1
|
Tu Q, Liu G, Liu X, Zhang J, Xiao W, Lv L, Zhao B. Perspective on using non-human primates in Exposome research. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117199. [PMID: 39426107 DOI: 10.1016/j.ecoenv.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/02/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
The physiological and pathological changes in the human body caused by environmental pressures are collectively referred to as the Exposome. Human society is facing escalating environmental pollution, leading to a rising prevalence of associated diseases, including respiratory diseases, cardiovascular diseases, neurological disorders, reproductive development disorders, among others. Vulnerable populations to the pathogenic effects of environmental pollution include those in the prenatal, infancy, and elderly stages of life. Conducting Exposome mechanistic research and proposing effective health interventions are urgent in addressing the current severe environmental pollution. In this review, we address the core issues and bottlenecks faced by current Exposome research, specifically focusing on the most toxic ultrafine nanoparticles. We summarize multiple research models being used in Exposome research. Especially, we discuss the limitations of rodent animal models in mimicking human physiopathological phenotypes, and prospect advantages and necessity of non-human primates in Exposome research based on their evolutionary relatedness, anatomical and physiological similarities to human. Finally, we declare the initiation of NHPE (Non-Human Primate Exposome) project for conducting Exposome research using non-human primates and provide insights into its feasibility and key areas of focus. SYNOPSIS: Non-human primate models hold unique advantages in human Exposome research.
Collapse
Affiliation(s)
- Qiu Tu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Gaojing Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiuyun Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiao Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Wenxian Xiao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Longbao Lv
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China.
| | - Bo Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
2
|
Abdul-Rahman T, Roy P, Bliss ZSB, Mohammad A, Corriero AC, Patel NT, Wireko AA, Shaikh R, Faith OE, Arevalo-Rios ECE, Dupuis L, Ulusan S, Erbay MI, Cedeño MV, Sood A, Gupta R. The impact of air quality on cardiovascular health: A state of the art review. Curr Probl Cardiol 2024; 49:102174. [PMID: 37913932 DOI: 10.1016/j.cpcardiol.2023.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Air pollution is a global health challenge, increasing the risk of cardiovascular diseases such as heart disease, stroke, and arrhythmias. Particulate matter (PM), particularly PM2.5 and ultrafine particles (UFP), is a key contributor to the adverse effects of air pollution on cardiovascular health. PM exposure can lead to oxidative stress, inflammation, atherosclerosis, vascular dysfunction, cardiac arrhythmias, and myocardial injury. Reactive oxygen species (ROS) play a key role in mediating these effects. PM exposure can also lead to hypertension, a significant risk factor for cardiovascular disease. The COVID-19 pandemic resulted in a significant reduction of air pollutants, leading to a decline in the incidence of heart attacks and premature deaths caused by cardiovascular diseases. This review highlights the relationship between environmental air quality and cardiovascular health, elucidating the pathways through which air pollutants affect the cardiovascular system. It also emphasizes the need for increased awareness, collective efforts to mitigate the adverse effects of air pollution, and strategic policies for long-term air quality improvement to prevent the devastating effects of air pollution on global cardiovascular health.
Collapse
Affiliation(s)
- Toufik Abdul-Rahman
- Medical Institute, Sumy State University, Sumy, Ukraine; Department of Research, Toufik's World Medical Association, Sumy, Ukraine
| | - Poulami Roy
- Department of Research, Toufik's World Medical Association, Sumy, Ukraine; Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | | | | | | | - Neal T Patel
- Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, FL, USA
| | - Andrew Awuah Wireko
- Medical Institute, Sumy State University, Sumy, Ukraine; Department of Research, Toufik's World Medical Association, Sumy, Ukraine
| | - Raheel Shaikh
- Broward Health Medical Center, Fort Lauderdale, FL, USA
| | | | | | - Léonie Dupuis
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sebahat Ulusan
- Medical School, Suleyman Demirel University, Isparta, Turkey
| | | | | | - Aayushi Sood
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA, USA.
| |
Collapse
|
3
|
Aslam I, Roeffaers MBJ. Carbonaceous Nanoparticle Air Pollution: Toxicity and Detection in Biological Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223948. [PMID: 36432235 PMCID: PMC9698098 DOI: 10.3390/nano12223948] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 05/27/2023]
Abstract
Among the different air pollutants, particulate matter (PM) is of great concern due to its abundant presence in the atmosphere, which results in adverse effects on the environment and human health. The different components of PM can be classified based on their physicochemical properties. Carbonaceous particles (CPs) constitute a major fraction of ultrafine PM and have the most harmful effects. Herein, we present a detailed overview of the main components of CPs, e.g., carbon black (CB), black carbon (BC), and brown carbon (BrC), from natural and anthropogenic sources. The emission sources and the adverse effects of CPs on the environment and human health are discussed. Particularly, we provide a detailed overview of the reported toxic effects of CPs in the human body, such as respiratory effects, cardiovascular effects, neurodegenerative effects, carcinogenic effects, etc. In addition, we also discuss the challenges faced by and limitations of the available analytical techniques for the qualitative and quantitative detection of CPs in atmospheric and biological samples. Considering the heterogeneous nature of CPs and biological samples, a detailed overview of different analytical techniques for the detection of CPs in (real-exposure) biological samples is also provided. This review provides useful insights into the classification, toxicity, and detection of CPs in biological samples.
Collapse
|
4
|
Neo EX, Hasikin K, Mokhtar MI, Lai KW, Azizan MM, Razak SA, Hizaddin HF. Towards Integrated Air Pollution Monitoring and Health Impact Assessment Using Federated Learning: A Systematic Review. Front Public Health 2022; 10:851553. [PMID: 35664109 PMCID: PMC9160600 DOI: 10.3389/fpubh.2022.851553] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Environmental issues such as environmental pollutions and climate change are the impacts of globalization and become debatable issues among academics and industry key players. One of the environmental issues which is air pollution has been catching attention among industrialists, researchers, and communities around the world. However, it has always neglected until the impacts on human health become worse, and at times, irreversible. Human exposure to air pollutant such as particulate matters, sulfur dioxide, ozone and carbon monoxide contributed to adverse health hazards which result in respiratory diseases, cardiorespiratory diseases, cancers, and worst, can lead to death. This has led to a spike increase of hospitalization and emergency department visits especially at areas with worse pollution cases that seriously impacting human life and health. To address this alarming issue, a predictive model of air pollution is crucial in assessing the impacts of health due to air pollution. It is also critical in predicting the air quality index when assessing the risk contributed by air pollutant exposure. Hence, this systemic review explores the existing studies on anticipating air quality impact to human health using the advancement of Artificial Intelligence (AI). From the extensive review, we highlighted research gaps in this field that are worth to inquire. Our study proposes to develop an AI-based integrated environmental and health impact assessment system using federated learning. This is specifically aims to identify the association of health impact and pollution based on socio-economic activities and predict the Air Quality Index (AQI) for impact assessment. The output of the system will be utilized for hospitals and healthcare services management and planning. The proposed solution is expected to accommodate the needs of the critical and prioritization of sensitive group of publics during pollution seasons. Our finding will bring positive impacts to the society in terms of improved healthcare services quality, environmental and health sustainability. The findings are beneficial to local authorities either in healthcare or environmental monitoring institutions especially in the developing countries.
Collapse
Affiliation(s)
- En Xin Neo
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Center of Image and Signal Processing (CISIP), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohd Istajib Mokhtar
- Department of Science and Technology Studies, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Muhammad Mokhzaini Azizan
- Department of Electrical and Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Sarah Abdul Razak
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hanee Farzana Hizaddin
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Wen DT, Zheng L, Lu K, Hou WQ. Activation of cardiac Nmnat/NAD+/SIR2 pathways mediates endurance exercise resistance to lipotoxic cardiomyopathy in aging Drosophila. J Exp Biol 2021; 224:272180. [PMID: 34495320 DOI: 10.1242/jeb.242425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022]
Abstract
Endurance exercise is an important way to resist and treat high-fat diet (HFD)-induced lipotoxic cardiomyopathy, but the underlying molecular mechanisms are poorly understood. Here, we used Drosophila to identify whether cardiac Nmnat/NAD+/SIR2 pathway activation mediates endurance exercise-induced resistance to lipotoxic cardiomyopathy. The results showed that endurance exercise activated the cardiac Nmnat/NAD+/SIR2/FOXO pathway and the Nmnat/NAD+/SIR2/PGC-1α pathway, including up-regulating cardiac Nmnat, SIR2, FOXO and PGC-1α expression, superoxide dismutase (SOD) activity and NAD+ levels, and it prevented HFD-induced or cardiac Nmnat knockdown-induced cardiac lipid accumulation, malondialdehyde (MDA) content and fibrillation increase, and fractional shortening decrease. Cardiac Nmnat overexpression also activated heart Nmnat/NAD+/SIR2 pathways and resisted HFD-induced cardiac malfunction, but it could not protect against HFD-induced lifespan reduction and locomotor impairment. Exercise improved lifespan and mobility in cardiac Nmnat knockdown flies. Therefore, the current results confirm that cardiac Nmnat/NAD+/SIR2 pathways are important antagonists of HFD-induced lipotoxic cardiomyopathy. Cardiac Nmnat/NAD+/SIR2 pathway activation is an important underlying molecular mechanism by which endurance exercise and cardiac Nmnat overexpression give protection against lipotoxic cardiomyopathy in Drosophila.
Collapse
Affiliation(s)
- Deng-Tai Wen
- Ludong University, City Yantai 264025, Shandong Province, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Chang Sha 410012, Hunan Province, China
| | - Kai Lu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Chang Sha 410012, Hunan Province, China
| | - Wen-Qi Hou
- Ludong University, City Yantai 264025, Shandong Province, China
| |
Collapse
|
6
|
白 枫, 何 倚, 牛 亚, 杨 若, 曹 静. [Effects of ultrafine particulates on cardiac function in rat isolated heart]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2021; 53:240-245. [PMID: 33879892 PMCID: PMC8072420 DOI: 10.19723/j.issn.1671-167x.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To evaluate whether ultrafine particulates (UFPs) have direct deleterious effects on cardiac function through activating MAPK signaling. METHODS Langendorff-perfused Sprague-Dawley rat hearts were randomly divided into 2 groups (n=10/each group). In control group, the rat hearts were perfused with Tyrode's buffer for 40 min; in UFPs-treated group, the hearts were perfused with UFPs at a concentration of 12.5 mg/L. Cardiac function was determined by measuring left ventricular developed pressure (LVDP), left ventricular peak rate of contraction and relaxation (±dp/dtmax) and coronary flow (CF). The levels of malondialdehyde (MDA), superoxide dismutase (SOD), total anti-oxidant capacity (TAOC) were detected in order to evaluate cardiac oxidative stress via the thiobarbituric acid assay, water soluble tetrazolium salt assay and colorimetry, respectively. The expressions of p-p38 MAPK, p-ERKs and p-JNKs in the myocardium were observed using immunohistochemical staining and Western blots. RESULTS No significant changes in cardiac function were detected before and after the perfusion in control group while UFPs perfused hearts showed a decline in cardiac function in a time-dependent manner (all P < 0.05). In UFPs-treated group, LVDP, +dp/dtmax, -dp/dtmax and CF were statistically reduced from (82.6±2.1) mmHg, (1 624±113) mmHg/s, (1 565±116) mmHg/s, (12.0±0.2) mL/min to (56.8±4.4) mmHg, (1 066±177) mmHg/s, (1 082±134) mmHg/s, (8.7±0.3) mL/min (all P < 0.05), respectively. Furthermore, The comparison between the two groups observed that UFPs perfusion caused a significant decrease in cardiac function at 30 and 40 min compared with the control group (all P < 0.05). At the end of the perfusion, the level of MDA was increased from (0.98±0.14) nmol/L to (1.95±0.18) nmol/L, while SOD and TAOC were reduced from (12.50±1.87) U/mL and (6.83±1.16) U/mL to (6.50 ±1.04) U/mL and (3.67±0.82) U/mL (all P < 0.001) in UFPs group, respectively. In coincidence with these changes, immunohistochemistry and Western blots results showed that the levels of p-p38 MAPK, p-ERKs and p-JNKs in the myocardium significantly increased in UFPs group as compared with control group (all P < 0.05). CONCLUSION The results of this study demonstrated that the short-term exposure of UFPs to the isolated rat hearts has direct and acute toxic effects on cardiac function, probably related to attenuation of anti-oxidative capacity and activation of MAPK signaling pathways.
Collapse
Affiliation(s)
- 枫 白
- />山西医科大学附属第一医院心内科,山西医科大学基础医学院药理教研室,太原 030001Department of Cardiology, The First Hospital of Shanxi Medical University & Department of Pharmacology, Basic Medical School, Shanxi Medical University, Taiyuan 030001, China
| | - 倚帆 何
- />山西医科大学附属第一医院心内科,山西医科大学基础医学院药理教研室,太原 030001Department of Cardiology, The First Hospital of Shanxi Medical University & Department of Pharmacology, Basic Medical School, Shanxi Medical University, Taiyuan 030001, China
| | - 亚楠 牛
- />山西医科大学附属第一医院心内科,山西医科大学基础医学院药理教研室,太原 030001Department of Cardiology, The First Hospital of Shanxi Medical University & Department of Pharmacology, Basic Medical School, Shanxi Medical University, Taiyuan 030001, China
| | - 若娟 杨
- />山西医科大学附属第一医院心内科,山西医科大学基础医学院药理教研室,太原 030001Department of Cardiology, The First Hospital of Shanxi Medical University & Department of Pharmacology, Basic Medical School, Shanxi Medical University, Taiyuan 030001, China
| | - 静 曹
- />山西医科大学附属第一医院心内科,山西医科大学基础医学院药理教研室,太原 030001Department of Cardiology, The First Hospital of Shanxi Medical University & Department of Pharmacology, Basic Medical School, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
7
|
Yang M, Zhou R, Qiu X, Feng X, Sun J, Wang Q, Lu Q, Zhang P, Liu B, Li W, Chen M, Zhao Y, Mo B, Zhou X, Zhang X, Hua Y, Guo J, Bi F, Cao Y, Ling F, Shi S, Li YG. Artificial intelligence-assisted analysis on the association between exposure to ambient fine particulate matter and incidence of arrhythmias in outpatients of Shanghai community hospitals. ENVIRONMENT INTERNATIONAL 2020; 139:105745. [PMID: 32334122 DOI: 10.1016/j.envint.2020.105745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Recently, the impact of fine particulate matter pollution on cardiovascular system is drawing considerable concern worldwide. The association between ambient fine particulate and the cardiac arrhythmias is not clear now. OBJECTIVE To study associations of ambient fine particulate with incidence of arrhythmias in outpatients. METHODS Data was collected from the remote electrocardiogram (ECG) system covering 282 community hospitals in Shanghai from June 24th, 2014 to June 23rd, 2016. ECG was performed for patients admitted to above hospitals with complaining of chest discomfort or palpitation, or for regular check-ups. Air quality data during this time period was obtained from China National Environment Monitoring Center. A generalized additive quasi-Poisson model was established to examine the associations between PM2.5 and cardiac arrhythmias. RESULTS Cardiac arrhythmias were detected in 202,661 out of 1,016,579 outpatients (19.9%) and fine particulate matter ranged from 6 to 219 μg/m3 during this period. Positive associations were evidenced between fine particulate matter level and prevalence of cardiac arrhythmia by different lag models. Per 10 μg/m3 increase in fine particulate matter was associated with a 0.584%(95%CI:0.346-0.689%, p < 0.001) increase of cardiac arrhythmia detected in these patient cohort at lag0-2. For different types of cardiac arrhythmias, an immediate arrhythmogenic effect of fine particulate matter (increase of the estimates of cardiac arrhythmia prevalence detected in daily outpatient visits) was found with paroxysmal supraventricular tachycardia; a lag effect was found with atrial fibrillation; and both immediate and lag effect was found with premature atrial contractions or atrial tachycardia, atrioventricular block. Moreover, the impact of fine particulate matter on cardiac arrhythmias was significantly greater in women (lag3 and lag0-4), and in people aged <65 years (lag0). CONCLUSION Ambient exposure to fine particulate matter is linked with increased risk of arrhythmias in outpatients visiting Shanghai community hospitals, with an immediate or lag effect. The arrhythmogenic effect varies among different types of cardiac arrhythmias.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Runze Zhou
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Cardiology, East Hospital, Tongji University, Shanghai, China
| | | | - Xiangfei Feng
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Sun
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qunshan Wang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiufen Lu
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pengpai Zhang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Liu
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Chen
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhao
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Binfeng Mo
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Zhou
- Clinical Research Unit, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Zhang
- Clinical Research Unit, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingxue Hua
- Pudong New Area Heqing Community Health Center, Shanghai, China
| | - Jin Guo
- Shanghai Huangpu Bund Subdistrict Community Health Center, Shanghai, China
| | - Fangfang Bi
- Changning Tianshan Community Health Center, Shanghai, China
| | - Yajun Cao
- Pudong New Area Sunqiao Community Health Center, Shanghai, China
| | - Feng Ling
- Shanghai Lingyun Community Health Center, Shanghai, China
| | - Shengming Shi
- Shangnail Xinhua Street Community Health Service Center, Shanghai, China
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Vieira JL, Guimaraes GV, de Andre PA, Cruz FD, Saldiva PHN, Bocchi EA. Respiratory Filter Reduces the Cardiovascular Effects Associated With Diesel Exhaust Exposure: A Randomized, Prospective, Double-Blind, Controlled Study of Heart Failure: The FILTER-HF Trial. JACC-HEART FAILURE 2016; 4:55-64. [PMID: 26738952 DOI: 10.1016/j.jchf.2015.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 01/23/2023]
Abstract
OBJECTIVES The goal of this study was to test the effects of a respiratory filter intervention (filter) during controlled pollution exposure. BACKGROUND Air pollution is considered a risk factor for heart failure (HF) decompensation and mortality. METHODS This study was a double-blind, randomized to order, controlled, 3-way crossover, single-center clinical trial. It enrolled 26 patients with HF and 15 control volunteers. Participants were exposed in 3 separate sessions to clean air, unfiltered diesel exhaust exposure (DE), or filtered DE. Endpoints were endothelial function assessed by using the reactive hyperemia index (RHi), arterial stiffness, serum biomarkers, 6-min walking distance, and heart rate variability. RESULTS In patients with HF, DE was associated with a worsening in RHi from 2.17 (interquartile range [IQR]: 1.8 to 2.5) to 1.72 (IQR: 1.5 to 2.2; p = 0.002) and an increase in B-type natriuretic peptide (BNP) from 47.0 pg/ml (IQR: 17.3 to 118.0 pg/ml) to 66.5 pg/ml (IQR: 26.5 to 155.5 pg/ml; p = 0.004). Filtration reduced the particulate concentration (325 ± 31 μg/m(3) vs. 25 ± 6 μg/m(3); p < 0.001); in the group with HF, filter was associated with an improvement in RHi from 1.72 (IQR: 1.5 to 2.2) to 2.06 (IQR: 1.5 to 2.6; p = 0.019) and a decrease in BNP from 66.5 pg/ml (IQR: 26.5 to 155.5 pg/ml) to 44.0 pg/ml (IQR: 20.0 to 110.0 pg/ml; p = 0.015) compared with DE. In both groups, DE decreased the 6-min walking distance and arterial stiffness, although filter did not change these responses. DE had no effect on heart rate variability or exercise testing. CONCLUSIONS To our knowledge, this trial is the first to show that a filter can reduce both endothelial dysfunction and BNP increases in patients with HF during DE. Given these potential benefits, the widespread use of filters in patients with HF exposed to traffic-derived air pollution may have beneficial public health effects and reduce the burden of HF. (Effects of Air Pollution Exposure Reduction by Filter Mask on Heart Failure; NCT01960920).
Collapse
Affiliation(s)
- Jefferson L Vieira
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil.
| | | | - Paulo A de Andre
- Air Pollution Laboratory, University of São Paulo Medical School, São Paulo, Brazil
| | - Fátima D Cruz
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | | | - Edimar A Bocchi
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
9
|
Du Y, Xu X, Chu M, Guo Y, Wang J. Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. J Thorac Dis 2016; 8:E8-E19. [PMID: 26904258 DOI: 10.3978/j.issn.2072-1439.2015.11.37] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Air pollution is now becoming an independent risk factor for cardiovascular morbidity and mortality. Numerous epidemiological, biomedical and clinical studies indicate that ambient particulate matter (PM) in air pollution is strongly associated with increased cardiovascular disease such as myocardial infarction (MI), cardiac arrhythmias, ischemic stroke, vascular dysfunction, hypertension and atherosclerosis. The molecular mechanisms for PM-caused cardiovascular disease include directly toxicity to cardiovascular system or indirectly injury by inducing systemic inflammation and oxidative stress in peripheral circulation. Here, we review the linking between PM exposure and the occurrence of cardiovascular disease and discussed the possible underlying mechanisms for the observed PM induced increases in cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Yixing Du
- 1 Department of Gerontology, 2 Department of Neurology, 3 Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaohan Xu
- 1 Department of Gerontology, 2 Department of Neurology, 3 Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ming Chu
- 1 Department of Gerontology, 2 Department of Neurology, 3 Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yan Guo
- 1 Department of Gerontology, 2 Department of Neurology, 3 Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Junhong Wang
- 1 Department of Gerontology, 2 Department of Neurology, 3 Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
10
|
Clark J, Gregory CC, Matthews IP, Hoogendoorn B. The biological effects upon the cardiovascular system consequent to exposure to particulates of less than 500 nm in size. Biomarkers 2015; 21:1-47. [PMID: 26643755 DOI: 10.3109/1354750x.2015.1118540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Ultrafine particulate matter contribution to cardiovascular disease is not known and not regulated. PM up to 500 nm are abundant in urban air and alveolar deposition is significant. OBJECTIVE Effects beyond the alveolar barrier within the body or in vitro tissues exposed to particles <500 nm. METHODS AND RESULTS DATABASES MEDLINE; Ovid-MEDLINE PREM; Web of Science; PubMed (SciGlobe). 127 articles. Results in tables: "subject type exposed", "exposure type", "technique". CONCLUSION Heart rate, vasoactivity, atherosclerotic advancement, oxidative stress, coagulability, inflammatory changes are affected. Production of reactive oxygen species is a useful target to limit outcomes associated with UFP exposure.
Collapse
Affiliation(s)
- James Clark
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Clive C Gregory
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Ian P Matthews
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Bastiaan Hoogendoorn
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| |
Collapse
|
11
|
Zhao J, Liu C, Bai Y, Wang TY, Kan H, Sun Q. IKK inhibition prevents PM2.5-exacerbated cardiac injury in mice with type 2 diabetes. J Environ Sci (China) 2015; 31:98-103. [PMID: 25968264 DOI: 10.1016/j.jes.2014.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/11/2014] [Accepted: 10/24/2014] [Indexed: 06/04/2023]
Abstract
Epidemiological studies have found that individuals with diabetes mellitus (DM) display an increased susceptibility for adverse cardiovascular outcomes when exposed to air pollution. This study was conducted to explore the potential mechanism linking ambient fine particles (PM2.5) and heart injury in a Type 2 DM (T2DM) animal model. The KKay mouse, an animal model of T2DM, was exposed to concentrated ambient PM2.5 or filtered air for 8 weeks via a versatile aerosol exposure and concentrator system. Simultaneously, an inhibitor of IκB kinase-2 (IKK-â) (IMD-0354), which is a blocker of nuclear factor κB (NF-κB) nuclear translocation, was administrated by intracerebroventricular injection (ICV) to regulate the NF-êB pathway. The results showed that ambient PM2.5 induced the increase of, NF-êB, cyclooxygenase-2 (COX-2) and mitogen activated protein kinase (MAPK) expression in cardiac tissue, and that IMD-0354 could alleviate the inflammatory injury. The results suggested that the NF-êB pathway plays an important role in mediating the PM2.5-induced cardiovascular injury in the T2DM model. Inhibiting NFκB may be a therapeutic option in air-pollution-exacerbated cardiovascular injury in diabetes mellitus.
Collapse
Affiliation(s)
- Jinzhuo Zhao
- Department of Environment Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai 200032, China; Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Cuiqing Liu
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yuntao Bai
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Tse-yao Wang
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Haidong Kan
- Department of Environment Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai 200032, China
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
12
|
Kurhanewicz N, McIntosh-Kastrinsky R, Tong H, Walsh L, Farraj AK, Hazari MS. Ozone co-exposure modifies cardiac responses to fine and ultrafine ambient particulate matter in mice: concordance of electrocardiogram and mechanical responses. Part Fibre Toxicol 2014; 11:54. [PMID: 25318591 PMCID: PMC4203862 DOI: 10.1186/s12989-014-0054-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/02/2014] [Indexed: 12/19/2022] Open
Abstract
Background Studies have shown a relationship between air pollution and increased risk of cardiovascular morbidity and mortality. Due to the complexity of ambient air pollution composition, recent studies have examined the effects of co-exposure, particularly particulate matter (PM) and gas, to determine whether pollutant interactions alter (e.g. synergistically, antagonistically) the health response. This study examines the independent effects of fine (FCAPs) and ultrafine (UFCAPs) concentrated ambient particles on cardiac function, and determine the impact of ozone (O3) co-exposure on the response. We hypothesized that UFCAPs would cause greater decrement in mechanical function and electrical dysfunction than FCAPs, and that O3 co-exposure would enhance the effects of both particle-types. Methods Conscious/unrestrained radiotelemetered mice were exposed once whole-body to either 190 μg/m3 FCAPs or 140 μg/m3 UFCAPs with/without 0.3 ppm O3; separate groups were exposed to either filtered air (FA) or O3 alone. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure, and cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 hrs post-exposure. Results FCAPs alone caused a significant decrease in baseline left ventricular developed pressure (LVDP) and contractility, whereas UFCAPs did not; neither FCAPs nor UFCAPs alone caused any ECG changes. O3 co-exposure with FCAPs caused a significant decrease in heart rate variability when compared to FA but also blocked the decrement in cardiac function. On the other hand, O3 co-exposure with UFCAPs significantly increased QRS-interval, QTc and non-conducted P-wave arrhythmias, and decreased LVDP, rate of contractility and relaxation when compared to controls. Conclusions These data suggest that particle size and gaseous interactions may play a role in cardiac function decrements one day after exposure. Although FCAPs + O3 only altered autonomic balance, UFCAPs + O3 appeared to be more serious by increasing cardiac arrhythmias and causing mechanical decrements. As such, O3 appears to interact differently with FCAPs and UFCAPs, resulting in varied cardiac changes, which suggests that the cardiovascular effects of particle-gas co-exposures are not simply additive or even generalizable. Additionally, the mode of toxicity underlying this effect may be subtle given none of the exposures described here impaired post-ischemia recovery. Electronic supplementary material The online version of this article (doi:10.1186/s12989-014-0054-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Kurhanewicz
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Rachel McIntosh-Kastrinsky
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Haiyan Tong
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| | - Leon Walsh
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| | - Aimen K Farraj
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| | - Mehdi S Hazari
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| |
Collapse
|
13
|
Yu X, Zhao X, Ze Y, Wang L, Liu D, Hong J, Xu B, Lin A, Zhang C, Zhao Y, Li B, Hong F. Changes of serum parameters of TiO₂ nanoparticle-induced atherosclerosis in mice. JOURNAL OF HAZARDOUS MATERIALS 2014; 280:364-71. [PMID: 25179109 DOI: 10.1016/j.jhazmat.2014.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/03/2014] [Accepted: 08/12/2014] [Indexed: 05/26/2023]
Abstract
The evaluation of toxicological effects of nanoparticulate matter is increasingly important due to their growing occupational use and presence as compounds in consumer products. Numerous studies have shown that exposure to nanosized particles lead to systemic inflammation in experimental animals, but whether long-term exposure to nanosized particles induces atherogenesis is rarely evaluated. In the current study, mice were continuously exposed to TiO2 nanoparticles (NPs) at 1.25, 2.5, or 5mg/kg body weight, administered by nasal instillation for nine consecutive months, and the association between serum parameter changes and atherosclerosis in mice were investigated. The present findings suggested that chronic exposure to TiO2 NPs resulted in atherogenesis coupling with pulmonary inflammation, increased levels of serum triglycerides, glucose, total cholesterol, low-density lipoprotein cholesterol, advanced glycation end products, reactive oxygen species, NAD(P)H oxidases 4, C-reaction protein, E-selectin, endothelin-1, tissue factor, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, monocyte chemoattractant protein-1, plasminogen activator inhibitor-1, and reduced levels of serum high-density lipoprotein cholesterol, nitric oxide and tissue plasminogen activator. Our study suggests an association of long-term exposure to TiO2 NPs with atherosclerosis and pulmonary inflammation. This finding demonstrates the hypothesized role of TiO2 NPs as a risk factor for atherogenesis.
Collapse
Affiliation(s)
- Xiaohong Yu
- Medical College of Soochow University, Suzhou 215123, China
| | - Xiaoyang Zhao
- Medical College of Soochow University, Suzhou 215123, China
| | - Yuguan Ze
- Medical College of Soochow University, Suzhou 215123, China
| | - Ling Wang
- Library of Soochow University, Suzhou 215123, China
| | - Dong Liu
- Medical College of Soochow University, Suzhou 215123, China
| | - Jie Hong
- Medical College of Soochow University, Suzhou 215123, China
| | - Bingqing Xu
- Medical College of Soochow University, Suzhou 215123, China
| | - Anan Lin
- Medical College of Soochow University, Suzhou 215123, China
| | - Chi Zhang
- Medical College of Soochow University, Suzhou 215123, China
| | - Yue Zhao
- Medical College of Soochow University, Suzhou 215123, China
| | - Bingyan Li
- Medical College of Soochow University, Suzhou 215123, China.
| | - Fashui Hong
- Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
14
|
Cardiovascular Disease Risk Profiling in Africa: Environmental Pollutants are not on the Agenda. Cardiovasc Toxicol 2014; 14:193-207. [DOI: 10.1007/s12012-013-9242-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Channell MM, Paffett ML, Devlin RB, Madden MC, Campen MJ. Circulating factors induce coronary endothelial cell activation following exposure to inhaled diesel exhaust and nitrogen dioxide in humans: evidence from a novel translational in vitro model. Toxicol Sci 2012; 127:179-86. [PMID: 22331494 DOI: 10.1093/toxsci/kfs084] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The vascular toxicity of inhaled agents may be caused by soluble factors that are released into the systemic circulation. To confirm this in a straightforward manner, we obtained plasma from healthy human volunteers before and after exposure to diesel exhaust (DE) and nitrogen dioxide (NO(2)). Plasma samples were obtained from human volunteers exposed to 100 μg/m(3) DE or filtered air for 2 h. A second cohort was exposed to 500 ppb NO(2) or filtered air in an identical protocol. Primary human coronary artery endothelial cells (hCAECs) were grown to confluence and treated for 24 h with a 10 or 30% (in media) mixture of plasma obtained before, immediately post or 24 h postexposure to pollutant exposures. Messenger RNA (mRNA) was isolated from hCAECs following the incubation and probed for intracellular cell adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1) expression. ICAM-1 mRNA expression was increased by plasma obtained at both timepoints following the NO(2) exposures. VCAM-1 was significantly elevated in cells treated with plasma obtained 24 h following diesel exposure and at both timepoints following NO(2) exposure. Interleukin-8 protein was elevated in the hCAEC supernatant when cells were incubated with plasma from NO(2) exposures. These data indicate that proinflammatory circulating factors are elevated acutely following exposure to both DE and a primary component thereof, NO(2). These functional translational assays offer novel approaches to assessing the cardiovascular risk associated with air pollution exposure.
Collapse
Affiliation(s)
- Meghan M Channell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
16
|
Lodovici M, Bigagli E. Oxidative stress and air pollution exposure. J Toxicol 2011; 2011:487074. [PMID: 21860622 PMCID: PMC3155788 DOI: 10.1155/2011/487074] [Citation(s) in RCA: 392] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 05/10/2011] [Accepted: 06/30/2011] [Indexed: 12/11/2022] Open
Abstract
Air pollution is associated with increased cardiovascular and pulmonary morbidity and mortality. The mechanisms of air pollution-induced health effects involve oxidative stress and inflammation. As a matter of fact, particulate matter (PM), especially fine (PM(2.5), PM < 2.5 μm) and ultrafine (PM(0.1), PM < 0.1 μm) particles, ozone, nitrogen oxides, and transition metals, are potent oxidants or able to generate reactive oxygen species (ROS). Oxidative stress can trigger redox-sensitive pathways that lead to different biological processes such as inflammation and cell death. However, it does appear that the susceptibility of target organ to oxidative injury also depends upon its ability to upregulate protective scavenging systems. As vehicular traffic is known to importantly contribute to PM exposure, its intensity and quality must be strongly relevant determinants of the qualitative characteristics of PM spread in the atmosphere. Change in the composition of this PM is likely to modify its health impact.
Collapse
Affiliation(s)
- Maura Lodovici
- Department of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | | |
Collapse
|
17
|
André L, Gouzi F, Thireau J, Meyer G, Boissiere J, Delage M, Abdellaoui A, Feillet-Coudray C, Fouret G, Cristol JP, Lacampagne A, Obert P, Reboul C, Fauconnier J, Hayot M, Richard S, Cazorla O. Carbon monoxide exposure enhances arrhythmia after cardiac stress: involvement of oxidative stress. Basic Res Cardiol 2011; 106:1235-46. [DOI: 10.1007/s00395-011-0211-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 07/22/2011] [Accepted: 07/24/2011] [Indexed: 11/29/2022]
|
18
|
Zuo L, Youtz DJ, Wold LE. Particulate matter exposure exacerbates high glucose-induced cardiomyocyte dysfunction through ROS generation. PLoS One 2011; 6:e23116. [PMID: 21850256 PMCID: PMC3151271 DOI: 10.1371/journal.pone.0023116] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/10/2011] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus and fine particulate matter from diesel exhaust (DEP) are both important contributors to the development of cardiovascular disease (CVD). Diabetes mellitus is a progressive disease with a high mortality rate in patients suffering from CVD, resulting in diabetic cardiomyopathy. Elevated DEP levels in the air are attributed to the development of various CVDs, presumably since fine DEP (<2.5 µm in diameter) can be inhaled and gain access to the circulatory system. However, mechanisms defining how DEP affects diabetic or control cardiomyocyte function remain poorly understood. The purpose of the present study was to evaluate cardiomyocyte function and reactive oxygen species (ROS) generation in isolated rat ventricular myocytes exposed overnight to fine DEP (0.1 µg/ml), and/or high glucose (HG, 25.5 mM). Our hypothesis was that DEP exposure exacerbates contractile dysfunction via ROS generation in cardiomyocytes exposed to HG. Ventricular myocytes were isolated from male adult Sprague-Dawley rats cultured overnight and sarcomeric contractile properties were evaluated, including: peak shortening normalized to baseline (PS), time-to-90% shortening (TPS90), time-to-90% relengthening (TR90) and maximal velocities of shortening/relengthening (±dL/dt), using an IonOptix field-stimulator system. ROS generation was determined using hydroethidine/ethidium confocal microscopy. We found that DEP exposure significantly increased TR90, decreased PS and ±dL/dt, and enhanced intracellular ROS generation in myocytes exposed to HG. Further studies indicated that co-culture with antioxidants (0.25 mM Tiron and 0.5 mM N-Acetyl-L-cysteine) completely restored contractile function in DEP, HG and HG+DEP-treated myocytes. ROS generation was blocked in HG-treated cells with mitochondrial inhibition, while ROS generation was blocked in DEP-treated cells with NADPH oxidase inhibition. Our results suggest that DEP exacerbates myocardial dysfunction in isolated cardiomyocytes exposed to HG-containing media, which is potentially mediated by various ROS generation pathways.
Collapse
Affiliation(s)
- Li Zuo
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Dane J. Youtz
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Loren E. Wold
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
19
|
Frikke-Schmidt H, Roursgaard M, Lykkesfeldt J, Loft S, Nøjgaard JK, Møller P. Effect of vitamin C and iron chelation on diesel exhaust particle and carbon black induced oxidative damage and cell adhesion molecule expression in human endothelial cells. Toxicol Lett 2011; 203:181-9. [PMID: 21421028 DOI: 10.1016/j.toxlet.2011.03.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 01/07/2023]
Abstract
Exposure to particulate matter is associated with oxidative stress and risk of cardiovascular diseases. We investigated if vitamin C and desferrioxamine (iron chelator) altered the levels of oxidative stress and expression of cell adhesion molecules upon exposure to diesel exhaust particles (DEP) and carbon black in cultured human umbilical vein endothelial cells (HUVECs). We found that the particles were only slightly cytotoxic in the high concentration ranges. Particle-induced intracellular reactive oxygen species (ROS) production was attenuated by vitamin C administration or iron chelation and particularly when combined (p<0.001). Only desferrioxamine protected the DNA from oxidative damage in terms of strand breaks and formamidopyrimidine DNA glycosylase sensitive sites induced by carbon black (p<0.01). Carbon black and small sized DEP generated from an Euro4 engine increased the surface expression of VCAM-1 and ICAM-1, whereas DEP from an engine representing an old combustion type engine (SRM2975) with larger particles did not affect the expression of cell adhesion molecules. These effects were also attenuated by desferrioxamine but not vitamin C. The study shows that exposure to carbon black and DEP in HUVECs can generate both oxidative stress and expression of cell surface adhesion molecules and that these effects can in part be attenuated by vitamin C and desferrioxamine.
Collapse
Affiliation(s)
- Henriette Frikke-Schmidt
- Section of Biomedicine, Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
20
|
Tong H, Cheng WY, Samet JM, Gilmour MI, Devlin RB. Differential cardiopulmonary effects of size-fractionated ambient particulate matter in mice. Cardiovasc Toxicol 2011; 10:259-67. [PMID: 20602262 DOI: 10.1007/s12012-010-9082-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A growing body of evidence from epidemiological and toxicological studies provides a strong link between exposure to ambient particulate matter (PM) of varying size and increased cardiovascular and respiratory morbidity and mortality. This study was designed to evaluate the cardiopulmonary effects of ambient coarse, fine, and ultrafine particles collected in Chapel Hill, NC. Mice were exposed to each size fraction by oropharyngeal instillation. Twenty-four hours later, pulmonary inflammation was assessed by bronchoalveolar lavage and cardiac injury was measured using a Langendorff cardiac perfusion preparation. Recovery of post-ischemic left ventricular developed pressure and infarct size were measured as indeces of cardiac ischemia/reperfusion injury. Coronary flow rate was measured before, during, and after ischemia. We demonstrate that coarse PM caused the most significant pulmonary inflammatory responses. In contrast, hearts from ultrafine-exposed mice had significantly lower post-ischemic functional recovery and greater infarct size, while hearts from coarse and fine PM-exposed mice had no significant responses to ischemia/reperfusion. The coronary flow rate was significantly reduced in the ultrafine PM group. This study shows that exposure of mice to coarse PM results in significant pulmonary toxicity while ultrafine PM appears to enhance cardiac ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Haiyan Tong
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | |
Collapse
|
21
|
Møller P, Mikkelsen L, Vesterdal LK, Folkmann JK, Forchhammer L, Roursgaard M, Danielsen PH, Loft S. Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis. Crit Rev Toxicol 2011; 41:339-68. [PMID: 21345153 DOI: 10.3109/10408444.2010.533152] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The development and use of nanoparticles have alerted toxicologists and regulators to issues of safety testing. By analogy with ambient air particles, it can be expected that small doses are associated with a small increase in risk of cardiovascular diseases, possibly through oxidative stress and inflammatory pathways. We have assessed the effect of exposure to particulate matter on progression of atherosclerosis and vasomotor function in humans, animals, and ex vivo experimental systems. The type of particles that have been tested in these systems encompass TiO(2), carbon black, fullerene C(60), single-walled carbon nanotubes, ambient air particles, and diesel exhaust particles. Exposure to ambient air particles is associated with accelerated progression of atherosclerosis and vasomotor dysfunction in both healthy and susceptible animal models and humans at risk of developing cardiovascular diseases. The vasomotor dysfunction includes increased vasoconstriction as well as reduced endothelium-dependent vasodilatation; endothelium-independent vasodilatation is often unaffected indicating mainly endothelial dysfunction. Pulmonary exposure to TiO(2), carbon black, and engineered nanoparticles generate vasomotor dysfunction; the effect size is similar to that generated by combustion-derived particles, although the effect could depend on the exposure period and the administered dose, route, and mode. The relative risk associated with exposure to nanoparticles may be small compared to some traditional risk factors for cardiovascular diseases, but superimposed on these and possible exposure to large parts of the population it is a significant public health concern. Overall, assessment of vasomotor dysfunction and progression of atherosclerosis are promising tools for understanding the effects of particulate matter.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Villarreal-Calderon R, Reed W, Palacios-Moreno J, Keefe S, Herritt L, Brooks D, Torres-Jardón R, Calderón-Garcidueñas L. Urban air pollution produces up-regulation of myocardial inflammatory genes and dark chocolate provides cardioprotection. ACTA ACUST UNITED AC 2010; 64:297-306. [PMID: 20932730 DOI: 10.1016/j.etp.2010.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 05/18/2010] [Accepted: 09/02/2010] [Indexed: 01/22/2023]
Abstract
Air pollution is a serious environmental problem. Elderly subjects show increased cardiac morbidity and mortality associated with air pollution exposure. Mexico City (MC) residents are chronically exposed to high concentrations of fine particulate matter (PM(2.5)) and PM-associated lipopolysaccharides (PM-LPS). To test the hypothesis that chronic exposure to urban pollution produces myocardial inflammation, female Balb-c mice age 4 weeks were exposed for 16 months to two distinctly different polluted areas within MC: southwest (SW) and northwest (NW). SW mice were given either no treatment or chocolate 2g/9.5 mg polyphenols/3 times per week. Results were compared to mice kept in clean air. Key inflammatory mediator genes: cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the LPS receptor CD14 (cluster of differentiation antigen 14) were measured by real-time polymerase chain reaction. Also explored were target NFκB (nuclear factor κB), oxidative stress and antioxidant defense genes. TNF-α, IL-6, and COX-2 were significantly increased in both NW and SWMC mice (p=0.0001). CD14 was up-regulated in SW mice in keeping with the high exposures to particulate matter associated endotoxin. Chocolate administration resulted in a significant down-regulation of TNF-α (p<0.0001), IL-6 (p=0.01), and IL-1β (p=0.02). The up-regulation of antioxidant enzymes and the down-regulation of potent oxidases, toll-like receptors, and pro-apoptotic signaling genes completed the protective profile. Exposure to air pollution produces up-regulation of inflammatory myocardial genes and endotoxin plays a key role in the inflammatory response. Regular consumption of dark chocolate may reduce myocardial inflammation and have cardioprotective properties in the setting of air pollution exposures.
Collapse
Affiliation(s)
- Rodolfo Villarreal-Calderon
- Department of Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Air pollution poses a significant health risk. The article focuses on the adverse effects of air pollution on the cardiovascular system. RECENT FINDINGS Short-term and long-term studies clearly indicate that relatively modest exposures to particulate matter in the ambient air are associated with increased morbidity and mortality due to coronary heart disease. In humans, inhalational exposure to particulate air pollutants decreases heart rate variability, causes ST-segment depression and endothelial dysfunction, increases blood pressure and blood coagulability, and accelerates the progression of atherosclerosis. Mechanisms of air pollution-induced cardiotoxicity include increased generation of reactive oxygen species followed by activation of proinflammatory and prothrombotic pathways. In experimental settings, ultrafine air pollutants instilled directly into the cardiac vasculature depress cardiac contractility and decrease coronary flow. Both effects are attenuated by the use of a free radical scavenger. SUMMARY Reactive oxygen species-related mechanisms of air pollution cardiotoxicity might become a valid target in developing new pharmacological strategies aimed at decreasing adverse effects of air pollution during extreme episodes (fires, earthquakes, industrial accidents, acts of terrorism). Educating patients and the general population on the negative cardiovascular effects of air pollution might be helpful in decreasing the risk of developing air pollution-related coronary heart disease.
Collapse
|
24
|
Air Pollution and Cardiovascular Injury. J Am Coll Cardiol 2008; 52:719-26. [DOI: 10.1016/j.jacc.2008.05.029] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 05/14/2008] [Accepted: 05/19/2008] [Indexed: 11/21/2022]
|
25
|
Hwang H, Kloner RA, Kleinman MT, Simkhovich BZ. Direct and acute cardiotoxic effects of ultrafine air pollutants in spontaneously hypertensive rats and Wistar--Kyoto rats. J Cardiovasc Pharmacol Ther 2008; 13:189-98. [PMID: 18635755 DOI: 10.1177/1074248408321569] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is hypothesized that preexisting cardiovascular disease could affect the susceptibility to direct and acute cardiotoxic effects of ultrafine air pollutants. Ultrafine particles (UFP) isolated from 12.5 mg of diesel particulate matter (National Institute of Standards and Technology) were infused into isolated Langendorffperfused hearts obtained from spontaneously hypertensive rats (SHR) and normotensive control Wistar- Kyoto rats (WKY). Perfusion for 30 minutes with UFP reduced cardiac function in both groups-but to a greater extent in WKY. In SHR, developed pressure was reduced by 24.1 +/- 4.4% of baseline and maximal dP/dt was reduced by 19.8 +/- 4.9%; in WKY, developed pressure was reduced by 43.5 +/- 7.3% and maximal dP/dt by 41.8 +/- 8.2% (P < .05 for maximal dP/dt in SHR vs WKY). Coronary flow was decreased by 30.3% versus 53.7% in SHR versus WKY ( P < .05). The results of this study suggest that although UFP depress myocardial contractile response and coronary flow in both SHR and WKY the underlying hypertension does not necessarily worsen the response.
Collapse
|