1
|
Wu Y, Zou Y, Song C, Cao K, Cai K, Chen S, Zhang Z, Geng D, Zhang N, Feng H, Tang M, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of serine/threonine protein kinases in cardiovascular disease and potential therapeutic methods. Biomed Pharmacother 2024; 177:117093. [PMID: 38971012 DOI: 10.1016/j.biopha.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Protein phosphorylation is an important link in a variety of signaling pathways, and most of the important life processes in cells involve protein phosphorylation. Based on the amino acid residues of phosphorylated proteins, protein kinases can be categorized into the following families: serine/threonine protein kinases, tyrosine-specific protein kinases, histidine-specific protein kinases, tryptophan kinases, and aspartate/glutamyl protein kinases. Of all the protein kinases, most are serine/threonine kinases, where serine/threonine protein kinases are protein kinases that catalyze the phosphorylation of serine or threonine residues on target proteins using ATP as a phosphate donor. The current socially accepted classification of serine/threonine kinases is to divide them into seven major groups: protein kinase A, G, C (AGC), CMGC, Calmodulin-dependent protein kinase (CAMK), Casein kinase (CK1), STE, Tyrosine kinase (TKL) and others. After decades of research, a preliminary understanding of the specific classification and respective functions of serine/threonine kinases has entered a new period of exploration. In this paper, we review the literature of the previous years and introduce the specific signaling pathways and related therapeutic modalities played by each of the small protein kinases in the serine/threonine protein kinase family, respectively, in some common cardiovascular system diseases such as heart failure, myocardial infarction, ischemia-reperfusion injury, and diabetic cardiomyopathy. To a certain extent, the current research results, including molecular mechanisms and therapeutic methods, are fully summarized and a systematic report is made for the prevention and treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China.
| | - Hao Feng
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Man Tang
- Department of clinical pharmacology, College of Pharmacy, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| |
Collapse
|
2
|
Liu YB, Wang Q, Song YL, Song XM, Fan YC, Kong L, Zhang JS, Li S, Lv YJ, Li ZY, Dai JY, Qiu ZK. Abnormal phosphorylation / dephosphorylation and Ca 2+ dysfunction in heart failure. Heart Fail Rev 2024; 29:751-768. [PMID: 38498262 DOI: 10.1007/s10741-024-10395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Heart failure (HF) can be caused by a variety of causes characterized by abnormal myocardial systole and diastole. Ca2+ current through the L-type calcium channel (LTCC) on the membrane is the initial trigger signal for a cardiac cycle. Declined systole and diastole in HF are associated with dysfunction of myocardial Ca2+ function. This disorder can be correlated with unbalanced levels of phosphorylation / dephosphorylation of LTCC, endoplasmic reticulum (ER), and myofilament. Kinase and phosphatase activity changes along with HF progress, resulting in phased changes in the degree of phosphorylation / dephosphorylation. It is important to realize the phosphorylation / dephosphorylation differences between a normal and a failing heart. This review focuses on phosphorylation / dephosphorylation changes in the progression of HF and summarizes the effects of phosphorylation / dephosphorylation of LTCC, ER function, and myofilament function in normal conditions and HF based on previous experiments and clinical research. Also, we summarize current therapeutic methods based on abnormal phosphorylation / dephosphorylation and clarify potential therapeutic directions.
Collapse
Affiliation(s)
- Yan-Bing Liu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China
- Medical College, Qingdao University, Qingdao, China
| | - Qian Wang
- Medical College, Qingdao University, Qingdao, China
| | - Yu-Ling Song
- Department of Pediatrics, Huantai County Hospital of Traditional Chinese Medicine, Zibo, China
| | | | - Yu-Chen Fan
- Medical College, Qingdao University, Qingdao, China
| | - Lin Kong
- Medical College, Qingdao University, Qingdao, China
| | | | - Sheng Li
- Medical College, Qingdao University, Qingdao, China
| | - Yi-Ju Lv
- Medical College, Qingdao University, Qingdao, China
| | - Ze-Yang Li
- Medical College, Qingdao University, Qingdao, China
| | - Jing-Yu Dai
- Department of Oncology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| | - Zhen-Kang Qiu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| |
Collapse
|
3
|
Zhang H, Hu H, Zhai C, Jing L, Tian H. Cardioprotective Strategies After Ischemia-Reperfusion Injury. Am J Cardiovasc Drugs 2024; 24:5-18. [PMID: 37815758 PMCID: PMC10806044 DOI: 10.1007/s40256-023-00614-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Acute myocardial infarction (AMI) is associated with high morbidity and mortality worldwide. Although early reperfusion is the most effective strategy to salvage ischemic myocardium, reperfusion injury can develop with the restoration of blood flow. Therefore, it is important to identify protection mechanisms and strategies for the heart after myocardial infarction. Recent studies have shown that multiple intracellular molecules and signaling pathways are involved in cardioprotection. Meanwhile, device-based cardioprotective modalities such as cardiac left ventricular unloading, hypothermia, coronary sinus intervention, supersaturated oxygen (SSO2), and remote ischemic conditioning (RIC) have become important areas of research. Herein, we review the molecular mechanisms of cardioprotection and cardioprotective modalities after ischemia-reperfusion injury (IRI) to identify potential approaches to reduce mortality and improve prognosis in patients with AMI.
Collapse
Affiliation(s)
- Honghong Zhang
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Huilin Hu
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China.
| | - Changlin Zhai
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Lele Jing
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Hongen Tian
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| |
Collapse
|
4
|
Pluteanu F, Boknik P, Heinick A, König C, Müller FU, Weidlich A, Kirchhefer U. Activation of PKC results in improved contractile effects and Ca cycling by inhibition of PP2A-B56α. Am J Physiol Heart Circ Physiol 2022; 322:H427-H441. [PMID: 35119335 DOI: 10.1152/ajpheart.00539.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein phosphatase 2A (PP2A) represents a heterotrimer that is responsible for the dephosphorylation of important regulatory myocardial proteins. The present study was aimed to test whether the phosphorylation of PP2A-B56α at Ser41 by PKC is involved in the regulation of myocyte Ca2+ cycling and contraction. For this purpose, heart preparations of wild-type (WT) and transgenic mice overexpressing the non-phosphorylatable S41A mutant form (TG) were stimulated by administration of the direct PKC activator phorbol 12-myristate 13-acetate (PMA), and functional effects were studied. PKC activation was accompanied by the inhibition of PP2A activity in WT cardiomyocytes, whereas this effect was absent in TG. Consistently, the increase in the sarcomere length shortening and the peak amplitude of Ca2+ transients after PMA administration in WT cardiomyocytes was attenuated in TG. However, the co-stimulation with 1 µM isoprenaline was able to offset these functional deficits. Moreover, TG hearts did not show an increase in the phosphorylation of the myosin-binding protein C after administration of PMA but was detected in corresponding WT. PMA modulated voltage-dependent activation of the L-type Ca2+ channel (LTCC) differently in the two genotypes, shifting V1/2a by +1.5 mV in TG and by 2.4 mV in WT. In the presence of PMA, ICaL inactivation remained unchanged in TG, whereas it was slower in corresponding WT. Our data suggest that PKC-activated enhancement of myocyte contraction and intracellular Ca2+ signaling is mediated by phosphorylation of B56α at Ser41, leading to a decrease in PP2A activity.
Collapse
Affiliation(s)
- Florentina Pluteanu
- Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Peter Boknik
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Alexander Heinick
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Christiane König
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Frank U Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Adam Weidlich
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Uwe Kirchhefer
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| |
Collapse
|
5
|
Russell B, Solís C. Mechanosignaling pathways alter muscle structure and function by post-translational modification of existing sarcomeric proteins to optimize energy usage. J Muscle Res Cell Motil 2021; 42:367-380. [PMID: 33595762 DOI: 10.1007/s10974-021-09596-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022]
Abstract
A transduced mechanical signal arriving at its destination in muscle alters sarcomeric structure and function. A major question addressed is how muscle mass and tension generation are optimized to match actual performance demands so that little energy is wasted. Three cases for improved energy efficiency are examined: the troponin complex for tuning force production, control of the myosin heads in a resting state, and the Z-disc proteins for sarcomere assembly. On arrival, the regulation of protein complexes is often controlled by post-translational modification (PTM), of which the most common are phosphorylation by kinases, deacetylation by histone deacetylases and ubiquitination by E3 ligases. Another branch of signals acts not through peptide covalent bonding but via ligand interactions (e.g. Ca2+ and phosphoinositide binding). The myosin head and the regulation of its binding to actin by the troponin complex is the best and earliest example of signal destinations that modify myofibrillar contractility. PTMs in the troponin complex regulate both the efficiency of the contractile function to match physiologic demand for work, and muscle mass via protein degradation. The regulation of sarcomere assembly by integration of incoming signaling pathways causing the same PTMs or ligand binding are discussed in response to mechanical loading and unloading by the Z-disc proteins CapZ, α-actinin, telethonin, titin N-termini, and others. Many human mutations that lead to cardiomyopathy and heart disease occur in the proteins discussed above, which often occur at their PTM or ligand binding sites.
Collapse
Affiliation(s)
- Brenda Russell
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Christopher Solís
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
6
|
Shi H, Wang J, Liu F, Hu X, Lu Y, Yan S, Dai D, Yang X, Zhu Z, Guo Q. Proteome and phosphoproteome profiling reveals the regulation mechanism of hibernation in a freshwater leech (Whitmania pigra). J Proteomics 2020; 229:103866. [PMID: 32736137 DOI: 10.1016/j.jprot.2020.103866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/15/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
Hibernation is an energy-saving and adaptive strategy adopted by leech, an important medicinal resource in Asia, to survive low temperature. Reversible protein phosphorylation (RPP) plays a key role in the regulation of mammalian hibernation processes but has never been documented in freshwater invertebrate such as leech. In this study, we detected the effects of hibernation on the proteome and phosphoproteome of the leech Whitmania pigra. A total of 2184 proteins and 2598 sites were quantified. Deep-hibernation resulted in 85 up-regulated and 107 down-regulated proteins and 318 up-regulated and 204 down-regulated phosphosites using a 1.5-fold threshold (P<0.05). Proteins involved in protein digestion and absorption, amino acid metabolism and N-glycan biosynthesis were significantly down-regulated during deep-hibernation. However, proteins involved in maintaining cell structure stability in hibernating animals were up-regulated. Differentially phosphorylated proteins provided the first global picture of a shift in energy metabolism, protein synthesis, cytoprotection and signaling during deep hibernation. Furthermore, AMP-activated protein kinase and protein kinase C play major roles in the regulation of these functional processes. These data significantly improve our understanding of the regulatory mechanisms of leech hibernation processes and provides substantial candidate phosphorylated proteins that could be important for functionally adapt in freshwater animals. SIGNIFICANCE: The leech Whitmania pigra as an important medicinal resource in Asia is an excellent model freshwater invertebrate for studies of environmentally-induced hibernation. The present study provides the first quantitative proteomics and phosphoproteomic analysis of leech hibernation using isobaric tag based TMT labeling and high-resolution mass spectrometry. These data significantly improve our understanding of the regulatory mechanisms when ectotherm animals face environmental stress and provides substantial candidate phosphorylated proteins that could be important for functionally adapt in freshwater animals.
Collapse
Affiliation(s)
- Hongzhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Liu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangjing Hu
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Yiming Lu
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Shimeng Yan
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Daoxin Dai
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Xibin Yang
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Zaibiao Zhu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Blair CA, Brundage EA, Thompson KL, Stromberg A, Guglin M, Biesiadecki BJ, Campbell KS. Heart Failure in Humans Reduces Contractile Force in Myocardium From Both Ventricles. JACC Basic Transl Sci 2020; 5:786-798. [PMID: 32875169 PMCID: PMC7452203 DOI: 10.1016/j.jacbts.2020.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023]
Abstract
Contractile assays were performed using multicellular preparations isolated from the left and right ventricles of organ donors and patients with heart failure. Heart failure reduced maximum force and power by approximately 30% in the myocardium from both ventricles. Heart failure increased the Ca2+ sensitivity of contraction, but the effect was bigger in right ventricular tissue than in left ventricular samples. The changes in Ca2+ sensitivity may reflect ventricle-specific post-translational modifications to sarcomeric proteins.
This study measured how heart failure affects the contractile properties of the human myocardium from the left and right ventricles. The data showed that maximum force and maximum power were reduced by approximately 30% in multicellular preparations from both ventricles, possibly because of ventricular remodeling (e.g., cellular disarray and/or excess fibrosis). Heart failure increased the calcium (Ca2+) sensitivity of contraction in both ventricles, but the effect was bigger in right ventricular samples. The changes in Ca2+ sensitivity were associated with ventricle-specific changes in the phosphorylation of troponin I, which indicated that adrenergic stimulation might induce different effects in the left and right ventricles.
Collapse
Key Words
- Ca2+ sensitivity
- Ca2+, calcium
- Fact, maximum Ca2+-activated force
- Fpas, passive force
- LV, left ventricle
- MyBP-C, myosin binding protein-C
- PKA, protein kinase A
- Pmax, maximum power output
- RLC, regulatory light chain
- RV, right ventricle
- TnI, troponin I
- Vmax, maximum shortening velocity
- heart failure
- human myocardium
- ktr, rate of force recovery
- myofilament proteins
- nH, Hill coefficient
- ventricular function
Collapse
Affiliation(s)
- Cheavar A Blair
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Elizabeth A Brundage
- Department of Physiology and Cell Biology and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | | | - Arnold Stromberg
- Department of Statistics, University of Kentucky, Lexington, Kentucky
| | - Maya Guglin
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
8
|
Bertero E, Kutschka I, Maack C, Dudek J. Cardiolipin remodeling in Barth syndrome and other hereditary cardiomyopathies. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165803. [PMID: 32348916 DOI: 10.1016/j.bbadis.2020.165803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/19/2019] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Mitochondria play a prominent role in cardiac energy metabolism, and their function is critically dependent on the integrity of mitochondrial membranes. Disorders characterized by mitochondrial dysfunction are commonly associated with cardiac disease. The mitochondrial phospholipid cardiolipin directly interacts with a number of essential protein complexes in the mitochondrial membranes including the respiratory chain, mitochondrial metabolite carriers, and proteins critical for mitochondrial morphology. Barth syndrome is an X-linked disorder caused by an inherited defect in the biogenesis of the mitochondrial phospholipid cardiolipin. How cardiolipin deficiency impacts on mitochondrial function and how mitochondrial dysfunction causes cardiomyopathy has been intensively studied in cellular and animal models of Barth syndrome. These findings may also have implications for the molecular mechanisms underlying other inherited disorders associated with defects in cardiolipin, such as Sengers syndrome and dilated cardiomyopathy with ataxia (DCMA).
Collapse
Affiliation(s)
- Edoardo Bertero
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Ilona Kutschka
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
9
|
Li X, Zheng S, Tan W, Chen H, Li X, Wu J, Luo T, Ren X, Pyle WG, Wang L, Backx PH, Huang R, Yang FH. Slit2 Protects Hearts Against Ischemia-Reperfusion Injury by Inhibiting Inflammatory Responses and Maintaining Myofilament Contractile Properties. Front Physiol 2020; 11:228. [PMID: 32292352 PMCID: PMC7135862 DOI: 10.3389/fphys.2020.00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background The secreted glycoprotein Slit2, previously known as an axon guidance cue, has recently been found to protect tissues in pathological conditions; however, it is unknown whether Slit2 functions in cardiac ischemia-reperfusion (IR) injury. Methods Langendorff-perfused isolated hearts from Slit2-overexpressing (Slit2-Tg) mice and C57BL/6J mice (background strain) were subjected to 20 min of global ischemia followed by 40 min of reperfusion. We compared Slit2-Tg with C57BL/6J mice in terms of left ventricular function and infarct size of post-IR hearts along with tissue histological and biochemical assessments (mRNA and protein expression, phosphorylation status, and myofilament contractile properties). Results Slit2 played cardioprotective roles in maintaining contractile function and reducing infarct size in post-IR hearts. IR increased the expression of the Slit2 receptor Robo4 and the membrane receptor Slamf7, but these increases were suppressed by Slit2 overexpression post IR. This suppression was associated with inhibition of the nuclear translocation of NFκB p65 and reductions in IL-1β and IL-18 release into perfusates. Furthermore, Slit2 overexpression attenuated the increases in myofilament-associated PKCs and phosphorylation of cTnI at Ser43 in the post-IR myocardium. The myofilament calcium sensitivity and actomyosin MgATPase activity were preserved in the post-IR Slit2 myocardium. Conclusion Our work demonstrates that Slit2 inhibits inflammatory responses and maintains myofilament contractile properties, thus contributing, at least in part, to the prevention of structural and functional damage during IR.
Collapse
Affiliation(s)
- Xiang Li
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Shuang Zheng
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.,School of Basic Medicine, Vascular Biology Institute, Guangdong Pharmaceutical University, Guanghzou, China
| | - Weijiang Tan
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Hongqi Chen
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xiaohui Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ting Luo
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xuecong Ren
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - W Glen Pyle
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Lijing Wang
- School of Basic Medicine, Vascular Biology Institute, Guangdong Pharmaceutical University, Guanghzou, China
| | - Peter H Backx
- Department of Biology, York University, Toronto, ON, Canada.,Division of Cardiology and the Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Ren Huang
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Feng Hua Yang
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.,Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Prondzynski M, Lemoine MD, Zech AT, Horváth A, Di Mauro V, Koivumäki JT, Kresin N, Busch J, Krause T, Krämer E, Schlossarek S, Spohn M, Friedrich FW, Münch J, Laufer SD, Redwood C, Volk AE, Hansen A, Mearini G, Catalucci D, Meyer C, Christ T, Patten M, Eschenhagen T, Carrier L. Disease modeling of a mutation in α-actinin 2 guides clinical therapy in hypertrophic cardiomyopathy. EMBO Mol Med 2019; 11:e11115. [PMID: 31680489 PMCID: PMC6895603 DOI: 10.15252/emmm.201911115] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease accompanied by structural and contractile alterations. We identified a rare c.740C>T (p.T247M) mutation in ACTN2, encoding α-actinin 2 in a HCM patient, who presented with left ventricular hypertrophy, outflow tract obstruction, and atrial fibrillation. We generated patient-derived human-induced pluripotent stem cells (hiPSCs) and show that hiPSC-derived cardiomyocytes and engineered heart tissues recapitulated several hallmarks of HCM, such as hypertrophy, myofibrillar disarray, hypercontractility, impaired relaxation, and higher myofilament Ca2+ sensitivity, and also prolonged action potential duration and enhanced L-type Ca2+ current. The L-type Ca2+ channel blocker diltiazem reduced force amplitude, relaxation, and action potential duration to a greater extent in HCM than in isogenic control. We translated our findings to patient care and showed that diltiazem application ameliorated the prolonged QTc interval in HCM-affected son and sister of the index patient. These data provide evidence for this ACTN2 mutation to be disease-causing in cardiomyocytes, guiding clinical therapy in this HCM family. This study may serve as a proof-of-principle for the use of hiPSC for personalized treatment of cardiomyopathies.
Collapse
Affiliation(s)
- Maksymilian Prondzynski
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Marc D Lemoine
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Cardiology-Electrophysiology, University Heart and Vascular Center, Hamburg, Germany
| | - Antonia Tl Zech
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - András Horváth
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Vittoria Di Mauro
- Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Jussi T Koivumäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nico Kresin
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Josefine Busch
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Tobias Krause
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Elisabeth Krämer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Michael Spohn
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix W Friedrich
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Julia Münch
- Department of Cardiology-Electrophysiology, University Heart and Vascular Center, Hamburg, Germany.,Department of General and Interventional Cardiology, University Heart and Vascular Center, Hamburg, Germany
| | - Sandra D Laufer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Charles Redwood
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Alexander E Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Daniele Catalucci
- Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Christian Meyer
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Cardiology-Electrophysiology, University Heart and Vascular Center, Hamburg, Germany
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Monica Patten
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of General and Interventional Cardiology, University Heart and Vascular Center, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
11
|
Park MH, Park SI, Kim JH, Yu J, Lee EH, Seo SR, Jo SH. The acute effects of hydrocortisone on cardiac electrocardiography, action potentials, intracellular calcium, and contraction: The role of protein kinase C. Mol Cell Endocrinol 2019; 494:110488. [PMID: 31207272 DOI: 10.1016/j.mce.2019.110488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 11/27/2022]
Abstract
Hydrocortisone exerts adverse effects on various organs, including the heart. This study investigated the still unclear effects of hydrocortisone on electrophysiological and biochemical aspects of cardiac excitation-contraction coupling. In guinea pigs' hearts, hydrocortisone administration reduced the QT interval of ECG and the action potential duration (APD). In guinea pig ventricular myocytes, hydrocortisone reduced contraction and Ca2+ transient amplitudes. These reductions and the effects on APD were prevented by pretreatment with the protein kinase C (PKC) inhibitor staurosporine. In an overexpression system of Xenopus oocytes, hydrocortisone increased hERG K+ currents and reduced Kv1.5 K+ currents; these effects were negated by pretreatment with staurosporine. Western blot analysis revealed dose- and time-dependent changes in PKCα/βII, PKCε, and PKCγ phosphorylation by hydrocortisone in guinea pig ventricular myocytes. Therefore, hydrocortisone can acutely affect cardiac excitation-contraction coupling, including ion channel activity, APD, ECG, Ca2+ transients, and contraction, possibly via biochemical changes in PKC.
Collapse
Affiliation(s)
- Mi-Hyeong Park
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 Plus Graduate Program, Kangwon National University College of Medicine, Chuncheon, 24341, South korea
| | - Seo-In Park
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 Plus Graduate Program, Kangwon National University College of Medicine, Chuncheon, 24341, South korea
| | - Jong-Hui Kim
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 Plus Graduate Program, Kangwon National University College of Medicine, Chuncheon, 24341, South korea
| | - Jing Yu
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 Plus Graduate Program, Kangwon National University College of Medicine, Chuncheon, 24341, South korea
| | - Eun Hye Lee
- Department of Molecular Bioscience, Institute of Bioscience and Biotechnology, Kangwon National University College of Biomedical Science, Chuncheon, 24341, South korea
| | - Su Ryeon Seo
- Department of Molecular Bioscience, Institute of Bioscience and Biotechnology, Kangwon National University College of Biomedical Science, Chuncheon, 24341, South korea.
| | - Su-Hyun Jo
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 Plus Graduate Program, Kangwon National University College of Medicine, Chuncheon, 24341, South korea.
| |
Collapse
|
12
|
Kresin N, Stücker S, Krämer E, Flenner F, Mearini G, Münch J, Patten M, Redwood C, Carrier L, Friedrich FW. Analysis of Contractile Function of Permeabilized Human Hypertrophic Cardiomyopathy Multicellular Heart Tissue. Front Physiol 2019; 10:239. [PMID: 30984009 PMCID: PMC6447666 DOI: 10.3389/fphys.2019.00239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/22/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Nico Kresin
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sabrina Stücker
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Elisabeth Krämer
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Frederik Flenner
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Julia Münch
- University Heart Center Hamburg, Hamburg, Germany
| | | | - Charles Redwood
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Felix W Friedrich
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
13
|
van der Velden J, Stienen GJM. Cardiac Disorders and Pathophysiology of Sarcomeric Proteins. Physiol Rev 2019; 99:381-426. [PMID: 30379622 DOI: 10.1152/physrev.00040.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sarcomeric proteins represent the structural building blocks of heart muscle, which are essential for contraction and relaxation. During recent years, it has become evident that posttranslational modifications of sarcomeric proteins, in particular phosphorylation, tune cardiac pump function at rest and during exercise. This delicate, orchestrated interaction is also influenced by mutations, predominantly in sarcomeric proteins, which cause hypertrophic or dilated cardiomyopathy. In this review, we follow a bottom-up approach starting from a description of the basic components of cardiac muscle at the molecular level up to the various forms of cardiac disorders at the organ level. An overview is given of sarcomere changes in acquired and inherited forms of cardiac disease and the underlying disease mechanisms with particular reference to human tissue. A distinction will be made between the primary defect and maladaptive/adaptive secondary changes. Techniques used to unravel functional consequences of disease-induced protein changes are described, and an overview of current and future treatments targeted at sarcomeric proteins is given. The current evidence presented suggests that sarcomeres not only form the basis of cardiac muscle function but also represent a therapeutic target to combat cardiac disease.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Ger J M Stienen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
14
|
Jefferies JL. Targeting protein kinase C: A novel paradigm for heart failure therapy. PROGRESS IN PEDIATRIC CARDIOLOGY 2018. [DOI: 10.1016/j.ppedcard.2018.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
15
|
Smyrnias I, Goodwin N, Wachten D, Skogestad J, Aronsen JM, Robinson EL, Demydenko K, Segonds-Pichon A, Oxley D, Sadayappan S, Sipido K, Bootman MD, Roderick HL. Contractile responses to endothelin-1 are regulated by PKC phosphorylation of cardiac myosin binding protein-C in rat ventricular myocytes. J Mol Cell Cardiol 2018; 117:1-18. [DOI: 10.1016/j.yjmcc.2018.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/02/2018] [Accepted: 02/16/2018] [Indexed: 01/07/2023]
|
16
|
Protein Kinase C Inhibition With Ruboxistaurin Increases Contractility and Reduces Heart Size in a Swine Model of Heart Failure With Reduced Ejection Fraction. JACC Basic Transl Sci 2017; 2:669-683. [PMID: 30062182 PMCID: PMC6058945 DOI: 10.1016/j.jacbts.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 01/15/2023]
Abstract
Inotropic support is often required to stabilize the hemodynamics of patients with acute decompensated heart failure; while efficacious, it has a history of leading to lethal arrhythmias and/or exacerbating contractile and energetic insufficiencies. Novel therapeutics that can improve contractility independent of beta-adrenergic and protein kinase A-regulated signaling, should be therapeutically beneficial. This study demonstrates that acute protein kinase C-α/β inhibition, with ruboxistaurin at 3 months' post-myocardial infarction, significantly increases contractility and reduces the end-diastolic/end-systolic volumes, documenting beneficial remodeling. These data suggest that ruboxistaurin represents a potential novel therapeutic for heart failure patients, as a moderate inotrope or therapeutic, which leads to beneficial ventricular remodeling.
Collapse
Key Words
- ADHF, acute decompensated heart failure
- DIG, digitalis
- DOB, dobutamine
- ECG, electrocardiogram
- EDPVR, end-diastolic pressure-volume relationship
- EDV, end-diastolic volume
- ESPVR, end-systolic pressure-volume relationship
- ESV, end-systolic volume
- Ees, elastance end-systole
- HF, heart failure
- HFrEF, heart failure with reduced ejection fraction
- IR, ischemia–reperfusion
- LAD, left anterior descending coronary artery
- LV, left ventricle/ventricular
- LVEDV, left ventricular end-diastolic volume
- LVEF, left ventricular ejection fraction
- LVVPed10, left ventricular end-diastolic volume at a pressure of 10 mm Hg
- LVVPes80, left ventricular end- systolic volume at a pressure of 80 mm Hg
- MI, myocardial infarction
- PKA, protein kinase A
- PKC, protein kinase C
- PKCα/β inhibitor
- PLN, phospholamban
- PRSW, pre-load recruitable stroke work
- RBX, ruboxistaurin
- acute myocardial infarction
- heart failure with reduced ejection fraction
- invasive hemodynamics
- positive inotropy
Collapse
|
17
|
Calcium-Dependent Interaction Occurs between Slow Skeletal Myosin Binding Protein C and Calmodulin. MAGNETOCHEMISTRY 2017. [DOI: 10.3390/magnetochemistry4010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Pimental DR, Sam F. Is Protein Kinase C Inhibition the Tip of the Iceberg in New Therapeutics for Acutely Decompensated Heart Failure? JACC Basic Transl Sci 2017; 2:684-687. [PMID: 30069551 PMCID: PMC6066669 DOI: 10.1016/j.jacbts.2017.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- David R. Pimental
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
- Cardiovascular Section, Boston University School of Medicine, Boston, Massachusetts
- Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
- Cardiovascular Section, Boston University School of Medicine, Boston, Massachusetts
- Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
19
|
Soetkamp D, Raedschelders K, Mastali M, Sobhani K, Bairey Merz CN, Van Eyk J. The continuing evolution of cardiac troponin I biomarker analysis: from protein to proteoform. Expert Rev Proteomics 2017; 14:973-986. [PMID: 28984473 DOI: 10.1080/14789450.2017.1387054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The troponin complex consists of three proteins that fundamentally couple excitation with contraction. Circulating cardiac-specific Troponin I (cTnI) serves as diagnostic biomarker tools for risk stratification of acute coronary syndromes and acute myocardial infarction (MI). Within the heart, cTnI oscillates between inactive and active conformations to either block or disinhibit actinomyosin formation. This molecular mechanism is fine-tuned through extensive protein modifications whose profiles are maladaptively altered with co-morbidities including hypertrophic cardiomyopathy, diabetes, and heart failure. Technological advances in analytical platforms over the last decade enable routine baseline cTnI analysis in patients without cardiovascular complications, and hold potential to expand cTnI readouts that include modified cTnI proteoforms. Areas covered: This review covers the current state, advances, and prospects of analytical platforms that now enable routine baseline cTnI analysis in patients. In parallel, improved mass spectrometry instrumentation and workflows already reveal an array of modified cTnI proteoforms with promising diagnostic implications. Expert commentary: New analytical capabilities provide clinicians and researchers with an opportunity to address important questions surrounding circulating cTnI in the improved diagnosis of specific patient cohorts. These techniques also hold considerable promise for new predictive and prescriptive applications for individualized profiling and improve patient care.
Collapse
Affiliation(s)
- Daniel Soetkamp
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Koen Raedschelders
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Mitra Mastali
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Kimia Sobhani
- b Pathology and Laboratory Medicine , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - C Noel Bairey Merz
- c Women's Heart Center , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Jennifer Van Eyk
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| |
Collapse
|
20
|
Dudek J. Role of Cardiolipin in Mitochondrial Signaling Pathways. Front Cell Dev Biol 2017; 5:90. [PMID: 29034233 PMCID: PMC5626828 DOI: 10.3389/fcell.2017.00090] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023] Open
Abstract
The phospholipid cardiolipin (CL) is an essential constituent of mitochondrial membranes and plays a role in many mitochondrial processes, including respiration and energy conversion. Pathological changes in CL amount or species composition can have deleterious consequences for mitochondrial function and trigger the production of reactive oxygen species. Signaling networks monitor mitochondrial function and trigger an adequate cellular response. Here, we summarize the role of CL in cellular signaling pathways and focus on tissues with high-energy demand, like the heart. CL itself was recently identified as a precursor for the formation of lipid mediators. We highlight the concept of CL as a signaling platform. CL is exposed to the outer mitochondrial membrane upon mitochondrial stress and CL domains serve as a binding site in many cellular signaling events. During mitophagy, CL interacts with essential players of mitophagy like Beclin 1 and recruits the autophagic machinery by its interaction with LC3. Apoptotic signaling pathways require CL as a binding platform to recruit apoptotic factors such as tBid, Bax, caspase-8. CL required for the activation of the inflammasome and plays a role in inflammatory signaling. As changes in CL species composition has been observed in many diseases, the signaling pathways described here may play a general role in pathology.
Collapse
Affiliation(s)
- Jan Dudek
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Stücker S, Kresin N, Carrier L, Friedrich FW. Nebivolol Desensitizes Myofilaments of a Hypertrophic Cardiomyopathy Mouse Model. Front Physiol 2017; 8:558. [PMID: 28824454 PMCID: PMC5539082 DOI: 10.3389/fphys.2017.00558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/17/2017] [Indexed: 01/19/2023] Open
Abstract
Background: Hypertrophic cardiomyopathy (HCM) patients often present with diastolic dysfunction and a normal to supranormal systolic function. To counteract this hypercontractility, guideline therapies advocate treatment with beta-adrenoceptor and Ca2+ channel blockers. One well established pathomechanism for the hypercontractile phenotype frequently observed in HCM patients and several HCM mouse models is an increased myofilament Ca2+ sensitivity. Nebivolol, a commonly used beta-adrenoceptor antagonist, has been reported to lower maximal force development and myofilament Ca2+ sensitivity in rabbit and human heart tissues. The aim of this study was to evaluate the effect of nebivolol in cardiac muscle strips of an established HCM Mybpc3 mouse model. Furthermore, we investigated actions of nebivolol and epigallocatechin-gallate, which has been shown to desensitize myofilaments for Ca2+ in mouse and human HCM models, in cardiac strips of HCM patients with a mutation in the most frequently mutated HCM gene MYBPC3. Methods and Results: Nebivolol effects were tested on contractile parameters and force-Ca2+ relationship of skinned ventricular muscle strips isolated from Mybpc3-targeted knock-in (KI), wild-type (WT) mice and cardiac strips of three HCM patients with MYBPC3 mutations. At baseline, KI strips showed no difference in maximal force development compared to WT mouse heart strips. Neither 1 nor 10 μM nebivolol had an effect on maximal force development in both genotypes. 10 μM nebivolol induced myofilament Ca2+ desensitization in WT strips and to a greater extent in KI strips. Neither 1 nor 10 μM nebivolol had an effect on Ca2+ sensitivity in cardiac muscle strips of three HCM patients with MYBPC3 mutations, whereas epigallocatechin-gallate induced a right shift in the force-Ca2+ curve. Conclusion: Nebivolol induced a myofilament Ca2+ desensitization in both WT and KI strips, which was more pronounced in KI muscle strips. In human cardiac muscle strips of three HCM patients nebivolol had no effect on myofilament Ca2+ sensitivity.
Collapse
Affiliation(s)
- Sabrina Stücker
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-EppendorfHamburg, Germany.,German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - Nico Kresin
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-EppendorfHamburg, Germany.,German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-EppendorfHamburg, Germany.,German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - Felix W Friedrich
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-EppendorfHamburg, Germany.,German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| |
Collapse
|
22
|
Le NT, Martin JF, Fujiwara K, Abe JI. Sub-cellular localization specific SUMOylation in the heart. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2041-2055. [PMID: 28130202 DOI: 10.1016/j.bbadis.2017.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/21/2016] [Accepted: 01/09/2017] [Indexed: 12/27/2022]
Abstract
Although the majority of SUMO substrates are localized in the nucleus, SUMOylation is not limited to nuclear proteins and can be also detected in extra-nuclear proteins. In this review, we will highlight and discuss how SUMOylation in different cellular compartments regulate biological processes. First, we will discuss the key role of SUMOylation of proteins in the extra-nuclear compartment in cardiomyocytes, which is overwhelmingly cardio-protective. On the other hand, SUMOylation of nuclear proteins is generally detrimental to the cardiac function mainly because of the trans-repressive nature of SUMOylation on many transcription factors. We will also discuss the potential role of SUMOylation in epigenetic regulation. In this review, we will propose a new concept that shuttling of SUMO proteases between the nuclear and extra-nuclear compartments without changing their enzymatic activity regulates the extent of SUMOylation in these compartments and determines the response and fate of cardiomyocytes after cardiac insults. Approaches focused specifically to inhibit this shuttling in cardiomyocytes will be necessary to understand the whole picture of SUMOylation and its pathophysiological consequences in the heart, especially after cardiac insults. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Keigi Fujiwara
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun-Ichi Abe
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
23
|
Scruggs SB, Wang D, Ping P. PRKCE gene encoding protein kinase C-epsilon-Dual roles at sarcomeres and mitochondria in cardiomyocytes. Gene 2016; 590:90-6. [PMID: 27312950 DOI: 10.1016/j.gene.2016.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/23/2016] [Accepted: 06/05/2016] [Indexed: 12/26/2022]
Abstract
Protein kinase C-epsilon (PKCε) is an isoform of a large PKC family of enzymes that has a variety of functions in different cell types. Here we discuss two major roles of PKCε in cardiac muscle cells; specifically, its role in regulating cardiac muscle contraction via targeting the sarcomeric proteins, as well as modulating cardiac cell energy production and metabolism by targeting cardiac mitochondria. The importance of PKCε action is described within the context of intracellular localization, as substrate selectivity and specificity is achieved through spatiotemporal targeting of PKCε. Accordingly, the role of PKCε in regulating myocardial function in physiological and pathological states has been documented in both cardioprotection and cardiac hypertrophy.
Collapse
Affiliation(s)
- Sarah B Scruggs
- Departments of Physiology, Medicine (Cardiology) and Bioinformatics, NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Ding Wang
- Departments of Physiology, Medicine (Cardiology) and Bioinformatics, NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Peipei Ping
- Departments of Physiology, Medicine (Cardiology) and Bioinformatics, NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Flenner F, Friedrich FW, Ungeheuer N, Christ T, Geertz B, Reischmann S, Wagner S, Stathopoulou K, Söhren KD, Weinberger F, Schwedhelm E, Cuello F, Maier LS, Eschenhagen T, Carrier L. Ranolazine antagonizes catecholamine-induced dysfunction in isolated cardiomyocytes, but lacks long-term therapeutic effects in vivo in a mouse model of hypertrophic cardiomyopathy. Cardiovasc Res 2015; 109:90-102. [PMID: 26531128 DOI: 10.1093/cvr/cvv247] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 10/27/2015] [Indexed: 12/19/2022] Open
Abstract
AIMS Hypertrophic cardiomyopathy (HCM) is often accompanied by increased myofilament Ca(2+) sensitivity and diastolic dysfunction. Recent findings indicate increased late Na(+) current density in human HCM cardiomyocytes. Since ranolazine has the potential to decrease myofilament Ca(2+) sensitivity and late Na(+) current, we investigated its effects in an Mybpc3-targeted knock-in (KI) mouse model of HCM. METHODS AND RESULTS Unloaded sarcomere shortening and Ca(2+) transients were measured in KI and wild-type (WT) cardiomyocytes. Measurements were performed at baseline (1 Hz) and under increased workload (30 nM isoprenaline (ISO), 5 Hz) in the absence or presence of 10 µM ranolazine. KI myocytes showed shorter diastolic sarcomere length at baseline, stronger inotropic response to ISO, and drastic drop of diastolic sarcomere length under increased workload. Ranolazine attenuated ISO responses in WT and KI cells and prevented workload-induced diastolic failure in KI. Late Na(+) current density was diminished and insensitive to ranolazine in KI cardiomyocytes. Ca(2+) sensitivity of skinned KI trabeculae was slightly decreased by ranolazine. Phosphorylation analysis of cAMP-dependent protein kinase A-target proteins and ISO concentration-response measurements on muscle strips indicated antagonism at β-adrenoceptors with 10 µM ranolazine shifting the ISO response by 0.6 log units. Six-month treatment with ranolazine (plasma level >20 µM) demonstrated a β-blocking effect, but did not reverse cardiac hypertrophy or dysfunction in KI mice. CONCLUSION Ranolazine improved tolerance to high workload in mouse HCM cardiomyocytes, not by blocking late Na(+) current, but by antagonizing β-adrenergic stimulation and slightly desensitizing myofilaments to Ca(2+). This effect did not translate in therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Frederik Flenner
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Felix W Friedrich
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Nele Ungeheuer
- Clinic for Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Birgit Geertz
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Silke Reischmann
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Stefan Wagner
- Clinic for Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany Department for Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Konstantina Stathopoulou
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Klaus-Dieter Söhren
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Florian Weinberger
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Edzard Schwedhelm
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany Department of Clinical Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Cuello
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lars S Maier
- Clinic for Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany Department for Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
25
|
|
26
|
Dubois-Deruy E, Belliard A, Mulder P, Bouvet M, Smet-Nocca C, Janel S, Lafont F, Beseme O, Amouyel P, Richard V, Pinet F. Interplay between troponin T phosphorylation and O-N-acetylglucosaminylation in ischaemic heart failure. Cardiovasc Res 2015; 107:56-65. [PMID: 25916824 DOI: 10.1093/cvr/cvv136] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 04/15/2015] [Indexed: 11/13/2022] Open
Abstract
AIMS Previous studies have reported that decreased serine 208 phosphorylation of troponin T (TnTpSer208) is associated with ischaemic heart failure (HF), but the molecular mechanisms and functional consequences of these changes are unknown. The aim of this study was to characterize the balance between serine phosphorylation and O-N-acetylglucosaminylation (O-GlcNAcylation) of TnT in HF, its mechanisms, and the consequences of modulating these post-translational modifications. METHODS AND RESULTS Decreased TnTpSer208 levels in the left ventricles of HF male Wistar rats were associated with reduced expression of PKCε but not of other cardiac PKC isoforms. In both isolated perfused rat hearts and cultured neonatal cardiomyocytes, the PKCε inhibitor εV1-2 decreased TnTpSer208 and simultaneously decreased cardiac contraction in isolated hearts and beating amplitude in neonatal cardiomyocytes (measured by atomic force microscopy). Down-regulating PKCε by silencing RNA (siRNA) also reduced TnTpSer208 in these cardiomyocytes, and PKCε-/- mice had lower TnTpSer208 levels than the wild-type. In parallel, HF increased TnT O-GlcNAcylation via both increased O-GlcNAc transferase and decreased O-GlcNAcase activity. Increasing O-GlcNAcylation (via O-GlcNAcase inhibition with Thiamet G) decreased TnTpSer208 in isolated hearts, while reducing O-GlcNAcylation (O-GlcNAc transferase siRNA) increased TnTpSer208 in neonatal cardiomyocytes. Mass spectrometry and NMR analysis identified O-GlcNAcylation of TnT on Ser190. CONCLUSION These data demonstrate interplay between Ser208 phosphorylation and Ser190 O-GlcNAcylation of TnT in ischaemic HF, linked to decreased activity of both PKCε and O-GlcNAcase and increased O-GlcNAc transferase activity. Modulation of these post-translational modifications of TnT may be a new therapeutic strategy in HF.
Collapse
Affiliation(s)
- Emilie Dubois-Deruy
- INSERM, U1167, 1 rue du Professeur Calmette, Lille, France Institut Pasteur de Lille, Lille, France University of Lille Nord de France, Lille, France
| | - Aude Belliard
- INSERM, U1167, 1 rue du Professeur Calmette, Lille, France Institut Pasteur de Lille, Lille, France University of Lille Nord de France, Lille, France
| | - Paul Mulder
- Inserm U1096, Rouen, France Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, France
| | - Marion Bouvet
- INSERM, U1167, 1 rue du Professeur Calmette, Lille, France Institut Pasteur de Lille, Lille, France University of Lille Nord de France, Lille, France
| | - Caroline Smet-Nocca
- University of Lille Nord de France, Lille, France CNRS UMR 8576, Villeneuve D'Ascq, France
| | | | - Frank Lafont
- Institut Pasteur de Lille, Lille, France University of Lille Nord de France, Lille, France Bioimaging Center Lille Nord de France, Lille, France CNRS UMR 8204, INSERM U1019, Lille, France
| | - Olivia Beseme
- INSERM, U1167, 1 rue du Professeur Calmette, Lille, France Institut Pasteur de Lille, Lille, France University of Lille Nord de France, Lille, France
| | - Philippe Amouyel
- INSERM, U1167, 1 rue du Professeur Calmette, Lille, France Institut Pasteur de Lille, Lille, France University of Lille Nord de France, Lille, France Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Vincent Richard
- Inserm U1096, Rouen, France Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, France
| | - Florence Pinet
- INSERM, U1167, 1 rue du Professeur Calmette, Lille, France Institut Pasteur de Lille, Lille, France University of Lille Nord de France, Lille, France
| |
Collapse
|
27
|
Abstract
Cardiac myosin-binding protein-C (cMyBP-C) is a thick filament-associated protein that seems to contribute to the regulation of cardiac contraction through interactions with either myosin or actin or both. Several studies over the past several years have suggested that the interactions of cardiac myosin-binding protein-C with its binding partners vary with its phosphorylation state, binding predominantly to myosin when dephosphorylated and to actin when it is phosphorylated by protein kinase A or other kinases. Here, we summarize evidence suggesting that phosphorylation of cardiac myosin binding protein-C is a key regulator of the kinetics and amplitude of cardiac contraction during β-adrenergic stimulation and increased stimulus frequency. We propose a model for these effects via a phosphorylation-dependent regulation of the kinetics and extent of cooperative recruitment of cross bridges to the thin filament: phosphorylation of cardiac myosin binding protein-C accelerates cross bridge binding to actin, thereby accelerating recruitment and increasing the amplitude of the cardiac twitch. In contrast, enhanced lusitropy as a result of phosphorylation seems to be caused by a direct effect of phosphorylation to accelerate cross-bridge detachment rate. Depression or elimination of one or both of these processes in a disease, such as end-stage heart failure, seems to contribute to the systolic and diastolic dysfunction that characterizes the disease.
Collapse
Affiliation(s)
- Richard L Moss
- From the Department of Cell and Regenerative Biology (R.L.M., D.P.F.) and Department of Pediatrics (J.C.R.), University of Wisconsin School of Medicine and Public Health, Madison.
| | - Daniel P Fitzsimons
- From the Department of Cell and Regenerative Biology (R.L.M., D.P.F.) and Department of Pediatrics (J.C.R.), University of Wisconsin School of Medicine and Public Health, Madison
| | - J Carter Ralphe
- From the Department of Cell and Regenerative Biology (R.L.M., D.P.F.) and Department of Pediatrics (J.C.R.), University of Wisconsin School of Medicine and Public Health, Madison
| |
Collapse
|
28
|
Wijnker PJM, Li Y, Zhang P, Foster DB, dos Remedios C, Van Eyk JE, Stienen GJM, Murphy AM, van der Velden J. A novel phosphorylation site, Serine 199, in the C-terminus of cardiac troponin I regulates calcium sensitivity and susceptibility to calpain-induced proteolysis. J Mol Cell Cardiol 2015; 82:93-103. [PMID: 25771144 DOI: 10.1016/j.yjmcc.2015.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/28/2022]
Abstract
Phosphorylation of cardiac troponin I (cTnI) by protein kinase C (PKC) is implicated in cardiac dysfunction. Recently, Serine 199 (Ser199) was identified as a target for PKC phosphorylation and increased Ser199 phosphorylation occurs in end-stage failing compared with non-failing human myocardium. The functional consequences of cTnI-Ser199 phosphorylation in the heart are unknown. Therefore, we investigated the impact of phosphorylation of cTnI-Ser199 on myofilament function in human cardiac tissue and the susceptibility of cTnI to proteolysis. cTnI-Ser199 was replaced by aspartic acid (199D) or alanine (199A) to mimic phosphorylation and dephosphorylation, respectively, with recombinant wild-type (Wt) cTn as a negative control. Force development was measured at various [Ca(2+)] and at sarcomere lengths of 1.8 and 2.2 μm in demembranated cardiomyocytes in which endogenous cTn complex was exchanged with the recombinant human cTn complexes. In idiopathic dilated cardiomyopathy samples, myofilament Ca(2+)-sensitivity (pCa50) at 2.2 μm was significantly higher in 199D (pCa50 = 5.79 ± 0.01) compared to 199A (pCa50 = 5.65 ± 0.01) and Wt (pCa50 = 5.66 ± 0.02) at ~63% cTn exchange. Myofilament Ca(2+)-sensitivity was significantly higher even with only 5.9 ± 2.5% 199D exchange compared to 199A, and saturated at 12.3 ± 2.6% 199D exchange. Ser199 pseudo-phosphorylation decreased cTnI binding to both actin and actin-tropomyosin. Moreover, altered susceptibility of cTnI to proteolysis by calpain I was found when Ser199 was pseudo-phosphorylated. Our data demonstrate that low levels of cTnI-Ser199 pseudo-phosphorylation (~6%) increase myofilament Ca(2+)-sensitivity in human cardiomyocytes, most likely by decreasing the binding affinity of cTnI for actin-tropomyosin. In addition, cTnI-Ser199 pseudo-phosphorylation or mutation regulates calpain I mediated proteolysis of cTnI.
Collapse
Affiliation(s)
- Paul J M Wijnker
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.
| | - Yuejin Li
- Department of Pediatrics, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Pingbo Zhang
- Department of Pediatrics, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - D Brian Foster
- Department of Pediatrics, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Cris dos Remedios
- Muscle Research Unit, Bosch Institute, The University of Sydney, Sydney, Australia
| | - Jennifer E Van Eyk
- The Advanced Clinical Biosystems Research Institute, The Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Ger J M Stienen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands
| | - Anne M Murphy
- Department of Pediatrics, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
29
|
Stienen GJM. Pathomechanisms in heart failure: the contractile connection. J Muscle Res Cell Motil 2014; 36:47-60. [PMID: 25376563 DOI: 10.1007/s10974-014-9395-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/20/2014] [Indexed: 01/07/2023]
Abstract
Heart failure is a multi-factorial progressive disease in which eventually the contractile performance of the heart is insufficient to meet the demands of the body, even at rest. A distinction can be made on the basis of the cause of the disease in genetic and acquired heart failure and at the functional level between systolic and diastolic heart failure. Here the basic determinants of contractile function of myocardial cells will be reviewed and an attempt will be made to elucidate their role in the development of heart failure. The following topics are addressed: the tension generating capacity, passive tension, the rate of tension development, the rate of ATP utilisation, calcium sensitivity of tension development, phosphorylation of contractile proteins, length dependent activation and stretch activation. The reduction in contractile performance during systole can be attributed predominantly to a loss of cardiomyocytes (necrosis), myocyte disarray and a decrease in myofibrillar density all resulting in a reduction in the tension generating capacity and likely also to a mismatch between energy supply and demand of the myocardium. This leads to a decline in the ejection fraction of the heart. Diastolic dysfunction can be attributed to fibrosis and an increase in titin stiffness which result in an increase in stiffness of the ventricular wall and hampers the filling of the heart with blood during diastole. A large number of post translation modifications of regulatory sarcomeric proteins influence myocardial function by altering calcium sensitivity of tension development. It is still unclear whether in concert these influences are adaptive or maladaptive during the disease process.
Collapse
Affiliation(s)
- G J M Stienen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands,
| |
Collapse
|
30
|
Effects of pseudo-phosphorylated rat cardiac troponin T are differently modulated by α- and β-myosin heavy chain isoforms. Basic Res Cardiol 2014; 109:442. [PMID: 25301196 DOI: 10.1007/s00395-014-0442-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/31/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
Interplay between the protein kinase C (PKC)-mediated phosphorylation of troponin T (TnT)- and myosin heavy chain (MHC)-mediated effects on thin filaments takes on a new significance because: (1) there is significant interaction between the TnT- and MHC-mediated effects on cardiac thin filaments; (2) although the phosphorylation of TnT by PKC isoforms is common to both human and rodent hearts, human hearts predominantly express β-MHC while rodent hearts predominantly express α-MHC. Therefore, we tested how α- and β-MHC isoforms differently affected the functional effects of phosphorylated TnT. Contractile measurements were made on cardiac muscle fibers from normal rats (α-MHC) and propylthiouracil-treated rats (β-MHC), reconstituted with the recombinant phosphomimetic-TnT (T204E; threonine 204 replaced by glutamate). Ca2+ -activated maximal tension decreased differently in α-MHC + T204E (~68%) and β-MHC + T204E (~35%). However, myofilament Ca2+ sensitivity decreased similarly in α-MHC + T204E and β-MHC + T204E, demonstrating that a decrease in Ca2+ sensitivity alone cannot explain the greater attenuation of tension in α-MHC + T204E. Interestingly, dynamic contractile parameters (rates of tension redevelopment, crossbridge (XB) recruitment dynamics, XB distortion dynamics, and XB detachment kinetics) decreased only in α-MHC + T204E. Thus, the transition of thin filaments from the blocked- to closed-state was attenuated in α-MHC + T204E and β-MHC + T204E, but the closed- to open-state transition was attenuated only in α-MHC + T204E. Our study demonstrates that the effects of phosphorylated TnT and MHC isoforms interact to bring about different functional states of cardiac thin filaments.
Collapse
|
31
|
Simon JN, Chowdhury SAK, Warren CM, Sadayappan S, Wieczorek DF, Solaro RJ, Wolska BM. Ceramide-mediated depression in cardiomyocyte contractility through PKC activation and modulation of myofilament protein phosphorylation. Basic Res Cardiol 2014; 109:445. [PMID: 25280528 DOI: 10.1007/s00395-014-0445-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/16/2022]
Abstract
Although ceramide accumulation in the heart is considered a major factor in promoting apoptosis and cardiac disorders, including heart failure, lipotoxicity and ischemia-reperfusion injury, little is known about ceramide's role in mediating changes in contractility. In the present study, we measured the functional consequences of acute exposure of isolated field-stimulated adult rat cardiomyocytes to C6-ceramide. Exogenous ceramide treatment depressed the peak amplitude and the maximal velocity of shortening without altering intracellular calcium levels or kinetics. The inactive ceramide analog C6-dihydroceramide had no effect on myocyte shortening or [Ca(2+)]i transients. Experiments testing a potential role for C6-ceramide-mediated effects on activation of protein kinase C (PKC) demonstrated evidence for signaling through the calcium-independent isoform, PKCε. We employed 2-dimensional electrophoresis and anti-phospho-peptide antibodies to test whether treatment of the cardiomyocytes with C6-ceramide altered myocyte shortening via PKC-dependent phosphorylation of myofilament proteins. Compared to controls, myocytes treated with ceramide exhibited increased phosphorylation of myosin binding protein-C (cMyBP-C), specifically at Ser273 and Ser302, and troponin I (cTnI) at sites apart from Ser23/24, which could be attenuated with PKC inhibition. We conclude that the altered myofilament response to calcium resulting from multiple sites of PKC-dependent phosphorylation contributes to contractile dysfunction that is associated with cardiac diseases in which elevations in ceramides are present.
Collapse
Affiliation(s)
- Jillian N Simon
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago, IL, 60612, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Wijnker PJM, Murphy AM, Stienen GJM, van der Velden J. Troponin I phosphorylation in human myocardium in health and disease. Neth Heart J 2014; 22:463-9. [PMID: 25200323 PMCID: PMC4188840 DOI: 10.1007/s12471-014-0590-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Cardiac troponin I (cTnI) is well known as a biomarker for the diagnosis of myocardial damage. However, because of its central role in the regulation of contraction and relaxation in heart muscle, cTnI may also be a potential target for the treatment of heart failure. Studies in rodent models of cardiac disease and human heart samples showed altered phosphorylation at various sites on cTnI (i.e. site-specific phosphorylation). This is caused by altered expression and/or activity of kinases and phosphatases during heart failure development. It is not known whether these (transient) alterations in cTnI phosphorylation are beneficial or detrimental. Knowledge of the effects of site-specific cTnI phosphorylation on cardiomyocyte contractility is therefore of utmost importance for the development of new therapeutic strategies in patients with heart failure. In this review we focus on the role of cTnI phosphorylation in the healthy heart upon activation of the beta-adrenergic receptor pathway (as occurs during increased stress and exercise) and as a modulator of the Frank-Starling mechanism. Moreover, we provide an overview of recent studies which aimed to reveal the functional consequences of changes in cTnI phosphorylation in cardiac disease.
Collapse
Affiliation(s)
- P J M Wijnker
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081, BT, Amsterdam, the Netherlands,
| | | | | | | |
Collapse
|
33
|
Wijnker PJM, Sequeira V, Witjas-Paalberends ER, Foster DB, dos Remedios CG, Murphy AM, Stienen GJM, van der Velden J. Phosphorylation of protein kinase C sites Ser42/44 decreases Ca(2+)-sensitivity and blunts enhanced length-dependent activation in response to protein kinase A in human cardiomyocytes. Arch Biochem Biophys 2014; 554:11-21. [PMID: 24814372 PMCID: PMC4121669 DOI: 10.1016/j.abb.2014.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
Protein kinase C (PKC)-mediated phosphorylation of troponin I (cTnI) at Ser42/44 is increased in heart failure. While studies in rodents demonstrated that PKC-mediated Ser42/44 phosphorylation decreases maximal force and ATPase activity, PKC incubation of human cardiomyocytes did not affect maximal force. We investigated whether Ser42/44 pseudo-phosphorylation affects force development and ATPase activity using troponin exchange in human myocardium. Additionally, we studied if pseudo-phosphorylated Ser42/44 modulates length-dependent activation of force, which is regulated by protein kinase A (PKA)-mediated cTnI-Ser23/24 phosphorylation. Isometric force was measured in membrane-permeabilized cardiomyocytes exchanged with human recombinant wild-type troponin or troponin mutated at Ser42/44 or Ser23/24 into aspartic acid (D) or alanine (A) to mimic phosphorylation and dephosphorylation, respectively. In troponin-exchanged donor cardiomyocytes experiments were repeated after PKA incubation. ATPase activity was measured in troponin-exchanged cardiac muscle strips. Compared to wild-type, 42D/44D decreased Ca(2+)-sensitivity without affecting maximal force in failing and donor cardiomyocytes. In donor myocardium, 42D/44D did not affect maximal ATPase activity or tension cost. Interestingly, 42D/44D blunted the length-dependent increase in Ca(2+)-sensitivity induced upon PKA-mediated phosphorylation. Since the drop in Ca(2+)-sensitivity at physiological Ca(2+)-concentrations is relatively large phosphorylation of Ser42/44 may result in a decrease of force and associated ATP utilization in the human heart.
Collapse
Affiliation(s)
- Paul J M Wijnker
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Vasco Sequeira
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.
| | - E Rosalie Witjas-Paalberends
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.
| | - D Brian Foster
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Ross Bldg 1144/720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | - Anne M Murphy
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Ross Bldg 1144/720 Rutland Avenue, Baltimore, MD 21205, USA.
| | - Ger J M Stienen
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands.
| | - Jolanda van der Velden
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; ICIN-Netherlands Heart Institute, Utrecht, The Netherlands.
| |
Collapse
|
34
|
Koopmann TT, Adriaens ME, Moerland PD, Marsman RF, Westerveld ML, Lal S, Zhang T, Simmons CQ, Baczko I, dos Remedios C, Bishopric NH, Varro A, George AL, Lodder EM, Bezzina CR. Genome-wide identification of expression quantitative trait loci (eQTLs) in human heart. PLoS One 2014; 9:e97380. [PMID: 24846176 PMCID: PMC4028258 DOI: 10.1371/journal.pone.0097380] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/17/2014] [Indexed: 11/23/2022] Open
Abstract
In recent years genome-wide association studies (GWAS) have uncovered numerous chromosomal loci associated with various electrocardiographic traits and cardiac arrhythmia predisposition. A considerable fraction of these loci lie within inter-genic regions. The underlying trait-associated variants likely reside in regulatory regions and exert their effect by modulating gene expression. Hence, the key to unraveling the molecular mechanisms underlying these cardiac traits is to interrogate variants for association with differential transcript abundance by expression quantitative trait locus (eQTL) analysis. In this study we conducted an eQTL analysis of human heart. For a total of 129 left ventricular samples that were collected from non-diseased human donor hearts, genome-wide transcript abundance and genotyping was determined using microarrays. Each of the 18,402 transcripts and 897,683 SNP genotypes that remained after pre-processing and stringent quality control were tested for eQTL effects. We identified 771 eQTLs, regulating 429 unique transcripts. Overlaying these eQTLs with cardiac GWAS loci identified novel candidates for studies aimed at elucidating the functional and transcriptional impact of these loci. Thus, this work provides for the first time a comprehensive eQTL map of human heart: a powerful and unique resource that enables systems genetics approaches for the study of cardiac traits.
Collapse
Affiliation(s)
- Tamara T. Koopmann
- Department of Experimental Cardiology, Heart Failure Research Centre, Academic Medical Center, Amsterdam, The Netherlands
| | - Michiel E. Adriaens
- Department of Experimental Cardiology, Heart Failure Research Centre, Academic Medical Center, Amsterdam, The Netherlands
| | - Perry D. Moerland
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands
| | - Roos F. Marsman
- Department of Experimental Cardiology, Heart Failure Research Centre, Academic Medical Center, Amsterdam, The Netherlands
| | - Margriet L. Westerveld
- Department of Experimental Cardiology, Heart Failure Research Centre, Academic Medical Center, Amsterdam, The Netherlands
| | - Sean Lal
- Muscle Research Unit, Department of Anatomy, Bosch Institute, The University of Sydney, Sydney, Australia
| | - Taifang Zhang
- Department of Medicine, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Christine Q. Simmons
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Istvan Baczko
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Cristobal dos Remedios
- Muscle Research Unit, Department of Anatomy, Bosch Institute, The University of Sydney, Sydney, Australia
| | - Nanette H. Bishopric
- Department of Medicine, University of Miami School of Medicine, Miami, Florida, United States of America
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Andras Varro
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Alfred L. George
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Elisabeth M. Lodder
- Department of Experimental Cardiology, Heart Failure Research Centre, Academic Medical Center, Amsterdam, The Netherlands
| | - Connie R. Bezzina
- Department of Experimental Cardiology, Heart Failure Research Centre, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
35
|
Bai F, Caster HM, Rubenstein PA, Dawson JF, Kawai M. Using baculovirus/insect cell expressed recombinant actin to study the molecular pathogenesis of HCM caused by actin mutation A331P. J Mol Cell Cardiol 2014; 74:64-75. [PMID: 24793351 DOI: 10.1016/j.yjmcc.2014.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 01/07/2023]
Abstract
Recombinant WT human cardiac actin (WT actin) was expressed using the baculovirus/insect cell expression system, purified, and used to reconstitute the thin-filament of bovine cardiac muscle fibers, together with bovine cardiac tropomyosin (Tm) and troponin (Tn). Effects of [Ca(2+)], [ATP], [phosphate] and [ADP] on tension and tension transients were studied at 25°C by using sinusoidal analysis, and the results were compared with those of native fibers and fibers reconstituted with purified bovine cardiac actin (BVC actin). In actin filament reconstituted fibers (without Tm/Tn), those reconstituted with WT actin showed exactly the same active tension as those reconstituted with purified BVC actin (WT: 0.75±0.06 T0, N=11; BVC: 0.73±0.07 T0, N=12, where T0 is the tension of original fibers before extraction). After Tm/Tn reconstitution, fibers reconstituted with WT actin generated 0.85±0.06 T0 (N=11) compared to 0.98±0.04 T0 (N=12) recovered by those reconstituted with BVC actin. In the presence of Tm/Tn, WT actin reconstituted fibers showed exactly the same Ca(2+) sensitivity as those of the native fibers and BVC actin reconstituted fibers (pCa50: native fibers: 5.69±0.01, N=10; WT: 5.69±0.02, N=11; BVC: 5.68±0.02, N=12). Sinusoidal analysis showed that the cross-bridge kinetics were the same among native fibers, BVC actin reconstituted fibers and WT actin reconstituted fibers, followed by reconstitution of Tm/Tn. These results demonstrate that baculovirus/insect cell expressed actin has no significant differences from tissue purified actin and can be used for thin-filament reconstitution assays. One hypertrophic cardiomyopathy (HCM) causing actin mutant A331P actin was also expressed and studied similarly, and the results were compared to those of the WT actin. In the reconstituted fibers, A331P significantly decreased the tension both in the absence of Tm/Tn (0.55±0.03 T0, N=13) and in their presence (0.65±0.02 T0, N=13) compared to those of the WT (0.75±0.06 T0 and 0.85±0.06 T0, respectively, N=11). A331P also showed decreased pCa50 (5.57±0.03, N=13) compared to that of WT (5.69±0.02, N=11). The cross-bridge kinetics and its distribution were similar between WT and A331P actin reconstituted fibers, indicating that force/cross-bridge was decreased by A331P. In conclusion, A331P causes a weakened cross-bridge force, which leads to a decreased active tension, reduces left-ventricular ejection fraction, and eventually results in the HCM phenotype.
Collapse
Affiliation(s)
- Fan Bai
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242-1109, USA.
| | - Hannah M Caster
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242-1109, USA.
| | - Peter A Rubenstein
- Department of Biochemistry, The University of Iowa, Iowa City, IA 52242-1109, USA.
| | - John F Dawson
- Department of Molecular & Cellular Biology, University of Guelph, College of Biological Science, Guelph, Ontario N1G 2 W1, Canada.
| | - Masataka Kawai
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242-1109, USA; Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242-1109, USA.
| |
Collapse
|
36
|
Kirk JA, Holewinski RJ, Kooij V, Agnetti G, Tunin RS, Witayavanitkul N, de Tombe PP, Gao WD, Van Eyk J, Kass DA. Cardiac resynchronization sensitizes the sarcomere to calcium by reactivating GSK-3β. J Clin Invest 2014; 124:129-38. [PMID: 24292707 DOI: 10.1172/jci69253] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 09/19/2013] [Indexed: 01/10/2023] Open
Abstract
Cardiac resynchronization therapy (CRT), the application of biventricular stimulation to correct discoordinate contraction, is the only heart failure treatment that enhances acute and chronic systolic function, increases cardiac work, and reduces mortality. Resting myocyte function also increases after CRT despite only modest improvement in calcium transients, suggesting that CRT may enhance myofilament calcium responsiveness. To test this hypothesis, we examined adult dogs subjected to tachypacing-induced heart failure for 6 weeks, concurrent with ventricular dyssynchrony (HF(dys)) or CRT. Myofilament force-calcium relationships were measured in skinned trabeculae and/or myocytes. Compared with control, maximal calcium-activated force and calcium sensitivity declined globally in HF(dys); however, CRT restored both. Phosphatase PP1 induced calcium desensitization in control and CRT-treated cells, while HF(dys) cells were unaffected, implying that CRT enhances myofilament phosphorylation. Proteomics revealed phosphorylation sites on Z-disk and M-band proteins, which were predicted to be targets of glycogen synthase kinase-3β (GSK-3β). We found that GSK-3β was deactivated in HF(dys) and reactivated by CRT. Mass spectrometry of myofilament proteins from HF(dys) animals incubated with GSK-3β confirmed GSK-3β–dependent phosphorylation at many of the same sites observed with CRT. GSK-3β restored calcium sensitivity in HF(dys), but did not affect control or CRT cells. These data indicate that CRT improves calcium responsiveness of myofilaments following HF(dys) through GSK-3β reactivation, identifying a therapeutic approach to enhancing contractile function
Collapse
|
37
|
Wijnker PJM, Sequeira V, Foster DB, Li Y, Dos Remedios CG, Murphy AM, Stienen GJM, van der Velden J. Length-dependent activation is modulated by cardiac troponin I bisphosphorylation at Ser23 and Ser24 but not by Thr143 phosphorylation. Am J Physiol Heart Circ Physiol 2014; 306:H1171-81. [PMID: 24585778 DOI: 10.1152/ajpheart.00580.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Frank-Starling's law reflects the ability of the heart to adjust the force of its contraction to changes in ventricular filling, a property based on length-dependent myofilament activation (LDA). The threonine at amino acid 143 of cardiac troponin I (cTnI) is prerequisite for the length-dependent increase in Ca(2+) sensitivity. Thr143 is a known target of protein kinase C (PKC) whose activity is increased in cardiac disease. Thr143 phosphorylation may modulate length-dependent myofilament activation in failing hearts. Therefore, we investigated if pseudo-phosphorylation at Thr143 modulates length dependence of force using troponin exchange experiments in human cardiomyocytes. In addition, we studied effects of protein kinase A (PKA)-mediated cTnI phosphorylation at Ser23/24, which has been reported to modulate LDA. Isometric force was measured at various Ca(2+) concentrations in membrane-permeabilized cardiomyocytes exchanged with recombinant wild-type (WT) troponin or troponin mutated at the PKC site Thr143 or Ser23/24 into aspartic acid (D) or alanine (A) to mimic phosphorylation and dephosphorylation, respectively. In troponin-exchanged donor cardiomyocytes experiments were repeated after incubation with exogenous PKA. Pseudo-phosphorylation of Thr143 increased myofilament Ca(2+) sensitivity compared with WT without affecting LDA in failing and donor cardiomyocytes. Subsequent PKA treatment enhanced the length-dependent shift in Ca(2+) sensitivity after WT and 143D exchange. Exchange with Ser23/24 variants demonstrated that pseudo-phosphorylation of both Ser23 and Ser24 is needed to enhance the length-dependent increase in Ca(2+) sensitivity. cTnI pseudo-phosphorylation did not alter length-dependent changes in maximal force. Thus phosphorylation at Thr143 enhances myofilament Ca(2+) sensitivity without affecting LDA, while Ser23/24 bisphosphorylation is needed to enhance the length-dependent increase in myofilament Ca(2+) sensitivity.
Collapse
Affiliation(s)
- Paul J M Wijnker
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Katrukha IA. Human cardiac troponin complex. Structure and functions. BIOCHEMISTRY (MOSCOW) 2014; 78:1447-65. [DOI: 10.1134/s0006297913130063] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Gupta MK, Robbins J. Post-translational control of cardiac hemodynamics through myosin binding protein C. Pflugers Arch 2013; 466:231-6. [PMID: 24145982 DOI: 10.1007/s00424-013-1377-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/26/2013] [Accepted: 10/07/2013] [Indexed: 11/30/2022]
Abstract
Cardiac myosin binding protein C (cMyBP-C) is an integral sarcomeric protein that associates with the thick, thin, and titin filament systems in the contractile apparatus. Three different isoforms of MyBP-C exist in mammalian muscle: slow skeletal (MyBPC1), fast skeletal (MyBP-C2, with several variants), and cardiac (cMyBP-C). Genetic screening studies show that mutations in MYBPC3 occur frequently and are responsible for as many as 30-35 % of identified cases of familial hypertrophic cardiomyopathy. The function of cMyBP-C is stringently regulated by its post-translational modification. In particular, the addition of phosphate groups occurs with high frequency on certain serine residues that are located in the cardiac-specific regulatory M domain. Phosphorylation of this domain has been extensively studied in vitro and in vivo. Phosphorylation of the M domain can regulate the manner in which actin and myosin interact, affecting the cross bridge cycle and ultimately, cardiac hemodynamics.
Collapse
Affiliation(s)
- Manish K Gupta
- The Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | | |
Collapse
|
40
|
Kooij V, Zhang P, Piersma SR, Sequeira V, Boontje NM, Wijnker PJM, Jiménez CR, Jaquet KE, dos Remedios C, Murphy AM, Van Eyk JE, van der Velden J, Stienen GJM. PKCα-specific phosphorylation of the troponin complex in human myocardium: a functional and proteomics analysis. PLoS One 2013; 8:e74847. [PMID: 24116014 PMCID: PMC3792062 DOI: 10.1371/journal.pone.0074847] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/07/2013] [Indexed: 11/18/2022] Open
Abstract
Aims Protein kinase Cα (PKCα) is one of the predominant PKC isoforms that phosphorylate cardiac troponin. PKCα is implicated in heart failure and serves as a potential therapeutic target, however, the exact consequences for contractile function in human myocardium are unclear. This study aimed to investigate the effects of PKCα phosphorylation of cardiac troponin (cTn) on myofilament function in human failing cardiomyocytes and to resolve the potential targets involved. Methods and Results Endogenous cTn from permeabilized cardiomyocytes from patients with end-stage idiopathic dilated cardiomyopathy was exchanged (∼69%) with PKCα-treated recombinant human cTn (cTn (DD+PKCα)). This complex has Ser23/24 on cTnI mutated into aspartic acids (D) to rule out in vitro cross-phosphorylation of the PKA sites by PKCα. Isometric force was measured at various [Ca2+] after exchange. The maximal force (Fmax) in the cTn (DD+PKCα) group (17.1±1.9 kN/m2) was significantly reduced compared to the cTn (DD) group (26.1±1.9 kN/m2). Exchange of endogenous cTn with cTn (DD+PKCα) increased Ca2+-sensitivity of force (pCa50 = 5.59±0.02) compared to cTn (DD) (pCa50 = 5.51±0.02). In contrast, subsequent PKCα treatment of the cells exchanged with cTn (DD+PKCα) reduced pCa50 to 5.45±0.02. Two PKCα-phosphorylated residues were identified with mass spectrometry: Ser198 on cTnI and Ser179 on cTnT, although phosphorylation of Ser198 is very low. Using mass spectrometry based-multiple reaction monitoring, the extent of phosphorylation of the cTnI sites was quantified before and after treatment with PKCα and showed the highest phosphorylation increase on Thr143. Conclusion PKCα-mediated phosphorylation of the cTn complex decreases Fmax and increases myofilament Ca2+-sensitivity, while subsequent treatment with PKCα in situ decreased myofilament Ca2+-sensitivity. The known PKC sites as well as two sites which have not been previously linked to PKCα are phosphorylated in human cTn complex treated with PKCα with a high degree of specificity for Thr143.
Collapse
Affiliation(s)
- Viola Kooij
- Laboratory for Physiology, Institute for Cardiovascular Research, VU Medical Center, Amsterdam, The Netherlands
- Johns Hopkins Bayview Proteomics Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| | - Pingbo Zhang
- Johns Hopkins Bayview Proteomics Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sander R. Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, VU Medical Center, Amsterdam, The Netherlands
| | - Vasco Sequeira
- Laboratory for Physiology, Institute for Cardiovascular Research, VU Medical Center, Amsterdam, The Netherlands
| | - Nicky M. Boontje
- Laboratory for Physiology, Institute for Cardiovascular Research, VU Medical Center, Amsterdam, The Netherlands
| | - Paul J. M. Wijnker
- Laboratory for Physiology, Institute for Cardiovascular Research, VU Medical Center, Amsterdam, The Netherlands
| | - Connie R. Jiménez
- OncoProteomics Laboratory, Department of Medical Oncology, VU Medical Center, Amsterdam, The Netherlands
| | - Kornelia E. Jaquet
- St Josef-Hospital/Bergmannsheil, Clinic of the Ruhr-University of Bochum, Bochum, Germany
| | - Cris dos Remedios
- Muscle Research Unit, Institute for Biomedical Research, The University of Sydney, Sydney, Australia
| | - Anne M. Murphy
- Institute of Molecular Cardiobiology, Department of Pediatrics, School of Medical, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jennifer E. Van Eyk
- Johns Hopkins Bayview Proteomics Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jolanda van der Velden
- Laboratory for Physiology, Institute for Cardiovascular Research, VU Medical Center, Amsterdam, The Netherlands
| | - Ger JM. Stienen
- Laboratory for Physiology, Institute for Cardiovascular Research, VU Medical Center, Amsterdam, The Netherlands
- Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Li A, Estigoy C, Raftery M, Cameron D, Odeberg J, Pontén F, Lal S, Dos Remedios CG. Heart research advances using database search engines, Human Protein Atlas and the Sydney Heart Bank. Heart Lung Circ 2013; 22:819-26. [PMID: 23856366 DOI: 10.1016/j.hlc.2013.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/07/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
Abstract
This Methodological Review is intended as a guide for research students who may have just discovered a human "novel" cardiac protein, but it may also help hard-pressed reviewers of journal submissions on a "novel" protein reported in an animal model of human heart failure. Whether you are an expert or not, you may know little or nothing about this particular protein of interest. In this review we provide a strategic guide on how to proceed. We ask: How do you discover what has been published (even in an abstract or research report) about this protein? Everyone knows how to undertake literature searches using PubMed and Medline but these are usually encyclopaedic, often producing long lists of papers, most of which are either irrelevant or only vaguely relevant to your query. Relatively few will be aware of more advanced search engines such as Google Scholar and even fewer will know about Quertle. Next, we provide a strategy for discovering if your "novel" protein is expressed in the normal, healthy human heart, and if it is, we show you how to investigate its subcellular location. This can usually be achieved by visiting the website "Human Protein Atlas" without doing a single experiment. Finally, we provide a pathway to discovering if your protein of interest changes its expression level with heart failure/disease or with ageing.
Collapse
Affiliation(s)
- Amy Li
- Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Sydney 2006, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Manning JR, Perkins SO, Sinclair EA, Gao X, Zhang Y, Newman G, Pyle WG, Schultz JEJ. Low molecular weight fibroblast growth factor-2 signals via protein kinase C and myofibrillar proteins to protect against postischemic cardiac dysfunction. Am J Physiol Heart Circ Physiol 2013; 304:H1382-96. [PMID: 23479264 DOI: 10.1152/ajpheart.00613.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Among its many biological roles, fibroblast growth factor-2 (FGF2) acutely protects the heart from dysfunction associated with ischemia/reperfusion (I/R) injury. Our laboratory has demonstrated that this is due to the activity of the low molecular weight (LMW) isoform of FGF2 and that FGF2-mediated cardioprotection relies on the activity of protein kinase C (PKC); however, which PKC isoforms are responsible for LMW FGF2-mediated cardioprotection, and their downstream targets, remain to be elucidated. To identify the PKC pathway(s) that contributes to postischemic cardiac recovery by LMW FGF2, mouse hearts expressing only LMW FGF2 (HMWKO) were bred to mouse hearts not expressing PKCα (PKCαKO) or subjected to a selective PKCε inhibitor (εV(1-2)) before and during I/R. Hearts only expressing LMW FGF2 showed significantly improved postischemic recovery of cardiac function following I/R (P < 0.05), which was significantly abrogated in the absence of PKCα (P < 0.05) or presence of PKCε inhibition (P < 0.05). Hearts only expressing LMW FGF2 demonstrated differences in actomyosin ATPase activity as well as increases in the phosphorylation of troponin I and T during I/R compared with wild-type hearts; several of these effects were dependent on PKCα activity. This evidence indicates that both PKCα and PKCε play a role in LMW FGF2-mediated protection from cardiac dysfunction and that PKCα signaling to the contractile apparatus is a key step in the mechanism of LMW FGF2-mediated protection against myocardial dysfunction.
Collapse
Affiliation(s)
- Janet R Manning
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
van Berlo JH, Maillet M, Molkentin JD. Signaling effectors underlying pathologic growth and remodeling of the heart. J Clin Invest 2013; 123:37-45. [PMID: 23281408 DOI: 10.1172/jci62839] [Citation(s) in RCA: 334] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease is the number one cause of mortality in the Western world. The heart responds to many cardiopathological conditions with hypertrophic growth by enlarging individual myocytes to augment cardiac pump function and decrease ventricular wall tension. Initially, such cardiac hypertrophic growth is often compensatory, but as time progresses these changes become maladaptive. Cardiac hypertrophy is the strongest predictor for the development of heart failure, arrhythmia, and sudden death. Here we discuss therapeutic avenues emerging from molecular and genetic studies of cardiovascular disease in animal models. The majority of these are based on intracellular signaling pathways considered central to pathologic cardiac remodeling and hypertrophy, which then leads to heart failure. We focus our discussion on selected therapeutic targets that have more recently emerged and have a tangible translational potential given the available pharmacologic agents that could be readily evaluated in human clinical trials.
Collapse
Affiliation(s)
- Jop H van Berlo
- Department of Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, Ohio 45229-3039, USA
| | | | | |
Collapse
|
44
|
Abstract
Protein kinase C (PKC) isoforms have emerged as important regulators of cardiac contraction, hypertrophy, and signaling pathways that influence ischemic/reperfusion injury. This review focuses on newer concepts regarding PKC isoform-specific activation mechanisms and actions that have implications for the development of PKC-targeted therapeutics.
Collapse
Affiliation(s)
- Susan F Steinberg
- Department of Pharmacology, Columbia University, New York, New York, USA.
| |
Collapse
|
45
|
Riise J, Ørstavik Ø, Qvigstad E, Dahl CP, Osnes JB, Skomedal T, Levy FO, Krobert KA. Prostaglandin E1 facilitates inotropic effects of 5-HT4 serotonin receptors and β-adrenoceptors in failing human heart. Basic Res Cardiol 2012; 107:295. [PMID: 22923058 DOI: 10.1007/s00395-012-0295-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 06/26/2012] [Accepted: 08/02/2012] [Indexed: 11/30/2022]
Abstract
Prostaglandins have displayed both beneficial and detrimental effects in clinical studies in patients with severe heart failure. Prostaglandins are known to increase cardiac output, but the mechanism is not clarified. Here, we tested the hypothesis that prostaglandins can increase contractility in human heart by amplifying cAMP-dependent inotropic responses. Contractility was measured ex vivo in isolated left ventricular strips and phosphodiesterase (PDE) and adenylyl cyclase (AC) activity was measured in homogenates or membranes from failing human left ventricles. PGE(1) (1 µM) alone did not modify contractility, but given prior, amplified maximal serotonin (5-HT)-evoked (10 µM) contractile responses mediated by 5-HT(4) receptors several fold (24 ± 7 % with PGE(1) vs. 3 ± 2 % above basal with 5-HT alone). The 5-HT(4)-mediated inotropic response was amplified by the PDE3 inhibitor cilostamide and further amplified in combination with PGE(1) (26 ± 6 vs. 56 ± 12 % above basal). PGE(1) reduced the time to reach 90 % of both the maximal 5-HT- and isoproterenol-evoked inotropic response compared to 5-HT or isoproterenol alone. PGE(1) did not modify PDE activity in the homogenate, either alone or when given simultaneously with PDE3 and/or PDE4 inhibitors. Neither 5-HT- nor isoproterenol-stimulated AC activity was significantly amplified by PGE(1). Sensitivity of ventricular strips to Ca(2+) was not enhanced in the presence of PGE(1). Our results show that PGE(1) can enhance cAMP-mediated responses in failing human left ventricle, through a mechanism independent of PDE inhibition, amplification of AC activity or increasing sensitivity to calcium. This effect of PGE(1) possibly contributes to the increase of cardiac output, independent of decreased afterload, observed after prostaglandin administration in humans.
Collapse
Affiliation(s)
- Jon Riise
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Sognsvannsvn. 20, Blindern, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Jofré NM, Delpiano AM, Cuello MA, Poblete JA, Vargas PA, Carvajal JA. Isoform α of PKC may contribute to the maintenance of pregnancy myometrial quiescence in humans. Reprod Sci 2012; 20:69-77. [PMID: 22872490 DOI: 10.1177/1933719112450335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We postulate that protein kinase C α (PKCα) may contribute to the maintenance of pregnancy myometrial quiescence in humans. We studied the changes in myometrial PKCα gene products (messenger RNA [mRNA] and protein) in 4 groups of women: preterm not in labor (PT-NL), preterm in labor (PT-L), term not in labor (T-NL), and term in labor (T-L). The degree of PKCα activation was studied by comparing the levels of particulate (active) PKCα with the total PKCα protein levels and by measuring PKCα activity in the cytosolic and particulate fractions. Protein kinase Cα abundance (mRNA and protein) did not increase during myometrial quiescence (PT-NL), whereas the level of PKCα activity significantly increased during quiescence. The activity of PKCα significantly decreased in the T-NL, T-L, and PT-L groups. These findings suggest that PKCα plays a significant role in the maintenance of myometrial quiescence and that PKCα activity must decrease at the end of pregnancy allowing myometrial activation. Additionally, our data demonstrate an association between reduced PKCα activity and preterm labor, which merits further investigation.
Collapse
Affiliation(s)
- Nicolás M Jofré
- Unidad de Medicina Materno Fetal, División de Obstetricia y Ginecología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
47
|
Florea S, Anjak A, Cai WF, Qian J, Vafiadaki E, Figueria S, Haghighi K, Rubinstein J, Lorenz J, Kranias EG. Constitutive phosphorylation of inhibitor-1 at Ser67 and Thr75 depresses calcium cycling in cardiomyocytes and leads to remodeling upon aging. Basic Res Cardiol 2012; 107:279. [PMID: 22777184 DOI: 10.1007/s00395-012-0279-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/08/2012] [Accepted: 06/25/2012] [Indexed: 12/15/2022]
Abstract
The activity of protein phosphatase-1 (PP1) inhibitor-1 (I-1) is antithetically modulated by the cAMP-protein kinase A (PKA) and Ca(2+)-protein kinase C (PKC) signaling axes. β-adrenergic (β-AR) stimulation results in PKA-phosphorylation of I-1 at threonine 35 (Thr35) and depressed PP1 activity, while PKC phosphorylation at serine 67 (Ser67) and/or Thr75 increases PP1 activity. In heart failure, pThr35 is decreased while pSer67 and pThr75 are elevated. However, the role of Ser67/Thr75 phosphorylation in vivo and its effects on Ca(2+)-cycling are not known. Thus, our aim was to investigate the functional significance of Ser67 and Thr75 phosphorylation in intact hearts. We generated transgenic mice (TG) with cardiac-specific overexpression of constitutively phosphorylated I-1 at Ser67 and Thr75 (S67D/T75D) and evaluated cardiac function. The S67D/T75D cardiomyocytes exhibited significantly depressed Ca(2+)-kinetics and contractile parameters, compared with wild-type (WT) cells. The decreased Ca(2+)-cycling was associated with a 27 % increase in PP1 activity, no alterations in PP2 activity and impaired phosphorylation of myosin-binding protein-C (MyBPC). Upon aging, there was cardiac remodeling associated with increases in systolic and diastolic left ventricular internal diameter dimensions (at 16 months), compared with WTs. The results indicate that phosphorylation of I-1 at Ser67 and Thr75 is associated with increased PP1 activity and depressed cardiomyocyte Ca(2+)-cycling, which manifests in geometrical alterations over the long term. Thus, hyperphosphorylation of these sites in failing hearts may contribute to deteriorative remodeling.
Collapse
Affiliation(s)
- Stela Florea
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cell-to-cell variability in troponin I phosphorylation in a porcine model of pacing-induced heart failure. Basic Res Cardiol 2012; 107:244. [PMID: 22237651 PMCID: PMC3329882 DOI: 10.1007/s00395-012-0244-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 12/12/2011] [Accepted: 12/31/2011] [Indexed: 01/26/2023]
Abstract
We tested the hypothesis that myocardial contractile protein phosphorylation and the Ca2+ sensitivity of force production are dysregulated in a porcine model of pacing-induced heart failure (HF). The level of protein kinase A (PKA)-dependent cardiac troponin I (TnI) phosphorylation was lower in the myocardium surrounding the pacing electrode (pacing site) of the failing left ventricle (LV) than in the controls. Immunohistochemical assays of the LV pacing site pointed to isolated clusters of cardiomyocytes exhibiting a reduced level of phosphorylated TnI. Flow cytometry on isolated and permeabilized cardiomyocytes revealed a significantly larger cell-to-cell variation in the level of TnI phosphorylation of the LV pacing site than in the opposite region in HF or in either region in the controls: the interquartile range (IQR) on the distribution histogram of relative TnI phosphorylation was wider at the pacing site (IQR = 0.53) than that at the remote site of HF (IQR = 0.42; P = 0.0047) or that of the free wall of the control animals (IQR = 0.36; P = 0.0093). Additionally, the Ca2+ sensitivities of isometric force production were higher and appeared to be more variable in single permeabilized cardiomyocytes from the HF pacing site than in the healthy myocardium. In conclusion, the level of PKA-dependent TnI phosphorylation and the Ca2+ sensitivity of force production exhibited a high cell-to-cell variability at the LV pacing site, possibly explaining the abnormalities of the regional myocardial contractile function in a porcine model of pacing-induced HF.
Collapse
|
49
|
Defective proteolytic systems in Mybpc3-targeted mice with cardiac hypertrophy. Basic Res Cardiol 2011; 107:235. [PMID: 22189562 DOI: 10.1007/s00395-011-0235-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/09/2011] [Accepted: 12/02/2011] [Indexed: 02/07/2023]
Abstract
Several lines of evidence suggest that alterations of the ubiquitin-proteasome system (UPS) and autophagy-lysosome pathway (ALP) may be involved in cardiac diseases. Little is known, however, in hypertrophic cardiomyopathy (HCM). This study studied these pathways in two mouse models of HCM that mainly differ by the presence or absence of truncated mutant proteins. Analyses were performed in homozygous Mybpc3-targeted knock-in (KI) mice, carrying a HCM mutation and exhibiting low levels of mutant cardiac myosin-binding protein C (cMyBP-C), and in Mybpc3-targeted knock-out (KO) mice expressing no cMyBP-C, thus serving as a model of pure cMyBP-C insufficiency. In the early postnatal development of cardiac hypertrophy, both models showed higher levels of ubiquitinated proteins and greater proteasomal activities. To specifically monitor the degradation capacity of the UPS with age, mice were crossed with transgenic mice that overexpress Ub(G76V)-GFP. Ub(G76V)-GFP protein levels were fourfold higher in 1-year-old KI, but not KO mice, suggesting a specific UPS impairment in mice expressing truncated cMyBP-C. Whereas protein levels of key ALP markers were higher, suggesting ALP activation in both mutant mice, their mRNA levels did not differ between the groups, underlying rather defective ALP-mediated degradation. Analysis of key proteins regulated in heart failure did not reveal specific alterations in KI and KO mice. Our data suggest (1) UPS activation in early postnatal development of cardiac hypertrophy, (2) specific UPS impairment in old KI mice carrying a HCM mutation, and (3) defective ALP as a common mechanism in genetically engineered mice with cardiac hypertrophy.
Collapse
|
50
|
van Dijk SJ, Paalberends ER, Najafi A, Michels M, Sadayappan S, Carrier L, Boontje NM, Kuster DWD, van Slegtenhorst M, Dooijes D, dos Remedios C, ten Cate FJ, Stienen GJM, van der Velden J. Contractile dysfunction irrespective of the mutant protein in human hypertrophic cardiomyopathy with normal systolic function. Circ Heart Fail 2011; 5:36-46. [PMID: 22178992 DOI: 10.1161/circheartfailure.111.963702] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM), typically characterized by asymmetrical left ventricular hypertrophy, frequently is caused by mutations in sarcomeric proteins. We studied if changes in sarcomeric properties in HCM depend on the underlying protein mutation. METHODS AND RESULTS Comparisons were made between cardiac samples from patients carrying a MYBPC3 mutation (MYBPC3(mut); n=17), mutation negative HCM patients without an identified sarcomere mutation (HCM(mn); n=11), and nonfailing donors (n=12). All patients had normal systolic function, but impaired diastolic function. Protein expression of myosin binding protein C (cMyBP-C) was significantly lower in MYBPC3(mut) by 33±5%, and similar in HCM(mn) compared with donor. cMyBP-C phosphorylation in MYBPC3(mut) was similar to donor, whereas it was significantly lower in HCM(mn). Troponin I phosphorylation was lower in both patient groups compared with donor. Force measurements in single permeabilized cardiomyocytes demonstrated comparable sarcomeric dysfunction in both patient groups characterized by lower maximal force generating capacity in MYBPC3(mut) and HCM(mn,) compared with donor (26.4±2.9, 28.0±3.7, and 37.2±2.3 kN/m(2), respectively), and higher myofilament Ca(2+)-sensitivity (EC(50)=2.5±0.2, 2.4±0.2, and 3.0±0.2 μmol/L, respectively). The sarcomere length-dependent increase in Ca(2+)-sensitivity was significantly smaller in both patient groups compared with donor (ΔEC(50): 0.46±0.04, 0.37±0.05, and 0.75±0.07 μmol/L, respectively). Protein kinase A treatment restored myofilament Ca(2+)-sensitivity and length-dependent activation in both patient groups to donor values. CONCLUSIONS Changes in sarcomere function reflect the clinical HCM phenotype rather than the specific MYBPC3 mutation. Hypocontractile sarcomeres are a common deficit in human HCM with normal systolic left ventricular function and may contribute to HCM disease progression.
Collapse
Affiliation(s)
- Sabine J van Dijk
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|