1
|
Wang D, Huang X, Marnila P, Hiidenhovi J, Välimaa AL, Granato D, Mäkinen S. Baltic herring hydrolysates: Identification of peptides, in silico DPP-4 prediction, and their effects on an in vivo mice model of obesity. Food Res Int 2024; 191:114696. [PMID: 39059907 DOI: 10.1016/j.foodres.2024.114696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Baltic herring is the main catch in the Baltic Sea; however, its usage could be improved due to the low processing rate. Previously we have shown that whole Baltic herring hydrolysates (BHH) and herring byproducts hydrolysates (BHBH) by commercial enzymes consisted of bioactive peptides and had moderate bioactivity in in vitro dipeptidyl peptidase (DPP)-4 assay. In this study, we identified the hydrolysate peptides by LC-MS/MS and predicted the potential bioactive DPP-4 inhibitory peptides using in silico tools. Based on abundance, peptide length and stability, 86 peptides from BHBH and 80 peptides from BHH were proposed to be novel DPP-4 inhibitory peptides. BHH was fed to a mice intervention of a high-fat, high-fructose diet to validate the bioactivity. The results of the glucose tolerance and insulin tolerance improved. Plasma DPP-4 activities, C-peptide levels, and HOMA-IR scores significantly decreased, while plasma glucagon-like peptide-1 content increased. In conclusion, BHH is an inexpensive and sustainable source of functional antidiabetic ingredients.
Collapse
Affiliation(s)
- Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| | - Xin Huang
- Food and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.
| | - Pertti Marnila
- Food and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.
| | - Jaakko Hiidenhovi
- Food and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.
| | - Anna-Liisa Välimaa
- Food and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-90570 Oulu, Finland.
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Sari Mäkinen
- Food and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.
| |
Collapse
|
2
|
Bjerknes C, Wubshet SG, Rønning SB, Afseth NK, Currie C, Framroze B, Hermansen E. Glucoregulatory Properties of a Protein Hydrolysate from Atlantic Salmon ( Salmo salar): Preliminary Characterization and Evaluation of DPP-IV Inhibition and Direct Glucose Uptake In Vitro. Mar Drugs 2024; 22:151. [PMID: 38667768 PMCID: PMC11050766 DOI: 10.3390/md22040151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic disorders are increasingly prevalent conditions that manifest pathophysiologically along a continuum. Among reported metabolic risk factors, elevated fasting serum glucose (FSG) levels have shown the most substantial increase in risk exposure. Ultimately leading to insulin resistance (IR), this condition is associated with notable deteriorations in the prognostic outlook for major diseases, including neurodegenerative diseases, cancer risk, and mortality related to cardiovascular disease. Tackling metabolic dysfunction, with a focus on prevention, is a critically important aspect for human health. In this study, an investigation into the potential antidiabetic properties of a salmon protein hydrolysate (SPH) was conducted, focusing on its potential dipeptidyl peptidase-IV (DPP-IV) inhibition and direct glucose uptake in vitro. Characterization of the SPH utilized a bioassay-guided fractionation approach to identify potent glucoregulatory peptide fractions. Low-molecular-weight (MW) fractions prepared by membrane filtration (MWCO = 3 kDa) showed significant DPP-IV inhibition (IC50 = 1.01 ± 0.12 mg/mL) and glucose uptake in vitro (p ≤ 0.0001 at 1 mg/mL). Further fractionation of the lowest MW fractions (<3 kDa) derived from the permeate resulted in three peptide subfractions. The subfraction with the lowest molecular weight demonstrated the most significant glucose uptake activity (p ≤ 0.0001), maintaining its potency even at a dilution of 1:500 (p ≤ 0.01).
Collapse
Affiliation(s)
- Christian Bjerknes
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
| | | | | | | | - Crawford Currie
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
| | - Bomi Framroze
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
| | - Erland Hermansen
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Larsgårdsvegen 2, 6009 Ålesund, Norway
| |
Collapse
|
3
|
Elbira A, Hafiz M, Hernández-Álvarez AJ, Zulyniak MA, Boesch C. Protein Hydrolysates and Bioactive Peptides as Mediators of Blood Glucose-A Systematic Review and Meta-Analysis of Acute and Long-Term Studies. Nutrients 2024; 16:323. [PMID: 38276562 PMCID: PMC10818427 DOI: 10.3390/nu16020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major public health concern associated with high mortality and reduced life expectancy. Since diabetes is closely linked with lifestyle, not surprisingly, nutritional intervention and increased physical activity could play a vital role in attenuating the problems related to diabetes. Protein hydrolysates (PHs) and their bioactive peptides (BP) have been shown to exert a wide range of biological effects, including antioxidative, antihypertensive, and in particular, hypoglycaemic activities. To better understand the efficacy of such interventions, a systematic review and meta-analysis of randomised controlled trials (RCTs) were performed concerning the influence of protein hydrolysates on glycaemic biomarkers in subjects with and without hyperglycaemia. Five different databases were used to search for RCTs. In total, 37 RCTs were included in the systematic review and 29 RCTs in the meta-analysis. The meta-analysis revealed a significant reduction in postprandial blood glucose response (PPGR) in normoglycaemic (-0.22 mmol/L; 95% CI -0.43, -0.01; p ≤ 0.05) and in hyperglycaemic adults (-0.88 mmol/L; 95% CI -1.37, -0.39; p ≤ 0.001) compared with the respective control groups. A meta-regression analysis revealed a dose-dependent response for PPGR following PH consumption in normoglycaemic adults, specifically for doses ≤ 30 g. The postprandial blood insulin responses (PPIR) were significantly higher after the ingestion of PHs in both the group with and the group without hyperglycaemia, respectively (23.05 mIU/L; 95% CI 7.53, 38.57; p ≤ 0.01 and 12.57 mIU/L; 95% CI 2.72, 22.41; p ≤ 0.01), compared with controls. In terms of long-term responses, there was a small but significant reduction in both fasting blood glucose (FBG) and fasting glycated haemoglobin (HbA1c) in response to PH compared with the control group (p < 0.05). The PHs significantly improved the parameters of glycaemia in adults and, hence, it may contribute to the management and regulation of the future risk of developing T2DM.
Collapse
Affiliation(s)
- Arig Elbira
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (A.E.); (M.H.); (A.J.H.-Á.); (M.A.Z.)
| | - Maryam Hafiz
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (A.E.); (M.H.); (A.J.H.-Á.); (M.A.Z.)
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdul-Aziz University, P.O. Box 80215, Jeddah 21589, Saudi Arabia
| | - Alan Javier Hernández-Álvarez
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (A.E.); (M.H.); (A.J.H.-Á.); (M.A.Z.)
| | - Michael A. Zulyniak
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (A.E.); (M.H.); (A.J.H.-Á.); (M.A.Z.)
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (A.E.); (M.H.); (A.J.H.-Á.); (M.A.Z.)
| |
Collapse
|
4
|
Lewis JI, Lind MV, Møller G, Hansen T, Pedersen H, Christensen MMB, Laursen JC, Nielsen S, Ottendahl CB, Larsen CVL, Stark KD, Bjerregaard P, Jørgensen ME, Lauritzen L. The effect of traditional diet on glucose homoeostasis in carriers and non-carriers of a common TBC1D4 variant in Greenlandic Inuit: a randomised crossover study. Br J Nutr 2023; 130:1871-1884. [PMID: 37129117 PMCID: PMC10632723 DOI: 10.1017/s000711452300106x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Consumption of traditional foods is decreasing amid a lifestyle transition in Greenland as incidence of type 2 diabetes (T2D) increases. In homozygous carriers of a TBC1D4 variant, conferring postprandial insulin resistance, the risk of T2D is markedly higher. We investigated the effects of traditional marine diets on glucose homoeostasis and cardio-metabolic health in Greenlandic Inuit carriers and non-carriers of the variant in a randomised crossover study consisting of two 4-week dietary interventions: Traditional (marine-based, low-carbohydrate) and Western (high in imported meats and carbohydrates). Oral glucose tolerance test (OGTT, 2-h), 14-d continuous glucose and cardio-metabolic markers were assessed to investigate the effect of diet and genotype. Compared with the Western diet, the Traditional diet reduced mean and maximum daily blood glucose by 0·17 mmol/l (95 % CI 0·05, 0·29; P = 0·006) and 0·26 mmol/l (95 % CI 0·06, 0·46; P = 0·010), respectively, with dose-dependency. Furthermore, it gave rise to a weight loss of 0·5 kg (95 % CI; 0·09, 0·90; P = 0·016) relative to the Western diet and 4 % (95 % CI 1, 9; P = 0·018) lower LDL:HDL-cholesterol, which after adjustment for weight loss appeared to be driven by HDL elevation (0·09 mmol/l (0·03, 0·15), P = 0·006). A diet-gene interaction was indicated on insulin sensitivity in the OGTT (p = 0·093), which reflected a non-significant increase of 1·4 (-0·6, 3·5) mmol/l in carrier 2-h glucose. A Traditional diet marginally improved daily glycaemic control and plasma lipid profile compared with a Westernised diet in Greenlandic Inuit. Possible adverse effects on glucose tolerance in carriers of the TBC1D4 variant warrant further studies.
Collapse
Affiliation(s)
- Jack Ivor Lewis
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mads Vendelbo Lind
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Grith Møller
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Sara Nielsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Ken D. Stark
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada
| | - Peter Bjerregaard
- National Institute of Public Health, University of Southern Denmark, Odense, Denmark
- SDU, Copenhagen, Denmark
| | - Marit E. Jørgensen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Ilisimatusarfik, The University of Greenland, Nuuk, Greenland
| | - Lotte Lauritzen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Montserrat-de la Paz S, D Miguel-Albarreal A, Gonzalez-de la Rosa T, Millan-Linares MC, Rivero-Pino F. Protein-based nutritional strategies to manage the development of diabetes: evidence and challenges in human studies. Food Funct 2023; 14:9962-9973. [PMID: 37873616 DOI: 10.1039/d3fo02466k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most prevalent diseases in modern society, governed by both genetic and environmental factors, such as nutritional habits. This metabolic disorder is characterized by insulin resistance, which is related to high blood glucose levels, implying negative health effects in humans, hindering the healthy ageing of people. The relationship between food and health is clear, and the ingestion of specific nutrients modulates some physiological processes, potentially implying biologically relevant changes, which can translate into a health benefit. This review aims to summarize human studies published in which the purpose was to investigate the effect of protein ingestion (in native state or as hydrolysates) on human metabolism. Overall, several studies showed how protein ingestion might induce a decrease of glucose concentration in the postprandial state (area under the curve), although it is highly dependent on the source and the dose. Other studies showed no biological effects upon protein consumption, mostly with fish-derived products. In addition, the major challenges and perspectives in this research field are highlighted, suggesting the future directions, towards which scientists should focus on. The dietary intake of proteins has been proven to likely exert a beneficial effect on diabetes-related parameters, which can have a biological relevance in the prevention and pre-treatment of diabetes. However, the number of well-designed human studies carried out to date to demonstrate the effects of specific proteins or protein hydrolysates in vivo is still scarce.
Collapse
Affiliation(s)
- Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain.
| | - Antonio D Miguel-Albarreal
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain.
| | - Teresa Gonzalez-de la Rosa
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain.
| | - Maria C Millan-Linares
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain.
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain.
| |
Collapse
|
6
|
Bioactive food-derived peptides for functional nutrition: Effect of fortification, processing and storage on peptide stability and bioactivity within food matrices. Food Chem 2023; 406:135046. [PMID: 36446284 DOI: 10.1016/j.foodchem.2022.135046] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
New challenges in food production and processing are appearing due to increasing global population and the purpose of achieving a sustainable food system. Bioactive peptides obtained from food proteins can be employed to prevent or pre-treat several diseases such as diabetes, cardiovascular diseases, inflammation, thrombosis, cancer, etc. Research on the bioactivity of protein hydrolysates is very extensive, especially in vitro tests, although there are also tests in animal models and in humans studies designed to verify their efficacy. However, there is very little published literature on the functionality of these protein hydrolysates as an ingredient in food matrices, as well as the effect that thermal or non-thermal processing, and storage may have on the bioactivity of these bioactive peptides. This review aims to summarize the published literature on protein hydrolysates as a functional ingredient including processing, storage and simulated gastrointestinal digestion regarding the bioactivity of these peptides inside food matrices.
Collapse
|
7
|
Joshua Ashaolu T, Le TD, Suttikhana I. Stability and bioactivity of peptides in food matrices based on processing conditions. Food Res Int 2023; 168:112786. [PMID: 37120233 DOI: 10.1016/j.foodres.2023.112786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Bioactive peptides (BPs) generated from food proteins can serve therapeutic purposes against degenerative and cardiovascular diseases such as inflammation, diabetes, and cancer. There are numerous reports on the in vitro, animal, and human studies of BPs, but not as much information on the stability and bioactivity of these peptides when incorporated in food matrices. The effects of heat and non-heat processing of the food products, and storage on the bioactivity of the BPs, are also lacking. To this end, we describe the production of BPs in this review, followed by the food processing conditions that affect their storage bioactivity in the food matrices. As this area of research is open for industrial innovation, we conclude that novel analytical methods targeting the interactions of BPs with other components in food matrices would be greatly significant while elucidating their overall bioactivity before, during and after processing.
Collapse
|
8
|
Canet F, Christensen JJ, Victor VM, Hustad KS, Ottestad I, Rundblad A, Sæther T, Dalen KT, Ulven SM, Holven KB, Telle-Hansen VH. Glycated Proteins, Glycine, Acetate, and Monounsaturated Fatty Acids May Act as New Biomarkers to Predict the Progression of Type 2 Diabetes: Secondary Analyses of a Randomized Controlled Trial. Nutrients 2022; 14:nu14235165. [PMID: 36501195 PMCID: PMC9738624 DOI: 10.3390/nu14235165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Food protein or food-derived peptides may regulate blood glucose levels; however, studies have shown inconsistent results. The aim of the present study was to characterize subgroups of individuals with increased risk of type 2 diabetes (T2D) and to investigate the cardiometabolic effects of fish protein in the same subgroups. We first divided participants into high insuliniAUC and low insuliniAUC subjects based on their insulin incremental area under the curve (iAUC) levels after a 2 h oral glucose tolerance test (OGTT), and secondly based on whether they had received 5.2 g salmon fish protein or placebo for 8 weeks, in a previously conducted randomized controlled trial (RCT). We then profiled these groups by analyzing plasma metabolomics and peripheral blood mononuclear cell (PBMC) gene expression. Compared to the low insuliniAUC group, the high insuliniAUC group had higher plasma concentrations of monounsaturated fatty acids (MUFAs) and glycated proteins (GlycA) and lower concentrations of glycine and acetate. After intervention with fish protein compared to placebo, however, only acetate was significantly increased in the low insuliniAUC group. In conclusion, we identified metabolic biomarkers known to be associated with T2D; also, intervention with fish protein did not affect cardiometabolic risk markers in subgroups with increased risk of T2D.
Collapse
Affiliation(s)
- Francisco Canet
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 40617 Valencia, Spain
| | - Jacob J. Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Victor M. Victor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 40617 Valencia, Spain
- Department of Physiology, School of Medicine, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain
| | - Kristin S. Hustad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Inger Ottestad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Amanda Rundblad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Thomas Sæther
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Stine M. Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Kirsten B. Holven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway
| | - Vibeke H. Telle-Hansen
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway
- Correspondence:
| |
Collapse
|
9
|
Hjorth M, Doncheva A, Norheim F, Ulven SM, Holven KB, Sæther T, Dalen KT. Consumption of salmon fishmeal increases hepatic cholesterol content in obese C57BL/6 J mice. Eur J Nutr 2022; 61:4027-4043. [PMID: 35788891 PMCID: PMC9596588 DOI: 10.1007/s00394-022-02930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022]
Abstract
PURPOSE By-products from farmed fish contain large amounts of proteins and may be used for human consumption. The purpose of this study was to investigate cardiometabolic effects and metabolic tolerance in mice consuming fishmeal from salmon by-products, salmon filet or beef. METHODS Female C57BL/6J mice were fed chow, as a healthy reference group, or a high-fat diet for 10 weeks to induce obesity and glucose intolerance. Obese mice were subsequently given isocaloric diets containing 50% of the dietary protein from salmon fishmeal, salmon filet or beef for 10 weeks. Mice were subjected to metabolic phenotyping, which included measurements of body composition, energy metabolism in metabolic cages and glucose tolerance. Lipid content and markers of hepatic toxicity were determined in plasma and liver. Hepatic gene and protein expression was determined with RNA sequencing and immunoblotting. RESULTS Mice fed fishmeal, salmon filet or beef had similar food intake, energy consumption, body weight gain, adiposity, glucose tolerance and circulating levels of lipids and hepatic toxicity markers, such as p-ALT and p-AST. Fishmeal increased hepatic cholesterol levels by 35-36% as compared to salmon filet (p = 0.0001) and beef (p = 0.005). This was accompanied by repressed expression of genes involved in steroid and cholesterol metabolism and reduced levels of circulating Pcsk9. CONCLUSION Salmon fishmeal was well tolerated, but increased hepatic cholesterol content. The high cholesterol content in fishmeal may be responsible for the effects on hepatic cholesterol metabolism. Before introducing fishmeal from salmon by-products as a dietary component, it may be advantageous to reduce the cholesterol content in fishmeal.
Collapse
Affiliation(s)
- Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, Blindern, P.O. Box 1046, 0317, Oslo, Norway
| | - Atanaska Doncheva
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, Blindern, P.O. Box 1046, 0317, Oslo, Norway
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, Blindern, P.O. Box 1046, 0317, Oslo, Norway
| | - Stine Marie Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, Blindern, P.O. Box 1046, 0317, Oslo, Norway
| | - Kirsten Bjørklund Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, Blindern, P.O. Box 1046, 0317, Oslo, Norway
- Norwegian National Advisory Unit On Familial Hypercholesterolemia, Oslo University Hospital, Aker Sykehus, Postboks 4950, 0424, Oslo, Norway
| | - Thomas Sæther
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, 0372, Oslo, Norway
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, Blindern, P.O. Box 1046, 0317, Oslo, Norway.
- The Norwegian Transgenic Center, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
10
|
Hjorth M, Galigniana NM, Ween O, Ulven SM, Holven KB, Dalen KT, Sæther T. Postprandial Effects of Salmon Fishmeal and Whey on Metabolic Markers in Serum and Gene Expression in Liver Cells. Nutrients 2022; 14:1593. [PMID: 35458155 PMCID: PMC9027870 DOI: 10.3390/nu14081593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/29/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Fish is considered an important part of a healthy diet, in part due to the content of long chain omega-3 fatty acids. However, both lean and fatty fish have beneficial health effects, suggesting that micronutrients and proteins may play a role. In a randomised, controlled, cross-over trial, five healthy male participants consumed 5.2 g of protein from either salmon fishmeal or whey. Blood samples were taken before and 30 and 60 min after intake. The concentration of glucose, lipids, hormones and metabolites, including 28 different amino acids and derivatives, were measured in serum or plasma. Cultured HepG2 cells were incubated with or without serum from the participants, and transcriptomic profiling was performed using RNA sequencing. The ingestion of both salmon fishmeal and whey reduced the glucose and triglyceride levels in serum. Protein intake, independent of the source, increased the concentration of 22 amino acids and derivatives in serum. Fishmeal increased the concentration of arginine, methionine, serine, glycine, cystathionine and 2-aminobutyric acid more than whey did. Incubation with postprandial serum resulted in large transcriptomic alterations in serum-fasted HepG2 cells, with the differential expression of >4500 protein coding genes. However, when comparing cells cultivated in fasting serum to postprandial serum after the ingestion of fishmeal and whey, we did not detect any differentially regulated genes, neither with respect to the protein source nor with respect to the time after the meal. The comparable nutrigenomic effects of fishmeal and whey do not change the relevance of fish by-products as an alternative food source.
Collapse
Affiliation(s)
- Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, 0372 Oslo, Norway; (M.H.); (S.M.U.); (K.B.H.); (K.T.D.)
| | - Natalia M. Galigniana
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, 0372 Oslo, Norway;
| | - Ola Ween
- Møreforskning AS, Borgundvegen 340, 6009 Ålesund, Norway;
| | - Stine M. Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, 0372 Oslo, Norway; (M.H.); (S.M.U.); (K.B.H.); (K.T.D.)
| | - Kirsten B. Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, 0372 Oslo, Norway; (M.H.); (S.M.U.); (K.B.H.); (K.T.D.)
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, P.O. Box 4959, Nydalen, 0424 Oslo, Norway
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, 0372 Oslo, Norway; (M.H.); (S.M.U.); (K.B.H.); (K.T.D.)
| | - Thomas Sæther
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, 0372 Oslo, Norway;
| |
Collapse
|
11
|
Abachi S, Pilon G, Marette A, Bazinet L, Beaulieu L. Beneficial effects of fish and fish peptides on main metabolic syndrome associated risk factors: Diabetes, obesity and lipemia. Crit Rev Food Sci Nutr 2022; 63:7896-7944. [PMID: 35297701 DOI: 10.1080/10408398.2022.2052261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The definition of metabolic syndrome (MetS) fairly varies from one to another guideline and health organization. Per description of world health organization, occurrence of hyperinsulinemia or hyperglycemia in addition to two or more factors of dyslipidemia, hypoalphalipoproteinemia, hypertension and or large waist circumference factors would be defined as MetS. Conventional therapies and drugs, commonly with adverse effects, are used to treat these conditions and diseases. Nonetheless, in the recent decades scientific community has focused on the discovery of natural compounds to diminish the side effects of these medications. Among many available bioactives, biologically active peptides have notable beneficial effects on the management of diabetes, obesity, hypercholesterolemia, and hypertension. Marine inclusive of fish peptides have exerted significant bioactivities in different experimental in-vitro, in-vivo and clinical settings. This review exclusively focuses on studies from the recent decade investigating hypoglycemic, hypolipidemic, hypercholesterolemic and anti-obesogenic fish and fish peptides. Related extraction, isolation, and purification methodologies of anti-MetS fish biopeptides are reviewed herein for comparison purposes only. Moreover, performance of biopeptides in simulated gastrointestinal environment and structure-activity relationship along with absorption, distribution, metabolism, and excretion properties of selected oligopeptides have been discussed, in brief, to broaden the knowledge of readers on the design and discovery trends of anti-MetS compounds.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2052261 .
Collapse
Affiliation(s)
- Soheila Abachi
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Laboratory of Food Processing and ElectroMembrane Processes (LTAPEM), Université Laval, Quebec, Quebec, Canada
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
12
|
No effect of salmon fish protein on 2-h glucose in adults with increased risk of type 2 diabetes: a randomised controlled trial. Br J Nutr 2021; 126:1304-1313. [PMID: 33413727 DOI: 10.1017/s0007114521000040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The association between fish consumption and decreased risk of CVD is well documented. However, studies on health effects of fish consumption suggest that other components than n-3 PUFA have beneficial cardiometabolic effects, including effects on glucose metabolism. The aim of the present study was to investigate effects of salmon fish protein on cardiometabolic risk markers in a double-blind, randomised controlled parallel trial. We hypothesised that daily intake of a salmon fish protein supplement for 8 weeks would improve glucose tolerance in persons with increased risk of type 2 diabetes mellitus (T2DM). Our primary outcome measure was serum glucose (s-glucose) 2 h after a standardised oral glucose tolerance test. In total, eighty-eight adults with elevated s-glucose levels were randomised to 7·5 g of salmon fish protein/d or placebo, and seventy-four participants were included in the analysis. We found no significant effect of salmon fish protein supplementation on our primary outcome or other markers related to glucose tolerance, serum lipids, weight or blood pressure compared with placebo. The present study does not support the hypothesis that daily intake of a salmon fish protein supplement for 8 weeks improves glucose tolerance in persons with increased risk of T2DM.
Collapse
|
13
|
Characteristics of Food Protein-Derived Antidiabetic Bioactive Peptides: A Literature Update. Int J Mol Sci 2021; 22:ijms22179508. [PMID: 34502417 PMCID: PMC8431147 DOI: 10.3390/ijms22179508] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes, a glucose metabolic disorder, is considered one of the biggest challenges associated with a complex complication of health crises in the modern lifestyle. Inhibition or reduction of the dipeptidyl peptidase IV (DPP-IV), alpha-glucosidase, and protein-tyrosine phosphatase 1B (PTP-1B) enzyme activities or expressions are notably considered as the promising therapeutic strategies for the management of type 2 diabetes (T2D). Various food protein-derived antidiabetic bioactive peptides have been isolated and verified. This review provides an overview of the DPP-IV, PTP-1B, and α-glucosidase inhibitors, and updates on the methods for the discovery of DPP-IV inhibitory peptides released from food-protein hydrolysate. The finding of novel bioactive peptides involves studies about the strategy of separation fractionation, the identification of peptide sequences, and the evaluation of peptide characteristics in vitro, in silico, in situ, and in vivo. The potential of bioactive peptides suggests useful applications in the prevention and management of diabetes. Furthermore, evidence of clinical studies is necessary for the validation of these peptides’ efficiencies before commercial applications.
Collapse
|
14
|
Tou JC, Gucciardi E, Young I. Lipid-modifying effects of lean fish and fish-derived protein consumption in humans: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2021; 80:91-112. [PMID: 33942085 DOI: 10.1093/nutrit/nuab003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 12/28/2022] Open
Abstract
CONTEXT Consumption of lean fish and fish-derived proteins were effective for improving lipid profiles in published studies; however, evidence remains inconclusive. OBJECTIVE To evaluate the effectiveness of lean fish or fish-derived protein on serum/plasma lipid and lipoprotein levels by conducting a systematic review of the literature and meta-analysis of available randomized controlled trials (RCTs). DATA SOURCES Medline (Ovid), Scopus, CINAHL, and Food and Nutritional Sciences databases were searched from the start date of each database to September 2019 to identify RCTs determining the effect of lean fish on lipid profile. STUDY SELECTION INCLUDED RCTs investigated lean fish and fish-derived proteins intake and determined at least 1 major lipid or lipoprotein measurement. DATA EXTRACTION Two reviewers independently evaluated 1217 studies against the inclusion and exclusion criteria. Relevant studies were assessed for risks of bias, and random-effects meta-analysis was conducted to generate average estimates of effect. RESULTS A total of 24 studies met the inclusion criteria. Meta-analysis of data from 18 to 21 eligible crossover and parallel-design RCTs with a total of 1392 to 1456 participants found triacylglycerol-lowering effects for lean fish compared with no fish consumption. Lean fish intake showed no significant differences related to total cholesterol or lipoprotein levels. Subanalysis showed that parallel-group RCTs tended to find greater reduction effects on circulating triacylglycerol than did crossover RCTs. CONCLUSION Additional better-designed, longer, and larger RCTs, particularly crossover RCTs, are needed to clarify the impact of lean fish and fish proteins on the serum/plasma lipid profile. Findings from such studies would enable practitioners to provide their patients evidence-based recommendations to meet the American Heart Association guidelines for fish consumption to reduce cardiovascular disease risk.
Collapse
Affiliation(s)
- Janet C Tou
- J.C. Tou is with the Human Nutrition and Foods, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA. E. Gucciardi is with the School of Nutrition, Ryerson University, Toronto, Ontario, Canada. I. Young is with the School of Occupational Health and Public Health, Ryerson University, Toronto, Ontario, Canada
| | - Enza Gucciardi
- J.C. Tou is with the Human Nutrition and Foods, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA. E. Gucciardi is with the School of Nutrition, Ryerson University, Toronto, Ontario, Canada. I. Young is with the School of Occupational Health and Public Health, Ryerson University, Toronto, Ontario, Canada
| | - Ian Young
- J.C. Tou is with the Human Nutrition and Foods, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA. E. Gucciardi is with the School of Nutrition, Ryerson University, Toronto, Ontario, Canada. I. Young is with the School of Occupational Health and Public Health, Ryerson University, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Jensen C, Dale HF, Hausken T, Hatlebakk JG, Brønstad I, Lied GA, Hoff DAL. The Effect of Supplementation with Low Doses of a Cod Protein Hydrolysate on Satiety Hormones and Inflammatory Biomarkers in Adults with Metabolic Syndrome: A Randomized, Double-Blind Study. Nutrients 2020; 12:nu12113421. [PMID: 33171589 PMCID: PMC7695186 DOI: 10.3390/nu12113421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022] Open
Abstract
Metabolic syndrome (MetS) is characterised by metabolic abnormalities that increase the risk of developing type 2 diabetes mellitus and cardiovascular disease. Altered levels of circulating ghrelin, several adipokines and inflammatory markers secreted from adipose tissue, such as leptin, adiponectin, tumor necrosis factor alpha, are observed in overweight and obese individuals. We assessed the effect of supplementation with low doses of a cod protein hydrolysate (CPH) on fasting and postprandial levels of acylated ghrelin, as well as fasting levels of adiponectin, leptin and inflammatory markers in subjects with MetS. A multicentre, double-blinded, randomized controlled trial with a parallel group design was conducted. Subjects received a daily supplement of CPH (4 g protein, n = 15) or placebo (0 g protein, n = 15). We observed no effect on fasting or postprandial levels of acylated ghrelin, fasting levels of adiponectin (p = 0.089) or leptin (p = 0.967) after supplementation with CPH, compared to placebo. Overall, our study showed that 8 weeks supplementation with a low dose of CPH in subjects with MetS had no effect on satiety hormones or most of the inflammatory markers, but the levels of high-sensitivity C-reactive protein were statistically significantly different in the CPH-group compared to placebo group. The robustness and clinical relevance of these findings should be explored in future studies with a larger sample size.
Collapse
Affiliation(s)
- Caroline Jensen
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (H.F.D.); (T.H.); (J.G.H.); (G.A.L.)
- Correspondence:
| | - Hanna Fjeldheim Dale
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (H.F.D.); (T.H.); (J.G.H.); (G.A.L.)
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
| | - Trygve Hausken
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (H.F.D.); (T.H.); (J.G.H.); (G.A.L.)
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
- National Centre of Functional Gastrointestinal Disorders, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jan Gunnar Hatlebakk
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (H.F.D.); (T.H.); (J.G.H.); (G.A.L.)
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
- National Centre of Functional Gastrointestinal Disorders, Haukeland University Hospital, 5021 Bergen, Norway
| | - Ingeborg Brønstad
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
- National Centre of Functional Gastrointestinal Disorders, Haukeland University Hospital, 5021 Bergen, Norway
| | - Gülen Arslan Lied
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (H.F.D.); (T.H.); (J.G.H.); (G.A.L.)
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
- National Centre of Functional Gastrointestinal Disorders, Haukeland University Hospital, 5021 Bergen, Norway
| | - Dag Arne Lihaug Hoff
- Division of Gastroenterology, Department of Medicine, Ålesund Hospital, Møre and Romsdal Hospital Trust, 6026 Ålesund, Norway;
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
16
|
Sharkey SJ, Harnedy-Rothwell PA, Allsopp PJ, Hollywood LE, FitzGerald RJ, O'Harte FPM. A Narrative Review of the Anti-Hyperglycemic and Satiating Effects of Fish Protein Hydrolysates and Their Bioactive Peptides. Mol Nutr Food Res 2020; 64:e2000403. [PMID: 32939966 DOI: 10.1002/mnfr.202000403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prevalence of type 2 diabetes and overweight/obesity are increasing globally. Food supplementation as a preventative option has become an attractive option in comparison to increased pharmacotherapy dependency. Hydrolysates of fish processing waste and by-products have become particularly interesting in a climate of increased food wastage awareness and are rapidly gaining traction in food research. This review summarizes the available research so far on the potential effect of these hydrolysates on diabetes and appetite suppression. Scopus and Web of Science are searched using eight keywords (fish, hydrolysate, peptides, satiating, insulinotropic, incretin, anti-obesity, DPP-4 [dipeptidylpeptidase-4/IV]) returning a total of 2549 results. Following exclusion criteria (repeated appearances, non-fish marine sources [e.g., macroalgae], and irrelevant bioactivities [e.g., immunomodulatory, anti-thrombotic]), 44 relevant publications are included in this review. Stimulation of hormone secretion, regulation of glucose uptake, anorexigenic potential, identified mechanisms of action, and research conducted on the most potent bioactive peptides identified within these hydrolysates are all specifically addressed. Results of this review conclude that despite wide methodological variation between studies, there is significant potential for the application of fish protein hydrolysates in the management of bodyweight and hyperglycemia.
Collapse
Affiliation(s)
- Shaun J Sharkey
- School of Biomedical Sciences, Ulster University, Cromore Road, Co. Derry, Northern Ireland, Coleraine, BT52 1SA, UK
| | | | - Philip J Allsopp
- School of Biomedical Sciences, Ulster University, Cromore Road, Co. Derry, Northern Ireland, Coleraine, BT52 1SA, UK
| | - Lynsey E Hollywood
- Department of Hospitality and Tourism Management, Ulster University Business School, Ulster University, Co. Derry, Northern Ireland, Coleraine, BT52 1SA, UK
| | - Richard J FitzGerald
- Department of Biological Sciences, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland
| | - Finbarr P M O'Harte
- School of Biomedical Sciences, Ulster University, Cromore Road, Co. Derry, Northern Ireland, Coleraine, BT52 1SA, UK
| |
Collapse
|
17
|
Kennedy K, Keogh B, Lopez C, Adelfio A, Molloy B, Kerr A, Wall AM, Jalowicki G, Holton TA, Khaldi N. An Artificial Intelligence Characterised Functional Ingredient, Derived from Rice, Inhibits TNF-α and Significantly Improves Physical Strength in an Inflammaging Population. Foods 2020; 9:foods9091147. [PMID: 32825524 PMCID: PMC7555431 DOI: 10.3390/foods9091147] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Food-derived bioactive peptides offer great potential for the treatment and maintenance of various health conditions, including chronic inflammation. Using in vitro testing in human macrophages, a rice derived functional ingredient natural peptide network (NPN) significantly reduced Tumour Necrosis Factor (TNF)-α secretion in response to lipopolysaccharides (LPS). Using artificial intelligence (AI) to characterize rice NPNs lead to the identification of seven potentially active peptides, the presence of which was confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Characterization of this network revealed the constituent peptides displayed anti-inflammatory properties as predicted in vitro. The rice NPN was then tested in an elderly "inflammaging" population with a view to subjectively assess symptoms of digestive discomfort through a questionnaire. While the primary subjective endpoint was not achieved, analysis of objectively measured physiological and physical secondary readouts showed clear significant benefits on the ability to carry out physical challenges such as a chair stand test that correlated with a decrease in blood circulating TNF-α. Importantly, the changes observed were without additional exercise or specific dietary alterations. Further health benefits were reported such as significant improvement in glucose control, a decrease in serum LDL concentration, and an increase in HDL concentration; however, this was compliance dependent. Here we provide in vitro and human efficacy data for a safe immunomodulatory functional ingredient characterized by AI.
Collapse
|
18
|
Rivero-Pino F, Espejo-Carpio FJ, Guadix EM. Antidiabetic Food-Derived Peptides for Functional Feeding: Production, Functionality and In Vivo Evidences. Foods 2020; 9:E983. [PMID: 32718070 PMCID: PMC7466190 DOI: 10.3390/foods9080983] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Bioactive peptides released from the enzymatic hydrolysis of food proteins are currently a trending topic in the scientific community. Their potential as antidiabetic agents, by regulating the glycemic index, and thus to be employed in food formulation, is one of the most important functions of these peptides. In this review, we aimed to summarize the whole process that must be considered when talking about including these molecules as a bioactive ingredient. In this regard, at first, the production, purification and identification of bioactive peptides is summed up. The detailed metabolic pathways described included carbohydrate hydrolases (glucosidase and amylase) and dipeptidyl-peptidase IV inhibition, due to their importance in the food-derived peptides research field. Then, their characterization, concerning bioavailability in vitro and in situ, stability and functionality in food matrices, and ultimately, the in vivo evidence (from invertebrate animals to humans), was described. The future applicability that these molecules have due to their biological potential as functional ingredients makes them an important field of research, which could help the world population avoid suffering from several diseases, such as diabetes.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain; (F.J.E.-C.); (E.M.G.)
| | | | | |
Collapse
|
19
|
Supplementation with Low Doses of a Cod Protein Hydrolysate on Glucose Regulation and Lipid Metabolism in Adults with Metabolic Syndrome: A Randomized, Double-Blind Study. Nutrients 2020; 12:nu12071991. [PMID: 32635503 PMCID: PMC7400914 DOI: 10.3390/nu12071991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
The risk of cardiovascular diseases and type 2 diabetes mellitus are increased in subjects with metabolic syndrome (MetS), and hydrolyzed fish protein may have favorable effects on metabolic health. Here, we investigated the effect of 8 weeks supplementation with 4 g of cod protein hydrolysate (CPH) on glucose metabolism, lipid profile and body composition in individuals with MetS in a double-blind, randomized intervention study with a parallel-group design. Subjects received a daily supplement of CPH (n = 15) or placebo (n = 15). Primary outcomes were serum fasting and postprandial glucose levels. Secondary outcomes were fasting and postprandial insulin and glucagon-like peptide 1 (GLP-1), fasting lipid concentrations and body composition. No difference was observed between CPH and placebo for insulin, glucose or GLP-1 after 8 weeks intervention. Fasting triacylglycerol decreased in both the CPH group and placebo group, with no change between groups. Fasting total cholesterol and low-density lipoprotein cholesterol decreased significantly within both groups from baseline to study end, but no difference was observed between the two groups. In conclusion, supplementing with a low dose of CPH in subjects with MetS for 8 weeks had no effect on fasting or postprandial levels of insulin, glucose or GLP-1, lipid profile or body composition.
Collapse
|
20
|
Effect of Cod Residual Protein Supplementation on Markers of Glucose Regulation in Lean Adults: A Randomized Double-Blind Study. Nutrients 2020; 12:nu12051445. [PMID: 32429429 PMCID: PMC7285039 DOI: 10.3390/nu12051445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
Large quantities of protein-rich cod residuals, which are currently discarded, could be utilized for human consumption. Although fish fillet intake is related to beneficial health effects, little is known about the potential health effects of consuming cod residual protein powder. Fifty lean adults were randomized to consume capsules with 8.1 g/day of cod residual protein (Cod-RP) or placebo capsules (Control group) for eight weeks, in this randomized, double-blind study. The intervention was completed by 40 participants. Fasting glucose and insulin concentrations were unaffected by Cod-RP supplementation, whereas plasma concentrations of α-hydroxybutyrate, β-hydroxybutyrate and acetoacetate all were decreased compared with the Control group. Trimethylamine N-oxide concentration in plasma and urine were increased in the Cod-RP group compared with the Control group. To conclude, the reduction in these potential early markers of impaired glucose metabolism following Cod-RP supplementation may indicate beneficial glucoregulatory effects of cod residual proteins. Trimethylamine N-oxide appears to be an appropriate biomarker of cod residual protein intake in lean adults.
Collapse
|
21
|
Abstract
A large proportion of older adults are affected by impaired glucose metabolism. Previous studies with fish protein have reported improved glucose regulation in healthy adults, but the evidence in older adults is limited. Therefore, we wanted to assess the effect of increasing doses of a cod protein hydrolysate (CPH) on postprandial glucose metabolism in older adults. The study was a double-blind cross-over trial. Participants received four different doses (10, 20, 30 or 40 mg/kg body weight (BW)) of CPH daily for 1 week with 1-week washout periods in between. The primary outcome was postprandial response in glucose metabolism, measured by samples of serum glucose and insulin in 20 min intervals for 120 min. The secondary outcome was postprandial response in plasma glucagon-like peptide 1 (GLP-1). Thirty-one subjects aged 60–78 years were included in the study. In a mixed-model statistical analysis, no differences in estimated maximum value of glucose, insulin or GLP-1 were observed when comparing the lowest dose of CPH (10 mg/kg BW) with the higher doses (20, 30 or 40 mg/kg BW). The estimated maximum value of glucose was on average 0·28 mmol/l lower when the participants were given 40 mg/kg BW CPH compared with 10 mg/kg BW (P = 0·13). The estimated maximum value of insulin was on average 5·14 mIU/l lower with 40 mg/kg BW of CPH compared with 10 mg/kg BW (P = 0·20). Our findings suggest that serum glucose and insulin levels tend to decrease with increasing amounts of CPH. Due to preliminary findings, the results require further investigation.
Collapse
|