifying trials, there has been a recent shift in focus toward primary and secondary prevention strategies. Approximately 40% of Alzheimer's disease (AD) cases, which is the most common form of dementia, may be prevented or at least delayed. Success of risk reduction studies through addressing modifiable risk factors, in addition to the failure of most drug trials, lends support for personalized multidomain interventions rather than a "one-size-fits-all" approach. Evolving evidence supports early intervention in at-risk patients using individualized interventions directed at modifiable risk factors. Comprehensive risk stratification can be informed by emerging principals of precision medicine, and include expanded clinical and family history, anthropometric measurements, blood biomarkers, neurocognitive evaluation, and genetic information. Risk stratification is key in differentiating subtypes of dementia and identifies targetable areas for intervention. This article reviews a clinical approach toward dementia risk stratification and evidence-based prevention strategies, with a primary focus on AD.
Collapse
Affiliation(s)
- Kellyann Niotis
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York
| | - Kiarra Akiyoshi
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York
| | - Richard Isaacson
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York.,Department of Neurology, Florida Atlantic University, Charles E. Schmidt College of Medicine, Boca Raton, Florida
| |
Collapse
|
13
|
Cicekdal MB, Thomas PB, Guvenc Tuna B, Charehsaz M, Aydin A, Yilmaz B, Cleary MP, Dogan S. Effects of Different Calorie Restriction Protocols on Oxidative Stress Parameters in a Transgenic Mouse Model of Breast Cancer. Cureus 2022; 14:e27895. [PMID: 36120244 PMCID: PMC9467500 DOI: 10.7759/cureus.27895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
Aging and diseases related to aging, such as cancer, have been linked to oxidative stress. On the other hand, calorie restriction (CR) is one of the most effective interventions to slow down aging and prevent a variety of diseases such as cancer in preclinical models. CR has also been reported to modify oxidative stress. The aim of this study was to investigate the effects of different CR protocols and aging on oxidative stress parameters in the MMTV-TGF-α breast cancer mouse model in a cross-sectional study. Female mice were randomly enrolled in three groups: ad libitum (AL), chronic calorie restriction (CCR, 15% CR) or intermittent calorie restriction (ICR, three weeks AL followed by one week 60% CR in cyclic periods) starting at the age of 10 weeks until 81/82 weeks of age. Liver samples were analyzed for malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSH-Px) levels. At week 49/50, the GSH level increased significantly in the CCR group compared to the AL and ICR-R groups which had higher mammary tumor (MT) incidence rates. Additionally, liver MDA levels in ICR groups were significantly increased, while aging led to decreased CAT and SOD activities in all CR groups. The application of different CR protocols did not have any significant effect on MDA, CAT, and SOD parameters in the liver at week 81/82. These results suggest that although GSH may interfere with MT development at the systemic level, many of the oxidative stress parameters may have more local effects on tumor development than the systemic effects.
Collapse
|
14
|
Alotaibi N, Aldriweesh MA, Alhasson MA, Albdah BA, Aldbas AA, Alluhidan WA, Alsaif SA, Almutairi FM, Alskaini MA, Al Khathaami AM. Clinical characteristics and outcomes of ischemic stroke patients during Ramadan vs. non-Ramadan months: Is there a difference? Front Neurol 2022; 13:925764. [PMID: 35937074 PMCID: PMC9353707 DOI: 10.3389/fneur.2022.925764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To study the clinical characteristics and outcomes of patients experiencing an ischemic stroke during Ramadan vs. non-Ramadan months in a tertiary academic center in an Islamic country. Methods We retrospectively reviewed all patients with ischemic stroke (IS) in Ramadan and non-Ramadan months for four consecutive years (February 2016–June 2019). All demographics, vascular risk factors, laboratory results, modified Rankin Scale (mRS) at admission and discharge, National Institute Stroke Scale (NIHSS), and in-hospital complication data were collected for all patients. Results One thousand and 58 patients were included (non-Ramadan, n = 960; during Ramadan, n = 98). The mean age during Ramadan was 59 ± 13 years. Most non-Ramadan IS patients during Ramadan were male (68.5%; 57.1%, respectively). There was no statistical difference in vascular risk factors and medical history between the two groups. However, Ramadan patients had higher median NIHSS scores at discharge (p = 0.0045). In addition, more ICU admissions were noted among Ramadan patients (p = 0.009). In the gender-specific analysis for Ramadan patients, we found a statistically significant difference in smoking and urinary tract infection (p = 0.006, p = 0.005, respectively). Conclusion Based on our results, there was no difference, in general, between patients with IS during Ramadan and non-Ramadan months. However, IS patients had higher NIHSS scores at discharge and more ICU admissions during Ramadan. Last, we suggest future studies with larger sample sizes, longer duration, and including all types of strokes.
Collapse
Affiliation(s)
- Naser Alotaibi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Division of Neurology, Department of Medicine, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mohammed A. Aldriweesh
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Muath A. Alhasson
- Unaizah College of Medicine, Qassim University, Qassim, Saudi Arabia
| | - Bayan A. Albdah
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Abdulaziz A. Aldbas
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Waleed A. Alluhidan
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | | | - Faisal M. Almutairi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mohammed A. Alskaini
- Department of Neurology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ali M. Al Khathaami
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Division of Neurology, Department of Medicine, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
- *Correspondence: Ali M. Al Khathaami ;
| |
Collapse
|
15
|
Caron JP, Kreher MA, Mickle AM, Wu S, Przkora R, Estores IM, Sibille KT. Intermittent Fasting: Potential Utility in the Treatment of Chronic Pain across the Clinical Spectrum. Nutrients 2022; 14:nu14122536. [PMID: 35745266 PMCID: PMC9228511 DOI: 10.3390/nu14122536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Dietary behavior can have a consequential and wide-ranging influence on human health. Intermittent fasting, which involves intermittent restriction in energy intake, has been shown to have beneficial cellular, physiological, and system-wide effects in animal and human studies. Despite the potential utility in preventing, slowing, and reversing disease processes, the clinical application of intermittent fasting remains limited. The health benefits associated with the simple implementation of a 12 to 16 h fast suggest a promising role in the treatment of chronic pain. A literature review was completed to characterize the physiologic benefits of intermittent fasting and to relate the evidence to the mechanisms underlying chronic pain. Research on different fasting regimens is outlined and an overview of research demonstrating the benefits of intermittent fasting across diverse health conditions is provided. Data on the physiologic effects of intermittent fasting are summarized. The physiology of different pain states is reviewed and the possible implications for intermittent fasting in the treatment of chronic pain through non-invasive management, prehabilitation, and rehabilitation following injury and invasive procedures are presented. Evidence indicates the potential utility of intermittent fasting in the comprehensive management of chronic pain and warrants further investigation.
Collapse
Affiliation(s)
- Jesse P. Caron
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Margaret Ann Kreher
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Angela M. Mickle
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Stanley Wu
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Rene Przkora
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
- Department of Anesthesiology, Division of Pain Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Irene M. Estores
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Kimberly T. Sibille
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
- Department of Anesthesiology, Division of Pain Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
16
|
Lindholm C, Batakis P, Altimiras J, Lees J. Intermittent fasting induces chronic changes in the hepatic gene expression of Red Jungle Fowl (Gallus gallus). BMC Genomics 2022; 23:304. [PMID: 35421924 PMCID: PMC9009039 DOI: 10.1186/s12864-022-08533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background Intermittent fasting (IF), the implementation of fasting periods of at least 12 consecutive hours on a daily to weekly basis, has received a lot of attention in recent years for imparting the life-prolonging and health-promoting effects of caloric restriction with no or only moderate actual restriction of caloric intake. IF is also widely practiced in the rearing of broiler breeders, the parent stock of meat-type chickens, who require strict feed restriction regimens to prevent the serious health problems associated with their intense appetites. Although intermittent fasting has been extensively used in this context to reduce feed competition and its resulting stress, the potential of IF in chickens as an alternative and complementary model to rodents has received less investigation. In both mammals and birds, the liver is a key component of the metabolic response to IF, responding to variations in energy balance. Here we use a microarray analysis to examine the liver transcriptomics of wild-type Red Jungle Fowl chickens fed either ad libitum, chronically restricted to around 70% of ad libitum daily or intermittently fasted (IF) on a 2:1 (2 days fed, 1 day fasted) schedule without actual caloric restriction. As red junglefowl are ancestral to domestic chicken breeds, these data serve as a baseline to which existing and future transcriptomic results from farmed birds such as broiler breeders can be compared. Results We find large effects of feeding regimen on liver transcriptomics, with most of the affected genes relating to energy metabolism. A cluster analysis shows that IF is associated with large and reciprocal changes in genes related to lipid and carbohydrate metabolism, but also chronic changes in genes related to amino acid metabolism (generally down-regulated) and cell cycle progression (generally up-regulated). The overall transcription pattern appears to be one of promoting high proliferative plasticity in response to fluctuations in available energy substrates. A small number of inflammation-related genes also show chronically changed expression profiles, as does one circadian rhythm gene. Conclusions The increase in proliferative potential suggested by the gene expression changes reported here indicates that birds and mammals respond similarly to intermittent fasting practices. Our findings therefore suggest that the health benefits of periodic caloric restriction are ubiquitous and not restricted to mammals alone. Whether a common fundamental mechanism, for example involving leptin, underpins these benefits remains to be elucidated. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08533-5.
Collapse
|
17
|
Influence of intermittent fasting on prediabetes-induced neuropathy: Insights on a novel mechanistic pathway. Metabol Open 2022; 14:100175. [PMID: 35402890 PMCID: PMC8991399 DOI: 10.1016/j.metop.2022.100175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Aims Peripheral neuropathy (PN) is correlated with obesity and metabolic syndrome. Intermittent fasting (IF) has been described as the cornerstone in the management of obesity; however, its role in prediabetic complications is not well elucidated. Cytochromes P450 Monooxygenases (CYP450) are major sources of Reactive Oxygen Species (ROS) that orchestrate the onset and development of diabetic complications. One of the CYP-metabolites, Expoxyecosatetraenoic Acids (EETs), are considered to be negative regulators of ROS production. In this study, we elucidated the role of IF on ROS production and investigated its influence on prediabetes-induced PN. Methods C57/BL6 control mice, prediabetic, prediabetic that underwent alternate day fasting with different diet composition, and prediabetic mice treated with EET-metabolizing sEH-inhibitor, AUDA. Body mass composition, metabolic, behavioral, and molecular tests were performed. Results High-fat diet (HFD) led to an increase in NADPH-induced ROS production; that was due to an alteration in the epoxygenase pathway assessed by the decrease in CYP1a1/1a2 expression. IF reinstated the homeostatic levels of EETs in HFD-fed mice. Moreover, treatment with AUDA mimicked the beneficial effect observed with IF. Conclusion IF and EETs bioavailability have a protective role in prediabetes-induced PN, suggesting a novel interventional strategy in the management of prediabetes and its associated complications.
Collapse
|
18
|
Zhao Y, Jia M, Chen W, Liu Z. The neuroprotective effects of intermittent fasting on brain aging and neurodegenerative diseases via regulating mitochondrial function. Free Radic Biol Med 2022; 182:206-218. [PMID: 35218914 DOI: 10.1016/j.freeradbiomed.2022.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022]
Abstract
Intermittent fasting (IF) has been studied for its effects on lifespan and the prevention or delay of age-related diseases upon the regulation of metabolic pathways. Mitochondria participate in key metabolic pathways and play important roles in maintaining intracellular signaling networks that modulate various cellular functions. Mitochondrial dysfunction has been described as an early feature of brain aging and neurodegeneration. Although IF has been shown to prevent brain aging and neurodegeneration, the mechanism is still unclear. This review focuses on the mechanisms by which IF improves mitochondrial function, which plays a central role in brain aging and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The cellular and molecular mechanisms of IF in brain aging and neurodegeneration involve activation of adaptive cellular stress responses and signaling- and transcriptional pathways, thereby enhancing mitochondrial function, by promoting energy metabolism and reducing oxidant production.
Collapse
Affiliation(s)
- Yihang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengzhen Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Weixuan Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China; German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
| |
Collapse
|
19
|
Can dietary patterns prevent cognitive impairment and reduce Alzheimer's disease risk: exploring the underlying mechanisms of effects. Neurosci Biobehav Rev 2022; 135:104556. [PMID: 35122783 DOI: 10.1016/j.neubiorev.2022.104556] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the fastest growing cognitive decline-related neurological diseases. To date, effective curative strategies have remained elusive. A growing body of evidence indicates that dietary patterns have significant effects on cognitive function and the risk of developing AD. Previous studies on the association between diet and AD risk have mainly focused on individual food components and specific nutrients, and the mechanisms responsible for the beneficial effects of dietary patterns on AD are not well understood. This article provides a comprehensive overview of the effects of dietary patterns, including the Mediterranean diet (MedDiet), dietary approaches to stop hypertension (DASH) diet, Mediterranean-DASH diet intervention for neurological delay (MIND), ketogenic diet, caloric restriction, intermittent fasting, methionine restriction, and low-protein and high-carbohydrate diet, on cognitive impairment and summarizes the underlying mechanisms by which dietary patterns attenuate cognitive impairment, especially highlighting the modulation of dietary patterns on cognitive impairment through gut microbiota. Furthermore, considering the variability in individual metabolic responses to dietary intake, we put forward a framework to develop personalized dietary patterns for people with cognitive disorders or AD based on individual gut microbiome compositions.
Collapse
|
20
|
Alrowaili MG, Hussein AM, Eid EA, Serria MS, Abdellatif H, Sakr HF. Effect of Intermittent Fasting on Glucose Homeostasis and Bone Remodeling in Glucocorticoid-Induced Osteoporosis Rat Model. J Bone Metab 2021; 28:307-316. [PMID: 34905677 PMCID: PMC8671024 DOI: 10.11005/jbm.2021.28.4.307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Background The present study examined the effect of intermittent fasting (IF) on bone mineral content (BMC) and bone mineral density (BMD) and the markers of bone remodeling in a glucocorticoid-induced osteoporosis (GIO) rat model. Methods Forty male rats were allocated to 4 groups (N=10 per group): control group of normal rats; control+IF group (normal rats subjected to IF for 16–18 hr daily for 90 days); dexamethasone (DEX) group: (DEX [0.5 mg i.p.] for 90 days); and DEX+IF group (DEX and IF for 90 days). By the end of the experiment, BMD and BMC in the right tibia were measured. Serum levels of the following were measured: glucose; insulin; triglycerides (TGs); total cholesterol; parathyroid hormone (PTH); osteoprotegerin (OPG); receptor activator of nuclear factor-κB (RANK); bone-resorbing cytokines, including bone deoxypyridinoline (DPD), N-terminal telopeptide of collagen type I (NTX-1), and tartrate-resistant acid phosphatase 5b (TRAP-5b); and bone-forming cytokines, including alkaline phosphatase (ALP) and osteocalcin (OC). Results DEX administration for 90 days resulted in significantly increased serum levels of glucose, insulin, TGs, cholesterol, PTH, OPG, DPD, NTX-1, and TRAP-5b and significantly decreased BMD, BMC, and serum levels of RANK, OC, and ALP (all P<0.05). IF for 90 days significantly improved all these parameters (all P<0.05). Conclusions IF corrected GIO in rats by inhibiting osteoclastogenesis and PTH secretion and stimulating osteoblast activity.
Collapse
Affiliation(s)
- Majed G Alrowaili
- Department of Surgery (Orthopedic Division), Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Abdelaziz M Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Elsayed A Eid
- Department of Internal Medicine and Endocrinology, Delta University for Science and Technology, Gamasa, Egypt
| | - Mohamed S Serria
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hussein F Sakr
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
21
|
Soares NL, Dorand VAM, Cavalcante HC, Batista KS, de Souza DM, Lima MDS, Salvadori MGDSS, Magnani M, Alves AF, Aquino JDS. Does intermittent fasting associated with aerobic training influence parameters related to the gut-brain axis of Wistar rats? J Affect Disord 2021; 293:176-185. [PMID: 34214787 DOI: 10.1016/j.jad.2021.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Intermittent fasting (IF) and aerobic training have demonstrated beneficial effects on intestinal microbiota composition, but little is known about benefits to the brain through the gut-brain axis. The present study aimed to evaluate gut-brain axis parameters in Wistar rats submitted to IF associated or not with aerobic training. METHODS Male rats were evaluated for training performance and then randomized into 4 groups of ten: sedentary control (SC), trained control (TC), sedentary intermittent fasting (SIF), and trained intermittent fasting (TIF), and evaluated during four weeks. RESULTS The adiposity index was similar among the TC (2.15±0.43%), SIF (1.98±0.69%) and TIF (1.86±0.51%) groups, and differed from SC (2.98±0.80%). TIF had lower counts of lactic acid bacteria, while SIF had higher counts of Bifidobacterium and Enterococcus. TIF had the highest amount of formic acid in faeces (44.44±2.40 μmol/g) and lowest amount of succinic acid in the gut (0.38±0.00 μmol/g), while SIF had the highest propionic acid amount in the faeces (802.80±00.33 μmol/g) and the lowest amount of lactic acid in the gut (0.85±0.00 μmol/g). TIF demonstrated a tendency towards an anxiolytic effect and SIF showed potential antidepressant effect. IF caused different brain and intestinal injuries. TIF rats presented a diffuse and intense marking of IL-1β in the hippocampus. CONCLUSION IF and aerobic exercise, associated or not, can modulate parameters related to the gut-brain axis of Wistar rats, and some benefits may be related to the amounts of organic acids.
Collapse
Affiliation(s)
- Naís Lira Soares
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Victor Augusto Mathias Dorand
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Hassler Clementino Cavalcante
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Kamila Sabino Batista
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Daniele Melo de Souza
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Marcos Dos Santos Lima
- Food Technology Laboratory, Department of Food Technology, Federal Institute of the Sertão de Pernambuco (IFPE/ Sertão), Petrolina, Pernambuco, Brazil
| | | | - Marciane Magnani
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil; Laboratory of Microbial Processes in Food, Department of Food Engineering, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Adriano Francisco Alves
- Laboratory of Pathology, Department of Physiology and Pathology, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Jailane de Souza Aquino
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
22
|
Nanosafety vs. nanotoxicology: adequate animal models for testing in vivo toxicity of nanoparticles. Toxicology 2021; 462:152952. [PMID: 34543703 DOI: 10.1016/j.tox.2021.152952] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/20/2022]
Abstract
Nanotoxicological studies using existing models of normal cells and animals often encounter a paradox: retention of nanoparticles in intracellular compartments for a long time is not accompanied by any significant toxicological effects. Can we expect that the revealed changes will be not harmful after translation to practice, outside of a sterile laboratory and ideally healthy organisms? Age-associated and pathological processes can affect target organs, metabolism, and detoxification in the mononuclear phagocyte system organs and change biodistribution routes, thus making the use of nanomaterial not safe. The potential solution to this issue can be testing the toxic properties of nanoparticles in animal models with chronic diseases. However, current studies of nanotoxicity in animal models with a brain, cardiovascular system, liver, digestive tract, reproductive system, and skin diseases are unsystematic. Even though these studies demonstrate the emergence of new toxic effects that are not present in healthy animals. In this regard, we set the goal of this review as the formulation of the requirements for an animal model capable of assessing the potential toxicity of nanoparticles based on the nanosafety approach.
Collapse
|
23
|
Intermittent fasting attenuates inflammasome-associated apoptotic and pyroptotic death in the brain following chronic hypoperfusion. Neurochem Int 2021; 148:105109. [PMID: 34174333 DOI: 10.1016/j.neuint.2021.105109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 11/20/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) has been shown to initiate several inflammatory pathways that can contribute to cognitive deficits and memory loss in vascular cognitive impairment (VCI). Multi-protein complexes termed inflammasomes that may be involved in the inflammatory response to CCH has already been shown to contribute to the inflammatory process and cell death following acute cerebral ischemia. Intermittent fasting (IF) has already been shown to decrease inflammasome activation and protect the brain from ischemic stroke; however, its effects during CCH remains unknown. The present study investigated the impact of IF (16 h of food deprivation daily) for four months on inflammasome-mediated cell death in the cerebellum following CCH in a mouse model of VCI using fourteen to sixteen-week-old male C57BL/6NTac mice. Here we demonstrated that IF decreased inflammasome activation, and initiation of apoptotic and pyroptotic cell death pathways as reflected by the reduction (20-30%) in the expression levels of key effector proteins and cell death markers in the cerebellum following CCH. In summary, our results indicate that IF can attenuate the inflammatory response and cell death pathways in the brain following chronic hypoperfusion in a mouse model of VCI.
Collapse
|
24
|
Andika FR, Yoon JH, Kim GS, Jeong Y. Intermittent Fasting Alleviates Cognitive Impairments and Hippocampal Neuronal Loss but Enhances Astrocytosis in Mice with Subcortical Vascular Dementia. J Nutr 2021; 151:722-730. [PMID: 33484139 DOI: 10.1093/jn/nxaa384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/22/2020] [Accepted: 11/10/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Intermittent fasting (IF) is found to exhibit neuroprotection against various insults, including ischemia; however, IF has been mainly applied before disease onset. It remains unknown whether IF implementation alleviates the long-term detrimental effects of a disease after its establishment. OBJECTIVES To investigate the IF effects on cognitive impairments and cerebrovascular pathologies in a subcortical vascular dementia (SVaD) mouse model. METHODS The SVaD model was developed by inducing hypoperfusion and hyperlipidemia in apoE-deficient (apoE-/-) mice. We subjected 10-week-old apoE-/- mice to bilateral common carotid artery stenosis using micro-coils after they were fed a high-fat diet (HFD; 45% energy) for 6 weeks to induce hyperlipidemia. Age-matched wild-type C57BL/6J mice received sham surgery after undergoing an identical HFD treatment. Both the SVaD model and wild-type mice either started a 1-month IF regimen (time-restricted feeding for 6 hours per day) or continued the standard diet ad libitum (6.2% fat energy) at 8 weeks post-surgery. We assessed mice weight, food intake, and outcomes in a behavioral test battery before, during, and after the IF regimen, prior to histopathological analyses (microvessel density, neuronal density, white matter damage, astrocytosis) of their brains. RESULTS SVaD model mice on the IF regimen (SVaD-IF) exhibited higher mean recognition and spatial working memory performance compared to SVaD mice fed ad libitum (SVaD-AL; P < 0.01). Additionally, SVaD-IF mice had ∼5% higher hippocampal neuronal density in the dentate gyrus (DG) and cornu ammonis 1 regions than SVaD-AL mice (P < 0.001), which paralleled their post-IF cognitive enhancements. However, SVaD-IF mice showed an ∼50% increase in hippocampal DG astrocytosis compared to SVaD-AL mice (P < 0.05), with no significant differences in microvessel densities among the 2 groups. CONCLUSIONS The improvements in SVaD-IF mice suggest that IF could be a potential nonpharmacological remedy for SVaD. This finding could stimulate future investigations on IF's neuroprotective potential across many neurovascular diseases.
Collapse
Affiliation(s)
- Faris Rizky Andika
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jin-Hui Yoon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Gaon Sandy Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
25
|
Elesawy BH, Raafat BM, Muqbali AA, Abbas AM, Sakr HF. The Impact of Intermittent Fasting on Brain-Derived Neurotrophic Factor, Neurotrophin 3, and Rat Behavior in a Rat Model of Type 2 Diabetes Mellitus. Brain Sci 2021; 11:brainsci11020242. [PMID: 33671898 PMCID: PMC7918995 DOI: 10.3390/brainsci11020242] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 01/17/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is known to be associated with an increased risk of dementia, specifically Alzheimer’s disease and vascular dementia. Intermittent fasting (IF) has been proposed to produce neuroprotective effects through the activation of several signaling pathways. In this study, we investigated the effect of IF on rat behavior in type 2 diabetic rats. Forty male Wistar Kyoto rats were divided into four groups (n = 10 for each): the ad libitum (Ad) group, the intermittent fasting group (IF), the streptozotocin-induced diabetic 2 group (T2DM) fed a high-fat diet for 4 weeks followed by a single intraperitoneal (i.p.) injection of streptozotocin (STZ) 25 mg kg−1, and the diabetic group with intermittent fasting (T2DM+IF). We evaluated the impact of 3 months of IF (16 h of food deprivation daily) on the levels of brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), serotonin, dopamine, and glutamate in the hippocampus, and rat behavior was assessed by the forced swim test and elevated plus maze. IF for 12 weeks significantly increased (p < 0.05) the levels of NT3 and BDNF in both control and T2DM rats. Additionally, it increased serotonin, dopamine, and glutamic acid in diabetic rats. Moreover, IF modulated glucose homeostasis parameters, with a significant decrease (p < 0.05) in insulin resistance and downregulation of serum corticosterone level. Interestingly, T2DM rats showed a significant increase in anxiety and depression behaviors, which were ameliorated by IF. These findings suggest that IF could produce a potentially protective effect by increasing the levels of BDNF and NT3 in both control and T2DM rats. IF could be considered as an additional therapy for depression, anxiety, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Basem H. Elesawy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Bassem M. Raafat
- Radiological Sciences Department, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Aya Al Muqbali
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Koudh, Muscat PC 123, Oman;
| | - Amr M. Abbas
- Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hussein F. Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Koudh, Muscat PC 123, Oman;
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence:
| |
Collapse
|
26
|
Mladenovic Djordjevic A, Loncarevic-Vasiljkovic N, Gonos ES. Dietary Restriction and Oxidative Stress: Friends or Enemies? Antioxid Redox Signal 2021; 34:421-438. [PMID: 32242468 DOI: 10.1089/ars.2019.7959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Significance: It is well established that lifestyle and dietary habits have a tremendous impact on life span, the rate of aging, and the onset/progression of age-related diseases. Specifically, dietary restriction (DR) and other healthy dietary patterns are usually accompanied by physical activity and differ from Western diet that is rich in fat and sugars. Moreover, as the generation of reactive oxidative species is the major causative factor of aging, while DR could modify the level of oxidative stress, it has been proposed that DR increases both survival and longevity. Recent Advances: Despite the documented links between DR, aging, and oxidative stress, many issues remain to be addressed. For instance, the free radical theory of aging is under "re-evaluation," while DR as a golden standard for prolonging life span and ameliorating the effects of aging is also under debate. Critical Issues: This review article pays special attention to highlight the link between DR and oxidative stress in both aging and age-related diseases. We discuss in particular DR's capability to counteract the consequences of oxidative stress and the molecular mechanisms involved in these processes. Future Directions: Although DR is undoubtedly beneficial, several considerations must be taken into account when designing the best dietary intervention. Use of intermittent fasting, daily food reduction, or DR mimetics? Future research should unravel the pros and cons of all these processes. Antioxid. Redox Signal. 34, 421-438.
Collapse
Affiliation(s)
- Aleksandra Mladenovic Djordjevic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Natasa Loncarevic-Vasiljkovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
27
|
Alzoubi KH, Khabour OF, Al-Awad RM, Aburashed ZO. Every-other day fasting prevents memory impairment induced by high fat-diet: Role of oxidative stress. Physiol Behav 2021; 229:113263. [PMID: 33246002 DOI: 10.1016/j.physbeh.2020.113263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/10/2020] [Accepted: 11/21/2020] [Indexed: 01/11/2023]
Abstract
Imbalance of diet consumption results in memory and learning deterioration. High-fat diet (HFD) causes neuronal damage and eventually cognitive impairment, which can be related to increasing oxidative stress in the brain. Using the every other day fasting (EODF) paradigm, as a method of dietary restriction is thought to provide protection of learning and memory in several experimental studies. In the current work, the preventive effect of EODF paradigm on memory impairment-induced by HFD was investigated. Adult male Wistar rats were fed with HFD using the EODF paradigm for six weeks. At the end of these six weeks, and while the previous treatment were continued, rats were examined for learning and memory (both the short-term and the long-term memory) using the radial arm water maze (RAWM). Oxidative stress in the brain, namely in the hippocampus was also assessed. Chronic administration of HFD induced impairment in both, short- and long- term memory that was prevented using EODF paradigm. Furthermore, EODF prevented HFD-induced decrease in the activities of the antioxidant enzymes, SOD and catalase along with reduction of glutathione (GSH) level and the ratio of reduced glutathione/oxidized glutathione (GSH/GSSG ratio). The EODF also inhibited rise in oxidized glutathione (GSSG) and thiobarbituric acid reactive substances (TBARS) seen with HFD. In conclusion, EODF ameliorated oxidative stress and memory impairment induced by chronic HFD. This probably, can be explained by the ability of EODF to normalize mechanisms involved in oxidative stress in the hippocampus.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Rafat M Al-Awad
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Zainah O Aburashed
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
28
|
Muscat SM, Deems NP, D'Angelo H, Kitt MM, Grace PM, Andersen ND, Silverman SN, Rice KC, Watkins LR, Maier SF, Barrientos RM. Postoperative cognitive dysfunction is made persistent with morphine treatment in aged rats. Neurobiol Aging 2021; 98:214-224. [PMID: 33341652 PMCID: PMC7870544 DOI: 10.1016/j.neurobiolaging.2020.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 12/18/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is the collection of cognitive impairments, lasting days to months, experienced by individuals following surgery. Persistent POCD is most commonly experienced by older individuals and is associated with a greater vulnerability to developing Alzheimer's disease, but the underlying mechanisms are not known. It is known that laparotomy (exploratory abdominal surgery) in aged rats produces memory impairments for 4 days. Here we report that postsurgical treatment with morphine extends this deficit to at least 2 months while having no effects in the absence of surgery. Indeed, hippocampal-dependent long-term memory was impaired 2, 4, and 8 weeks postsurgery only in aged, morphine-treated rats. Short-term memory remained intact. Morphine is known to have analgesic effects via μ-opioid receptor activation and neuroinflammatory effects through Toll-like receptor 4 activation. Here we demonstrate that persistent memory deficits were mediated independently of the μ-opioid receptor, suggesting that they were evoked through a neuroinflammatory mechanism and unrelated to pain modulation. In support of this, aged, laparotomized, and morphine-treated rats exhibited increased gene expression of various proinflammatory markers (IL-1β, IL-6, TNFα, NLRP3, HMGB1, TLR2, and TLR4) in the hippocampus at the 2-week time point. Furthermore, central blockade of IL-1β signaling with the specific IL-1 receptor antagonist (IL-1RA), at the time of surgery, completely prevented the memory impairment. Finally, synaptophysin and PSD95 gene expression were significantly dysregulated in the hippocampus of aged, laparotomized, morphine-treated rats, suggesting that impaired synaptic structure and/or function may play a key role in this persistent deficit. This instance of long-term memory impairment following surgery closely mirrors the timeline of persistent POCD in humans and may be useful for future treatment discoveries.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Heather D'Angelo
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Meagan M Kitt
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nathan D Andersen
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Shaelyn N Silverman
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
29
|
Zhang M, Hu Y, Zhang J, Zhang J. FTY720 Prevents Spatial Memory Impairment in a Rat Model of Chronic Cerebral Hypoperfusion via a SIRT3-Independent Pathway. Front Aging Neurosci 2021; 12:593364. [PMID: 33519419 PMCID: PMC7845736 DOI: 10.3389/fnagi.2020.593364] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Vascular dementia (VD) and Alzheimer's disease (AD) are the most prevalent types of late-life dementia. Chronic cerebral hypoperfusion (CCH) contributes to both AD and VD. Recently, accumulating evidence has indicated that fingolimod (FTY720) is neuroprotective in acute cerebral ischemic stroke animal models, and the drug is now being used in clinical translation studies. However, fewer studies have addressed the role of FTY720 in chronic cerebral hypoperfusion (CCH)-related brain damage. In the present study, to investigate whether FTY720 can improve CCH-induced spatial memory loss and its underlying mechanism, two-vessel occlusion (2VO) rats were administered intraperitoneal FTY720 (1 mg/kg) for 7 consecutive weeks from post-operative day 8. Spatial memory was tested using the Morris Water Maze (MWM), and the rats' brains were harvested to allow molecular, biochemical, and pathological tests. We found that FTY720 treatment significantly reduced the escape latency and increased the target quadrant swimming time of the 2VO rats in the MWM task. The improvement in memory performance paralleled lower levels of pro-inflammatory cytokines and Iba-1 positive cells in the hippocampus of the 2VO rats, indicating that FTY720 had a beneficial effect in mitigating neuroinflammation. Furthermore, we found that FTY720 alleviated mitochondrial dysfunction in 2VO rats, as manifested by lower malondialdehyde levels, higher ATP content, and upregulation of ATP synthase activity in the hippocampus after treatment. FTY720 had no effect on the CCH-induced decrease in the activity of hippocampal Sirtuin-3, a master regulator of mitochondrial function and neuroinflammation. In summary, the results showed that FTY720 can improve CCH-induced spatial memory loss. The mechanism may involve Sirtuin-3-independent regulation of mitochondrial dysfunction and neuroinflammation in the hippocampus. The present study provides new clues to the pathological mechanism of CCH-induced cognitive impairment.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Hu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiahui Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Hazzaa SM, Eldaim MAA, Fouda AA, Mohamed ASED, Soliman MM, Elgizawy EI. Intermittent Fasting Ameliorated High-Fat Diet-Induced Memory Impairment in Rats via Reducing Oxidative Stress and Glial Fibrillary Acidic Protein Expression in Brain. Nutrients 2020; 13:nu13010010. [PMID: 33375195 PMCID: PMC7822208 DOI: 10.3390/nu13010010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022] Open
Abstract
Intermittent fasting (IF) plays an important role in the protection against metabolic syndrome-induced memory defects. This study aimed to assess the protective effects of both prophylactic and curative IF against high-fat diet (HFD)-induced memory defects in rats. The control group received a normal diet; the second group received a HFD; the third group was fed a HFD for 12 weeks and subjected to IF during the last four weeks (curative IF); the fourth group was fed a HFD and subjected to IF simultaneously (prophylactic IF). A high-fat diet significantly increased body weight, serum lipids levels, malondialdehyde (MDA) concentration, glial fibrillary acidic protein (GFAP) and H score in brain tissue and altered memory performance. In addition, it significantly decreased reduced glutathione (GSH) concentration in brain tissue and viability and thickness of pyramidal and hippocampus granular cell layers. However, both types of IF significantly decreased body weight, serum lipids, GFAP protein expression and H score and MDA concentration in brain tissue, and improved memory performance, while it significantly increased GSH concentration in brain tissue, viability, and thickness of pyramidal and granular cell layers of the hippocampus. This study indicated that IF ameliorated HFD-induced memory disturbance and brain tissue damage and the prophylactic IF was more potent than curative IF.
Collapse
Affiliation(s)
- Suzan M. Hazzaa
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Shebeen Elkom 32511, Egypt; (S.M.H.); (E.I.E.)
| | - Mabrouk A. Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary, Medicine, Menoufia University, Shebeen Elkom 32511, Egypt
- Correspondence:
| | - Amira A. Fouda
- Pathology Department, Faculty of Medicine, Menoufia University, Shebeen Elkom 32511, Egypt; (A.A.F.); (A.S.E.D.M.)
| | - Asmaa Shams El Dein Mohamed
- Pathology Department, Faculty of Medicine, Menoufia University, Shebeen Elkom 32511, Egypt; (A.A.F.); (A.S.E.D.M.)
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia;
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Eman I. Elgizawy
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Shebeen Elkom 32511, Egypt; (S.M.H.); (E.I.E.)
| |
Collapse
|
31
|
Matin N, Fisher C, Lansdell TA, Hammock BD, Yang J, Jackson WF, Dorrance AM. Soluble epoxide hydrolase inhibition improves cognitive function and parenchymal artery dilation in a hypertensive model of chronic cerebral hypoperfusion. Microcirculation 2020; 28:e12653. [PMID: 32767848 DOI: 10.1111/micc.12653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Parenchymal arterioles (PAs) regulate perfusion of the cerebral microcirculation, and impaired PA endothelium-dependent dilation occurs in dementia models mimicking chronic cerebral hypoperfusion (CCH). Epoxyeicosatrienoic acids (EETs) are vasodilators; their actions are potentiated by soluble epoxide hydrolase (sEH) inhibition. We hypothesized that chronic sEH inhibition with trifluoromethoxyphenyl-3 (1-propionylpiperidin-4-yl) urea (TPPU) would prevent cognitive dysfunction and improve PA dilation in a hypertensive CCH model. METHODS Bilateral carotid artery stenosis (BCAS) was used to induce CCH in twenty-week-old male stroke-prone spontaneously hypertensive rats (SHSRP) that were treated with vehicle or TPPU for 8 weeks. Cognitive function was assessed by novel object recognition. PA dilation and structure were assessed by pressure myography, and mRNA expression in brain tissue was assessed by qRT-PCR. RESULTS TPPU did not enhance resting cerebral perfusion, but prevented CCH-induced memory deficits. TPPU improved PA endothelium-dependent dilation but reduced the sensitivity of PAs to a nitric oxide donor. TPPU treatment had no effect on PA structure or biomechanical properties. TPPU treatment increased brain mRNA expression of brain derived neurotrophic factor, doublecortin, tumor necrosis factor-alpha, sEH, and superoxide dismutase 3, CONCLUSIONS: These data suggest that sEH inhibitors may be viable treatments for cognitive impairments associated with hypertension and CCH.
Collapse
Affiliation(s)
- Nusrat Matin
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Courtney Fisher
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Theresa A Lansdell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Bruce D Hammock
- Department of Entomology &, University of California Comprehensive Cancer Center, Davis, CA, USA
| | - Jun Yang
- Department of Entomology &, University of California Comprehensive Cancer Center, Davis, CA, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
32
|
Zhang X, Zou Q, Zhao B, Zhang J, Zhao W, Li Y, Liu R, Liu X, Liu Z. Effects of alternate-day fasting, time-restricted fasting and intermittent energy restriction DSS-induced on colitis and behavioral disorders. Redox Biol 2020; 32:101535. [PMID: 32305005 PMCID: PMC7162980 DOI: 10.1016/j.redox.2020.101535] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 12/18/2022] Open
Abstract
Intermittent fasting (IF) has been reported to have beneficial effects on improving gut function via lowering gut inflammation and altering the gut microbiome diversity. In this study, we aimed to investigate the differential effects of three different common IF treatments, alternate day fasting (ADF), time-restricted fasting (TRF), and intermittent energy restriction (IER), on a dextran sodium sulfate (DSS)-induced colitis mouse model. The results indicated that TRF and IER, but not ADF improved the survival rates of the colitis mice. TRF and IER, but not ADF, reversed the colitis pathological development by improving the gut barrier integrity and colon length. Importantly, TRF and IER suppressed the inflammatory responses and oxidative stress in colon tissues. Interestingly, TRF and IER also attenuated colitis-related anxiety-like and obsessive-compulsive disorder behavior and alleviated the neuroinflammation and oxidative stress. TRF and IER also altered the gut microbiota composition, including the decrease of the enrichments of colitis-related microbes such as Shigella and Escherichia Coli, and increase of the enrichments of anti-inflammatory-related microbes. TRF and IER also improved the short chain fatty acid formation in colitis mice. In conclusion, the TRF and IER but not ADF exhibited the protective effects against colitis and related behavioral disorders, which could be partly explained by improving the gut microbiome compositions and preventing gut leak, and consequently suppressing the inflammation and oxidative damages in both colon and brain. The current research indicates that proper IF regimens could be effective strategies for nutritional intervention for the prevention and treatment of colitis.
Collapse
Affiliation(s)
- Xin Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaan Xi, China
| | - Qianhui Zou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaan Xi, China
| | - Beita Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaan Xi, China
| | - Jingwen Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaan Xi, China
| | - Weiyang Zhao
- Department of Food Science, Cornell University, Ithaca, NY, 14853, United States
| | - Yitong Li
- Department of Food Science, Cornell University, Ithaca, NY, 14853, United States
| | - Ruihai Liu
- Department of Food Science, Cornell University, Ithaca, NY, 14853, United States
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaan Xi, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaan Xi, China; Department of Food Science, Cornell University, Ithaca, NY, 14853, United States.
| |
Collapse
|
33
|
Munhoz AC, Vilas-Boas EA, Panveloski-Costa AC, Leite JSM, Lucena CF, Riva P, Emilio H, Carpinelli AR. Intermittent Fasting for Twelve Weeks Leads to Increases in Fat Mass and Hyperinsulinemia in Young Female Wistar Rats. Nutrients 2020; 12:E1029. [PMID: 32283715 PMCID: PMC7230500 DOI: 10.3390/nu12041029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023] Open
Abstract
Fasting is known to cause physiological changes in the endocrine pancreas, including decreased insulin secretion and increased reactive oxygen species (ROS) production. However, there is no consensus about the long-term effects of intermittent fasting (IF), which can involve up to 24 hours of fasting interspersed with normal feeding days. In the present study, we analyzed the effects of alternate-day IF for 12 weeks in a developing and healthy organism. Female 30-day-old Wistar rats were randomly divided into two groups: control, with free access to standard rodent chow; and IF, subjected to 24-hour fasts intercalated with 24-hours of free access to the same chow. Alternate-day IF decreased weight gain and food intake. Surprisingly, IF also elevated plasma insulin concentrations, both at baseline and after glucose administration collected during oGTT. After 12 weeks of dietary intervention, pancreatic islets displayed increased ROS production and apoptosis. Despite their lower body weight, IF animals had increased fat reserves and decreased muscle mass. Taken together, these findings suggest that alternate-day IF promote β -cell dysfunction, especially in developing animals. More long-term research is necessary to define the best IF protocol to reduce side effects.
Collapse
Affiliation(s)
- Ana Cláudia Munhoz
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Professor Lineu Prestes avenue, Butanta, São Paulo 05508-900, Brazil; (E.A.V.-B.); (A.C.P.-C.); (J.S.M.L.); (C.F.L.); (P.R.); (A.R.C.)
| | - Eloisa Aparecida Vilas-Boas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Professor Lineu Prestes avenue, Butanta, São Paulo 05508-900, Brazil; (E.A.V.-B.); (A.C.P.-C.); (J.S.M.L.); (C.F.L.); (P.R.); (A.R.C.)
| | - Ana Carolina Panveloski-Costa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Professor Lineu Prestes avenue, Butanta, São Paulo 05508-900, Brazil; (E.A.V.-B.); (A.C.P.-C.); (J.S.M.L.); (C.F.L.); (P.R.); (A.R.C.)
| | - Jaqueline Santos Moreira Leite
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Professor Lineu Prestes avenue, Butanta, São Paulo 05508-900, Brazil; (E.A.V.-B.); (A.C.P.-C.); (J.S.M.L.); (C.F.L.); (P.R.); (A.R.C.)
| | - Camila Ferraz Lucena
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Professor Lineu Prestes avenue, Butanta, São Paulo 05508-900, Brazil; (E.A.V.-B.); (A.C.P.-C.); (J.S.M.L.); (C.F.L.); (P.R.); (A.R.C.)
| | - Patrícia Riva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Professor Lineu Prestes avenue, Butanta, São Paulo 05508-900, Brazil; (E.A.V.-B.); (A.C.P.-C.); (J.S.M.L.); (C.F.L.); (P.R.); (A.R.C.)
| | - Henriette Emilio
- Department of General Biology, Ponta Grossa State University, 4748 General Carlos Cavalcanti avenue, Uvaranas, Parana, PR 84030-900, Brazil;
| | - Angelo R. Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Professor Lineu Prestes avenue, Butanta, São Paulo 05508-900, Brazil; (E.A.V.-B.); (A.C.P.-C.); (J.S.M.L.); (C.F.L.); (P.R.); (A.R.C.)
| |
Collapse
|
34
|
Man J, Cui K, Fu X, Zhang D, Lu Z, Gao Y, Yu L, Li N, Wang J. Donepezil promotes neurogenesis via Src signaling pathway in a rat model of chronic cerebral hypoperfusion. Brain Res 2020; 1736:146782. [PMID: 32184165 DOI: 10.1016/j.brainres.2020.146782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 02/15/2020] [Accepted: 03/12/2020] [Indexed: 01/23/2023]
Abstract
Donepezil, a selective acetylcholinesterase (AchE) inhibitor, enhances stroke-induced neurogenesis within subventricular zone (SVZ). Src/Pyk-2 is one of the downstream pathways of acetylcholine receptors (AchRs), and has been shown to participate in the activation of fibroblast growth factor receptor (FGFR)/epidermal growth factor receptor (EGFR) signaling in cancer cells. In this study, we investigated whether donepezil could promote SVZ neurogenesis in chronic cerebral hypoperfusion (CCH) injury via Src signaling pathway. In the bilateral carotid artery occlusion (2VO) rat model, we observed more nestin/5-bromo-2'-deoxyuridine (BrdU)-positive cells and doublecortin (DCX)/BrdU-positive cells in the SVZ than that in the sham group. Further, donepezil obviously improved neurologic function after 2VO, induced the greater number of SVZ proliferative NSCs and neuroblasts, and elevated levels of Src, p-FGFR1, p-EGFR, p-Akt and p-Raf in ipsilateral SVZ. Lastly, Src inhibitor KX-01 abolished the beneficial effects of donepezil in 2VO rats. These results suggest that donepezil could upregulate Src signaling pathway to enhance CCH-induced SVZ neurogenesis.
Collapse
Affiliation(s)
- Jiang Man
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kefei Cui
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaojie Fu
- Department of Neurointervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Di Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengfang Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yufeng Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lie Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nan Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianping Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
35
|
Cordaro M, Cuzzocrea S, Crupi R. An Update of Palmitoylethanolamide and Luteolin Effects in Preclinical and Clinical Studies of Neuroinflammatory Events. Antioxidants (Basel) 2020; 9:antiox9030216. [PMID: 32150935 PMCID: PMC7139331 DOI: 10.3390/antiox9030216] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
The inflammation process represents of a dynamic series of phenomena that manifest themselves with an intense vascular reaction. Neuroinflammation is a reply from the central nervous system (CNS) and the peripheral nervous system (PNS) to a changed homeostasis. There are two cell systems that mediate this process: the glia of the CNS and the lymphocites, monocytes, and macrophages of the hematopoietic system. In both the peripheral and central nervous systems, neuroinflammation plays an important role in the pathogenesis of neurodegenerative diseases, such as Parkinson’s and Alzheimer’s diseases, and in neuropsychiatric illnesses, such as depression and autism spectrum disorders. The resolution of neuroinflammation is a process that allows for inflamed tissues to return to homeostasis. In this process the important players are represented by lipid mediators. Among the naturally occurring lipid signaling molecules, a prominent role is played by the N-acylethanolamines, namely N-arachidonoylethanolamine and its congener N-palmitoylethanolamine, which is also named palmitoylethanolamide or PEA. PEA possesses a powerful neuroprotective and anti-inflammatory power but has no antioxidant effects per se. For this reason, its co-ultramicronization with the flavonoid luteolin is more efficacious than either molecule alone. Inhibiting or modulating the enzymatic breakdown of PEA represents a complementary therapeutic approach to treating neuroinflammation. The aim of this review is to discuss the role of ultramicronized PEA and co-ultramicronized PEA with luteolin in several neurological diseases using preclinical and clinical approaches.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98100 Messina, Italy;
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy;
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO 63103, USA
- Correspondence: ; Tel.: +390-906-765-208
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy;
| |
Collapse
|
36
|
Mei X, Tan G, Qing W. AMPK activation increases postoperative cognitive impairment in intermittent hypoxia rats via direct activating PAK2. Behav Brain Res 2020; 379:112344. [DOI: 10.1016/j.bbr.2019.112344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022]
|
37
|
Cicekdal MB, Tuna BG, Charehsaz M, Cleary MP, Aydin A, Dogan S. Effects of long‐term intermittent versus chronic calorie restriction on oxidative stress in a mouse cancer model. IUBMB Life 2019; 71:1973-1985. [DOI: 10.1002/iub.2145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/22/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Munevver B. Cicekdal
- Department of Medical BiologyYeditepe University, School of Medicine Istanbul Turkey
| | - Bilge G. Tuna
- Department of BiophysicsYeditepe University, School of Medicine Istanbul Turkey
| | - Mohammad Charehsaz
- Department of Pharmaceutical ToxicologyYeditepe University, School of Pharmacy Istanbul Turkey
| | - Margot P. Cleary
- Hormel Institute Medical Research CenterUniversity of Minnesota Austin Minnesota
| | - Ahmet Aydin
- Department of Pharmaceutical ToxicologyYeditepe University, School of Pharmacy Istanbul Turkey
| | - Soner Dogan
- Department of Medical BiologyYeditepe University, School of Medicine Istanbul Turkey
| |
Collapse
|
38
|
Okoshi K, Cezar MDM, Polin MAM, Paladino JR, Martinez PF, Oliveira SA, Lima ARR, Damatto RL, Paiva SAR, Zornoff LAM, Okoshi MP. Influence of intermittent fasting on myocardial infarction-induced cardiac remodeling. BMC Cardiovasc Disord 2019; 19:126. [PMID: 31138145 PMCID: PMC6540428 DOI: 10.1186/s12872-019-1113-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
Background Information on the role of intermittent fasting (IF) on pathologic cardiac remodeling is scarce. We compared the effects of IF before and after myocardial infarction (MI) on rat cardiac remodeling and survival. Methods Wistar rats were intermittently fasted (food available every other day) or fed ad libitum for 12 weeks and then divided into three groups: AL – fed ad libitum; AL/IF - fed AL before MI and IF after MI; and IF – fed IF before and after MI. Echocardiogram was performed before MI and 2 and 12 weeks after surgery. Isolated hearts were evaluated in Langendorff preparations. Results Before surgery, body weight (BW) was lower in IF than AL. Final BW was lower in AL/IF and IF than AL. Perioperative mortality did not change between AL (31.3%) and IF (27.3%). Total mortality was lower in IF than AL. Before surgery, echocardiographic parameters did not differ between groups. Two weeks after surgery, MI size did not differ between groups. Twelve weeks after MI, left ventricular (LV) diastolic posterior wall thickness was lower in AL/IF and IF than AL. The percentage of variation of echocardiographic parameters between twelve and two weeks showed that MI size decreased in all groups and the reduction was higher in IF than AL/IF. In Langendorff preparations, LV volume at zero end-diastolic pressure (V0; AL: 0.41 ± 0.05; AL/IF: 0.34 ± 0.06; IF: 0.28 ± 0.05 mL) and at 25 mmHg end-diastolic pressure (V25; AL: 0.61 ± 0.05; AL/IF: 0.54 ± 0.07; IF: 0.44 ± 0.06 mL) was lower in AL/IF and IF than AL and V25 was lower in IF than AL/IF. V0/BW ratio was lower in IF than AL and LV weight/V0 ratio was higher in IF than AL. Myocyte diameter was lower in AL/IF and IF than AL (AL: 17.3 ± 1.70; AL/IF: 15.1 ± 2.21; IF: 13.4 ± 1.49 μm). Myocardial hydroxyproline concentration and gene expression of ANP, Serca 2a, and α- and β-myosin heavy chain did not differ between groups. Conclusion Intermittent fasting initiated before or after MI reduces myocyte hypertrophy and LV dilation. Myocardial fibrosis and fetal gene expression are not modulated by feeding regimens. Benefit is more evident when intermittent fasting is initiated before rather than after MI.
Collapse
Affiliation(s)
- K Okoshi
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil.,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP, Rubiao Junior, S/N. CEP 18618-687, Botucatu, SP, Brazil
| | - M D M Cezar
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil.,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP, Rubiao Junior, S/N. CEP 18618-687, Botucatu, SP, Brazil.,Itapeva Social and Agrarian Sciences College, FAIT, Itapeva, SP, Brazil
| | - M A M Polin
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil.,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP, Rubiao Junior, S/N. CEP 18618-687, Botucatu, SP, Brazil
| | - J R Paladino
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil.,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP, Rubiao Junior, S/N. CEP 18618-687, Botucatu, SP, Brazil
| | - P F Martinez
- Federal University of Mato Grosso do Sul, Cidade Universitária, Av. Costa e Silva - Pioneiros, Campo Grande, MS, 79070-900, Brazil
| | - S A Oliveira
- Federal University of Mato Grosso do Sul, Cidade Universitária, Av. Costa e Silva - Pioneiros, Campo Grande, MS, 79070-900, Brazil
| | - A R R Lima
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil.,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP, Rubiao Junior, S/N. CEP 18618-687, Botucatu, SP, Brazil
| | - R L Damatto
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil.,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP, Rubiao Junior, S/N. CEP 18618-687, Botucatu, SP, Brazil.,Itapeva Social and Agrarian Sciences College, FAIT, Itapeva, SP, Brazil
| | - S A R Paiva
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil.,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP, Rubiao Junior, S/N. CEP 18618-687, Botucatu, SP, Brazil
| | - L A M Zornoff
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil.,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP, Rubiao Junior, S/N. CEP 18618-687, Botucatu, SP, Brazil
| | - M P Okoshi
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil. .,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP, Rubiao Junior, S/N. CEP 18618-687, Botucatu, SP, Brazil.
| |
Collapse
|
39
|
Yoon G, Song J. Intermittent Fasting: a Promising Approach for Preventing Vascular Dementia. J Lipid Atheroscler 2019; 8:1-7. [PMID: 32821694 PMCID: PMC7379085 DOI: 10.12997/jla.2019.8.1.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 01/04/2023] Open
Abstract
Vascular dementia is the most common neuropsychiatric syndrome and is characterized by synaptic dysfunction, neuroinflammation, and cognitive dysfunction. Vascular dementia is associated with various environmental, genetic, and lifestyle risk factors. Recent research has focused on the association between vascular dementia and dietary patterns, suggesting that dietary regulation leads to better control of energy metabolism, improvements in brain insulin resistance, and the suppression of neuroinflammation. Intermittent fasting is a calorie-restriction method known to be more effective in promoting fat loss and regulating the impairment of glucose metabolism as compared with other dietary restriction regimens. Herein, the authors review the effects of intermittent fasting with regard to vascular dementia based on recent evidence and propose that intermittent fasting could be a therapeutic approach for ameliorating vascular dementia pathology and preventing its onset.
Collapse
Affiliation(s)
- Gwangho Yoon
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea.,Department of Biochemistry, Chonnam National University, Gwangju, Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
40
|
Effects of Cannabidiol on Diabetes Outcomes and Chronic Cerebral Hypoperfusion Comorbidities in Middle-Aged Rats. Neurotox Res 2018; 35:463-474. [PMID: 30430393 DOI: 10.1007/s12640-018-9972-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 12/27/2022]
Abstract
Diabetes and aging are risk factors for cognitive impairments after chronic cerebral hypoperfusion (CCH). Cannabidiol (CBD) is a phytocannabinoid present in the Cannabis sativa plant. It has beneficial effects on both cerebral ischemic diseases and diabetes. We have recently reported that diabetes interacted synergistically with aging to increase neuroinflammation and memory deficits in rats subjected to CCH. The present study investigated whether CBD would alleviate cognitive decline and affect markers of inflammation and neuroplasticity in the hippocampus in middle-aged diabetic rats submitted to CCH. Diabetes was induced in middle-aged rats (14 months old) by intravenous streptozotocin (SZT) administration. Thirty days later, the diabetic animals were subjected to sham or CCH surgeries and treated with CBD (10 mg/kg, once a day) during 30 days. Diabetes exacerbated cognitive deficits induced by CCH in middle-aged rats. Repeated CBD treatment decreased body weight in both sham- and CCH-operated animals. Cannabidiol improved memory performance and reduced hippocampal levels of inflammation markers (inducible nitric oxide synthase, ionized calcium-binding adapter molecule 1, glial fibrillary acidic protein, and arginase 1). Cannabidiol attenuated the decrease in hippocampal levels of brain-derived neurotrophic factor induced by CCH in diabetic animals, but it did not affect the levels of neuroplasticity markers (growth-associated protein-43 and synaptophysin) in middle-aged diabetic rats. These results suggest that the neuroprotective effects of CBD in middle-aged diabetic rats subjected to CCH are related to a reduction in neuroinflammation. However, they seemed to occur independently of hippocampal neuroplasticity changes.
Collapse
|
41
|
Ahn JH, Noh Y, Shin BN, Kim SS, Park JH, Lee TK, Song M, Kim H, Lee JC, Yong JH, Kang IJ, Lee YL, Won MH, Kim JD. Intermittent fasting increases SOD2 and catalase immunoreactivities in the hippocampus but does not protect from neuronal death following transient ischemia in gerbils. Mol Med Rep 2018; 18:4802-4812. [PMID: 30272360 PMCID: PMC6236287 DOI: 10.3892/mmr.2018.9503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022] Open
Abstract
Intermittent fasting has been shown to have neuroprotective effects against transient focal cerebral ischemic insults. However, the effects of intermittent fasting on transient global ischemic insult has not been studied much yet. The present study examined effects of intermittent fasting on endogenous antioxidant enzyme expression levels in the hippocampus and investigated whether the fasting protects neurons 5 days after 5 min of transient global cerebral ischemia. Gerbils were randomly subjected to either ad libitum or alternate-day intermittent fasting for two months and assigned to sham surgery or transient ischemia. Changes of antioxidant enzymes were examined using immunohistochemistry for cytoplasmic superoxide dismutase 1 (SOD1), mitochondrial (SOD2), catalase (CAT), and glutathione peroxidase (GPX). The effects of intermittent fasting on ischemia-induced antioxidant changes, neuronal damage/degeneration and glial activation were examined. The weight of fasting gerbils was not different from that of control gerbils. In controls, SOD1 and GPX immunoreactivities were strong in pyramidal neurons of filed cornu ammonis 1 (CA1). Transient ischemia in controls significantly decreased expressions of SOD1 and GPX in CA1 pyramidal neurons. Intermittent fasting resulted in increased expressions of SOD2 and CAT, not of SOD1 and GPX, in CA1 pyramidal neurons. Nevertheless, CA1 pyramidal neurons were not protected in gerbils subjected to fasting after transient ischemia, and inhibition of glial-cell activation was not observed in the gerbils. In summary, intermittent fasting for two months increased SOD2 and CAT immunoreactivities in hippocampal CA1 pyramidal neurons. However, fasting did not protect the CA1 pyramidal neurons from transient cerebral ischemia. The results of the present study indicate that intermittent fasting may increase certain antioxidants, but not protect neurons from transient global ischemic insult.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Yoohun Noh
- Famenity Company, Gwacheon, Geyonggi 13837, Republic of Korea
| | - Bich Na Shin
- Danchunok Company, Chuncheon, Gangwon 24210, Republic of Korea
| | - Sung-Su Kim
- Famenity Company, Gwacheon, Geyonggi 13837, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Minah Song
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyunjung Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun-Hwan Yong
- Department of Occupational Therapy, Dongnam Health University, Suwon, Gyeonggi 16238, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Yun Lyul Lee
- Department of Physiology and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jong Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|